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Bethe theory of stopping incorporating electronic excitations of partially stripped projectiles

R. Cabrera-Trujillo}? S. A. Cruz? Jens Oddershede® and John R. Sabit
Department of Chemistry, Odense University, DK-5230, Odense M, Denmark
2Departamento de Bica, Universidad Autecoma Metropolitana, Apartado Postal 55-534,
Codigo Postal 09340 Niico Distrito Federal, Mexico
3Department of Physics, University of Florida, Gainesville, Florida 32611
(Received 12 August 1996

The Bethe theory for the energy loss of swift charged particles colliding with atomic targets is extended to
treat explicitly the case when the projectile has bound electrons. The theory is characterized by taking into
account the excitation and ionizatioflsut not charge exchangef both projectile and target. As a conse-
guence of the Coulombic character of the interaction between projectile and target, the electronic stopping
cross sectiors, is split into contributions arising from the electronic structure of the projectile and of the
target. In the lower part of the velocity region where this theory is applicable, the electronic structure of the
projectile makes an important contribution, of the order 10—20 %, toAt high projectile velocities, however,
this contribution decreases, leaving only the standard Bethe term. The number of electrons bound to the
projectile,N,, as a function of the velocity of the projectile is calculated using the adiabatic Bohr criterion in
conjunction with the Thomas-Fermi model of the atom. We obtain an analytic expression for the total stopping
cross section using the Bethe approximation, and we compare the results of calculations of He, Li, and B ions
on C and Al targets with experimer$$1050-294{@7)06903-3

PACS numbes): 34.50.Bw, 34.10tx

I. INTRODUCTION of the stopping cross section for a wide range of velocities,
one must consider the electronic structure of both projectile

The energy loss of swift ions moving through matter hasand target.
been the subject of extensive theoretical and experimental The first study along these lines was carried out in the mid
study since the beginning of the centdiy. In recent years, 1950s by Bates and Griffinf8], who calculated the elec-
the stopping of partially stripped heavy ions in matter hastronic cross section for the simplest collision process: two
received increased attention both experimentally and thedaydrogen atoms. This work formed the basis for systematic
retically [2]. However, a first-principles description of the studies of more general atom-atom interactif@is
influence of the projectile electronic structure on the stop- During the last few years, the charge-state dependence of
ping has not yet been formulated. This is the subject of thelectronic stopping has become an active research topic. Pre-
present paper. vious treatments based on the average scaling rules such as

For fully stripped projectiles with velocity much greater the effective charge theofy.0], although useful for estimat-
than the orbital velocity . of the target electrons, the Bethe- ing the mean stopping power of heavy ions, still represent an
Bloch theory[3,4] accounts for the electronic stopping crossincomplete description of the electron capture and loss pro-
section with good accuracy. According to Bethe's thd@y  cesses involved in a collision. Recently, more realistic and
the electronic stopping cross section for a swift stripped iorsophisticated models based on the numerical solution of the
with chargeZ, is given by time-dependent Schdinger equation [11,12, time-
dependent variational principlgl3], or density-functional
theory[14] has been suggested. However, these methods are
currently only feasible for H- and He-like projectiles, so
there is still a need for theories such as the one proposed here
treating more general projectiles.

Within the spirit of the Bethe theory, there have been
whereL (v)=Z,In(2mv?/,ly) is the stopping number,l, is  various efforts to account for the stopping of partially
the mean excitation energy of the targetdE/dx is the stripped ions. A scheme was suggested by Kim and Cheng
energy loss per unit pattstopping powey, andn, is the [5] where the electronic stopping cross sectBars obtained
number of atoms per volume of the target. Here and belowfrom the original Bethe formula by replacing the projectile
the subscripts 1 and 2 refer to the projectile and target, reauclear charg€,, and target mean ionization energl, by
spectively. However, while penetrating matter, the projectileZ 4 andl ., respectively. BotlZ 4 andl .« are derived from
ions may carry, at least temporarily, some bound electronproperties of the projectile and target that can be calculated
even ifv>wv, [5,6]. Furthermore, capture and loss of elec-from first principles.
trons by the projectile are processes with a high probability, Similarly, Arnau and EcheniquEl5] proposed a way to
in particular in the velocity rangeo<v<vozf’3, vy being  introduce the electronic structure of the projectile into the
the Bohr velocity, leading to important contributions to the dielectric theory of stopping. More recently, Moneta and
energy losg7]. Thus, in order to obtain a proper description Czerbnial{ 16] have used the first-order Born approximation

1 dE 4me*

Se(U)Z—E&:WZiL(v), (1.1)
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for estimating the stopping power of partially stripped ionswhere
based on the semiclassical impact parameter description. In

their model, the projectile electrons are allowed to be excited Zig.R) 4
or ionized but no electron exchange is considered. <anV|n°m0k°>:f eIy, - IN,)
The purpose of this work is to report a first Born approxi- .
mation Bethe-like theory for partially stripped projectiles Xpn (X - Xn)V(XY,R)
carrying a velocity-dependent number of bound electrons. In
contrast to the treatment of Moneta and Czerbiie, our X tmg(Y1r -+ - YNy) Png(Xas - - Xny)

formulation does not depend on the impact parameter, and
the number of electrons bound to the projectile is obtained

using the Bohr adiabatic criteridid7]. Furthermore, it natu-

rally separates the contributions to the stopping originatind1€"€:R i the position of the projectile relative to the center
from the projectile and target. of mass of the target; the position vector of electron of

Section Il A provides the general first Born approximationthe Projectile with respect to the center of mass of the pro-
theory of stopping power for an ion with electronic structurel€Ctile, yj , the position vector of the electrgnof the target
impinging on an atomic target. The basic formula for energyVith respect to the center of mass of the target. The momen-
loss including excitation and ionization of the compoundtUm transfer isiq=7(k—ko), with fik, being the momen-
projectile-target system is developed. In Sec. |1 B we perfornfum of the projectile before the collision ard the momen-

the standard Bethe approximation for the stopping powertum of the projectile after the collision. Thes and ¢'s are
assuming a random, isotropic distribution of target atomsthe electronic eigenfunctiorisn) and|n) in the coordinates
i.e., we do not consider directional dependefi@. In Sec.  Yi andx; for target and projectile, respectively. _

Il C, we invoke the Bohr criteriori17] for the number of Slnce thg |nteraqt|on betwe.en_pro_]ectlle and target is Cou-
electrons stripped from the projectile, thus obtaining an analombic, the interaction potential is given by

lytical expression for the ionization fraction} of the ion as

Xdxg - -dxy dy;- - -dyy dR. (2.2

2 2

a function of its velocity. In Sec. Il D we combine the results V(Xy,R)= Z,Z,8* D 2,7 Z,€
of Secs. Il A, Il B, and Il C to obtain a final expression for YR)= TR =1 IR—yi| &1 |IR+x|
the stopping cross section. In Sec. Ill we discuss and com-
i i ; ; N1Np 2
pare our results with other theories and experiment, and, fi- e
nally, in Sec. IV we present our conclusions. +ij221 V—R—x[’ 2.3
Il. STOPPING POWER Following Bethe’s classic derivation, Ec{Q.l) a_nd(2.2)
) o can be simplified when we perform the integration ofRer
A. The first Born approximation The first term of Eq(2.3) does not contribute t6, owing to

Let us consider a process in which an ion moving with athe orthogonality of the ground- and excited-state electronic
velocity v (in the laboratory frame massM;, nuclear —Wave functions for the projectile and for the target. Using the
chargez,e, and carryingN; bound electrons described by Bethe integra[21] and some straightforward manipulation,
the electronic eigenstata,) collides with a stationary target We find that the stopping cross section can be written as
with massM, and N, bound electrons in an initial state .
denoted my). The projectile is deflected into the solid-angle Su(v)= 2e 22 {

Umax 2 dq
|225m0m_ ZM mom(Q)| 1Fnon(q) ?

Amin

elementd() along a direction with polar angled(¢) mea- C melih
sured in the laboratory frame. Suppose the projectile-target
system undergoes a transition to final states and |m), + J Amax

dg
_ 2 _2
respectively, with energie&, andE,,. Then the kinetic en- 1210050~ 1Mngn(0)*2F mgm( @) q? ]

Amin
ergy of the projectile, when electron transfer is not permitted,
is thereby reduced by B,—E, )+ (En—Em)=%(Wnp, =Se1(v) + Sea(v), 2.9
W) where

The stopping cross sectidt9] is given by
Ny

> emia
=1

5.0)=3, [ GG Ery + (EnEn 100 1Mn0n<Q>=<no

Na

2 e iy
i=1

m

When the projectile is sufficiently fast but still nonrelativ- >

istic, the differential cross section calculated in the first Born

approximation for the interactioh between the projectile are the atomic form factorsl,22] of the transition between

and target becomdg0] the initial state and the final state of the projectile and target,
respectively, and where we have made use of the definition

wheredo, ,/d() is the differential cross section. ZMmom(q): < Mo

do M2k g=k—Kkq to write dQ) =q dq do/kky=dg/kk,. The general-
n,m 1 i i i i

M _ —nmKV|nomoko)l?, 21 ized oscillators strength& 09 for projectile and target are
do (2#)2ﬁ4 kO |< H | o''lo O>| ( ) defined as{3]
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2m, ) placeqi, by a suitable average value, which is independent
1Fngn(@)= ﬁ_qz|1M non( | *Wan,, of the excited state of the system:
2m (26) (Wnno+Wmmo)AV €
Frm( ):_el M ( )|2W Aming, = .~ 7..- (2.10
2F mgm q ﬁqz 2Vimgm q mmy- AV v hv
The limits of theq integration in Eq(2.4) are determined thsg;]g \'[Arllésoipggirr(]mmatlon and the sum rufégs. (2.8) and
by the kinematics of the collision process. The minimum™ "~

momentum transfer is calculated assuming that there is at 2e* [a2melh
least one internal excitation for the projectile-target system. Se(v)= - gJ- {Na[Z;—1M nonO(Q)]2
. U~ J eltv
The maximum momentum transferred to an electron of the
target in a collision is calculated by conservation of momen- dq
tum and energy. Therefore for heavy idi$9)] + Nl[Zz—szomo(q)]z}?. (2.11
_Wnno+Wm”b _ 2mey 5 Thus, we have expressed the electronic stopping power in
qmin_—v ) Qmax__ﬁ ' (2.7) terms of a yet unspecified quantiey which depends on the

projectile-target system in question.

Equation(2.4) is a first Born approximation expression ~ We may obtain an expression ferby recalling that it is
applicable to the electronic stopping power of ions with elec-defined in order to allow the interchange of integration and
tronic structure. The first term on the right-hand side of Eq.summation in Eq(2.4). Following the procedure outlined in
(2.4) contains the quantityF, ,, and thus gives the contri- the Appendix, we obtain

butions to the stopping cross section from the atomic transi- em | U1ta) |al(+a) (2.12
tion of the projectile modulated by the electronic structure of 2’0 1o ' ’
the target. Similarly, the second term containisfg, m de- |\ hare

scribes the contributions from the transitions in the target

modulated by the electronic structure of the projectile. (Z,—N5)?N,;

Hence, the two terms in E2.4) represent the contribution a= m (213

to the stopping power related to electronic transitions in the

projectile and target, respectively. Knowing the GOS’s forEquation(2.11) is the resulting stopping formula in the Be-
both projectile and target, it is a straightforward task to com-the approximation when excitations and ionization of projec-
pute Sg(v) from Eq.(2.4). However, it is necessary to know tile and target are taken into account, that is, assuming non-
the full excitation spectrum of both the projectile and therelativistic projectile velocitiess much larger than orbital
target, and it may be necessary to resort to approximateelocities of both target and projectile bound electrons.
methods.

C. Adiabatic assumption for N;(v)

B. The Bethe approximation We have proposed a modification to the Bethe theory of

In order to derive an approximate formula for the stop-stopping power for a projectile with bound electrons. In or-
ping cross sectioS,(v) involving the mean excitation ener- der to apply this theory, we need to know the number of
gies of projectile and target, it is convenient to introduce theelectrons bound to the projectibé;.

Bethe sum rulg 3] for projectile and target: Until now, we have tacitly assumed; to be constant for
all velocitiesv. In fact, it is a fluctuating quantity, and the
_ _ momentary distribution of electrons is determined by the
2 Frn(@=Ni 2 Frgn(@=No. (29 electronic capture and loss processes that take place along
the trajectory of the ion. Often, a dynamic equilibrium be-
Assuming Hartree-Fock atomic wave functions, we maytween capture and loss is established, and it makes sense to
show that define Ny=N;4(v), the equilibrium number of electrons
bound to the projectile as a function of the velocity of the
5 ) projectile. We shall make this approximation here.
; 1Z18n 50— 1M nn(D[*=1Z1= 1M o (D)2, In general, the calculation of an equilibrium distribution
of electrons in the projectile requires detailed estimates of
(2.9 :
the cross sections for electron capture and loss. However, the
2 |225m0m_2|\/|m0m(q)|2: |ZZ_2MmOm0(q)|2! number of electrons can be estimated by making the assump-
m tion that the projectile electrons are stripped if their orbital
velocity v, is less than the projectile velocity, while elec-
where 1M, () and ;M m (q) are the electronic atomic trons withv,>v are kept since the collisions—seen, for ex-
form factors of the ground state of projectile and target, reample, from the system moving with the projectile—are
spectively. adiabatic. This is the adiabatic Bohr criteriphi7]. Such a

Following Bethg19], we interchange the summation over criterion can be rewritten in the form of a potential-energy

(m,n) in Eq. (2.4 with the integration over, and we re- condition[23]
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1 2 _ 2/3
smv?+U(r.)=0, (2.19 Al:zmb - (;\7; — (;) 221
wherer. is the distance from the nucleus of an electron 1 O[1=(ME) (N /Z)]1 24
bound to the projectile for which its velocity is equal to the
velocity of the projectile ¢,=v). An electron for which
r>r. is moving withv,<wv and therefore is stripped from
the projectile.

The number of electrons stripped from the projectile is

with A =2 andc=0.969376.

From Poisson’s equation, we can then obtain the elec-
tronic potential, and using Eq(2.14, we solve for
Xc=Tr./A, obtaining

» b 1 b\?2
Z,—N (v)=j pe(r)dr, (2.15 X(v)=—2|=|+ (—)
v (o) O V) 3) " [a/2+(bi3)3+ (al2)2+ a(bi3)3] 3| 3
wherer . is the solution of Eq(2.14) andp,4(r) is the elec- a [(b\® [[a)? b)3]/?) 13
¢ = .y el +H=+|z] +|| 5] +alz : (2.22
tron density of the neutral projectile. 213 2 3

In order to determine ., and thusN,, it is necessary to

know v, as a function ofr. Even though this is possible in \yherea(v)=hb2/0.606432(v), andy(v) =v/(v,Z?? is the

Hartree-Fock theory, the approximate nature of the preseniftective ion velocity. This is the radial distance, measured

approach does not warrant such a complicated procedurgom the nucleus of the projectile, for which the electronic

We therefore make use of Thomas-Fermi theG¥) [24],  orpital velocity is equal to the projectile velocity.

which describes an ion witN; bound electrons by the radi-  Einally, substituting Eqs(2.16 and(2.19 into Eq.(2.15),

ally symmetric electron density the following relation for the number of average electrons
kept by the projectile moving with a velocity is obtained:

N d2d(x)
Pea(r)= arAZ A (2.16 Ni(o)=24] 1- b?[3x(v)+b] 223
RO Ix(v) b '
wherex=r/A 4, ®(x) is the screening function that is solu-
tion of the TF equation, and the screening lenghh, is . .
treated as a variational paramefeee Eq.(2.18] obtained D. Analytic expressions forSe(v)
by minimizing the total energy In order to obtain an analytical expression for the stop-
ping cross sectio®(v) in the first Born approximation, we
E=E, ot AEoot Eg 2.17 also need the atomic form factors for both projectile and
ne ee n "

target[see Eq(2.11)]. Due to the assumed spherical symme-

as a function of the number of electrdh. Here, the param- trY of the ground stat¢0) of both projectile and target, Eq.
eter\ is introduced in order to include both correlation and (2-5 becomes
exchangd10]. The total energy is evaluated subject to the

conditions Moo(q) =47 rdr, i=1,2,
IE 9E (2.24

a0 I ] =0, (2.18
1

fpe,i(r)sin(qr)
qr

where poi(r) is the ground-state electronic density. Intro-
- ducing Egs(2.16 and(2.19 in Eq. (2.24) we obtain

where the second condition ensures that the neutral atom has

lower energy than its ions. _ N — 2 )

We seek forms o (x) that permit us to obtain analytical Moo @)=Ni[1=(aAb)"g(aAib)]. (2.29
results for atoms without extensive recourse to numerica\IN
methods. To this end, we choose f(x) an approximate
solution to the TF equation. According to Tief25], the
screening function for the TF atom can be written as

here

g(z)=—cogz)Ci(z)—sin(z)si(z) (2.26

2 is the auxiliary function for the sine and cosine integrals
D(X)= —, (2.19 [27]. Using the approximate analytical representation for
(x+b) o(2) [28],

where we choosé=(8/7)%3 to make sure that the elec-

tronic density is normalizef?5]. Inserting Eq.(2.19 in Eq. 9(2)= 0.37093 4 0.62907
(2.16), and following the standard procedyi26] for calcu- z°+13.88129 z°+0.967375
lation of the total energyEg. (2.17)], we obtain

(2.27

13 U3 we obtain an analytical expression for the atomic form fac-
4Ny A Ny tor.
E=- T(z_l) (1_ 5 z_l) a, (2.20 Introducing Eqgs(2.25 and(2.27 in Eq. (2.11), we find
that the contributions to the stopping cross section from the
and electronic excitations in the projectile becomes

2e2
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q_”‘ax) +(1—ip)
min

<qmaxAl>2+o.2781j

0.448685i ;+0.40203]In| —
(qminA1)2+0.2781

s =" N2l
e,2(U)—mevz 2£1) 151N

+0.051315[i+6.22848| (nay)"+3.9915 +(1-i? 0.055043 1
. | . nf — —i .
f (AminA1)2+3.99187 f f(qma)gxl)%r 0.27819
! +0.27461 1 2.28
(QminA1)2+0.27819 (Omax1)°+3.99187 (g A,)2+3.99187 /| '

With Qmax= 2Mv/#, Qmin= €/fv, and the ionization fractiofl0] i; is defined a$;=1—N;(v)/Z;. In the same way, we obtain
the contribution to the stopping cross section from the electronic structure of an ionic target as

4met N, N N 240.2781
Sus(0)= € 7 1-ipz2l [ 1-2| 1n| Im| 4| N2| | § 448688 1402081 N2 | n| met2)
’ Mev Z; Qmin 2 Z; (qminA2)2+0.2781
2
No\ [ (Qmaxdz)?+3.9918 N, [
+0.051315] 7.22848 =2 | In| —= =2| | 0.055043
( Zy) "\ (Quinh2)2+3.99187 | | Z2 [ (AmaxA2)*+0.27819

(Gl )2 +0.2781 [ (AmaxA2)2+3.99187 (g A,)2+3.9918

! J + 0.27461‘L ! ! J ) ] , (2.29

where A, is given by Eq.(2.21) with N; andZ; substituted Next, let us consider the special case of no electronic
for N, andZ,, respectively. excitations of the projectile, i.e., we only consider an elastic

These expressions are straightforward to apply, and toprocess on the projectilen&ng). Then, from Eq.(2.4) the
gether with Eq.(2.23 for the number of electrons kept by contribution from the electronic structure of the projectile
the projectile as function of, give the stopping cross sec- disappears and we obtain
tion calculated fronZ,, N,, and the known mean excitation

. . . . . 2e4

energies;ly, obtained either theoretically or experimentally S.(v)= f
(e.g.,[29)]). e mev 245

2meu/h

dg
[Zl_ 1'\/I nono(q)]22Fm0m(Q) ?a
(3.3

w, v
mom

l1l. ANALYSIS AND DISCUSSION ) _ o

where ;M ,, is the atomic form factor of the projectil&q.

(2.9)]. This equation has been applied in recent studies to the
Let us analyze Eqg(2.1]) in some limiting cases in order slowing-down process of ions with electronic struct{gé

to relate this general theory to well-known special cases ofn this limit, and applying the same approximations as the

Bethe theory for stopping. If we consider a bare projectileones used to derive E¢.11), we find

with N;=0 and charg&; colliding with a target with mean

excitation energy,ly, then from Eq.(2.13 «=0, and

A. Comparison with other theories

234 2meu/h qu
Se(v) = N2J [Z1=1Mpgny(a) ] el (3.9

€=5lg, S0 EQ.(2.11) becomes Mev* Jlolvfi
47ret 2mev?
Su(v) = 3 Z2Nln| ==, (3.3  However
Mev 2lo

Pne,l(Q):e[Zl_anono(q)] (3.9
which is the standard Bethe result in the first Born approxi-
mation. For the inverse case, namely, a projectile With  is the Fourier transform of the total charge density
bound electrons colliding with a completely ionized target(electronictnucleay of a projectile of nuclear chargé,

(N,=0), a=» ande=,l,, and Eq.(2.11) becomes moving with N; bound electrons. Therefore,
4me? M2 2e2 J‘Zmeu/ﬁ 2dq
2 i Se(v)= N ) 3.6
O N ] 32 )= e @G (39

This is, however, just the standard Bethe theory result opNoticing that an electron gas of density=n;N, has a
tained for a bare projectile of char@ incident on a target Plasma frequency, given by

atom withN, electrons and mean excitation enerdy. The

same results are obtained from HQ.28 and Eq.(2.29 wg?
under the same set of assumptions. Me

47rn,e?

Ny, (3.7
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— This work
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1
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ionization fraction i
y=v/(v,Z,2%) ¢

) o o FIG. 2. Comparison of the total energy of the ion as a function
FIG. 1. Fraction of electrons remaining on the projectile ot ihe jonization fractionit=1- N, /Z,), calculated in the present

N,/Z, [see Eq(2.23] as a function of the velocity of the projec- odel and in the Brandt-Kitagawa modf10]. —, this work:
tile. —, this work; O, Anthony and Lanford30]; [J, Betz et al. — _ _ _ BKmodel.
[31]. '

calculation ofN, with this approximation is sufficiently ac-

curate for calculation of the stopping cross section for an ion

dq with bound electrons.

Pren(@)?—. (3.9 In Fig. 3 we show the atomic form factor for several
q representative neutral atom$l(=2Z,) compared with the

. . . HF result of HubbekEt al. [34] and with the BK theory10].

This equation has precisely the same structure for the SOk we see. our method gives better overall agreement with

ping power of solids as in a dielectric-response approximape 5 does the BK theory. This is probably due to the fact

tion [10] at high projectile velocity. that our model is constrained to satisfy the TF model.

Eq. (3.6) may be written, for spherical symmetry, in the form

wg? [ 2mev/t

Se(v)=—=
¢ N0~ J 51 vt

B. The accuracy of the adiabatic assumption C. Comparison with experiment

In this section we will analyze the accuracy of the method  The electronic stopping power calculated in this work in-

suggested in Sec. II C for determining the number of eleCy,ges the effect of transitions to all final states of the pro-

trons in the projectile as a function of the projectile veIocityject"e and target that do not involve charge exchange. In
[see Eq.(2.23] as well as the accuracy of the computedyger tg compare to experimental data, we restrict our analy-

atomic form factor§Eq. (2.29]. In Fig. 1 we show the frac- g5 15 velocities high enough that the Bethe approximation is
tion of electrons remaining with the project[ldl;(v)/Z;] as  \gjid.

. . . . _ 2
a function of the effective ion velocity(v)=v/(veZ} As examples, we calculate the stopping cross section for
compared with the experimental values of Anthony and Lante i, and B projectile incidents on neutral C and Al targets
ford [30] and of Betzet al. [31] for an Al target. It is a

characteristic of the TF model that it does not represent the

individual character of each atoffor example, shell struc- .

ture, etc), and EQ.(2.23 thus has a universal form when v ——HF
plotted as a function of the effective ion velocity. Also, we R S e This work
point out that the experimental data use the concept of “ef- :
fective charge” [30], which is different from the mean
charge of the iom32] used here. This difference is noticeable
in the low velocity region of Fig. 1 where the processes of
electron capture and loss in the projectile as a function of the
target ought to have been included in a more accurate way
[32]. However, for higher projectile velocities, the Bohr cri- 4
terion is more likely to be valid, and we find that the number

of electrons remaining with the projectile is in close agree- 2
ment with the experimental data.

We also find that our model fope4(r) performs well °.
when compared with the Lenz-Jenséhl) [33] or the
Brandt-Kitagawa(BK) models[10]. For example, as shown
in Fig. 2, the energiefEq. (2.20] for different degrees of FIG. 3. Comparison of the form factor for neutral atoms as a
ionization, i;=1—N;/Z, calculated here and in the BK function of the transfer momenf. —, HF calculationg34]; - - -,
scheme are in close agreement. Thus, we are confident thBK model[10]; — — — —,this work.

-
o

-]

Atomic form factor
»
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He -> C 1207 Li->C

60 |
100 ]
50 4

40

304

S, (108 eV cm?)
S, (107"% eV cm?)

20

10

FIG. 4. Comparison of the computed electronic stopping cross FIG. 5. Comparison of the computed electronic stopping cross
section of He on neutral C with experimental results. — repre-  section of Li on neutral C with experimental results. The legends
sents the contribution from the electronic structure of the projectileare the same as in Fig. 4. The experimental data are taken from
[Eq. (2.29], — — — represents the contribution from the electronicRefs.[35] () and[39] (O).
structure of the targg€q. (2.28)], — is the total contribution to the
electronic stopping power, and - represents the normal Bethe
logarithm term[Eq. (1.1)]. The ambit of applicability of the theory
lies to the high velocities side of the vertical line. The symbols
represent the experimental data from RE85] (J), Ref. [36]

gion. The most important corrections in this region are the
shell correction and the Barkas correction. Both of these
terms are negative and will bring our calculated result closer

(M), and Ref[37] (O). to the exp_erim.ental result. The smaller Bloch correction has
the opposite sign.
and compare to available experimental dg@&—4Q. The Also, in the same figures we plot the standard Bethe term

mean excitation energies of neutral C and Al;=73.8 and [Eq. (1.1 for a bare projectile and we show the behavior of
21g=160.1 eV, respectively, were taken from Janni’s com-contributions from both the projectile and the target. It is
pilation [29]. The mean excitation energy for the projectile, interesting to note the magnitude of the projectile contribu-
as required by Eq2.12, is not needed in these calculations tion S ; to S, of the order of 10—-20%, in the lower part of
since the targets are neutral.

In Fig. 4 we compare the total stopping cross section for
He incident on C with the experimental results of Northcliffe 1209
and Schilling[35] and of Santry and Wern¢86,37]. For the N
region of high velocities(delineated by the vertical line
where this theory is valid, we find good agreement with ex-
periment. In this case we have a light projectile colliding
with a light target and the Bethe condition>v, is ful-
filled.

In Fig. 5 we show the stopping cross section for Li pro-
jectiles incident on C, compared with the experimental data
of Northcliffe and Schilling[35] and of Lin et al. [39].
Again, in the region of applicability of this theory, we find
good agreement with experiment.

The comparison between calculation and experiment for
Li on Al is made in Fig. 6 where we compare our theoretical
result with the experimental results of Northcliffe and Schill- 2071
ing [35], Andersenet al. [38], and Linet al. [39]. Similarly {1 T
in Fig. 7, the calculated results for B on C are compared with | 7Tmeee
the experimental results of Booth and Grpf]. In all these i 5 6 7 & 8 10
cases, we see that for projectile velocities close to the maxi- v(au,)
mum in Sg(v), there is an overstimation &.(v) for heavy
projectiles on a heavy target. In these cases the velocities of FIG. 6. Comparison of the computed electronic stopping cross
the projectile and target electrons are high compared with theection of Li on neutral Al with experimental results. The legends
velocity of the projectile itself, hence we need consider cor-are the same as in Fig. 4. The experimental data are taken from Ref.
rections to the Bethe approximation for the low-velocity re-[35] (), Ref.[38] (A), and Ref[39] (O).

S, (107° eV cm?)
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1004 APPENDIX: LOWER LIMIT FOR THE Q INTEGRATION

We derive EQ.(2.12 by recalling thate is defined in
order to allow interchange of integration and summation in
Eq. (2.4 viz., to ensure that

80

60+

e -

n,m

S, (107 eV cm?)

Amax 2 d
fq _ |225m0m_2Mmom(Q)| 1Fn0n(q)?
20 -

1. Amax 2 dq
‘.: ——————————— —— ; ; + f |215n0n_ M non(q)| ZFmOm(q) EZ

0 ¥ 1 T .
5 6 7 8 ° 10 Amin
v(a u) Amax ) dg
5 2 |Z2 mem™— mom(q)l 1Fn0n(Q)?
FIG. 7. Comparison of the computed electronic stopping cross elho n.m
section of B on neutral C with experimental results. The legends are e
the same as in Fig. 4. The experimental data are taken from Ref. f 2 12,6 g 1Mnon(q )2, mom(q) 2
[40] (OJ). elfiv n,m

This m rewritten
the velocity region where this model is applicable. This is S may be rewritten as

observed in all the cases we have tested. This reflects the [f(‘”non*wmom)’”

number of electrons bound to the projectile as a function of,
n,m

|225m0m_2|\/I mom(q)|21Fnon(q)d_2
the velocity of the projectildsee Fig. 1, asS,;%N;. This elfv q
behavior has been found in other stopping theories at low Wy W /o
velocities, such as that of Firs¢¢1], where the contribution +f o

to S, is a sum of the contributions of the electronic structure
of target plus the contribution of the electronic structure of  _q (A1)

the projectile[42].

do
" |215n0n_1Mn0n(Q)|22Fm0m(q)?}

Both limits of the integrals are small for velocities higher
IV. SUMMARY than the electronic velocities of projectile and target. There-
fore, using the Bethe assumption>*v,) we expand Eg.

We have _de_rived a formula for the electronic st_opping(Al) for small momentum transfer. In the dipole approxima-
power of swift ions withN;(v) bound electrons colliding tion we obtain

with an ionic target by considering the excitations and ion-

ization of the bound electrons in both projectile and target. elhv dq
The formula follows from the same set of assumptions as f (Zl—N1)25n0n meom?
involved in the normal Bethe theory of the stopping power in mm {7 (Wngn t Wingm) v

quires knowledge of projectile and target GOS’s. Due to the
difficulties of evaluating these quantities, we have derived an
approximation form of the general theory using TF atomic (A2)
theory, thereby obtained analytic expressions for all the key
guantities of the theory. The distribution of electrons in theyhere
projectile is calculated by making use of the Bohr criterion
and the TF description for the atom, yielding an analytical 2mewnon
expression for the ionization fractidn. The total stopping 1fn0n < n0>
power is written as the contribution of the electronic struc-
N2
<m EI Q'yi’m0>
are the optical dipole oscillator strengths agds a unit
vector parallel tog. The integration oveq is now readily
One of the author$éR.C.T) would like to thank the staff performed due to the independenceqgoin the dipole oscil-

and faculty at the Kemisk Institute at the Odense Universitylator strength yielding

the first Born approximation. The general formulation re- /i dq
+ L (ZZ_NZ)ZémOm lfnon_Z] =0,

Wnon+wm0m)/v q

2

ture of the projectile plus the contribution of the electronic
structure of the target, and we found that the contribution of
the projectile is important at intermediate velocities.

2
2meWmom

meom: T
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€ € €
E (Zl_ Nl)zzfm mln S E— Nz(zl_ Nl)2|n(— + Nl(ZZ_ N2)2|n(_> :0
m 0 thOm 2|0 1|O
€
+ > (Zy—Ny)2f, Inl ——|=0. (A3) Defining
n 0 ﬁWnon
Using the standard definition of the mean excitation energy (Z,—Ny)?N,
1 1 2
Inil o= ! > fodn(h i=1,2
N 07 Ng; 5 ° N(AWgys), 1=1.2, and solving fore results in
where the sum is over the excitated state, and inserting it into Yl+a) sal(l+a)
Eq. (A3) we obtain €=2lg 1lo : (A5)
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