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Semiclassical description of proton stopping by atomic and molecular targets
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In recent years there has been renewed interest in semiclassical methods of modeling atomic structure and
collision dynamics. A class of many-body models applied to these problems are descendants of the original
work by Kirschbaum and WiletEPhys. Rev. A21, 834(1980], who used momentum dependent pseudopo-
tentials to exclude particles from quantum mechanically forbidden regions of phase space. These methods have
been used for static, ground-state calculations for increasingly complex atoms, but the calculation of collision
cross sections has to date been limited to fairly simple systems. This paper will consider the dependence of
collision cross-section calculations on the parameters of the Kirschbaum-Wilets semiclassical model, present a
general method for calculation of proton stopping powers by atomic targets, and present results for proton
stopping by atomic targets ranging from He to Ne which agree quite well with experiments over a wide range
of proton energies. A simple extension of the method to multicenter molecular targets will then be discussed,
illustrated by the case of proton stopping by waf&1050-2947@7)01004-4

PACS numbseps): 34.90+q, 02.70.Ns, 34.50.Bw

[. INTRODUCTION model, and thus allow its use as a target in collision simula-
tions, Kirschbaum and Wilet§8] proposed excluding the
Classical trajectory Monte CarlCTMC) calculations of — atomic electrons from regions of phase space which are for-
charged particle collisions, in which collisions are calculatedoidden by the Heisenberg and Pauli principles by using
microscopically and then averaged over an ensemble of infnomentum-dependent pseudopotentials of the general form
tial conditions, have long been used to model collision pro- 2
cesses in simple systems. Early work on single electron tar- _ _ 4
gets was performed by Abrines and PercidgP], and Olson V= Wexp{a[l (rp/€)"]}- @
and Salop 3]; later Olson[4] extended his earlier work to
look at the state distributions resulting from electron transfeHere, ¢ is the size of the forbidden region of phase space and
from H to fully stripped ions, and Cohefb] applied the « is the hardness of the exclusigstrictly speaking, the size
method to muon capture by H. of the excluded region ig/ «*#, but the principle role ofx is
Becker and MacKellaf6] and Pfeifer and Olsofi7] at-  as the strength of the exclusjon
tempted to extend the approach to two electron systems, with This approach was originally developed to study nuclear
mixed results. The lack of any quantum mechanics in thestructure and collisionN®—-12]. Zaijfman and Maof13] used
CTMC approach apparently limited it to systems in which,the model to study atomic He targets. Further work on He-
by definition, quantum effects played a small role, e.g.,scale problems was carried out by Lerner, LaGattuta, and
single heavy charged particle collisions with very simple tar-Cohen[14-16 and recently by Cohefi7], while Dorso and
gets such as H, He etc., or in which one active electron Randrup[18] looked further at nuclear applications; often
was treated classically in the mean field of the rest of thehe later work included variations in the form of the semi-
target. classical core terms. We applied this method to study the
The lure of applying the many-body Monte Carlo ap- capture of antiprotons on Ha9].
proach to more complex systems, in which many-body ef- As with the previous CTMC work, however, early efforts
fects could not be neglected but which were too complicatedo extend STMC atomic collision calculations to complex
for a full guantum-mechanical treatment led to what could besystems, i.e., to greater than two electrons, met with limited
termed a semiclassical trajectory Monte Cai8TMC) ap-  success. This was due in part to the limited availability of
proach, which added a numerical model of quantum effectsomputational resources; quite understandably, much of the
to the purely classical trajectory calculations of CTMC. In aearlier work in this field was optimized to reduce CPU time
classical model of multielectron atomic targets, outer elecat the expense of a fuller exploration of the collision model.
trons evaporate while inner electrons collapse into therhe recent explosion in the availablity of lower cost com-
nucleus. To stabilize and structure the many-body atomig@uter power has allowed a fuller examination of the STMC
approach, resulting in a better understanding of its character-
istics as a calculational tool. In particular, the ability to per-
*Electronic address: beck@nucthy.npl.washington.edu form collision calculations from a greater number of prop-
"Electronic address: wilets@nuc2.npl.washington.edu erly distributed Monte Carlo initial conditions has increased
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insight into the nature of the semiclassical pseudopotentials ;s

. 1.9

fundamental to the STMC approach, and their effects on col- //

lision calculations. The calculation of proton stopping pow- &, | 19 T ]

ers illustrates the principal features of the method. o "]
8 - | 2.9
© 0.95+ | 2|

Il. THE SEMICLASSICAL MODEL OF AN ATOM 3 |2 I
3 7 T ]
Using atomic units, withz=e=m,=1, the classical 2°%#* | —1 | lyg—t—po
e . L3,
model of anN electron atom of atomic numbet is de- /,3,9/////’#
scribed by the Hamiltonian 078 A 7 A T o T o 1
N 5 Heisenberg core hardness
Hy=T+V,+V, = > pi—z+21 2
cl— 2P Vi r_| = E 2 FIG. 1. Semiclassical He binding energy as a function of

Heisenberg core size ) and hardnessa,).
wherer; andp; are the positions and momenta of the atomic

electrons relative to the fixed nucleus ang=|r;—r;| are (i) As the size of the core increases, the equilibrium

the relative coordinates of electron pairs. phase-space separation of the electrons from the nucleus in-
The semiclassical, Kirschbaum-Wilets version of thiscreases and the total ground-state binding energy decreases.

model is described by (i) For a given core size, as the core becomes harder the

value of the total binding energy increases asymptotically to
a value determined by the core size.
Fixing the total binding energy of the model at the experi-
mental value of 2.9 a.u-78.9 eV, i.e., confining the Hamil-
tonian to theE=2.9 binding energy contour of Fig. 1, leaves
+i2<]. Ve(Tij Pij), (3) a single free parameter in the Hamiltonian. Figure 2 details
the components of the ground-state energy as a function of
where ay along this contour:
(i) The nature of the ground state changes only gradually
én 4 along the fixed energy contour; all systems have a constant
VH(ri’pi):WeXp{“H[l_(ripilfH) I @ electron radius¢.~0.603, which compares well with the
' electron mean radiugr )y.~0.59, and as a result total Cou-
is a Heisenberg-type pseudopotential which stabilizes th#dmb potential energy is constant &coyjomp=V,+
atom by preventing collapse of the atomic electrons into the/i;~—5.8.
nucleus, while (iil) Somewhat paradoxically, as the value of the Heisen-
berg core size and hardness increase, the value of the Heisen-
P 4 berg energy in the ground-state Hamiltonian decreases as the
Ve(rij,pij) = mexm“P[l_(riipii I€p)"1}8ss, (5)  Heisenberg pseudopotential more strongly excludes the elec-
N trons from the phase-space region of the nucleus and the
is a Pauli-type pseudopotential which separates identicdlround-state momentum of the electrons increases.
electron pairs in phase space, resulting in an electronic struc-

N
Hsc=Hc|+vH+vp=Hc|+i§l Viu(ri,py)

ture.
4
The semiclassical model of an atom can be minimized to Teff
find a stable ground state in which the electrons, while at ST == =" i sl el plkulien gl P

rest, have nonzero momenta in the presence of momentum 2-+=——%
dependent pseudopotentials; this process has been recently ,

reviewed by Cohefi20], who calculated ground states up to [P D Rl ek B
Z=38 with fixed parameters defining the pseudopotentials.

In using the model to study collision systems we look further 5‘
into the dependence of both the ground-state electron distri- | 2
butions and of the resulting collision dynamics on the
pseudopotential parametegsand &. Eiotal

A. Semiclassical model of He: Nature of the Heisenberg core

Consider He: with two electrons in antiparallel spin states - Veoulob
our semiclassical Hamiltonian adds only, to the classical -71 s 7 o T o i o .
description, and the minimum energy configuration consists ‘ Heisenberg core hardness '
of two stationary electrons on opposite sides of the nucleus,
each with a nonzero momentum of magnituge= ¢, FIG. 2. Semiclassical He ground-state energy components as a

#dr;/dt. Figure 1 illustrates the nature of semiclassical Hefunction of core hardnessy for systems with the correct total
ground states as a function of the Heisenberg core: ground-state binding energy.
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(iii) The model obeys a virial theorem. With the effective 6
kinetic energy of this system defined &g;;=T+Vy, the - 0p=0.5 ©@
total ground-state energy is minimized at ;57 =g ==
w, s
EtotaI:VCoqumb_*'Teff:(Vz_*_vij)"'(T"'VH):\/Coulomb/2 ._c%” = /\< =20
_ 53
=—Teff- (6) c N
25 A
This is true, in general, for our semiclassical Hamiltonian % ap=o.5\ ~ ‘>\
including both Heisenberg and Pauli cores. Sipcgcales as &' 1 T 1 T —4--A
1/r and the pseudopotentials are of dimensiarf/p?, we 0 i _
write 05 1 15 2 2.5 3 35 4
Pauli core size
Hsc{rit {pPiH) = Veouomd{rit) + Ters({rit. {pi}),  (7)
with 15
: ®
Teff:T+VH+Vp — =
214
2 e 0p=0.5 05=2.0
Pi 1 1 W P P
=2 S+ 2 P+ 2 Zlelrpy). ® 2] \
T2 i I i<j Ijj 3 13 \
o N \
Then for arbitrary scaling—Ar, p—p/\, % 0 D
3 e S
VCoqumb Teff
Hsemw —— t 32 €) 11— —— — —
0.5 1 1.5 2 2.5 3 35 4
Pauli core size
with
FIG. 3. Splitting(a) of the inner and outer electron energy levels
oH s 2Tt Veoulomb _ _ as the Pauli core siz&s is increased in the semiclassical Be atom;
an |\ A3 T )2 =0==2Tetr=Vcoulomb: reduction of the total Be binding energy) as the Pauli core
A=1 spreads the electrons out in phase space.
(10
IIl. SEMICLASSICAL COLLISION CALCULATIONS:
B. Semiclassical Be: Addition of a Pauli core STOPPING POWER

The model .of a Be atom iIIu.strate_s the effect of the Pguli Stopping power, or energy-loss cross section, was origi-
pseudopoter_ltla‘i/p on the semlclass_lcal ground state. W'Fh_nally described by the Bethe thedigd],
only the Heisenberg pseudopotential, the Be model mini-
mizes to a ground-state configuration which, with the elec- 477272

. . w175 2Eq, C

trons in a tetrahedron at equal radii around the nucleus, be-  g= 5 [ ( : )_|n(1_32)_32_ —|, (11
haves much like the semiclassical He atom. Mevy | Z;

The addition of a Pauli core to the model splits the
ground-state electrons into inner and outer pairs, as shown inhereZ,,Z, are the charge of the projectile and targatjs
Fig. 3(@). Note that the splitting of the electron pairs occursthe projectile velocityE, , is the initial projectile energy and
more quickly for a softer Pauli core; as with the case of theB=wv/c. |, the mean ionization energy of the target atom,
central Heisenberg core, see Fig. 2, the softer interelectrocharacterizes how free the target atom’s electrons are to ex-
core results in a greater interaction between the electrons arafhiange momentum with the projectile, and is the central pa-
thus a greater separation. Note also that as the size of thameter in the theoryC/Z, are semiempirical shell correc-
Pauli coreép increases, the binding energy of the inner elec-tions to the target atom’s electronic structure.
trons quickly reaches an equilibrium level as they are This formula works well at higher collision energies,
sgueezed in against the central Heisenberg core, while that bbwever at lower energies, where stopping powers peak as
the outer electrons continues to decrease as they are pushibe projectile velocities approach that of the target electrons
further away from the nucleus; clearly, too large a Pauli coreand the target-projectile interactions become more complex,
will result in valence electrons that are too loosely bound tcand often result in ionization, approximating the electron
serve in a realistic model of an atom. structure with a single mean ionization term proves inad-

Figure 3b) reveals how the addition of the Pauli core equate, even with shell corrections.
decreases the total binding in the system, spreading out the Various methods of approximating the quantum mechan-
electrons in phase space as it splits the electron pairs. lies of this interaction have been developed for different ve-
order to achieve the correct total binding energy, the size antbcity regimes; the general technique is to consider the target
strength of the Heisenberg and Pauli pseudopotentials mustom in some mean field within which limited collision dy-
be adjusted in concert; calculation of collision cross sectionsiamics can be calculated. Ziegler, Biersack, and Littmark
provides guidance into how to do this. [22] provide a nice history of early work in this area. In an
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whereR,P are the coordinates of the proton relative to the
nucleus. To model collisions, the classical equations of mo-
\J tion for this system

/

r, electron to nucleus (a
N
\

r, electron to projectile (a.u.)
B

o
o

=]

o
[+
o

&7 69 71 73 75 67 69 71 73 75 dx, oH dp; JH
t {a.u.) t (a.u) o e (13)
dt &pl ’ dt &Xi
are solved for; ,p; andR, P over time. Note that there is no
pseudpotential termVy, ,(|r; ,|,|pi.p|) between the proton

, @ and the target electrong/, is used only to stabilize the
/ target system, and all interactions between the target and the
e / projectile are via the Coulomb forces.
= 1T—1 / Quantum uncertainty is rolled into the model by averag-
f‘ 08 / ing over a sequence of collision calculations using Monte
R T e —~— == Carlo initial conditions:
05 & oot = (i) A microcanonical distribution of target configurations
. — is generated by random rotation and parity inversion of the
-5 ground-state electron positions and momdnfa
65 66 87 68 69 70 71 72 73 74 75 - .. . . .
t (@) (i) Each collision with one of these target configurations

is started from an impact parameterandomized with equal
FIG. 4. Time evolution of electron-nuclear radi(@, electron- ~ areaswdb? up to some maximum valuey, ax.-

proton radius(b) and electron binding energic) during a high- (iii) The same Monte Carlo seed is used for sequences of

energy-loss collision between a proton and a soft semiclassical lgollisions from a series of initial proton energies, allowing

atom. calculation of collision cross sections as a function of initial
projectile energy from repeatable ensembles of initial condi-
tions.

alternate approach, Feldmeif23] coined the term Fermi . . i .
By averaging over an appropriate set of initial conditions

molecular dynamics to describe his method of following theOne hopes 1o extract phvsically meaninaful reslts from mi-
time evolution of colliding Gaussian wave packets. A recent P phy y 9

review of the field is found in Grande and Schiwiég], croscopically following this semiclassical model of a

who modeled the complicated interactions in the region o{quantum-mechanical system. Frcollisions starting with
P 9 initial energy E; and impact parameters randomized with

maximum stopping using large numbers of single electroqequ(,j1I areas up to sonte .., the total energy-loss cross

wave functions. For more than fairly simple targets, e.g., H'section or stopping powerrAE, is calculated from the av-
H,, He, the analytical approaches founder in the region OErage proton energy loss as

maximum stopping, and stopping powers are generally esti-
mated by an empirical curve fit to experimental data; Ziegler, 1
Biersack, and Littmark have carried this approach out to a 0AE(Eg) = mb% 1
high degree of sophistication for positively charged projec-
tiles, producing annual refinements to thei®m (Transport
of lons in Mattej software[25]. Our reference experimenta
curves for atomic stopping are taken from here and from 1 112
Andersen and Ziegler’s earlier compilation of the experimen- S(oAE)= beﬂé{{_(((AEi)Z) —(AE))| . (15
tal data[26]. N

In contrast to the traditional mean-field and empirical
methods, the STMC approach microscopically follows a se- B. Close encounter collision dynamics:
ries of projectile collisions with a fully detailed model of the Influence of core hardness

target a_tom. Uniquely, this method directly includes electron In a typical series oN~ a few thousand or so collisions
correlatlon'effects for much Iarger t."’?rget systems than can b|‘2nuch of the actual stopping occurs in a small fraction of the
handled with even the most simplified quantum-mechanlcag: .
approaches, extending the useful range of the model to lowefyjige nearly head-on, with a large component of collinear
collision energies and larger target systems. momenta, i.e., aligned for high-momentum exchange. The
nature and frequency of these approximately head-on colli-
sions are central to correct calculation of overall stopping
powers; their details reveal the importance of core hardness
The total Hamiltonian for a proton colliding with a fixed in collision dynamics, and thus its significance to the use of
nucleus semiclassical atom is given by STMC techniques for collision modeling.

N
> AE(Ey), (14)
Ni=1

| with an uncertainty

A. Semiclassical stopping power
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FIG. 5. Time evolution of electron-nuclear radi(, electron- s
proton radius(b), and electron-binding energ) during a high- @001+ ) N 3 " .
energy loss collision between a proton and a hard semiclassical H 1x10 x10 1x10 1x10 1x10 1x10
atom Ep keV/amu)

Consider, for simplicity, an example of a typical high- FIG. 7. Semiclassical He stopping powers for Heisenberg core
"ze: 1.0(a), 2.0(b), and 3.0(c).

energy-loss collision between a proton and our semiclassicd
H atom. Figures 4 and 5 plot the time evolution of this col-
lision for H targets incorporating both sof&((=1) and hard Fig. 4 the softer target H atom is deformed during the colli-
(ey=5) Heisenberg cores: Figs(a4 and Fa) plot the ra- sion as the electron in the softer potential well begins to
dius of the electron relative to the nucleus of the H atomacquire momentum from the colliding proton and is swung
Figs. 4b) and 8b) the distance betwen the target electronaround into the nucleus. This process peaks at the closest
and the colliding proton, and Figs(eé} and §c) the compo-  encounter of the proton and the target electron, which is
nents of the electron energy in the collision system.  simultaneously the point at which the electron is deflected
Figure 6 plots the ground-state energy as a function Ofyrthest into the soft Heisenberg core of the semiclassical
electron radius for both the soft and hard H atoms; the difyyycleus. Note that the energy changes in the soft collision
ferent collision dynamics of Figs. 4 and 5 are a result of thesystem are smooth and continuous as the proton loses about
different shapes of the energy wells confining the electron. Ip 2 3 u. of kinetic energy in ionizing the electron from its
ground-state energy of-0.5 to its continuum energy of
1.00 : | I —— — ~1.7; in particular, note that because of the target deforma-
: | —ost e wss] ] tion V,_=—1/r —R], the Coulomb attraction between the
projectile and the target electron, remains well behaved.
In contrast, as the proton collides with the,=5 target

0.75

0.50

oz : TR ol atom in Figs. 5, the narrower, steeper-sided potential well
;j 0.00 d E L T which results from the harder Heisenberg core holds the
w H // electron more rigidly in place and prevents the atom from
025 AR’ absorbing the shock of the collision by deforming as above.
-0.50 The colliding proton gets much closer to the target electron

and thus transfers more momentum to it before finally whip-
ping it out at a much higher velocity than in the softer col-
00 T T e e lision. Note that the energy transfer in this collision system is
rau) much more abrupt as the proton loses about 4.5 a.u. of ki-
netic energy in ionizing the the electron to its final con-
FIG. 6. Ground-state energy as a function of electron radius fofinuum state oE~4; note, in particular, the singular nature
semiclassical H atoms incorporating softy(=1) and hard of V,_¢ and the kinetic energ¥ (and thus of the total elec-

(ay=5) Heisenberg cores. tron energy during the closer encounter of the projectile and

-0.75
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the electron localized in the bottom of the harder potentiabften include electron transfer, and calculating the overall
well. stopping power requires correctly calculating the final proton

The additional energy loss resulting from the hard-corekinetic energy in the newly formed H atom, which will have
collision dynamics, though occuring infrequently, turns outinteresting dynamics of its own. Initially we evaluated this
to be a source of significant error in net stopping powerby taking the time average of the proton energy, but found it
calculations. Though the ground-state energy curves and treomputationally inefficient to sample densely enough to
collision dynamics in more complex target systems are comavoid aliasing the often high-frequency orbits of the newly
plicated by additional electron interactions, in all the systemgormed H atom. A more accurate and efficient method is to
which we have studied, close encounter collisions similar taalculate the final proton energy from the center-of-mass ve-
the above remain the predominant factor in net stoppindocity of the newly formed H atom, which in this semiclas-
powers, which thus depend directly on correct selection osical system is not simpl?.,,/M.n, but rather
pseudopotential hardness.

C. Frequency of close encounter collisions: cm Mem (18)
Monte Carlo considerations
The frequency of the important, approximately head-onVith
collisions is governed by the Monte Carlo selection of initial - - =
target configurations and impact parameters. In our early Vp=VpH, ve=VpH. (19

work on this problem using harder semiclassical pseudopo-

tentials (@~5, typically), undersampling of the collision IV. STOPPING POWER RESULTS, He THROUGH Ne
configuration space resulted in initially promising results for ) ) ) ,
which, rather annoyingly, both the statistical uncertainty and 1 he relatively simple case of proton stopping by He illus-
the deviation from experimental results often grew as thdrates the effect of pseudopotential core strength on stopping
sample size increased and/or the sample seed was changB@Wer- Figures @-7(c) compare experimental He proton

In particular, limiting the maximum impact parameter or Seg_stoppln-g powers to our semiclassical calculgtlons for differ-
menting the range of impact parameters, both of which hav&Nt Heisenberg core strengthg, =1.0-3.0, i.e., for sys-

in the past been standard techniques to conserve CPU tim&ms described along they, axis of Fig. 2. Each point on
often significantly increased the errors in our calculations€ach of these curves is calculated from a totaNef 3000
hiding the « dependence of the stopping power. We foungcollision simulations, using a repeating ensemble of initial
that continuously sampling the full impact-parameter spac&€onditions chosen as described above. These curves show
Up t0 by, chosen so that the final result was fing ., that at higher energies, where the simple proton electron col-
dependent, led most directly to collision cross sections whict{Sion dominates the energy-loss process, collision calcula-

converged as we more densely sampled the collision corjions perf_ormed using semiclas;ical targets stabilized by.a
figuration space with multiple seeds. softer Heisenberg core underestimate stopping power, while

those using a harder Heisenberg core overestimate it, with
the correct balance achieved at,~2. At lower collision
energies, as proton and electron velocities, pAn, become

In addition, correct calculation of stopping powers re-comparable this sensitivity to core hardness is reduced.
quires correct calculation of initial and final proton energies As discussed above, a Pauli core provides structure to the
relative to the target system; particularly at higher projectilesemiclassical model of more complex atoms by holding
energies, where stopping is smaller, small systematic errofiglentical electrons apart in phase space. Figu@ Shows
will accumulate into significant errors in the final result. the proton Stopping power of a semiclassical Be atom incor-

Since stopping powers are measured as a function of thgorating only a Heisenberg pseudopotential, with the elec-
initial energy of the colliding proton, we have specified thattrons in a tetrahedron at equal distances from the nucleus.
energy at the proton radiuB=cc, then adjusted the actual Here, the choice oy, =2.0 again results in correct stopping
starting energy of the collision for the starting point of the powers at the higher impact energies, but at lower energies
collision at R=R,. Since the total energy of the collision what should be the outer electrons are too tightly bound and
system is that of the target plus that of the proton, wherevego not interact realistically with the projectile.
the proton is relative to the target system, As shown in Fig. &), addition of a Pauli pseudopotential

of core size£p=2.0 and core hardnessg,=1.0 results in
Epr=ry " Etgtr-R, = Epr==TEtgtr-c (16) correct stopping powers up #6,~100 keV, the region of
peak energy loss. These values for the Pauli core were de-
the initial energy of the proton at the start of the collision istermined by cross-section fitting and analysis of collision
simply dynamics similar to that described above for the Heisenberg
core, and produce a Pauli core which is sufficient to separate
Epr-Ry=(EpRr-xtEigtr==) "Etgtr=r;»  (17)  the electrons into a reasonable shell structure but not so large
or strong as to unduly distort the collision dynamics.

For simple collisions in which the proton collides with the ~ Note that this Pauli core was not chosen to match any
target atom without picking up an electron, the final protonparticular details of the target atom structure, e.g., correct
energy is calculated in a similar fashion. Particularly at lowerfirst ionization potential or average radius of an electron
energies, however, the important, high-energy-loss collisionshell; while it is straightforward to adjust the semiclassical

D. Energy accounting
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3 ! T~ FIG. 9. Radial distribution of semiclassical ground-state elec-
2 01 \\ trons for(a) He, (b) Be, (c) C, (d) O, and(e) Ne.
Q.
Q. 1 . . .
& 001 to achieve the correct total binding energy of the system. The
1x10” 1x10' 1x10° 1x10° 1x10° 1x10° best fit stopping powers are obtained by gradually reducing
E¢ (keV/amu) the size of the Pauli core with increasing atomic number,

e.g., the base value @ =2.0 for Be reduces to 1.5 for our
FIG. 8. Stopping powers for semiclassical Be modéts:in-  C and O models, and to 1.25 for Ne; as with the case of Be,
cluding only the Heisenberg pseudopotenti@l; with addition of  correct total binding energy is restored by a small adjustment
the Pauli pseudopotentialg) with center-of-mass calculation of to the size of the Heisenberg core.
final energies for electron transfer. Note that these semiclassical cores are substantially softer
than were used in earlier atomic STMC calculations, which
model to match any particular detail of the atomic structureused a core hardness @f-5, as was originally developed to
we found this approach particularly unsuccessful in developmodel nuclear interactiori8,9]. These softer cores are more
ing a model to be used for collision dynamics. Since theappropriate for modeling on the atomic scale, since they re-
intent of the model was to study charged particle collisionsSult in a well distributed, well behaved set of target electrons
the Pauli core was chosen to provide an overall structure t¥ith collision dynamics which do not distort stopping cross
the target which, when averaged over an ensemble of coll$€Ctions. o
son conditions, would yield accurate stopping powers. Note Figure 9 presents the radial distribution of electrons for

also that in order to maintain the correct total binding energy,ohJr seLnicIassical mod_els from He tlo I\Ile; gifgs(a&@tqg d
the size of the Heisenberg core was decreased frdn®2 in Show the proton stopping powers calculated for the C, O, an

Fig. 8@ to ~1.01 in Fig. 8b), to compensate for the slight Ne targets; the fit to the experimental data remains good for

overall spreading out of the electrons caused by the additioH']ese larger systems. Here a total of 500.0 .COH'S'OnS per ini-
of the Pauli core. tial energy were averaged to reduce statistical errors.

At the lowest collision velocities, a significant fraction of The case of Ne is particularly instructive of the effects of

the high-energy-loss collisions result in electron transfer°° Ilarge Ia Paull Icore. Increasm%'core fSIZG to 2.0hresu§s Ina
from the target atom to the proton: as discussed above, copindle valence electron at a radius of greater than 3 a.u.,

rect calculation of stopping power requires an accurate valug/€arly at odds with the closed shell of the Ne atom; collision
for the final proton energy in the newly formed H atom. Interactions with this loosely bound electron significantly

Calculating the final proton energy using the center-of-masgismr.t stopping power calcqlationg. Thus while it it would be
method of Eq.(18) provides the final correction to the cal- P!€@sing to have a model with a single set of parameters, use

culation of lower-energy stopping powers, as shown in Fig.Of the_ mode_l for coIIisiqn_ modeling _precludes this. Upon
8(0). r_eflect_lon, it is not surprising that, gkln to the shell correc-
The Heisenberg and Pauli core values determined for HEons in thg Bethe theory, _the semiclassical model also re-
and Be provide a good starting point for modeling protonqUIreS a bit of shell correcting.
stopping by larger atomic targets. Our general method o(/ STOPPING BY SIMPLE MOLECULAR TARGETS: H .O
developing a target model is to set the Pauli core to 2
ap=1.0, £,=2.0, the Heisenberg core hardness to Calculation of stopping powers by multicentered, molecu-
ay=2.0, and then to adjust the size of the Heisenberg cortar targets provides numerous opportunities to complicate the
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E, (keV/amu) softened the semiclassical pseudopotentials used in the

Kirschbaum-Wilets approach, thus eliminating some of the

FIG. 10. Semiclassical vs experimental proton stopping power%?shlr)rl];ﬁggrms;ﬁzl COIIISIOn. dynaml'cs .V.VhICh hf':lve plagued

for (a C, (b) O, and(c) Ne. . past. ThIS has ;lgn!flcantly |.ncreased .the
range of target sizes and initial projectile energies for which

semiclassical model. A first cut approach is to fix the atomicCO"'S.Ion calculations can l_ae performed, accurate STMC cal_—
centers, and then to minimize the energy of the electron disgu!aﬂo_ns of proton stopping POWETS demonst_rate the basic
tribution. While a significant simplification, to the extent that Sultability of the approach for coliision calculations. _
the stopping power is primarily due to projectile-electron Obvious future_ applications of these techniques are colli-
interactions it holds some hope of success. sion systems wh_|ch are not_ SO we_II understo_od as_the}t of

Figure 11 shows an azimuthal projection of the ground-Protons on atomic targets, in particular, exotic projectiles
state electron distribution around a fixed center model of aguch asm, w, andp on both atomic and molecular targets,
H,O atom, with the H nuclei fixed at~1.01 A~1.9 a.u. at Where the details of the slowing and capture of the projectile
an angle of~104.5° from an O nucleus at the origin. Here, into exotic atoms are of current interest. The capture of a
the Pauli core determined for O is used, and, as for th@egative projectile by the target presents additional compli-
atomic case, the electron distribution is adjusted to achieveations in the final-state analysis, some of which we have
the correct total binding energyof En,0~76.5Eo discussed previously19].
+2E,+ ~0.35 molecular bindingby minor adjustments to
the size of the Heisenberg cores.

The proton stopping power for this model is shown in Fig.
12; here the reference curve is calculated from experimental «—
data for H and O as per Ziegler, Bierscak, and Littm&X]. /I—-
The fairly good results from our first cut molecular model , N
reflect the predominance of proton-electron interactions in \
the stopping power. By selecting a reasonable electron dis-
tribution and then randomizing it over an ensemble of initial
conditions, average stopping power can be calculated fairly
accurately.
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VI. SUMMARY AND FUTURE PROSPECTS Eo (keViamu)

Semiclassical trajectory Monte Carlo calculations have FIG. 12. Semiclassical vs reference stopping powers for protons
long represented an enticing possibility to examine collisioron H,0.
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