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Effect of long-range interactions on low-energy scattering parameters: Variational formulation

Leonard Rosenberg
Department of Physics, New York University, New York, New York 10003

~Received 6 December 1996!

A systematic treatment is presented of near-threshold electron-atom scattering based on a variational prin-
ciple. Results obtained here extend the modified effective-range theory derived some time ago~in which
long-range polarization forces are taken into account! by providing a prescription, based on a minimum
principle, for calculating the effective-range parameters. With the aid of perturbation-theory methods intro-
duced recently for obtaining asymptotic solutions of the wave equation for scattering by a superposition of
long-range power-law potentials@see M. J. Cavagnero, Phys. Rev. A50, 2841~1994!#, higher-order corrections
to the modified effective-range expansion in powers of the polarizability parameters are readily obtained.
Explicit examples are provided. The theory is developed for both single-channel and multichannel scattering.
@S1050-2947~97!06304-X#

PACS number~s!: 34.80.Bm, 03.65.Nk, 34.10.1x
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I. INTRODUCTION

The effect of a long-range polarization potential on t
low-energy behavior of electron-atom scattering parame
was described some time ago in the context of a modi
effective-range theory@1#. The original formulation, appli-
cable to scattering by a 1/r 4 potential, was expressed i
terms of Mathieu functions. A multichannel extension of t
theory was developed subsequently by Watanabe and Gr
@2#. To simplify the analysis, freeing it from a dependence
special functions and allowing for application to a gene
class of power-law potentials, Hinckelmann and Spruch
plied a distorted-wave perturbation theory, taken in low
order in the strength of the polarization potential@3#. Re-
cently, Cavagnero@4# has provided a convenient version
perturbation theory for the construction of asymptotic so
tions for systems interacting with power-law potentials. R
sults are expressed in terms of relatively simple~Bessel!
functions and the procedure for generating higher-or
terms in the expansion in powers of the polarization para
eters is fairly straightforward. With accurate analytic rep
sentations of the asymptotic solutions available, in an
proximation that can be improved systematically, the task
constructing trial functions in a variational treatment of t
low-energy scattering problem is simplified considerab
This observation is used here as the basis for the deve
ment of a variational approach to the low-energy scatter
problem. Results of this work encompass earlier treatme
of modified effective-range theory and allow for a variation
determination of the effective-range parameters—for sing
channel scattering these are the scattering length and e
tive range, appropriately redefined to account for the pr
ence of the long-range polarization potential. The minim
principle for the scattering length@5# plays a useful role in
providing a means to optimize the variational parameters
pearing in the~positive-energy! trial function. An analogous
treatment of multichannel scattering is given here in terms
a suitably defined reaction matrix. We recall that a var
tional derivation of ordinary effective-range theory~for
short-range potentials! was given many years ago b
Schwinger@6#. The derivation is constructive, providing
551050-2947/97/55~4!/2857~7!/$10.00
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method for calculating the effective-range parameters. T
approach, based on Green’s functions, is more difficult
extend to allow for long-range interactions than is the Ko
version of the variational principle@7# adopted here.

The single-channel potential-scattering problem is d
cussed in Sec. II. As an illustration of the calculational p
cedure, explicit forms of the effective-range expansions
s-wave andp-wave scattering are provided that include co
rections of second order in a 1/r 4 component of the long-
range potential and of first order in the 1/r 6 component. The
multichannel version of the theory is treated in Sec. III, f
the case where the long-range potential is diagonal in ch
nel space. Two appendixes are devoted to applications o
perturbation theory of Ref.@4# to cases that may be of use
the study of scattering by targets that are not spheric
symmetric. Approximate asymptotic solutions for the 1/r 3

potential are derived in Appendix A. In Appendix B a
eigenphase shift extension of the method of Ref.@4# is ap-
plied to the problem of determining the asymptotic solutio
for multichannel scattering, valid when the long-range pot
tial is not diagonal. The procedure is illustrated in a fir
order treatment of the 1/r 4 potential.

II. SINGLE-CHANNEL SCATTERING

We consider the Schro¨dinger equation (H2E)u50 in a
given partial wave~the orbital angular momentum indexl is
suppressed!, with a central potentialV(r ) behaving as
2(\2/2m)b2/r 4 asymptotically@8#. Inclusion of additional
components of the long-range potential will be discuss
later on. The boundary conditions areu(0)50 and, in the
region where the potential has achieved its long-range fo

u~r !;f~r !1Kj~r !. ~2.1!

Heref andj are linearly independent solutions of the wa
equation accounting for the long-range potential. A succ
sive approximation procedure for constructing these so
tions has been described in Ref.@4# and will be briefly sum-
marized below. As will be seen, the asymptotic forms of t
solutions may be taken as
2857 © 1997 The American Physical Society
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2858 55LEONARD ROSENBERG
f;sin~kr2 lp/21d!,

j;cos~kr2 lp/21d1pg!/cos~pg!, ~2.2!

where d is the polarization phase,g5 l22d/p, and
E5(\2/2m)k2. The relation between the scattering para
eterK and the physical phase shifth is obtained by compar
ing the asymptotic form~2.1! with

u;a@sin~kr2 lp/2!1tanh cos~kr2 lp/2!#. ~2.3!

This leads to the relation

tanh5
tand1K/cos2d

11K tand/cos2d
. ~2.4!

Following the method of Ref.@4# one transforms the
equation

S d2dr2 1k22
l ~ l11!

r 2
1

b2

r 4 Df~r !50 ~2.5!

by substitutingf5C(pz/2)1/2M (z) and z5kr, with C a
normalization constant. Then, withD5(bk)2, M (z) is seen
to satisfy

Fz2 d2

dz2
1z

d

dz
1z22S l1 1

2D
2GM ~z!52

D

z2
M ~z!.

~2.6!

One seeks a series solutionM (z)5M (0)(z)1DM (1)(z)
1D2M (2)(z)1••• , and writes

~ l11/2!25~g11/2!21DG~1!1D2G~2!1••• . ~2.7!

In lowest order Eq.~2.6! givesM g
(0)(z)5Jg11/2(z), and the

equation forM (1) becomes

Fz2 d2

dz2
1z

d

dz
1z22S g1

1

2D
2GMg

~1!~z!

5S G~1!2
1

z2DMg
~0!~z!. ~2.8!

With the aid of the Bessel-function recursion relation, t
function z22Jg11/2, appearing on the right in Eq.~2.8!, may
be expressed as a sum of terms involvingJg11/2, Jg15/2, and
Jg23/2. A key point in the method of Ref.@4# is the observa-
tion that the choiceG (1)5[2(g21/2)(g13/2)]21 eliminates
the termJg11/2, thus avoiding a spurious singularity and a
lowing one to solve forM g

(1) by inspection, as shown in Eq
~12! of Ref. @4#. The parameterg is thereby determined im
plicitly, to first order inD, by Eq.~2.7!, above. To the same
order, the polarization phase is found to be

d5
p~bk!2

~2l11!~2l13!~2l21!
. ~2.9!

A similar procedure may be followed, with the replac
ment g→2g21, to determine the functionj(r ); in lowest
order we haveM 2g21

(0) (z)5J2g21/2(z). An essential point to
recognize here is that the solution may be carried out i
straightforward way to higher orders, leading to a converg
-

a
nt

expansion@4#, and r26 and higher-order terms may be in
cluded in the long-range interaction—no special functio
such as Mathieu functions, need be introduced. Equally
portant is the recognition that the Bessel functions, in ter
of which the solutions are expressed, have simple anal
properties. As will be demonstrated below, this allows
the identification of the nature of the threshold singular
which, once isolated, leaves a scattering parameter that h
smooth energy dependence.

To study the near-threshold behavior it is convenient
define the functions f̄(r )5(bk)2(g11)f(r ) and j̄(r )
5(bk)gj(r ). As seen from the form of the series solutio
discussed above, these renormalized functions may eac
represented as a convergent power series ink2. It follows
from Eq. ~2.1!, along with the definition
K̄(k)5(bk)2(2g11)K(k), that ū(r )5(bk)2(g11)u(r ) has
the asymptotic form

ū~r !;f̄~r !1K̄ j̄~r !. ~2.10!

We now introduce a trial functionūt(r ) which vanishes at
the origin and has the asymptotic form~2.10! with K̄ re-
placed byK̄ t . Following a standard procedure, one read
obtains an identity which is a generalization of one intr
duced by Kato@9# for scattering by short range potentials. T
simplify notation we writeL52(2m/\2)(H2E) and de-
note the scalar product as* 0

` f (r )g(r )dr[( f ,g). The iden-
tity is derived by evaluating (ū,Lūt)2(ūt ,Lū) in two ways,
first by applying the wave equationLū50 and then by inte-
grating by parts and evaluating surface terms with the aid
the boundary conditions. In this way one finds that

K̄5K̄ t1b~ ū,Lūt!. ~2.11!

A version of the Kohn variational principle is obtained wi
the replacement ofū(r ) by ūt(r ) in Eq. ~2.11!; that is, it
leads to an approximationK̄v with an error of second orde
in ū2ūt . While greater flexibility is possible, let us conside
for definiteness, a trial function that for all values ofr has the
specific form

ūt~r !5ys~r !1K̄ tyc~r !, ~2.12!

with ys(r )5f̄(r ) andyc(r )5 j̄(r ) for r.d. Hered is taken
to be large enough so that forr.d V(r ) is well approxi-
mated by its long-range form; with this condition satisfi
results will be insensitive to the specific value ofd. The
variational approximation may then be expressed as

K̄v /b5~ys ,Lys!2
~yc ,Lys!

2

~yc ,Lyc!
. ~2.13!

Here, to gain some simplification in form, the relation

11b~ys ,Lyc!5b~yc ,Lys!, ~2.14!

obtained by integration by parts, has been used;K̄ t was then
evaluated by requiring thatK̄v be stationary with respect to
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55 2859EFFECT OF LONG-RANGE INTERACTIONS ON LOW- . . .
variations in this parameter. Forr,d, continuity of value
and slope is required, withūt(0)50. One way to accomplish
this is to set

ys~r !5f̄~d!@2~r /d!212~r /d!#1f̄8~d!r ~r /d21!

1gs~r !~r2d!2. ~2.15!

The ‘‘inside’’ function gs(r ) must vanish at the origin an
decay asymptotically, but is otherwise unconstrained;yc(r )
takes a similar form withf̄ and gs replaced byj̄ and gc ,
respectively. In the spirit of the effective-range approxim
tion @6,10# we may choosegs(r ) andgc(r ) to be indepen-
dent of energy near threshold. Since the variational princ
at zero energy is in fact an extremum principle, which allo
for systematic improvement of the trial function, we m
expect that accurate approximations for these functions
be obtained. With the threshold behavior properly accoun
for, the error in the trial function will be of order,k2 and the
error in the variationally determined functionK̄(k) will be of
orderk4; we write

K̄n52
1

b
@A1 1

2 r 0A
2k2#1O~k4!. ~2.16!

The parameters~scattering lengthA and effective ranger 0!
appearing here have been chosen to conform to standar
tation.

We emphasize that the asymptotic solutions need no
known exactly@11#. In applying the zero-energy minimum
principle for the scattering length~amaximumprinciple for
K̄!, asymptotic solutions of sufficient accuracy may be co
structed by taking the zero-energy limit of the positiv
energy solutions. These assume the form of expansion
inverse powers ofr and are accurate to a given order in ea
of the polarization parameters. The coefficients appearin
these expansions may be obtained more directly by ana
ing the zero-energy form of the wave equation.~For ex-
ample, forl51 and a pure 1/r 4 potential, sufficient accuracy
is achieved by choosing the approximation tof̄ to be pro-
portional tor 21b2/2.! Once the inside functionsgs(r ) and
gc(r ) are chosen the variational calculation is repeated
positive energy with the same choice of inside functions. T
integration range may be broken up into two regions;
r.d we write (H2E)f̄5VSf̄, whereVS is the short-range
component of the potential~assumed to vanish sufficientl
rapidly at great distances to assure convergence of the v
tional integrations!, and similarly forH2E operating onj̄.
At this stage we insert forf̄ and j̄ the approximate forms
obtained by the perturbation procedure, with the Bessel fu
tions appearing there replaced by their small-argument
pansions. By retaining only thek2 correction terms in these
expansions in the evaluation of the variational express
~2.13! an explicit expression for the effective range is read
obtained.

In the following we examine the form taken by th
effective-range expansion for tanh for s-wave andp-wave
scattering; with terms of orderk4 ignored in the expansion
~2.16!. Then terms of orderk5 and k7 for l50 and l51,
respectively, may be omitted in the modified effective-ran
expansion of tanh. Along with theb2/r 4 component of the
long-range interaction, a component of formb84/r 6 will be
-
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included; the appropriate extension of the procedure for g
erating the asymptotic solutions for this superposition of p
tentials can be made without difficulty@4#. Thus forl50 one
finds that

d52
p

3
~bk!21

p

135
~bk!41

p

15
~b8k!4. ~2.17!

The relation~2.4! may now be replaced, to sufficient acc
racy, by

tanh>tand1K2K2tand. ~2.18!

We combine with this expression the approximation

K>2
1

b
bk2g11@A1 1

2 r 0A
2k2#, ~2.19!

introduce the expansion

bk2g11>bkF12
4d

p
lnbk1

1

2 S 4d

p
lnbkD 2G , ~2.20!

and write tand>d1d2/2. The modified effective-range ex
pansion for thes-wave scattering parameter then takes
form

tanh/k52A2
p

3
b2k2 4

3Ab2k2lnbk2 1
2 r 0A

2k21c1k
3

2 8
9Ab4k4~ lnbk!21c2k

4lnbk1O~k5!, ~2.21a!

where

c15
p

3
A2b21

p

135
b41

p2

18
b41

p

15
b84, ~2.21b!

and

c25
4
135Ab41 4

15Ab842 2
3 r 0A

2b2. ~2.21c!

Turning now top-wave scattering, and ignoring terms o
orderk6 for simplicity, we find for the tangent of the polar
ization phase the expression

tand>0.6283~bk!210.1677~bk!42~p/35!~b8k!4,
~2.22!

where rational coefficients have been replaced by appr
mate decimal equivalents. To the accuracy required here,
~2.4! may be replaced by

tanh5tand1K. ~2.23!

The p-wave version of the effective-range expansion is o
tained by combining Eqs.~2.22! and ~2.23! with the expan-
sion

K52Ab2k31 4
5Ab4k5lnbk2 1

2 r 0A
2b2k5

2 8
25Ab6k7~ lnbk!21@ 2

5 r 0A
2b420.3776Ab6

2 4
35Ab2b84#k7lnbk1O~k6!. ~2.24!
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III. MULTICHANNEL SCATTERING

To focus on its essential features, the multichannel ex
sion of the theory will be presented in the context of a sim
two-channel model in which degenerate states of orb
quantum numbersl 1 and l 2 are mixed by the short-rang
component of the potential, but not by the long-range co
ponent. The total potential, a matrix in channel space, has
large-distance behaviorVi j (r )→VL(r )d i j . The inverse-
fourth power potential is again taken to be dominant at gr
distances, but longer-range components may be prese
well. The wave function for a particle, incident in channelj ,
and corresponding to an outgoing wave in channeli , has the
asymptotic form

ui j;f jd i j1Ki j j i , ~3.1!

where the asymptotic functions are just are those introdu
earlier in Sec. II, now with channel indices attache
~Asymptotic solutions corresponding to a long-range pot
tial that is not diagonal in channel space are derived in A
pendix B.! In a matrix notation in whichui j is the i th ele-
ment of the column vectoruj , the wave equation become
Luj50, where Li j5[d2/dr21k22 l i( l i21)/r

2]d i j2(2m/
\2)Vi j .

To set up a variational procedure we introduce a t
function uj ,t , and corresponding trial matrixKt , and, by
straightforward generalization of the procedure that led
Eq. ~2.11!, obtain the identity

Kj 8 j5Kj 8 j ,t1
1

k (
i ,i 8

~ui 8 j 8 ,Li 8 iui j ,t!. ~3.2!

Actually, it is the matrix elementKj j 8 that originally appears
on the left-hand side; the symmetry property of theK matrix
~verified by performing the above calculation with the tr
function replaced by the exact solution!, was used in obtain-
ing Eq. ~3.2!. To relate theK matrix to the physical reaction
matrix, denoted here asK0, we rewrite the sum ove
outgoing-wave channels of the asymptotic form shown
Eq. ~3.1! as @12#

sin~kr2 l jp/21d j !

1(
i
Ki j cos~kr2 l ip/21d i1pg i !/cos~pg i !

5(
i

@ai jsin~kr2 l ip/2!1bi jcos~kr2 l ip/2!#.

~3.3!

When the trigonometric functions are expanded and coe
cients compared, one finds that

ai j5~cosd j !d i j1Ki jsind i /cos2d i , ~3.4!

and

bi j5~sind i !d i j1Ki jcosd i /cos2d i . ~3.5!

Using the matrix relationb5K0a, we obtain the solutions

K11
0 5~deta!21~a22b112a21b12!, ~3.6!
n-
e
l

-
he

at
as

d
.
-
-

l

o

n

-

and ~employing the relation2a12b111a11b1251 which is
verified directly!

K12
0 5~deta!21K12. ~3.7!

The remaining two elements ofK0 are obtained by inter-
change of indices. The expected symmetry property ofK0 is
confirmed by these results.

The variational approximationKv for theK matrix is ob-
tained from the identity~3.2! by replacing the true wave
function by the trial function, now written asuj ,t(r )
5(bk)g j11ū j ,t(r ), with the trialK matrix expressed as

Ki j ,t5~bk!g i1g j11K̄ i j ,t . ~3.8!

The shifted orbital quantum number isg j5 l j22d j /p; the
polarization phase is determined for each channel using
method reviewed in Sec. II. We further specify that, for allr ,

ūi j ,t~r !5ys,i j ~r !1K̄ i j ,tyc,i j ~r !, ~3.9!

where, in the region where the potential is well appro
imated by its long-range form, we haveys,i j (r )
;(bk)2(g j11)f j (r )d i j and yc,i j (r );(bk)g ij i(r ). ~As dis-
cussed in Sec. II, these asymptotic wave functions need
be known exactly, but can be calculated, in principle, to a
desired order in powers of the polarization strength para
eters.! In recasting the variational expression into a mo
useful form we follow fairly closely the procedure of Sec.
leading to Eq.~2.13!. That is, we insert the trial function in
the form ~3.9! into the variational integral and require tha
K̄ j 8 j ,v5(bk)2(g j1g j11)Kj 8 j ,v be stationary under variation
in elements of the trial matrixK̄ t . To simplify the writing we
introduce the matrix function

wi j5(
i 8

Lii 8ys,i 8 j . ~3.10!

The variational expression then becomes

K̄ j 8 j ,n /b5(
i 8

~ys,i 8 j 8 ,wi 8 j !2(
i ,i 8

~wi 8 j 8 ,yc,i 8 j !

3~m21! i 8 i~yc,i j 8 ,wi j !, ~3.11!

where the matrixm ~with channel indicesj and j 8 sup-
pressed! is defined as

mi 8 i5~yc,i 8 j 8 ,Lyc,i j !. ~3.12!

The asymptotic forms of the trial matricesys andyc are to
be connected smoothly to inside functions that vanish at
origin and, in line with the effective-range approximatio
are chosen to be slowly varying in energy near threshold
then follows from the structure of the variational express
~3.11! that K̄v can be put in the form of an expansion
powers ofk2. While it is not necessary to do so, one cou
maintain an analogy with the single-channel result, E
~2.16!, by writing

~bK̄v!
21>@2A211 1

2 r 0k
2#, ~3.13!

where now the scattering lengthA and effective ranger 0 are
matrices. Diagonal elements of the scattering length ma
satisfy a minimum principle. The trial functions, optimize
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55 2861EFFECT OF LONG-RANGE INTERACTIONS ON LOW- . . .
by application of this principle, may be used in the estim
tion of the effective range. The calculation introduces
error of orderk4.

With the energy dependence of theK matrix determined,
and with ‘‘shape-dependent’’ terms of orderk4 in the
effective-range expansion ignored, the expressions g
above for the physical reaction matrixK0 in terms of the
matrixK and the polarization phases may be simplified wi
out further loss of accuracy. For example, takingl 150 and
l 252 we find, after a brief calculation, that

K11
0 5tand11K112~K11!

2tand11O~k5!,

K12
0 5K122K12K11tand11O~k7!,

~3.14!
K21
0 5K212K21K11tand11O~k7!,

K22
0 5tand21K222K21K12tand22~K11tand1!

2tand2

1O~k9!.

For l 1>1 and l 25 l 112, we have, more simply
K i j

0>~tand i)d i j1Ki j to sufficient accuracy. While we sha
not do so here, a more explicit form for the modifie
effective-range expansion may be derived by introducing
effective-range approximation forK̄ along with the values of
the polarization phases; the latter are obtained by applica
of the perturbation theory of Ref.@4#

IV. SUMMARY

While the effect of long-range interactions on low-ener
scattering parameters is a subject with a long history, eff
are still being made to extend the range of validity of t
theory and to develop new applications. Until recently, o
limitation on such extensions has been the dependence o
formulation of the theory on special functions appearing
the solution of the wave equation in the presence of the lo
range forces The procedure introduced by Cavagnero@4# for
generating approximations for these solutions goes a l
way toward lifting this limitation. A natural way to exploi
this approximation procedure is to place it in the context o
variational formulation, which depends for its effectivene
on the availability of trial functions sufficiently accurate
account for the interactions at large as well as sm
projectile-target separations. The modified perturbat
theory of Ref.@4# provides a means for systematically im
proving the asymptotic behavior of the trial function, a fe
ture that gains crucial importance in applications to scat
ing by highly polarizable systems. Here, to take advantag
this capability, we have reformulated one of the stand
variational procedures@7# by allowing for distorted waves a
great distances. This enables us to separate off factors
are singular at threshold, leaving trial functions, and au
iary scattering parameters, depending only weakly on
energy. In this context, a suitably generalized version
effective-range theory is applicable. An additional advanta
of the variational approach applied to the low-energy scat
ing problem is the availability of a minimum principle tha
provides upper bounds on diagonal elements of
scattering-length matrix@defined in Eq.~3.13!# and allows
for the improvement of the accuracy of the trial function
-
n

n

-

e

n

ts

e
the

g-

g

a
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ll
n

-
r-
of
d

hat
-
e
f
e
r-

e

the interior region. Since the wave function~with near-
singularities removed! is expected to be slowly varying in
energy, these optimized zero-energy inside functions can
useful in some range above threshold. These ideas have
illustrated here in the context of rather simple single-chan
and multichannel models of the scattering process. A pro
ising direction to take for further development of this a
proach is the study of scattering by targets that are
spherically symmetric@13#. New features appear, arisin
from the effect of a target with a permanent electric quad
pole moment, and the appearance of a long-range interac
that can induce transitions. These are matters that have
touched on in the two appendixes of this paper, and w
require further study.
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APPENDIX A: THE INVERSE-CUBE POTENTIAL

If the target in its ground state has a permanent quad
pole moment the effective potential behaves
2(\2/2m)b3/r

3 at great distances. Modifications of the pe
turbation theory of Ref.@4# are required to construct th
asymptotic solutions. Ignoring longer-range components
this time, we look for a solution of

Fz2 d2

dz2
1z

d

dz
1z22S l1 1

2D
2GM ~z!52

D3

z
M ~z!,

~A1!

with D35b3k. In lowest order we haveM (0)(z)5Jl11/2(z),
so that the polarization phase vanishes in this order. Us
the relationz21Jl11/25(2l11)21[Jl13/21Jl21/2], we find
the first-order correction to be

M ~1!~z!5~2l11!21@~2l !21Jl21/2~z!

2~2l12!21Jl13/2~z!#. ~A2!

Note that this procedure breaks down fors-wave scattering,
a case considered separately below. From the asymp
form M (1);[2 l ( l11)]21 cos(kr2 lp/2) we conclude that,
to first order, the polarization phased satisfies

tand5b3k@2l ~ l11!#21. ~A3!

A first-order solution behaving as sin(kr2 lp/21d) asymp-
totically is given by

f~r !5~pkr/2!1/2cosd@Ml
~0!~kr !1b3kMl

~1!~kr !#. ~A4!

A linearly independent solutionj(r ), behaving as cos(kr
2 lp/21d), is obtained by replacingl by 2 l21 in the
above expression forf(r ) and then multiplying the result by
(21)l . Following the discussion in the text leading from E
~2.2! to ~2.4!, with g replaced byl , we find that
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tanh5
tand1K

12K tand
. ~A5!

Since the leading term near threshold is tand, we expect that
this will agree with the Born approximation

tanhBorn5b3kE
d

`

@kr j l~kr !#
2/r 3dr, ~A6!

for the inverse-cube potential cut off forr,d and evaluated
to lowest order ink; this is indeed verified@14#. A variational
principle for theK matrix can be set up as described in S
II. The extension of this analysis to include 1/r 4 and 1/r 6

potentials is straightforward.
A different method is required forl50 and to deal with

this case we resort to ordinary perturbation theory, confin
our attention here to the evaluation of the first Born appro
mation for scattering by a 1/r 3 potential cut off forr,d.
Introducing the free-particle Green’s function

G~r ,r 8!5k21 sinkr, coskr. , ~A7!

we write the solution of the wave equation as

u~r !5sinkr1E
d

`

G~r ,r 8!
b3

r 83
f~r 8!dr8. ~A8!

In the Born approximation the unperturbed wave function
introduced in place of the exact solution on the right-ha
side, yielding

u~r !>sinkrS 11
b3

k E
r

`

coskr8
u~r 82d!

r 83
sinkr8dr8D

1
b3

k
coskrE

d

r

sin2~kr8!
1

r 83
dr8. ~A9!

Thusu(r );sinkr1tanh coskr asymptotically, with

tanh>
b3

k E
d

`

sin2~kr !
1

r 3
dr52b3k lnk1O~k!.

~A10!

The zero-energy limiting value of the integral record
above is obtained using an integration-by-parts method
scribed in Ref.@3#.

APPENDIX B: EIGENPHASE SHIFT METHOD
FOR MULTICHANNEL SCATTERING

We look for asymptotic solutions for a two-channel sc
tering problem of the type considered in Sec. III, but with
long-range component of the potential that is not diagona
channel space. For simplicity and definiteness we ass
that Vi j (r )→2(\2/2m)b2/r 4 for large r . An appropriate
asymptotic solution may be obtained from linear combin
tions of basis functions behaving at great distances as

c i j ~r !;sin~kr2 l jp/2!d i j1Ki j
L cos~kr2 l ip/2!. ~B1!

In order to apply a direct generalization of the perturbat
theory of Ref.@4#, as reviewed here in Sec. II, we take th
.

g
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s
d

e-

-

n
e

-

n

linear combination that leaves the matrixKL diagonal. Thus
we attempt to find an orthogonal matrix

x5S cos« 2sin«

sin« cos« D ~B2!

and eigenphasesd j , such that (K
Lx) i j5tand j xi j . Noting that

~cx! i j;xi j @sin~kr2 l ip/2!1tand jcos~kr2 l ip/2!#,

r→`, ~B3!

we take as the transformed basis functionf i j5cosd j (cx) i j
with asymptotic form

f i j;xi jsin~kr2 l ip/21d j !. ~B4!

In a natural extension of the method reviewed in the text
set,f i j5Cj (pz/2)

1/2Mi j (z) and consider the wave equatio
for the matrixM . The solution is expanded in powers o
D5(bk)2 as M5M (0)1DM (1)1D2M (2)1••• , and a
shifted orbital quantum numberg i j , defined implicitly by the
relation

~ l i11/2!25~g i j11/2!21DG i j
~1!1D2G i j

~2!1••• , ~B5!

is introduced. In lowest order we haveMi j
(0)(z)

5xi j Jg i j11/2(z) and the equation satisfied by the first-ord
correction is found to be

Fz2 d2

dz2
1z

d

dz
1z22S g i j1

1

2D
2GMi j

~1!

5G i j
~1!2

1

z2
~M1 j

~0!1M2 j
~0!!. ~B6!

The last term on the right-hand side is expanded with the
of the Bessel-function recursion relation andG i j

(1) is chosen
such that the coefficient ofJg i j11/2, vanishes. Specifying tha
l 25 l 112, and making use of the relation

~ l i2g i j !p/25d j , ~B7!

we see thatg2 j5g1 j12. It then follows that

G11
~1!5@2~g1121/2!~g1113/2!#21

1tan«@4~g1115/2!~g1113/2!#21,
~B8!

G21
~1!5@2~g2121/2!~g2113/2!#21

1cot«@4~g2123/2!~g2121/2!#21.

We may now solve Eq.~B6! for M 11
(1)(z) andM 21

(1)(z) and
require that the value of the eigenphase shiftd1 appearing in
the asymptotic form of each solution be the same. In t
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way, after a brief calculation, we find the polarization eige
phased1, determined to first order from the defining relatio
~B7!, to be

d15
pD

2l 111 F 1

~2l 121!~2l 113!

1
tan«

2

1

~2l 115!~2l 113!G . ~B9!

The mixture parameter is found to satisfy the relation

tan«52q/21@~q/2!211#1/2, ~B10!
r
2

.

ev

om
an
ia
pa
in

.

o

-where

q5
24~2l 113!

~2l 121!~2l 117!
. ~B11!

With the calculation repeated for the modej52, the expres-
sion ford2 is found to be of the form~B9!, but with tan«→
2cot«, corresponding to the choice of the negative squ
root in Eq.~B10!.

In any given approximation forxi j and tand j we have
KL5S cos2« tand11sin2« tand2 sin2«~tand12tan2!/2

sin2«~ tand12tand2!/2 sin2« tand11cos2« tand2
D . ~B12!
ap-

n
ex-
ten-
In our first-order approximation, we find that

K11
L >

p~bk!2

~2l 111!~2l 113!~2l 121!
, ~B13!

which agrees with the single-channel result, as it must in fi
order, andK 22

L is obtained by interchanging indices 1 and
in Eq. ~B13!. The off-diagonal elements are
st

K21
L 5K12

L >
p~bk!2

2l 111

1

2

1

~2l 115!~2l 113!
. ~B14!

This latter expression reduces to that obtained in Born
proximation by Bardsley and Nesbet@16# by setting
l p5 l q12 in their Eq.~8!. In the present approach, inclusio
of higher-order corrections is straightforward, as is the
tension to account for longer-range components of the po
tial.
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