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The Bethe theory for the energy loss of swift charged particles colliding with atomic targets is extended to
treat explicitly the case when the projectile has bound electrons. The theory is characterized by taking into
account the excitation and ionizations~but not charge exchange! of both projectile and target. As a conse-
quence of the Coulombic character of the interaction between projectile and target, the electronic stopping
cross sectionSe is split into contributions arising from the electronic structure of the projectile and of the
target. In the lower part of the velocity region where this theory is applicable, the electronic structure of the
projectile makes an important contribution, of the order 10–20%, toSe . At high projectile velocities, however,
this contribution decreases, leaving only the standard Bethe term. The number of electrons bound to the
projectile,N1, as a function of the velocity of the projectile is calculated using the adiabatic Bohr criterion in
conjunction with the Thomas-Fermi model of the atom. We obtain an analytic expression for the total stopping
cross section using the Bethe approximation, and we compare the results of calculations of He, Li, and B ions
on C and Al targets with experiment.@S1050-2947~97!06903-5#

PACS number~s!: 34.50.Bw, 34.10.1x
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I. INTRODUCTION

The energy loss of swift ions moving through matter h
been the subject of extensive theoretical and experime
study since the beginning of the century@1#. In recent years,
the stopping of partially stripped heavy ions in matter h
received increased attention both experimentally and th
retically @2#. However, a first-principles description of th
influence of the projectile electronic structure on the st
ping has not yet been formulated. This is the subject of
present paper.

For fully stripped projectiles with velocityv much greater
than the orbital velocityve of the target electrons, the Bethe
Bloch theory@3,4# accounts for the electronic stopping cro
section with good accuracy. According to Bethe’s theory@3#,
the electronic stopping cross section for a swift stripped
with chargeZ1 is given by

Se~v !52
1

n2

dE

dx
5
4pe4

mev
2 Z1

2L~v !, ~1.1!

whereL(v)5Z2ln(2mv
2/2I0) is the stopping number,2I 0 is

the mean excitation energy of the target,2dE/dx is the
energy loss per unit path~stopping power!, and n2 is the
number of atoms per volume of the target. Here and bel
the subscripts 1 and 2 refer to the projectile and target,
spectively. However, while penetrating matter, the projec
ions may carry, at least temporarily, some bound electr
even if v.ve @5,6#. Furthermore, capture and loss of ele
trons by the projectile are processes with a high probabi
in particular in the velocity rangev0,v,v0Z1

2/3, v0 being
the Bohr velocity, leading to important contributions to t
energy loss@7#. Thus, in order to obtain a proper descriptio
551050-2947/97/55~4!/2864~9!/$10.00
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of the stopping cross section for a wide range of velociti
one must consider the electronic structure of both projec
and target.

The first study along these lines was carried out in the m
1950s by Bates and Griffing@8#, who calculated the elec
tronic cross section for the simplest collision process: t
hydrogen atoms. This work formed the basis for system
studies of more general atom-atom interactions@9#.

During the last few years, the charge-state dependenc
electronic stopping has become an active research topic.
vious treatments based on the average scaling rules suc
the effective charge theory@10#, although useful for estimat
ing the mean stopping power of heavy ions, still represen
incomplete description of the electron capture and loss p
cesses involved in a collision. Recently, more realistic a
sophisticated models based on the numerical solution of
time-dependent Schro¨dinger equation @11,12#, time-
dependent variational principle@13#, or density-functional
theory@14# has been suggested. However, these methods
currently only feasible for H- and He-like projectiles, s
there is still a need for theories such as the one proposed
treating more general projectiles.

Within the spirit of the Bethe theory, there have be
various efforts to account for the stopping of partia
stripped ions. A scheme was suggested by Kim and Ch
@5# where the electronic stopping cross sectionSe is obtained
from the original Bethe formula by replacing the project
nuclear chargeZ1, and target mean ionization energy2I 0 by
Zeff andI eff , respectively. BothZeff andI eff are derived from
properties of the projectile and target that can be calcula
from first principles.

Similarly, Arnau and Echenique@15# proposed a way to
introduce the electronic structure of the projectile into t
dielectric theory of stopping. More recently, Moneta a
Czerbniak@16# have used the first-order Born approximatio
2864 © 1997 The American Physical Society
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55 2865BETHE THEORY OF STOPPING INCORPORATING . . .
for estimating the stopping power of partially stripped io
based on the semiclassical impact parameter descriptio
their model, the projectile electrons are allowed to be exc
or ionized but no electron exchange is considered.

The purpose of this work is to report a first Born appro
mation Bethe-like theory for partially stripped projectile
carrying a velocity-dependent number of bound electrons
contrast to the treatment of Moneta and Czerbniak@16#, our
formulation does not depend on the impact parameter,
the number of electrons bound to the projectile is obtain
using the Bohr adiabatic criterion@17#. Furthermore, it natu-
rally separates the contributions to the stopping originat
from the projectile and target.

Section II A provides the general first Born approximati
theory of stopping power for an ion with electronic structu
impinging on an atomic target. The basic formula for ene
loss including excitation and ionization of the compou
projectile-target system is developed. In Sec. II B we perfo
the standard Bethe approximation for the stopping pow
assuming a random, isotropic distribution of target atom
i.e., we do not consider directional dependence@18#. In Sec.
II C, we invoke the Bohr criterion@17# for the number of
electrons stripped from the projectile, thus obtaining an a
lytical expression for the ionization fraction (i f) of the ion as
a function of its velocity. In Sec. II D we combine the resu
of Secs. II A, II B, and II C to obtain a final expression fo
the stopping cross section. In Sec. III we discuss and c
pare our results with other theories and experiment, and
nally, in Sec. IV we present our conclusions.

II. STOPPING POWER

A. The first Born approximation

Let us consider a process in which an ion moving with
velocity v ~in the laboratory frame!, massM1, nuclear
chargeZ1e, and carryingN1 bound electrons described b
the electronic eigenstateun0& collides with a stationary targe
with massM2 and N2 bound electrons in an initial stat
denotedum0&. The projectile is deflected into the solid-ang
elementdV along a direction with polar angle (u,w) mea-
sured in the laboratory frame. Suppose the projectile-ta
system undergoes a transition to final statesun& and um&,
respectively, with energiesEn andEm . Then the kinetic en-
ergy of the projectile, when electron transfer is not permitt
is thereby reduced by (En2En0

)1(Em2Em0
)5\(wnn0

1wmm0
).

The stopping cross section@19# is given by

Se~v !5(
n,m

E dsn,m

dV
@~En2En0

!1~Em2Em0
!#dV,

wheredsn,m /dV is the differential cross section.
When the projectile is sufficiently fast but still nonrelati

istic, the differential cross section calculated in the first Bo
approximation for the interactionV between the projectile
and target becomes@20#

dsn,m

dV
5

M1
2

~2p!2\4

k

k0
z^nmkuVun0m0k0& z2, ~2.1!
In
d
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where

^nmkuVun0m0k0&5E e~2 iq•R!cm* ~y1 , . . . ,yN2!

3fn* ~x1 , . . . ,xN1!V~x,y,R,!

3cm0
~y1 , . . . ,yN2!fn0

~x1 , . . . ,xN1!

3dx1•••dxN1dy1•••dyN2dR. ~2.2!

Here,R is the position of the projectile relative to the cent
of mass of the target,xi the position vector of electroni of
the projectile with respect to the center of mass of the p
jectile, yj , the position vector of the electronj of the target
with respect to the center of mass of the target. The mom
tum transfer is\q5\(k2k0), with \k0 being the momen-
tum of the projectile before the collision and\k the momen-
tum of the projectile after the collision. Thec ’s andf ’s are
the electronic eigenfunctionsum& and un& in the coordinates
yi andxi for target and projectile, respectively.

Since the interaction between projectile and target is C
lombic, the interaction potential is given by

V~x,y,R!5
Z1Z2e

2

R
2(

i51

N2 Z1e
2

uR2yi u
2(

i51

N1 Z2e
2

uR1xi u

1 (
i , j51

N1N2 e2

uyj2R2xi u
. ~2.3!

Following Bethe’s classic derivation, Eqs.~2.1! and~2.2!
can be simplified when we perform the integration overR.
The first term of Eq.~2.3! does not contribute toSe owing to
the orthogonality of the ground- and excited-state electro
wave functions for the projectile and for the target. Using t
Bethe integral@21# and some straightforward manipulatio
we find that the stopping cross section can be written as

Se~v !5
2e4

mev
2(
n,m

H E
qmin

qmax
uZ2dm0m

22Mm0m
~q!u21Fn0n

~q!
dq

q2

1E
qmin

qmax
uZ1dn0n21Mn0n

~q!u22Fm0m
~q!

dq

q2 J
5Se,1~v !1Se,2~v !, ~2.4!

where

1Mn0n
~q!5K n0U(

j51

N1

e2 iq•xjUnL ,
~2.5!

2Mm0m
~q!5Km0U(

j51

N2

e2 iq•yjUmL
are the atomic form factors@1,22# of the transition between
the initial state and the final state of the projectile and targ
respectively, and where we have made use of the defini
q5k2k0 to write dV5q dq dw/kk05dq/kk0. The general-
ized oscillators strengths~GOS! for projectile and target are
defined as@3#
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1Fn0n
~q!5

2me

\q2
u1Mn0n

~q!u2wnn0
,

~2.6!

2Fm0m
~q!5

2me

\q2
u2Mm0m

~q!u2wmm0
.

The limits of theq integration in Eq.~2.4! are determined
by the kinematics of the collision process. The minimu
momentum transfer is calculated assuming that there i
least one internal excitation for the projectile-target syste
The maximum momentum transferred to an electron of
target in a collision is calculated by conservation of mom
tum and energy. Therefore for heavy ions@19#

qmin5
wnn0

1wmm0

v
, qmax5

2mev
\

. ~2.7!

Equation ~2.4! is a first Born approximation expressio
applicable to the electronic stopping power of ions with el
tronic structure. The first term on the right-hand side of E
~2.4! contains the quantity1Fn0n

, and thus gives the contri
butions to the stopping cross section from the atomic tra
tion of the projectile modulated by the electronic structure
the target. Similarly, the second term containing2Fm0m

de-
scribes the contributions from the transitions in the tar
modulated by the electronic structure of the project
Hence, the two terms in Eq.~2.4! represent the contribution
to the stopping power related to electronic transitions in
projectile and target, respectively. Knowing the GOS’s
both projectile and target, it is a straightforward task to co
puteSe(v) from Eq. ~2.4!. However, it is necessary to know
the full excitation spectrum of both the projectile and t
target, and it may be necessary to resort to approxim
methods.

B. The Bethe approximation

In order to derive an approximate formula for the sto
ping cross sectionSe(v) involving the mean excitation ener
gies of projectile and target, it is convenient to introduce
Bethe sum rule@3# for projectile and target:

(
n

1Fn0n
~q!5N1 , (

m
2Fm0m

~q!5N2 . ~2.8!

Assuming Hartree-Fock atomic wave functions, we m
show that

(
n

uZ1dn0n21Mn0n
~q!u25uZ121Mn0n0

~q!u2,

~2.9!

(
m

uZ2dm0m
22Mm0m

~q!u25uZ222Mm0m0
~q!u2,

where 1Mn0n0
(q) and 2Mm0m0

(q) are the electronic atomic
form factors of the ground state of projectile and target,
spectively.

Following Bethe@19#, we interchange the summation ov
(m,n) in Eq. ~2.4! with the integration overq, and we re-
at
.
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-
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placeqmin by a suitable average value, which is independ
of the excited state of the system:

qminAV5
~wnn0

1wmm0
!AV

v
5

e

\v
. ~2.10!

Using this approximation and the sum rules@Eqs. ~2.8! and
~2.9!#, we obtain

Se~v !5
2e4

mev
2E

e/\v

2mev/\
$N2@Z121Mn0n0

~q!#2

1N1@Z222Mm0m0
~q!#2%

dq

q2
. ~2.11!

Thus, we have expressed the electronic stopping powe
terms of a yet unspecified quantitye, which depends on the
projectile-target system in question.

We may obtain an expression fore by recalling that it is
defined in order to allow the interchange of integration a
summation in Eq.~2.4!. Following the procedure outlined in
the Appendix, we obtain

e52I 0
1/~11a!

1I 0
a/~11a! , ~2.12!

where

a5
~Z22N2!

2N1

~Z12N1!
2N2

. ~2.13!

Equation~2.11! is the resulting stopping formula in the Be
the approximation when excitations and ionization of proje
tile and target are taken into account, that is, assuming n
relativistic projectile velocitiesv much larger than orbita
velocities of both target and projectile bound electrons.

C. Adiabatic assumption for N1„v…

We have proposed a modification to the Bethe theory
stopping power for a projectile with bound electrons. In o
der to apply this theory, we need to know the number
electrons bound to the projectileN1.

Until now, we have tacitly assumedN1 to be constant for
all velocitiesv. In fact, it is a fluctuating quantity, and th
momentary distribution of electrons is determined by t
electronic capture and loss processes that take place a
the trajectory of the ion. Often, a dynamic equilibrium b
tween capture and loss is established, and it makes sen
define N15N1(v), the equilibrium number of electron
bound to the projectile as a function of the velocity of t
projectile. We shall make this approximation here.

In general, the calculation of an equilibrium distributio
of electrons in the projectile requires detailed estimates
the cross sections for electron capture and loss. However
number of electrons can be estimated by making the assu
tion that the projectile electrons are stripped if their orbi
velocity ve is less than the projectile velocity, while elec
trons withve.v are kept since the collisions—seen, for e
ample, from the system moving with the projectile—a
adiabatic. This is the adiabatic Bohr criterion@17#. Such a
criterion can be rewritten in the form of a potential-ener
condition @23#
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1
2mv

21U~r c!50, ~2.14!

where r c is the distance from the nucleus of an electr
bound to the projectile for which its velocity is equal to th
velocity of the projectile (ve5v). An electron for which
r.r c is moving with ve,v and therefore is stripped from
the projectile.

The number of electrons stripped from the projectile is

Z12N1~v !5E
r c~v !

`

re,1~r !dr , ~2.15!

wherer c is the solution of Eq.~2.14! andre,1(r ) is the elec-
tron density of the neutral projectile.

In order to determiner c , and thusN1, it is necessary to
know ve as a function ofr . Even though this is possible i
Hartree-Fock theory, the approximate nature of the pres
approach does not warrant such a complicated proced
We therefore make use of Thomas-Fermi theory~TF! @24#,
which describes an ion withN1 bound electrons by the rad
ally symmetric electron density

re,1~r !5
N1

4pL1
2r

d2F~x!

dx2
, ~2.16!

wherex5r /L1, F(x) is the screening function that is solu
tion of the TF equation, and the screening length,L1 is
treated as a variational parameter@see Eq.~2.18!# obtained
by minimizing the total energy

E5Ene1lEee1Ekin ~2.17!

as a function of the number of electronN1. Here, the param-
eterl is introduced in order to include both correlation a
exchange@10#. The total energy is evaluated subject to t
conditions

]E

]L1
50,

]E

]N1
U
Z1

50, ~2.18!

where the second condition ensures that the neutral atom
lower energy than its ions.

We seek forms ofF(x) that permit us to obtain analytica
results for atoms without extensive recourse to numer
methods. To this end, we choose forF(x) an approximate
solution to the TF equation. According to Tietz@25#, the
screening function for the TF atom can be written as

F~x!5
b2

~x1b!2
, ~2.19!

where we chooseb5(8/p)2/3 to make sure that the elec
tronic density is normalized@25#. Inserting Eq.~2.19! in Eq.
~2.16!, and following the standard procedure@26# for calcu-
lation of the total energy@Eq. ~2.17!#, we obtain

E52
Z1
7/3

c SN1

Z1
D 1/3S 12

l

5

N1

Z1
D 2 e2a0 ~2.20!

and
nt
re.

as

al

L15
ca0

Z1
1/3b@12~l/5!~N1 /Z1!#

SN1

Z1
D 2/3 ~2.21!

with l5 5
7 andc50.969376.

From Poisson’s equation, we can then obtain the e
tronic potential, and using Eq.~2.14!, we solve for
xc5r c /L1, obtaining

xc~v !522S b3D1
1

@a/21~b/3!31A~a/2!21a~b/3!3#1/3
S b3D

2

1H a21S b3D
3

1F S a2D
2

1aS b3D
3G1/2J 1/3, ~2.22!

wherea(v)5b2/0.60647y2(v), andy(v)5v/(v0Z1
2/3) is the

effective ion velocity. This is the radial distance, measu
from the nucleus of the projectile, for which the electron
orbital velocity is equal to the projectile velocity.

Finally, substituting Eqs.~2.16! and~2.19! into Eq.~2.15!,
the following relation for the number of average electro
kept by the projectile moving with a velocityv is obtained:

N1~v !5Z1S 12
b2@3xc~v !1b#

@xc~v !1b#3 D . ~2.23!

D. Analytic expressions forSe„v…

In order to obtain an analytical expression for the sto
ping cross sectionSe(v) in the first Born approximation, we
also need the atomic form factors for both projectile a
target@see Eq.~2.11!#. Due to the assumed spherical symm
try of the ground stateu0& of both projectile and target, Eq
~2.5! becomes

iM00~q!54pE re,i~r !sin~qr !

qr
r 2dr, i51,2,

~2.24!

where re,i(r ) is the ground-state electronic density. Intr
ducing Eqs.~2.16! and ~2.19! in Eq. ~2.24! we obtain

iM00~q!5Ni@12~qL ib!2g~qL ib!#, ~2.25!

where

g~z!52cos~z!Ci~z!2sin~z!si~z! ~2.26!

is the auxiliary function for the sine and cosine integra
@27#. Using the approximate analytical representation
g(z) @28#,

g~z!5
0.37093

z2113.88129
1

0.62907

z210.967375
, ~2.27!

we obtain an analytical expression for the atomic form fa
tor.

Introducing Eqs.~2.25! and ~2.27! in Eq. ~2.11!, we find
that the contributions to the stopping cross section from
electronic excitations in the projectile becomes
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Se,2~v !5
4pe4

mev
2N2Z1

2H i f2lnS qmax
q̄min

D 1~12 i f !F0.448685@ i f10.402031# lnS ~qmaxL1!
210.27819

~ q̄minL1!
210.27819

D
10.0513151@ i f16.22848# lnS ~qmaxL1!

213.99187

~ q̄minL1!
213.99187

D G1~12 i f !
2S 0.0550439F 1

~qmaxL1!
210.27819

2
1

~ q̄minL1!
210.27819

G10.274619F 1

~qmaxL1!
213.99187

2
1

~ q̄minL1!
213.99187

G D J , ~2.28!

with qmax52mv/\, q̄min5e/\v, and the ionization fraction@10# i f is defined asi f512N1(v)/Z1. In the same way, we obtain
the contribution to the stopping cross section from the electronic structure of an ionic target as

Se,1~v !5
4pe4

mev
2 Z1~12 i f !Z2

2H S 12
N2

Z2
D 2lnS qmax

q̄min
D 1S N2

Z2
D F0.448685S 1.4020312N2

Z2
D lnS ~qmaxL2!

210.27819

~ q̄minL2!
210.27819

D
10.0513151S 7.228482 N2

Z2
D lnS ~qmaxL2!

213.99187

~ q̄minL2!
213.99187

D G1S N2

Z2
D 2S 0.0550439F 1

~qmaxL2!
210.27819

2
1

~ q̄minL2!
210.27819

G10.274619F 1

~qmaxL2!
213.99187

2
1

~ q̄minL2!
213.99187

G D J , ~2.29!
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whereL2 is given by Eq.~2.21! with N1 andZ1 substituted
for N2 andZ2, respectively.

These expressions are straightforward to apply, and
gether with Eq.~2.23! for the number of electrons kept b
the projectile as function ofv, give the stopping cross sec
tion calculated fromZ1, N2, and the known mean excitatio
energiesi I 0, obtained either theoretically or experimenta
~e.g.,@29#!.

III. ANALYSIS AND DISCUSSION

A. Comparison with other theories

Let us analyze Eq.~2.11! in some limiting cases in orde
to relate this general theory to well-known special cases
Bethe theory for stopping. If we consider a bare projec
with N150 and chargeZ1 colliding with a target with mean
excitation energy 2I 0, then from Eq. ~2.13! a50, and
e52I 0, so Eq.~2.11! becomes

Se~v !5
4pe4

mev
2 Z1

2N2lnS 2mev
2

2I 0
D , ~3.1!

which is the standard Bethe result in the first Born appro
mation. For the inverse case, namely, a projectile withN1
bound electrons colliding with a completely ionized targ
(N250), a5` ande51I 0, and Eq.~2.11! becomes

Se~v !5
4pe4

mev
2 Z2

2N1lnS 2mev
2

1I 0
D . ~3.2!

This is, however, just the standard Bethe theory result
tained for a bare projectile of chargeZ2 incident on a target
atom withN1 electrons and mean excitation energy1I 0. The
same results are obtained from Eq.~2.28! and Eq. ~2.29!
under the same set of assumptions.
o-

f
e

i-

t

-

Next, let us consider the special case of no electro
excitations of the projectile, i.e., we only consider an elas
process on the projectile (n5n0). Then, from Eq.~2.4! the
contribution from the electronic structure of the project
disappears and we obtain

Se~v !5
2e4

mev
2(
m

E
wm0m

/v

2mev/\
@Z121Mn0n0

~q!#22Fm0m
~q!

dq

q2
,

~3.3!

where1Mn0n0
is the atomic form factor of the projectile@Eq.

~2.5!#. This equation has been applied in recent studies to
slowing-down process of ions with electronic structure@6#.
In this limit, and applying the same approximations as
ones used to derive Eq.~2.11!, we find

Se~v !5
2e4

mev
2N2E

2I0 /v\

2mev/\
@Z121Mn0n0

~q!#2
dq

q2
. ~3.4!

However,

rne,1~q!5e@Z121Mn0n0
~q!# ~3.5!

is the Fourier transform of the total charge dens
~electronic1nuclear! of a projectile of nuclear chargeZ1
moving withN1 bound electrons. Therefore,

Se~v !5
2e2

mev
2N2E

2I0 /v\

2mev/\
urne,1~q!u2

dq

q2
. ~3.6!

Noticing that an electron gas of densityn5n2N2 has a
plasma frequencyv0 given by

v0
25

4pn2e
2

me
N2 , ~3.7!
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Eq. ~3.6! may be written, for spherical symmetry, in the for

Se~v !5
v0

2

n2v
2E

2I0 /v\

2mev/\
urne,1~q!u2

dq

q
. ~3.8!

This equation has precisely the same structure for the s
ping power of solids as in a dielectric-response approxim
tion @10# at high projectile velocityv.

B. The accuracy of the adiabatic assumption

In this section we will analyze the accuracy of the meth
suggested in Sec. II C for determining the number of el
trons in the projectile as a function of the projectile veloc
@see Eq.~2.23!# as well as the accuracy of the comput
atomic form factors@Eq. ~2.25!#. In Fig. 1 we show the frac-
tion of electrons remaining with the projectile@N1(v)/Z1# as
a function of the effective ion velocityy(v)5v/(v0Z1

2/3)
compared with the experimental values of Anthony and L
ford @30# and of Betzet al. @31# for an Al target. It is a
characteristic of the TF model that it does not represent
individual character of each atom~for example, shell struc-
ture, etc.!, and Eq.~2.23! thus has a universal form whe
plotted as a function of the effective ion velocity. Also, w
point out that the experimental data use the concept of ‘
fective charge’’ @30#, which is different from the mean
charge of the ion@32# used here. This difference is noticeab
in the low velocity region of Fig. 1 where the processes
electron capture and loss in the projectile as a function of
target ought to have been included in a more accurate
@32#. However, for higher projectile velocities, the Bohr cr
terion is more likely to be valid, and we find that the numb
of electrons remaining with the projectile is in close agre
ment with the experimental data.

We also find that our model forre,1(r ) performs well
when compared with the Lenz-Jensen~LJ! @33# or the
Brandt-Kitagawa~BK! models@10#. For example, as show
in Fig. 2, the energies@Eq. ~2.20!# for different degrees of
ionization, i f512N1 /Z1 calculated here and in the BK
scheme are in close agreement. Thus, we are confident

FIG. 1. Fraction of electrons remaining on the project
N1 /Z1 @see Eq.~2.23!# as a function of the velocity of the projec
tile. —, this work;s, Anthony and Lanford@30#; h, Betz et al.
@31#.
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hat

calculation ofN1 with this approximation is sufficiently ac
curate for calculation of the stopping cross section for an
with bound electrons.

In Fig. 3 we show the atomic form factor for sever
representative neutral atoms (N15Z1) compared with the
HF result of Hubbelet al. @34# and with the BK theory@10#.
As we see, our method gives better overall agreement w
HF than does the BK theory. This is probably due to the f
that our model is constrained to satisfy the TF model.

C. Comparison with experiment

The electronic stopping power calculated in this work
cludes the effect of transitions to all final states of the p
jectile and target that do not involve charge exchange.
order to compare to experimental data, we restrict our an
sis to velocities high enough that the Bethe approximation
valid.

As examples, we calculate the stopping cross section
He, Li, and B projectile incidents on neutral C and Al targe

FIG. 2. Comparison of the total energy of the ion as a funct
of the ionization fraction (i f512N1 /Z1), calculated in the presen
model and in the Brandt-Kitagawa model@10#. —, this work;
– – – –, BKmodel.

FIG. 3. Comparison of the form factor for neutral atoms as
function of the transfer momentq. —, HF calculations@34#; •••,
BK model @10#; – – – –,this work.
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and compare to available experimental data@35–40#. The
mean excitation energies of neutral C and Al,2I 0573.8 and
2I 05160.1 eV, respectively, were taken from Janni’s co
pilation @29#. The mean excitation energy for the projecti
as required by Eq.~2.12!, is not needed in these calculation
since the targets are neutral.

In Fig. 4 we compare the total stopping cross section
He incident on C with the experimental results of Northclif
and Schilling@35# and of Santry and Werner@36,37#. For the
region of high velocities~delineated by the vertical line!
where this theory is valid, we find good agreement with e
periment. In this case we have a light projectile collidi
with a light target and the Bethe condition,v.v0, is ful-
filled.

In Fig. 5 we show the stopping cross section for Li pr
jectiles incident on C, compared with the experimental d
of Northcliffe and Schilling @35# and of Lin et al. @39#.
Again, in the region of applicability of this theory, we fin
good agreement with experiment.

The comparison between calculation and experiment
Li on Al is made in Fig. 6 where we compare our theoretic
result with the experimental results of Northcliffe and Sch
ing @35#, Andersenet al. @38#, and Linet al. @39#. Similarly
in Fig. 7, the calculated results for B on C are compared w
the experimental results of Booth and Grant@40#. In all these
cases, we see that for projectile velocities close to the m
mum inSe(v), there is an overstimation ofSe(v) for heavy
projectiles on a heavy target. In these cases the velocitie
the projectile and target electrons are high compared with
velocity of the projectile itself, hence we need consider c
rections to the Bethe approximation for the low-velocity r

FIG. 4. Comparison of the computed electronic stopping cr
section of He on neutral C with experimental results. –• – repre-
sents the contribution from the electronic structure of the projec
@Eq. ~2.29!#, – – – represents the contribution from the electro
structure of the target@Eq. ~2.28!#, — is the total contribution to the
electronic stopping power, and••• represents the normal Beth
logarithm term@Eq. ~1.1!#. The ambit of applicability of the theory
lies to the high velocities side of the vertical line. The symb
represent the experimental data from Ref.@35# (h), Ref. @36#
(n), and Ref.@37# (s).
-

r

-

-
a

r
l

h

i-

of
e
-
-

gion. The most important corrections in this region are
shell correction and the Barkas correction. Both of the
terms are negative and will bring our calculated result clo
to the experimental result. The smaller Bloch correction h
the opposite sign.

Also, in the same figures we plot the standard Bethe te
@Eq. ~1.1! for a bare projectile#, and we show the behavior o
contributions from both the projectile and the target. It
interesting to note the magnitude of the projectile contrib
tion Se,1 to Se , of the order of 10–20%, in the lower part o

s

e

FIG. 5. Comparison of the computed electronic stopping cr
section of Li on neutral C with experimental results. The legen
are the same as in Fig. 4. The experimental data are taken
Refs.@35# (h) and @39# (s).

FIG. 6. Comparison of the computed electronic stopping cr
section of Li on neutral Al with experimental results. The legen
are the same as in Fig. 4. The experimental data are taken from
@35# (h), Ref. @38# (n), and Ref.@39# (s).
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the velocity region where this model is applicable. This
observed in all the cases we have tested. This reflects
number of electrons bound to the projectile as a function
the velocity of the projectile~see Fig. 1!, asSe,1}N1. This
behavior has been found in other stopping theories at
velocities, such as that of Firsov@41#, where the contribution
to Se is a sum of the contributions of the electronic structu
of target plus the contribution of the electronic structure
the projectile@42#.

IV. SUMMARY

We have derived a formula for the electronic stoppi
power of swift ions withN1(v) bound electrons colliding
with an ionic target by considering the excitations and io
ization of the bound electrons in both projectile and targ
The formula follows from the same set of assumptions
involved in the normal Bethe theory of the stopping power
the first Born approximation. The general formulation r
quires knowledge of projectile and target GOS’s. Due to
difficulties of evaluating these quantities, we have derived
approximation form of the general theory using TF atom
theory, thereby obtained analytic expressions for all the
quantities of the theory. The distribution of electrons in t
projectile is calculated by making use of the Bohr criteri
and the TF description for the atom, yielding an analyti
expression for the ionization fractioni f . The total stopping
power is written as the contribution of the electronic stru
ture of the projectile plus the contribution of the electron
structure of the target, and we found that the contribution
the projectile is important at intermediate velocities.
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APPENDIX: LOWER LIMIT FOR THE Q INTEGRATION

We derive Eq.~2.12! by recalling thate is defined in
order to allow interchange of integration and summation
Eq. ~2.4! viz., to ensure that

(
n,m

H E
qmin

qmax
uZ2dm0m

22Mm0m
~q!u21Fn0n

~q!
dq

q2

1E
qmin

qmax
uZ1dn0n21Mn0n

~q!u22Fm0m
~q!

dq

q2 J
5H E

e/\v

qmax

(
n,m

uZ2dm0m
22Mm0m

~q!u21Fn0n
~q!

dq

q2

1E
e/\v

qmax

(
n,m

uZ1dn0n21Mn0n
~q!u22Fm0m

~q!
dq

q2 J .
This may be rewritten as

(
n,m

H E
e/\v

~wn0n
1wm0m

!/v
uZ2dm0m

22Mm0m
~q!u21Fn0n

~q!
dq

q2

1E
e/\v

~wn0n
1wm0m

!/v
uZ1dn0n21Mn0n

~q!u22Fm0m
~q!

dq

q2 J
50. ~A1!

Both limits of the integrals are small for velocities high
than the electronic velocities of projectile and target. The
fore, using the Bethe assumption (v.ve) we expand Eq.
~A1! for small momentum transfer. In the dipole approxim
tion we obtain

(
n,m H E

~wn0n
1wm0m

!/v

e/\v
~Z12N1!

2dn0n 2f m0m

dq

q2

1E
~wn0n

1wm0m
!/v

e/\v
~Z22N2!

2dm0m 1f n0n
dq

q2 J 50,

~A2!

where

1f n0n5
2mewn0n

\
ZK nU(

i

N1

q̂•xiUn0L Z2,
2f m0m

5
2mewm0m

\
ZKmU(

i

N2

q̂•yiUm0L Z2
are the optical dipole oscillator strengths andq̂ is a unit
vector parallel toq. The integration overq is now readily
performed due to the independence ofq in the dipole oscil-
lator strength yielding

s
re
ef.



rg

in

2872 55CABRERA-TRUJILLO, CRUZ, ODDERSHEDE, AND SABIN
(
m

~Z12N1!
2
2f m0m

lnS e

\wm0m
D

1(
n

~Z22N2!
2
1f n0nlnS e

\wn0n
D 50. ~A3!

Using the standard definition of the mean excitation ene
@19#

lni I 05
1

Ne,i
(
s

f s0sln~\ws0s
!, i51,2,

where the sum is over the excitated state, and inserting it
Eq. ~A3! we obtain
ta

. A

ys

ys

s

m

ys

ys

ru

s

f

v.
y

to

N2~Z12N1!
2lnS e

2I 0
D1N1~Z22N2!

2lnS e

1I 0
D50.

Defining

a5
~Z22N2!

2N1

~Z12N1!
2N)2

~A4!

and solving fore results in

e52I 0
1/~11a!

1I 0
a/~11a! . ~A5!
l

er,

n-

.

ys.
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