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Effect of long-range interactions on low-energy scattering parameters: Variational formulation
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A systematic treatment is presented of near-threshold electron-atom scattering based on a variational prin-
ciple. Results obtained here extend the modified effective-range theory derived some tirfia aduch
long-range polarization forces are taken into accpunyt providing a prescription, based on a minimum
principle, for calculating the effective-range parameters. With the aid of perturbation-theory methods intro-
duced recently for obtaining asymptotic solutions of the wave equation for scattering by a superposition of
long-range power-law potentidlsee M. J. Cavagnero, Phys. Rev58, 2841(1994], higher-order corrections
to the modified effective-range expansion in powers of the polarizability parameters are readily obtained.
Explicit examples are provided. The theory is developed for both single-channel and multichannel scattering.
[S1050-294{@7)06304-X

PACS numbe(s): 34.80.Bm, 03.65.Nk, 34.16x

[. INTRODUCTION method for calculating the effective-range parameters. That
approach, based on Green’s functions, is more difficult to
The effect of a long-range polarization potential on theextend to allow for long-range interactions than is the Kohn
low-energy behavior of electron-atom scattering parametergersion of the variational principlg7] adopted here.
was described some time ago in the context of a modified The single-channel potential-scattering problem is dis-
effective-range theory1]. The original formulation, appli- cussed in Se.c.. Il. As an iIIustration. of the calculatior}al pro-
cable to scattering by a r/ potential, was expressed in cedure, explicit forms of the effective-range expansions for
terms of Mathieu functions. A multichannel extension of theS-wave andp-wave scattering are provided that include cor-
theory was developed subsequently by Watanabe and Greefgetions of second order in arf/component of the long-
[2]. To simplify the analysis, freeing it from a dependence onfange potential and of first order in the 3£omponent. The
special functions and allowing for application to a generaimultichannel version of the theory is treated in Sec. Ill, for
class of power-law potentials, Hinckelmann and Spruch apthe case where the long-range potential is diagonal in chan-
plied a distorted-wave perturbation theory, taken in lowesfl€! space. Two appendixes are devoted to applications of the
order in the strength of the polarization potenfid]. Re- ~ Perturbation theory of Ref4] to cases that may be of use in
cently, Cavagner§4] has provided a convenient version of the study of scattering by targets that are not spherically
perturbation theory for the construction of asymptotic solu-Symmetric. Approximate asymptotic solutions for the>1/
tions for systems interacting with power-law potentials. Re-Potential are derived in Appendix A. In Appendix B an
sults are expressed in terms of relatively simpBessel ~ €igenphase shift extension of the method of Réf.is ap-
functions and the procedure for generating higher-ordeplied to the problem of determining the asymptotic solutions
terms in the expansion in powers of the polarization paramfor multichannel scattering, valid when the long-range poten-
eters is fairly straightforward. With accurate analytic repre-tial is not diagonal. The procedure is illustrated in a first-
sentations of the asymptotic solutions available, in an aporder treatment of the a7 potential.
proximation that can be improved systematically, the task of
constructing trial functions in a variational treatment of the Il. SINGLE-CHANNEL SCATTERING
low-energy scattering problem is simplified considerably. .
This observation is used here as the basis for the develop- We consider the Schdinger equationi —E)u=0 in a
ment of a variational approach to the low-energy scatteringiven partial wavethe orbital angular momentum indéxs
problem. Results of this work encompass earlier treatmentguppressed with a central potentialV(r) behaving as
of modified effective-range theory and allow for a variational — (%:/2m) g/r™ asymptotically[8]. Inclusion of additional
determination of the effective-range parameters—for singlecomponents of the long-range potential will be discussed
channel scattering these are the scattering length and effel@ter on. The boundary conditions an¢0)=0 and, in the
tive range, appropriately redefined to account for the preste€gion where the potential has achieved its long-range form,
ence of the long-range polarization potential. The minimum
principle for the scattering lengtfs] plays a useful role in u(r)~e(r)+KE(r). 2.9
providing a means to optimize the variational parameters ap-
pearing in the(positive-energytrial function. An analogous Here ¢ and¢ are linearly independent solutions of the wave
treatment of multichannel scattering is given here in terms ofquation accounting for the long-range potential. A succes-
a suitably defined reaction matrix. We recall that a varia-sive approximation procedure for constructing these solu-
tional derivation of ordinary effective-range theoijor  tions has been described in Rpf] and will be briefly sum-
short-range potentigiswas given many years ago by marized below. As will be seen, the asymptotic forms of the
Schwinger[6]. The derivation is constructive, providing a solutions may be taken as
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¢~sin(kr—Im/2+ 5), expansion4], andr ~® and higher-order terms may be in-
cluded in the long-range interaction—no special functions,
E~cogkr—Im/2+ 5+ my)lcog 7y), (2.2 such as Mathieu functions, need be introduced. Equally im-

portant is the recognition that the Bessel functions, in terms
where & is the polarization phase;y=I1-26/m, and of which the solutions are expressed, have simple analytic
E=(4%2m)k® The relation between the scattering param-properties. As will be demonstrated below, this allows for
eterK and the physical phase shiftis obtained by compar- the identification of the nature of the threshold singularity

ing the asymptotic forn§2.1) with which, once isolated, leaves a scattering parameter that has a
_ smooth energy dependence.
u~a[sin(kr—lm7/2)+tany cogkr—Iw/2)]. (2.3 To study the near-threshold behavior it is convenient to

define the functions(r)=(Bk) " Ve(r) and &(r)

=(Bk)7¢&(r). As seen from the form of the series solutions

tans+ K/cos2s discussed gbove, these renormalized func;izgns ;nﬁy each be
. 2.4 represented as a convergent power seriek“inlt follows

1+K tans/cos2 29 from Eg. (2., along with the definition

K(k)=(Bk) 7" DK (k), that u(r)=(Bk)~ " Vu(r) has

the asymptotic form

This leads to the relation

tanp=

Following the method of Ref[4] one transforms the
equation

U(r) ~ p(r) +KE). (2.10

(d2 , 10+1)

2
a LB
dr? r? ré

¢(r)=0 (2.9

o 12 . We now introduce a trial functiom,(r) which vanishes at
by substituting=C(72/2)"*M(z) and z=kr, with C @  he origin_and has the asymptotic for(@.10 with K re-

. . . _ 2 .
normalization constant. Then, with=(Bk)", M(z) is seen  pjaced byK,. Following a standard procedure, one readily

to satisfy obtains an identity which is a generalization of one intro-
42 12 A duced by Katd9] for scattering by short range potentials. To

22 47— g2 |+_) M(z)=— — M(2). simplify notation we writeL = —(2m/42)(H—E) and de-

dz* dz 2 z note the scalar product gs,f(r)g(r)dr=(f,g). The iden-

(2.6 tity is derived by evaluatingy,Lu,) — (u;,Lu) in two ways,

One seeks a series solutiod(2)=M©(z)+AMD)(2) first.by applying the wave equatidru=0 and then by inte.-
+A2M®@)(2)+ -, and writes grating by parts anq'evaluatlng surface ter'ms with the aid of
' the boundary conditions. In this way one finds that
(1+1/2)%=(y+1/2?+ ATV +AT@ +... . (2.7

K=K+ B(u,Luy). 2.1
In lowest order Eq(2.6) givesM {?)(z)=J,, 1x(2), and the kAL 213

equation forM®) becomes . - o . .
a A version of the Kohn variational principle is obtained with

d2 1\2 the replacement ofi(r) by u,(r) in Eq. (2.1D; that is, it
z a2z d_z+22_( r+t E) }M(yl)(z) leads to an approximatio, with an error of second order
in u—u, . While greater flexibility is possible, let us consider,
1 for definiteness, a trial function that for all valuesrdias the
=\r®- 2 MO(z). (2.8)  specific form
With the aid of the Bessel-function recursion relation, the u_t(r):ys(r)+K_tyc(r)1 (2.12

function z’ZJ,/H,Z, appearing on the right in E¢§2.8), may
be expressed as a sum of terms involvihg 1/, J,, 5, and
J,_35- A key point in the method of Ref4] is the observa-
tion that the choic&V=[2(y— 1/2)(y+3/2)] * eliminates
the termJ,, 4, thus avoiding a spurious singularity and al-
lowing one to solve foM (" by inspection, as shown in Eq.
(12) of Ref.[4]. The parametey is thereby determined im-

plicitly, to first order inA, by Eq.(2.7), above. To the same

with y4(r) = ¢(r) andy.(r)=&(r) for r>d. Hered is taken

to be large enough so that for>d V(r) is well approxi-
mated by its long-range form; with this condition satisfied
results will be insensitive to the specific value @f The
variational approximation may then be expressed as

order, the polarization phase is found to be K18 (yo.Lyo) (Ye,LYs)? (2.13
2 ’ T (Yeubyo) '
5o 7(BK) 2.9
(2l+1)(21+3)(21-1) ' Here, to gain some simplification in form, the relation

A similar procedure may be followed, with the replace-
ment y——vy—1, to determine the functiog(r); in lowest 1+B(Ys:Lyc)=B(Ye,LYs), (2.14
order we hava ©)_,(z)=J___,,(2z). An essential point to _
recognize here is that the solution may be carried out in @btained by integration by parts, has been uggdyas then
straightforward way to higher orders, leading to a convergenevaluated by requiring thd€, be stationary with respect to
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variations in this parameter. For<d, continuity of value included; the appropriate extension of the procedure for gen-
and slope is required, witly,(0)=0. One way to accomplish erating the asymptotic solutions for this superposition of po-

this is to set tentials can be made without difficulfg]. Thus forl=0 one
_ _ finds that
ys(r)=(d)[ = (r/d)>+2(r/d)]+ ¢’ (d)r(r/d—1)
m 2, 4, T a4
+94(N(r—d)2. (219 5= 5 (B*+ 1oz (BR*+ g (B'R% (217

The “inside” function g4(r) must vanish at the origin and
decay asymptotically, but is otherwise unconstrainedr)
takes a similar form with¢ and g, replaced by¢ and g,
respectively. In the spirit of the effective-range approxima- - w2

tion [6,10] we may choosa(r) andg.(r) to be indepen- tany=tano+ K —K%ano. (218
dent of energy near threshold. Since the variational principl§ye combine with this expression the approximation

at zero energy is in fact an extremum principle, which allows

for systematic improvement of the trial function, we may 1
expect that accurate approximations for these functions may K=—-—
be obtained. With the threshold behavior properly accounted B
for, the error in the trial function will be of ordek? and the introduce the expansion
error in the variationally determined functi¢t(k) will be of
orderk?; we write

The relation(2.4) may now be replaced, to sufficient accu-
racy, by

B2 A+ 3r A%K?], (2.19

Bk2r 1= pk , (2.20

1 45I k~|—1 45I k2
B P

— 1
K,=— = [A+3r,A%k?]+ O(k*). (2.16
B and write tand=6+ &/2. The modified effective-range ex-

. . nsion for thes-wav tterin rameter then takes th
The parametergscattering lengthA and effective range,) poa:mso or thes-wave scatlering parameter then takes the

appearing here have been chosen to conform to standard no-
tation. -
We emphasize that the asymptotic solutions need not be tanp/k=—-A— =
known exactly[11]. In applying the zero-energy minimum 3
principle for the scattering lengtfa maximumprinciple for —8ABKA(INBK) 2+ c,k4nBk+O(K®), (2.213
K), asymptotic solutions of sufficient accuracy may be con-
structed by taking the zero-energy limit of the positive-\here
energy solutions. These assume the form of expansions in
inverse powers of and are accurate to a given order in each T L, . T, w? 4 4
of the polarization parameters. The coefficients appearing in CL=g ATB H e Bt g B+ g B (221D
these expansions may be obtained more directly by analyz-
ing the zero-energy form of the wave equatidgfor ex-  gpg
ample, forl=1 and a pure t/ potential, sufficient accuracy
is achieved by choosing the approximationdioto be pro- Co= 13z AB M+ s AB 4 —Sr AZB2. (2.219
portional tor2+ 32/2.) Once the inside functiongy(r) and
g.(r) are chosen the variational calculation is repeated at a Turning now top-wave scattering, and ignoring terms of
positive energy with the same choice of inside functions. Therderk® for simplicity, we find for the tangent of the polar-
integration range may be broken up into two regions; forization phase the expression
r>d we write (H—E) ¢=V5¢, whereV* is the short-range
component of the potentidhssumed to vanish sufficiently tans=0.6283 Bk)2+0.1677 Bk)*— (m/35)(B'k)*,
rapidly at great distances to assure convergence of the varia- (2.22
tional integrationy and similarly forH —E operating oné. ) L .
At this stage we insert fop and ¢ the approximate forms where rat_lonal co_eff|C|ents have been replaced_ by approxi-
obtained by the perturbation procedure, with the Bessel fundate decimal equivalents. To the accuracy required here, Eq.
tions appearing there replacreié‘zl2 by their small-argument ex2-4 may be replaced by
pansions. By retaining only thie® correction terms in these
expansions in the evaluation of the variational expression tany =tans+K. (.23
(2.13 an explicit expression for the effective range is readily
obtained.
In the following we examine the form taken by the

B?k—2AB%K2INBK— 1rA%k?+c k3

The p-wave version of the effective-range expansion is ob-
tained by combining Eq92.22) and (2.23 with the expan-

effective-range expansion for tanfor s-wave andp-wave ston

scattering; with terms of ordée* ignored in the expansion K=—AB%K3+ L ABK5InBk— Lr ,A282kS
(2.16). Then terms of ordek® andk” for I=0 andl=1, ° 2’0

respectively, may be omitted in the modified effective-range — 2 ABPK(InBK)2+[ 2r,AZB4—0.37767B°

expansion of tam. Along with the 8%/r* component of the
long-range interaction, a component of fo@1*/r® will be — 2 AB%B' 41k InBk+ O(K®). (2.249
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[ll. MULTICHANNEL SCATTERING and (employing the relation—a;,b,;+a;;b,,=1 which is

To focus on its essential features, the multichannel exten\-/erlfled directly

sion of the theory will be presented in the context of a simple K9,=(det) 'K ,. (3.7
two-channel model in which degenerate states of orbital

quantum numbers; and |, are mixed by the short-range The remaining two elements a¢° are obtained by inter-
component of the potential, but not by the long-range comchange of indices. The expected symmetry property bis
ponent. The total potential, a matrix in channel space, has theonfirmed by these results.

large-distance behavioNij(r)—>VL(r)5ij . The inverse- The variational approximatioK , for the K matrix is ob-
fourth power potential is again taken to be dominant at greatained from the identity(3.2) by replacing the true wave
distances, but longer-range components may be present fgction by the trial function, now written asi;(r)

well. The wave function for a particle, incident in chanpel = (k) Vﬁlu_j,t(r), with the trial K matrix expressed as

and corresponding to an outgoing wave in channébs the byt

asymptotic form Kij 1= (BK) Y7 Kj ¢« (3.8
Uiy~ ¢ 8+ Kii & (3.1) The shifted orbital quantum number i§=1;—245;/; the

polarization phase is determined for each channel using the
where the asymptotic functions are just are those introducefnethod reviewed in Sec. Il. We further specify that, forrall
earlier in Sec. Il, now with channel indices attached. — _ K. 39
(Asymptotic solutions corresponding to a long-range poten- Uij (1) = Ys,ij (1) + Kij ¥c,ij (1), (3.9
tial that is not diagonal in channel space are derived in Apyhere, in the region where the potential is well approx-
pendix B) In a matrix notation in whichu;; is theith ele-  jmated by its long-range form, we havey,;;(r)
ment of the column vectou. , the wave equation becomes __ —(yj+1 () i i
Lu;=0, where L, =[d2dr’+k2—1(I. <)q/r2] i —(2m/ (BK) "1 Dpi(r) oy and v (1)~ (BOME(N). (As dis
N ij itli-1 ij cussed in Sec. Il, these asymptotic wave functions need not
A7)Vij - o . . be known exactly, but can be calculated, in principle, to any
To set up a variational procedure we introduce a trialyegjred order in powers of the polarization strength param-
function u; ;, and corresponding trial matriK, and, by  eterg) In recasting the variational expression into a more
straightforward generalization of the procedure that led tq;gefy| form we follow fairly closely the procedure of Sec. II,
Eq. (2.1D, obtain the identity leading to Eq.(2.13. That is, we insert the trial function in
1 the form (3.9 into the variational integral and require that,
Kj,]:Kj,j'pLEz (Uirjr,Lirili o). (3.2 _Kj,j,U:(,Bk)‘(YJ”Jfl)K]-,J-'U_Le stationary under variations
i’ in elements of the trial matrik; . To simplify the writing we

- . - introduce the matrix function
Actually, it is the matrix elemeri;;, that originally appears

on the left-hand side; the symmetry property of Knenatrix
(verified by performing the above calculation with the trial Wij :Z LiirYs,irj- (3.10
function replaced by the exact solutipmvas used in obtain- :

ing Eg.(3.2). To relate theK matrix to the physical reaction The variational expression then becomes
matrix, denoted here a&°, we rewrite the sum over

outgoing-wave channels of the asymptotic form shown in Y _ N - N
Eg. (3.1 as[12] Kjin/B ; (Ys,irjr Wirj) % (Wi Yeirj)
S|n(kr_|J7T/2+ 5J) X(mil)i/i(yc’ij/ ,Wij), (31:D

where the matrixm (with channel indice§ and j’ sup-
presseflis defined as

m; i =(Ye,irjr LYe,ij)- (3.12

The asymptotic forms of the trial matricgsandy, are to
3.3 bg qonnecte_d s_moothly to inside f_unctions that van_ish at the
origin and, in line with the effective-range approximation,
When the trigonometric functions are expanded and coeffiare chosen to be slowly varying in energy near threshold. It

+E Kij cogkr—lim/2+ &;+ my;)/cog 7y;)
I

=2 [aysin(kr—I;m/2) + bjcog kr—1;m/2)].

cients compared, one finds that then follows from the structure of the variational expression
(3.1) that K, can be put in the form of an expansion in
aj; = (cosd;) &;; + Kjjsing; /cos2s; (3.4  powers ofk?. While it is not necessary to do so, one could
maintain an analogy with the single-channel result, Eq.
and (2.16), by writing
bij = (siné)) 6;; + K;coss; / cos25; . (3.5 (BK,) t=[—A 1+ irok?], (3.13

Using the matrix relatiolh=K°a, we obtain the solutions  where now the scattering lengthand effective range, are
0 . matrices. Diagonal elements of the scattering length matrix
K1=(de®) (a1~ abiy), (360 satisfy a minimum principle. The trial functions, optimized
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by application of this principle, may be used in the estima-the interior region. Since the wave functidwith near-
tion of the effective range. The calculation introduces ansingularities removedis expected to be slowly varying in

error of orderk®. energy, these optimized zero-energy inside functions can be
With the energy dependence of tkematrix determined, useful in some range above threshold. These ideas have been
and with “shape-dependent” terms of ordé® in the illustrated here in the context of rather simple single-channel

effective-range expansion ignored, the expressions giveand multichannel models of the scattering process. A prom-
above for the physical reaction matri® in terms of the ising direction to take for further development of this ap-
matrix K and the polarization phases may be simplified with-proach is the study of scattering by targets that are not
out further loss of accuracy. For example, takiag=0 and  spherically symmetrid13]. New features appear, arising

I,=2 we find, after a brief calculation, that from the effect of a target with a permanent electric quadru-
o pole moment, and the appearance of a long-range interaction
K2;=tand; + Ky~ (Kqp)*tans; + O(k®), that can induce transitions. These are matters that have been
touched on in the two appendixes of this paper, and will
K2,=K 12— KK ystans; + O(k7), require further study.
o . (3.19
K21=Ka1= KziKystand; + O(k?), ACKNOWLEDGMENTS
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For 1,=1 and I,=1,+2, we have, more simply, g y g

K{=(tans;) &;;+K;; to sufficient accuracy. While we shall
not do so here, a more explicit form for the modified APPENDIX A: THE INVERSE-CUBE POTENTIAL

effective-range expansion may be derived by introducing the i {he target in its ground state has a permanent quadru-
effective-range approximation fét along with the values of le moment the effective potential behaves as

the polarization phases; the latter are obtained by applicatioa(ﬁ2/2m)33/r3 at great distances. Modifications of the per-

of the perturbation theory of Ref4] turbation theory of Ref[4] are required to construct the
asymptotic solutions. Ignoring longer-range components at

IV. SUMMARY this time, we look for a solution of
While the effect of long-range interactions on low-energy 2 2 A
scattering parameters is a subject with a long history, efforts | ;2 b7 — 42 ( I+=] [M(z)=— =3 M(z)
are still being made to extend the range of validity of the dZ2 " “dz 2 z

theory and to develop new applications. Until recently, one (A1)
limitation on such extensions has been the dependence of the

formulation of the theory on special functions appearing inWith As=B3k. In lowest order we havi!(9(2)=J, . 1,(2),

the solution of the wave equation in the presence of the longSO© that the polarization phase vanishes in this order. Using
range forces The procedure introduced by Cavaghrtor  the relationz™ 3. 1,=(21+ 1) "[J;, 5+ 3,1/, we find
generating approximations for these solutions goes a lon#€ first-order correction to be

way toward lifting this limitation. A natural way to exploit

this approximation procedure is to place it in the context of a M®(2)=(21+1) " [(21) 1) _1(2)

variational formulation, which depends for its effectiveness 1

on the availability of trial functions sufficiently accurate to —(214+2) " ia2)]. (A2)
account for the interactions at large as well as sma
projectile-target separations. The modified perturbatio
theory of Ref.[4] provides a means for systematically im-
proving the asymptotic behavior of the trial function, a fea-
ture that gains crucial importance in applications to scatter
ing by highly polarizable systems. Here, to take advantage of
this capability, we have reformulated one of the standard
variational procedurel’] by allowing for distorted waves at i . .
great distances. This enables us to separate off factors thAtfirst-order solution behaving as ski(—17/2+ 6) asymp-
are singular at threshold, leaving trial functions, and auxil-totically is given by

iary scattering parameters, depending only weakly on the

energy. In this context, a suitably generalized version of &(r)=(mkr/2)*2coss{M{% (kr)+BskM{M(kr)].  (A4)
effective-range theory is applicable. An additional advantage

of the variational approach applied to the low-energy scatterA linearly independent solutiog(r), behaving as co&f
ing problem is the availability of a minimum principle that —I#/2+ &), is obtained by replacing by —1—1 in the
provides upper bounds on diagonal elements of thebove expression fap(r) and then multiplying the result by
scattering-length matrixdefined in Eq.(3.13] and allows (—1)'. Following the discussion in the text leading from Eq.
for the improvement of the accuracy of the trial function in (2.2) to (2.4), with y replaced byl, we find that

H\lote that this procedure breaks down fewave scattering,

a case considered separately below. From the asymptotic
form M®~[21(1+1)] ! coskr—Im/2) we conclude that,

to first order, the polarization phagesatisfies

tand= Bsk[21(1+1)]" L. (A3)
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tans+ K linear combination that leaves the matkx diagonal. Thus
&N 7= T s (A5)  we attempt to find an orthogonal matrix
Since the leading term near threshold isdame expect that cox —Sine
this will agree with the Born approximation “lsine  cos (B2)
tanygom= B3kfd [krji(kr)]?/r3dr, (AB)  and eigenphasesj, such that K“x);; =tand;x;; . Noting that
for the inverse-cube potential cut off forxd and evaluated (x)ij~xi;[sin(kr —1;7r/2) + tand;cog kr — I;7/2) ],
to lowest order irk; this is indeed verifiefi14]. A variational
principle for theK matrix can be set up as described in Sec. r—w, (B3)

ll. The extension of this analysis to includer4/and 1f°

otentials is straightforward. . .
P A different me?hod is required for=0 and to deal with V¢ take as the transformed basis functigin=cos 3 (¢x);;
this case we resort to ordinary perturbation theory, confiningYV ith asymptotic form
our attention here to the evaluation of the first Born approxi-
mation for scattering by a d3 potential cut off forr <d. @ij~Xijsin(kr = ljm/2+ &;). (B4)
Introducing the free-particle Green'’s function

In a natural extension of the method reviewed in the text we

G(r,r')=k™* sinkr_ cosr-, (A7) get, ¢i;=C;j(m2/2)"M;;(z) and consider the wave equation
we write the solution of the wave equation as for the matrix M. The solution is expanded in powers of
q A=(BK)? as M=MO+AMD+A2MP +...  and a
o Bs shifted orbital quantum numbe; , defined implicitly by the
u(r)=sirkr+f G(r,r’) 73 ¢(r')dr’. (A8) relation
d
In the Born approximation the unperturbed wave function is (I +1/2)2= (i + U?+ AT P+ AT+, (B5)
introduced in place of the exact solution on the right-hand
side, yielding is introduced. In lowest order we haveM{’(2)
Bs (= o(r'—d) :Xiij”+1/z(Z) and the equation satisfied by the first-order
u(r)=sinkr| 1+ s f cokr’ —E sinkr’dr’) correction is found to be
r
B3 ro oL , & d_ . AN
+?coskrfd smz(kr)rfsdr . (A9) z E+zd—z+z— yij+§ M
e . . 1
Thusu(r)~sinkr+tany cokr asymptotically, with :Fi(l_l)_ = (M(l(j))+ M(Z(J?))_ (B6)

B3 Jm . 1
tany=— | sirf(kr) — dr=— B3k Ink+O(k).
=k d (kn) r Pa (k) The last term on the right-hand side is expanded with the aid

(A10)  of the Bessel-function recursion relation afi¢" is chosen

o ] such that the coefficient dfyijﬂ,z, vanishes. Specifying that
The zero-energy limiting value of the integral recorded|2:|1+2, and making use of the relation

above is obtained using an integration-by-parts method de-
scribed in Ref[3].
(li=yi;) ml2= 6, (B7)
APPENDIX B: EIGENPHASE SHIFT METHOD
FOR MULTICHANNEL SCATTERING we see thaty,; = y1;+2. It then follows that

We look for asymptotic solutions for a two-channel scat-

(1) _ _ -1
tering problem of the type considered in Sec. IlI, but with a 7 =[2(y11— 12)(y11+3/2)]

long-range component of the potential that is not diagonal in +tare[4(y11+5/2)(y11+3/2)] 72,

channel space. For simplicity and definiteness we assume (B8)
that V;;(r)— — (4%/2m)g%/r* for large r. An appropriate " )

asymptotic solution may be obtained from linear combina- 57 =[2(y21=12)(y21+3/2)]

tions of basis functions behaving at great distances as _
gatdg +COtE[4( 721~ 3/2) (71— 1/2)] L.

i (1) ~sin(kr—1;m/2) &; + Kfcogkr—1;7/2). (B1)
We may now solve Eq(B6) for M {}(z) andM §Y(z) and
In order to apply a direct generalization of the perturbationrequire that the value of the eigenphase shifappearing in
theory of Ref.[4], as reviewed here in Sec. I, we take the the asymptotic form of each solution be the same. In this
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way, after a brief calculation, we find the polarization eigen-where
phased;, determined to first order from the defining relation

(B7), to be
24(21,+3)
mA 1 = . B11l
5= =D+ (B1Y)
tane 1 _ _ _
+ 2 (21,75)(21,+3)| (B9)  With the calculation repeated for the moge 2, the expres-
1 1 sion for &, is found to be of the forntB9), but with tane—
The mixture parameter is found to satisfy the relation —cote, corresponding to the choice of the negative square
root in Eq.(B10).
tare = —q/2+[(q/2)%+ 1]*2, (B10) In any given approximation fox;; and tans; we have
|
) cose tand; +sirfe tand,  sinZs(tand; —tan,)/2 510
| sinZs(tand;—tans,)/2  sirfe tand;+cose tans,/’ (B12)
|
In our first-order approximation, we find that L . m(Bk)% 1 1
Ko =Ki= 21,+1 2 (21,+5)(21,+3)" (B14)
L 7(Bk)?
Kn= (B13)

This latter expression reduces to that obtained in Born ap-
proximation by Bardsley and Nesbdtl6] by setting
l,=14+2 in their Eq.(8). In the present approach, inclusion
which agrees with the single-channel result, as it must in firsbf higher-order corrections is straightforward, as is the ex-
order, andK 5, is obtained by interchanging indices 1 and 2 tension to account for longer-range components of the poten-

(21,+1)(21,+3)(21,—1)°

in Eq. (B13). The off-diagonal elements are tial.
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