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Semiclassical description of proton stopping by atomic and molecular targets
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~Received 27 August 1996!

In recent years there has been renewed interest in semiclassical methods of modeling atomic structure and
collision dynamics. A class of many-body models applied to these problems are descendants of the original
work by Kirschbaum and Wilets@Phys. Rev. A21, 834 ~1980!#, who used momentum dependent pseudopo-
tentials to exclude particles from quantum mechanically forbidden regions of phase space. These methods have
been used for static, ground-state calculations for increasingly complex atoms, but the calculation of collision
cross sections has to date been limited to fairly simple systems. This paper will consider the dependence of
collision cross-section calculations on the parameters of the Kirschbaum-Wilets semiclassical model, present a
general method for calculation of proton stopping powers by atomic targets, and present results for proton
stopping by atomic targets ranging from He to Ne which agree quite well with experiments over a wide range
of proton energies. A simple extension of the method to multicenter molecular targets will then be discussed,
illustrated by the case of proton stopping by water.@S1050-2947~97!01004-4#

PACS number~s!: 34.90.1q, 02.70.Ns, 34.50.Bw
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I. INTRODUCTION

Classical trajectory Monte Carlo~CTMC! calculations of
charged particle collisions, in which collisions are calcula
microscopically and then averaged over an ensemble of
tial conditions, have long been used to model collision p
cesses in simple systems. Early work on single electron
gets was performed by Abrines and Percival@1,2#, and Olson
and Salop@3#; later Olson@4# extended his earlier work to
look at the state distributions resulting from electron trans
from H to fully stripped ions, and Cohen@5# applied the
method to muon capture by H.

Becker and MacKellar@6# and Pfeifer and Olson@7# at-
tempted to extend the approach to two electron systems,
mixed results. The lack of any quantum mechanics in
CTMC approach apparently limited it to systems in whic
by definition, quantum effects played a small role, e.
single heavy charged particle collisions with very simple t
gets such as H, He1, etc., or in which one active electro
was treated classically in the mean field of the rest of
target.

The lure of applying the many-body Monte Carlo a
proach to more complex systems, in which many-body
fects could not be neglected but which were too complica
for a full quantum-mechanical treatment led to what could
termed a semiclassical trajectory Monte Carlo~STMC! ap-
proach, which added a numerical model of quantum effe
to the purely classical trajectory calculations of CTMC. In
classical model of multielectron atomic targets, outer el
trons evaporate while inner electrons collapse into
nucleus. To stabilize and structure the many-body ato
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model, and thus allow its use as a target in collision simu
tions, Kirschbaum and Wilets@8# proposed excluding the
atomic electrons from regions of phase space which are
bidden by the Heisenberg and Pauli principles by us
momentum-dependent pseudopotentials of the general fo

V5
j2

4ar 2
exp$a@12~rp/j!4#%. ~1!

Here,j is the size of the forbidden region of phase space
a is the hardness of the exclusion~strictly speaking, the size
of the excluded region isj/a1/4, but the principle role ofa is
as the strength of the exclusion!.

This approach was originally developed to study nucl
structure and collisions@9–12#. Zaijfman and Maor@13# used
the model to study atomic He targets. Further work on H
scale problems was carried out by Lerner, LaGattuta,
Cohen@14–16# and recently by Cohen@17#, while Dorso and
Randrup@18# looked further at nuclear applications; ofte
the later work included variations in the form of the sem
classical core terms. We applied this method to study
capture of antiprotons on He@19#.

As with the previous CTMC work, however, early effor
to extend STMC atomic collision calculations to compl
systems, i.e., to greater than two electrons, met with limi
success. This was due in part to the limited availability
computational resources; quite understandably, much of
earlier work in this field was optimized to reduce CPU tim
at the expense of a fuller exploration of the collision mod
The recent explosion in the availablity of lower cost com
puter power has allowed a fuller examination of the STM
approach, resulting in a better understanding of its charac
istics as a calculational tool. In particular, the ability to pe
form collision calculations from a greater number of pro
erly distributed Monte Carlo initial conditions has increas
2821 © 1997 The American Physical Society
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2822 55W. A. BECK AND L. WILETS
insight into the nature of the semiclassical pseudopoten
fundamental to the STMC approach, and their effects on
lision calculations. The calculation of proton stopping po
ers illustrates the principal features of the method.

II. THE SEMICLASSICAL MODEL OF AN ATOM

Using atomic units, with\5e5me51, the classical
model of anN electron atom of atomic numberZ is de-
scribed by the Hamiltonian

Hcl5T1Vz1Vi j5(
i51

N Fpi22 2
Z

r i
G1(

i, j

1

r i j
, ~2!

whererW i andpW i are the positions and momenta of the atom
electrons relative to the fixed nucleus andr i j5urW i2rW j u are
the relative coordinates of electron pairs.

The semiclassical, Kirschbaum-Wilets version of th
model is described by

Hsc5Hcl1VH1VP5Hcl1(
i51

N

VH~r i ,pi !

1(
i, j

VP~r i j ,pi j !, ~3!

where

VH~r i ,pi !5
jH

4aHr i
2 exp$aH@12~r ipi /jH!4#% ~4!

is a Heisenberg-type pseudopotential which stabilizes
atom by preventing collapse of the atomic electrons into
nucleus, while

VP~r i j ,pi j !5
jP

4aPr i j
2 exp$aP@12~r i j pi j /jP!4#%dsisj ~5!

is a Pauli-type pseudopotential which separates iden
electron pairs in phase space, resulting in an electronic st
ture.

The semiclassical model of an atom can be minimized
find a stable ground state in which the electrons, while
rest, have nonzero momenta in the presence of momen
dependent pseudopotentials; this process has been rec
reviewed by Cohen@20#, who calculated ground states up
Z538 with fixed parameters defining the pseudopotenti
In using the model to study collision systems we look furth
into the dependence of both the ground-state electron di
butions and of the resulting collision dynamics on t
pseudopotential parametersa andj.

A. Semiclassical model of He: Nature of the Heisenberg core

Consider He: with two electrons in antiparallel spin sta
our semiclassical Hamiltonian adds onlyVH to the classical
description, and the minimum energy configuration cons
of two stationary electrons on opposite sides of the nucle
each with a nonzero momentum of magnitudepi5jH
Þdri /dt. Figure 1 illustrates the nature of semiclassical
ground states as a function of the Heisenberg core:
ls
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~i! As the size of the core increases, the equilibriu
phase-space separation of the electrons from the nucleu
creases and the total ground-state binding energy decrea

~ii ! For a given core size, as the core becomes harder
value of the total binding energy increases asymptotically
a value determined by the core size.

Fixing the total binding energy of the model at the expe
mental value of 2.9 a.u.;78.9 eV, i.e., confining the Hamil-
tonian to theE52.9 binding energy contour of Fig. 1, leave
a single free parameter in the Hamiltonian. Figure 2 deta
the components of the ground-state energy as a function
aH along this contour:

~i! The nature of the ground state changes only gradu
along the fixed energy contour; all systems have a cons
electron radiusr sc;0.603, which compares well with the
electron mean radius,^r &He;0.59, and as a result total Cou
lomb potential energy is constant atVCoulomb5Vz1
Vi j;25.8.

~ii ! Somewhat paradoxically, as the value of the Heise
berg core size and hardness increase, the value of the He
berg energy in the ground-state Hamiltonian decreases as
Heisenberg pseudopotential more strongly excludes the e
trons from the phase-space region of the nucleus and
ground-state momentum of the electrons increases.

FIG. 1. Semiclassical He binding energy as a function
Heisenberg core size (jH) and hardness (aH).

FIG. 2. Semiclassical He ground-state energy components
function of core hardnessaH for systems with the correct tota
ground-state binding energy.
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55 2823SEMICLASSICAL DESCRIPTION OF PROTON . . .
~iii ! The model obeys a virial theorem. With the effecti
kinetic energy of this system defined asTef f5T1VH , the
total ground-state energy is minimized at

Etotal5VCoulomb1Tef f5~Vz1Vi j !1~T1VH!5VCoulomb/2

52Tef f . ~6!

This is true, in general, for our semiclassical Hamiltoni
including both Heisenberg and Pauli cores. Sincep scales as
1/r and the pseudopotentials are of dimension 1/r 25p2, we
write

Hsc~$r i%,$pi%!5VCoulomb~$r i%!1Tef f~$r i%,$pi%!, ~7!

with

Tef f5T1VH1VP

5(
i

pi
2

2
1(

i

1

r i
2 f H~r ipi !1(

i, j

1

r i j
2 f P~r i j pi j !. ~8!

Then for arbitrary scalingr→lr , p→p/l,

Hsc→
VCoulomb

l
1
Tef f
l2 , ~9!

with

]H

]l
5S 22 Tef f

l3 2
VCoulomb

l2 D U
l51

50⇒22 Tef f5VCoulomb.

~10!

B. Semiclassical Be: Addition of a Pauli core

The model of a Be atom illustrates the effect of the Pa
pseudopotentialVP on the semiclassical ground state. Wi
only the Heisenberg pseudopotential, the Be model m
mizes to a ground-state configuration which, with the el
trons in a tetrahedron at equal radii around the nucleus,
haves much like the semiclassical He atom.

The addition of a Pauli core to the model splits t
ground-state electrons into inner and outer pairs, as show
Fig. 3~a!. Note that the splitting of the electron pairs occu
more quickly for a softer Pauli core; as with the case of
central Heisenberg core, see Fig. 2, the softer interelec
core results in a greater interaction between the electrons
thus a greater separation. Note also that as the size o
Pauli corejP increases, the binding energy of the inner ele
trons quickly reaches an equilibrium level as they a
squeezed in against the central Heisenberg core, while th
the outer electrons continues to decrease as they are pu
further away from the nucleus; clearly, too large a Pauli c
will result in valence electrons that are too loosely bound
serve in a realistic model of an atom.

Figure 3~b! reveals how the addition of the Pauli co
decreases the total binding in the system, spreading ou
electrons in phase space as it splits the electron pairs
order to achieve the correct total binding energy, the size
strength of the Heisenberg and Pauli pseudopotentials m
be adjusted in concert; calculation of collision cross secti
provides guidance into how to do this.
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III. SEMICLASSICAL COLLISION CALCULATIONS:
STOPPING POWER

Stopping power, or energy-loss cross section, was orig
nally described by the Bethe theory@21#,

S5
4pZ1

2Z2
2

mev1
2 F lnS 2E0,1

I D2 ln~12b2!2b22
C

Z2
G , ~11!

whereZ1 ,Z2 are the charge of the projectile and target,v1 is
the projectile velocity,E0,1 is the initial projectile energy and
b5v/c. I , the mean ionization energy of the target atom,
characterizes how free the target atom’s electrons are to e
change momentum with the projectile, and is the central pa
rameter in the theory;C/Z2 are semiempirical shell correc-
tions to the target atom’s electronic structure.

This formula works well at higher collision energies,
however at lower energies, where stopping powers peak a
the projectile velocities approach that of the target electron
and the target-projectile interactions become more complex
and often result in ionization, approximating the electron
structure with a single mean ionization term proves inad
equate, even with shell corrections.

Various methods of approximating the quantum mechan
ics of this interaction have been developed for different ve
locity regimes; the general technique is to consider the targe
atom in some mean field within which limited collision dy-
namics can be calculated. Ziegler, Biersack, and Littmark
@22# provide a nice history of early work in this area. In an

FIG. 3. Splitting~a! of the inner and outer electron energy levels
as the Pauli core sizejP is increased in the semiclassical Be atom;
reduction of the total Be binding energy~b! as the Pauli core
spreads the electrons out in phase space.
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2824 55W. A. BECK AND L. WILETS
alternate approach, Feldmeier@23# coined the term Ferm
molecular dynamics to describe his method of following t
time evolution of colliding Gaussian wave packets. A rec
review of the field is found in Grande and Schiwietz@24#,
who modeled the complicated interactions in the region
maximum stopping using large numbers of single elect
wave functions. For more than fairly simple targets, e.g.,
H2, He, the analytical approaches founder in the region
maximum stopping, and stopping powers are generally e
mated by an empirical curve fit to experimental data; Zieg
Biersack, and Littmark have carried this approach out t
high degree of sophistication for positively charged proj
tiles, producing annual refinements to theirTRIM ~Transport
of Ions in Matter! software@25#. Our reference experimenta
curves for atomic stopping are taken from here and fr
Andersen and Ziegler’s earlier compilation of the experim
tal data@26#.

In contrast to the traditional mean-field and empiric
methods, the STMC approach microscopically follows a
ries of projectile collisions with a fully detailed model of th
target atom. Uniquely, this method directly includes elect
correlation effects for much larger target systems than ca
handled with even the most simplified quantum-mechan
approaches, extending the useful range of the model to lo
collision energies and larger target systems.

A. Semiclassical stopping power

The total Hamiltonian for a proton colliding with a fixe
nucleus semiclassical atom is given by

FIG. 4. Time evolution of electron-nuclear radius~a!, electron-
proton radius~b! and electron binding energy~c! during a high-
energy-loss collision between a proton and a soft semiclassic
atom.
t
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Hsc1p5Hsc1
P2

2M
2
Z

R
2(

i51

N
1

urW i2RW u
, ~12!

whereRW ,PW are the coordinates of the proton relative to t
nucleus. To model collisions, the classical equations of m
tion for this system

dxi
dt

5
]H

]pi
,

dpi
dt

52
]H

]xi
~13!

are solved forrW i ,pW i andRW ,PW over time. Note that there is no
pseudpotential termVH,p(urW i ,pu,upW i ,pu) between the proton
and the target electrons;VH is used only to stabilize the
target system, and all interactions between the target and
projectile are via the Coulomb forces.

Quantum uncertainty is rolled into the model by avera
ing over a sequence of collision calculations using Mo
Carlo initial conditions:

~i! A microcanonical distribution of target configuration
is generated by random rotation and parity inversion of
ground-state electron positions and momenta@1#.

~ii ! Each collision with one of these target configuratio
is started from an impact parameterb randomized with equa
areaspdb2 up to some maximum valuebmax.

~iii ! The same Monte Carlo seed is used for sequence
collisions from a series of initial proton energies, allowin
calculation of collision cross sections as a function of init
projectile energy from repeatable ensembles of initial con
tions.

By averaging over an appropriate set of initial conditio
one hopes to extract physically meaningful results from m
croscopically following this semiclassical model of
quantum-mechanical system. ForN collisions starting with
initial energy E0 and impact parameters randomized w
equal areas up to somebmax, the total energy-loss cros
section or stopping power,sDE, is calculated from the av-
erage proton energy loss as

sDE~E0!5pbmax
2 1

N(
i51

N

DEi~E0!, ~14!

with an uncertainty

d~sDE!5pbmax
2 F 1N ~^~DEi !

2&2^DEi&
2!G1/2. ~15!

B. Close encounter collision dynamics:
Influence of core hardness

In a typical series ofN; a few thousand or so collision
much of the actual stopping occurs in a small fraction of
collisions in which the proton and one of the target electro
collide nearly head-on, with a large component of colline
momenta, i.e., aligned for high-momentum exchange. T
nature and frequency of these approximately head-on c
sions are central to correct calculation of overall stopp
powers; their details reveal the importance of core hardn
in collision dynamics, and thus its significance to the use
STMC techniques for collision modeling.

H



h-
ic
ol

m
on

o
di
th
. I

lli-
to
ng
sest
is

ted
ical
ion
bout
ts
f
a-
e

ell
the
m
ve.
ron
ip-
l-
is
ki-
n-
e
-
nd

al

fo

ore

55 2825SEMICLASSICAL DESCRIPTION OF PROTON . . .
Consider, for simplicity, an example of a typical hig
energy-loss collision between a proton and our semiclass
H atom. Figures 4 and 5 plot the time evolution of this c
lision for H targets incorporating both soft (aH51) and hard
(aH55) Heisenberg cores: Figs. 4~a! and 5~a! plot the ra-
dius of the electron relative to the nucleus of the H ato
Figs. 4~b! and 5~b! the distance betwen the target electr
and the colliding proton, and Figs. 4~c! and 5~c! the compo-
nents of the electron energy in the collision system.

Figure 6 plots the ground-state energy as a function
electron radius for both the soft and hard H atoms; the
ferent collision dynamics of Figs. 4 and 5 are a result of
different shapes of the energy wells confining the electron

FIG. 5. Time evolution of electron-nuclear radius~a!, electron-
proton radius~b!, and electron-binding energy~c! during a high-
energy loss collision between a proton and a hard semiclassic
atom.

FIG. 6. Ground-state energy as a function of electron radius
semiclassical H atoms incorporating soft (aH51) and hard
(aH55) Heisenberg cores.
al
-

,

f
f-
e
n

Fig. 4 the softer target H atom is deformed during the co
sion as the electron in the softer potential well begins
acquire momentum from the colliding proton and is swu
around into the nucleus. This process peaks at the clo
encounter of the proton and the target electron, which
simultaneously the point at which the electron is deflec
furthest into the soft Heisenberg core of the semiclass
nucleus. Note that the energy changes in the soft collis
system are smooth and continuous as the proton loses a
2.2 a.u. of kinetic energy in ionizing the electron from i
ground-state energy of20.5 to its continuum energy o
;1.7; in particular, note that because of the target deform
tion Vp2e521/urW2RW u, the Coulomb attraction between th
projectile and the target electron, remains well behaved.

In contrast, as the proton collides with theaH55 target
atom in Figs. 5, the narrower, steeper-sided potential w
which results from the harder Heisenberg core holds
electron more rigidly in place and prevents the atom fro
absorbing the shock of the collision by deforming as abo
The colliding proton gets much closer to the target elect
and thus transfers more momentum to it before finally wh
ping it out at a much higher velocity than in the softer co
lision. Note that the energy transfer in this collision system
much more abrupt as the proton loses about 4.5 a.u. of
netic energy in ionizing the the electron to its final co
tinuum state ofE;4; note, in particular, the singular natur
of Vp2e and the kinetic energyT ~and thus of the total elec
tron energy! during the closer encounter of the projectile a

H

r

FIG. 7. Semiclassical He stopping powers for Heisenberg c
size5 1.0 ~a!, 2.0 ~b!, and 3.0~c!.
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2826 55W. A. BECK AND L. WILETS
the electron localized in the bottom of the harder poten
well.

The additional energy loss resulting from the hard-c
collision dynamics, though occuring infrequently, turns o
to be a source of significant error in net stopping pow
calculations. Though the ground-state energy curves and
collision dynamics in more complex target systems are co
plicated by additional electron interactions, in all the syste
which we have studied, close encounter collisions simila
the above remain the predominant factor in net stopp
powers, which thus depend directly on correct selection
pseudopotential hardness.

C. Frequency of close encounter collisions:
Monte Carlo considerations

The frequency of the important, approximately head-
collisions is governed by the Monte Carlo selection of init
target configurations and impact parameters. In our e
work on this problem using harder semiclassical pseudo
tentials (a;5, typically!, undersampling of the collision
configuration space resulted in initially promising results
which, rather annoyingly, both the statistical uncertainty a
the deviation from experimental results often grew as
sample size increased and/or the sample seed was cha
In particular, limiting the maximum impact parameter or se
menting the range of impact parameters, both of which h
in the past been standard techniques to conserve CPU
often significantly increased the errors in our calculatio
hiding thea dependence of the stopping power. We fou
that continuously sampling the full impact-parameter sp
up to bmax, chosen so that the final result was notbmax
dependent, led most directly to collision cross sections wh
converged as we more densely sampled the collision c
figuration space with multiple seeds.

D. Energy accounting

In addition, correct calculation of stopping powers r
quires correct calculation of initial and final proton energ
relative to the target system; particularly at higher projec
energies, where stopping is smaller, small systematic er
will accumulate into significant errors in the final result.

Since stopping powers are measured as a function of
initial energy of the colliding proton, we have specified th
energy at the proton radiusR5`, then adjusted the actua
starting energy of the collision for the starting point of t
collision at R5R0. Since the total energy of the collisio
system is that of the target plus that of the proton, where
the proton is relative to the target system,

Ep,R5R0
1Etgt,R5R0

5Ep,R5`1Etgt,R5` , ~16!

the initial energy of the proton at the start of the collision
simply

Ep,R5R0
5~Ep,R5`1Etgt,R5`!2Etgt,R5R0

. ~17!

For simple collisions in which the proton collides with th
target atom without picking up an electron, the final prot
energy is calculated in a similar fashion. Particularly at low
energies, however, the important, high-energy-loss collisi
l
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often include electron transfer, and calculating the ove
stopping power requires correctly calculating the final pro
kinetic energy in the newly formed H atom, which will hav
interesting dynamics of its own. Initially we evaluated th
by taking the time average of the proton energy, but foun
computationally inefficient to sample densely enough
avoid aliasing the often high-frequency orbits of the new
formed H atom. A more accurate and efficient method is
calculate the final proton energy from the center-of-mass
locity of the newly formed H atom, which in this semicla
sical system is not simplyPcm /Mcm , but rather

VW cm5
MpVW p1vW e

Mcm
, ~18!

with

VW p5¹W PH, vW e5¹W pH. ~19!

IV. STOPPING POWER RESULTS, He THROUGH Ne

The relatively simple case of proton stopping by He illu
trates the effect of pseudopotential core strength on stop
power. Figures 7~a!–7~c! compare experimental He proto
stopping powers to our semiclassical calculations for diff
ent Heisenberg core strengths,aH51.023.0, i.e., for sys-
tems described along theaH axis of Fig. 2. Each point on
each of these curves is calculated from a total ofN53000
collision simulations, using a repeating ensemble of init
conditions chosen as described above. These curves s
that at higher energies, where the simple proton electron
lision dominates the energy-loss process, collision calcu
tions performed using semiclassical targets stabilized b
softer Heisenberg core underestimate stopping power, w
those using a harder Heisenberg core overestimate it,
the correct balance achieved ataH;2. At lower collision
energies, as proton and electron velocities, i.e.,p/m, become
comparable this sensitivity to core hardness is reduced.

As discussed above, a Pauli core provides structure to
semiclassical model of more complex atoms by hold
identical electrons apart in phase space. Figure 8~a! shows
the proton stopping power of a semiclassical Be atom inc
porating only a Heisenberg pseudopotential, with the el
trons in a tetrahedron at equal distances from the nucl
Here, the choice ofaH52.0 again results in correct stoppin
powers at the higher impact energies, but at lower ener
what should be the outer electrons are too tightly bound
do not interact realistically with the projectile.

As shown in Fig. 8~b!, addition of a Pauli pseudopotentia
of core sizejP52.0 and core hardnessaP51.0 results in
correct stopping powers up toE0;100 keV, the region of
peak energy loss. These values for the Pauli core were
termined by cross-section fitting and analysis of collisi
dynamics similar to that described above for the Heisenb
core, and produce a Pauli core which is sufficient to sepa
the electrons into a reasonable shell structure but not so l
or strong as to unduly distort the collision dynamics.

Note that this Pauli core was not chosen to match a
particular details of the target atom structure, e.g., corr
first ionization potential or average radius of an electr
shell; while it is straightforward to adjust the semiclassic
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55 2827SEMICLASSICAL DESCRIPTION OF PROTON . . .
model to match any particular detail of the atomic structu
we found this approach particularly unsuccessful in devel
ing a model to be used for collision dynamics. Since
intent of the model was to study charged particle collisio
the Pauli core was chosen to provide an overall structur
the target which, when averaged over an ensemble of c
son conditions, would yield accurate stopping powers. N
also that in order to maintain the correct total binding ener
the size of the Heisenberg core was decreased from;1.02 in
Fig. 8~a! to ;1.01 in Fig. 8~b!, to compensate for the sligh
overall spreading out of the electrons caused by the add
of the Pauli core.

At the lowest collision velocities, a significant fraction o
the high-energy-loss collisions result in electron trans
from the target atom to the proton; as discussed above,
rect calculation of stopping power requires an accurate va
for the final proton energy in the newly formed H atom
Calculating the final proton energy using the center-of-m
method of Eq.~18! provides the final correction to the ca
culation of lower-energy stopping powers, as shown in F
8~c!.

The Heisenberg and Pauli core values determined for
and Be provide a good starting point for modeling prot
stopping by larger atomic targets. Our general method
developing a target model is to set the Pauli core
aP51.0, jp52.0, the Heisenberg core hardness
aH52.0, and then to adjust the size of the Heisenberg c

FIG. 8. Stopping powers for semiclassical Be models:~a! in-
cluding only the Heisenberg pseudopotential;~b! with addition of
the Pauli pseudopotential;~c! with center-of-mass calculation o
final energies for electron transfer.
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to achieve the correct total binding energy of the system. T
best fit stopping powers are obtained by gradually reduc
the size of the Pauli core with increasing atomic numb
e.g., the base value ofjP52.0 for Be reduces to 1.5 for ou
C and O models, and to 1.25 for Ne; as with the case of
correct total binding energy is restored by a small adjustm
to the size of the Heisenberg core.

Note that these semiclassical cores are substantially s
than were used in earlier atomic STMC calculations, wh
used a core hardness ofa;5, as was originally developed t
model nuclear interactions@8,9#. These softer cores are mor
appropriate for modeling on the atomic scale, since they
sult in a well distributed, well behaved set of target electro
with collision dynamics which do not distort stopping cro
sections.

Figure 9 presents the radial distribution of electrons
our semiclassical models from He to Ne; Figs. 10~a!–10~c!
show the proton stopping powers calculated for the C, O,
Ne targets; the fit to the experimental data remains good
these larger systems. Here a total of 5000 collisions per
tial energy were averaged to reduce statistical errors.

The case of Ne is particularly instructive of the effects
too large a Pauli core. Increasing core size to 2.0 results
single valence electron at a radius of greater than 3 a
clearly at odds with the closed shell of the Ne atom; collisi
interactions with this loosely bound electron significan
distort stopping power calculations. Thus while it it would b
pleasing to have a model with a single set of parameters,
of the model for collision modeling precludes this. Upo
reflection, it is not surprising that, akin to the shell corre
tions in the Bethe theory, the semiclassical model also
quires a bit of shell correcting.

V. STOPPING BY SIMPLE MOLECULAR TARGETS: H 2O

Calculation of stopping powers by multicentered, molec
lar targets provides numerous opportunities to complicate

FIG. 9. Radial distribution of semiclassical ground-state el
trons for ~a! He, ~b! Be, ~c! C, ~d! O, and~e! Ne.
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2828 55W. A. BECK AND L. WILETS
semiclassical model. A first cut approach is to fix the atom
centers, and then to minimize the energy of the electron
tribution. While a significant simplification, to the extent th
the stopping power is primarily due to projectile-electr
interactions it holds some hope of success.

Figure 11 shows an azimuthal projection of the groun
state electron distribution around a fixed center model of
H2O atom, with the H nuclei fixed atr;1.01 Å;1.9 a.u. at
an angle of;104.5° from an O nucleus at the origin. Her
the Pauli core determined for O is used, and, as for
atomic case, the electron distribution is adjusted to achi
the correct total binding energy~of EH2O

;76.55EO

12EH1;0.35 molecular binding! by minor adjustments to
the size of the Heisenberg cores.

The proton stopping power for this model is shown in F
12; here the reference curve is calculated from experime
data for H and O as per Ziegler, Bierscak, and Littmark@22#.
The fairly good results from our first cut molecular mod
reflect the predominance of proton-electron interactions
the stopping power. By selecting a reasonable electron
tribution and then randomizing it over an ensemble of init
conditions, average stopping power can be calculated fa
accurately.

VI. SUMMARY AND FUTURE PROSPECTS

Semiclassical trajectory Monte Carlo calculations ha
long represented an enticing possibility to examine collis

FIG. 10. Semiclassical vs experimental proton stopping pow
for ~a! C, ~b! O, and~c! Ne.
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systems too complex for full quantum-mechanical treatme
By focusing on the dynamic behavior of the model, we ha
softened the semiclassical pseudopotentials used in
Kirschbaum-Wilets approach, thus eliminating some of
highly nonphysical collision dynamics which have plagu
this method in the past. This has significantly increased
range of target sizes and initial projectile energies for wh
collision calculations can be performed; accurate STMC c
culations of proton stopping powers demonstrate the b
suitability of the approach for collision calculations.

Obvious future applications of these techniques are co
sion systems which are not so well understood as tha
protons on atomic targets, in particular, exotic projecti
such asp, m, and p̄ on both atomic and molecular target
where the details of the slowing and capture of the projec
into exotic atoms are of current interest. The capture o
negative projectile by the target presents additional com
cations in the final-state analysis, some of which we ha
discussed previously@19#.

rs

FIG. 11. r2f plot of semiclassical fixed center model o
H2O; large dots are H nuclei, smaller dots are electrons.

FIG. 12. Semiclassical vs reference stopping powers for prot
on H2O.
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Clearly, semiclassical molecular models will have to
more realistic than our first cut fixed center method if th
are to be useful for analyzing the capture and cascade
namics of exotic particles on molecular targets, but the
sults achieved with the simple approach make us hop
about the future of this method.
.
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