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Correlated continuum wave functions for three particles with Coulomb interactions
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We present an approximate solution of the Sdimger equation for the three-body Coulomb problem. We
write the Hamiltonian in parabolic curvilinear coordinates and study the possible separation of the wave
equation as a system of coupled partial differential equations. When two of the particles are heavier than the
others, we write an approximate wave equation that incorporates some terms of the Hamiltonian that before
had been considered as a perturbation. Its solution can be expressed in terms of a confluent hypergeometric
function of two variables. We show that the proposed wave function includes a correlation between the motion
of the light particle relative to the heavy particles and verifies the correct asymptotic behavior when all
particles are far from each other. Finally, we discuss the possible uses of this function in the calculation of
transition matrices and differential cross sections in ionizing collisif®$050-294®7)00504-(

PACS numbd(s): 34.50.Fa, 34.16:x, 03.65.Nk

INTRODUCTION ing particles and their results described the TCS very roughly
in fast ion-atom collisions. The main drawback of this ap-
The full three-body Coulomb problem has particular im- proach is that it does not take into account the long-range
portance in many areas of physics, especially in atomic colbehavior of the Coulomb potential among the particles. Fur-
lisions. The initial and the final channel of ion-atom or ther approximate wave functions were based on the exact
electron-atom collisions can be considered as three-bodyolution of the two-body Coulomb problem that can be writ-
Coulomb states in a first approximation when we assume thagn in terms of the confluent hypergeometric functig.
only one electron of the target atom is active. The characterfhe first Born approximatiofFBA) relies on the assumption
istics of these processes are described by the transition Méxat the ejected electron Comp|ete|y screens the target poten_
tix in  the post or prior form Ty tial, including a final state described by the free wave func-
= (Y| Ve[ ;") =(¥ |Vil4hi), respectively. The exact chan- tion of the projectile leaving the collision region, while the
nel functionsW;” (W) are not known in the three-body electron interacts with the target through the Coulomb poten-
case and then they should be replaced by proper approximéal [4]. In this way, the final wave function is a product of a
tions. These approximate wave functions also determine thelane wave and the solution of the two-body Coulomb prob-
channel potentiaV/; (V;) [1]. From an experimental point of lem electron target. This approximation has been useful in
view, the spectra of electrons emitted in the collisions reveatiescribing the single differential cross sections in the high-
the main features of these processes. Nowadays many doubiepact-energy regime, but fails to reproduce the well-known
differential cross section€DDCSg9, in terms of the energy electron capture to the continuum peak that appears in the
and direction of the emitted electrons are available for a vadouble differential cross sections. This effect can only be
riety of processegion-atom or electron-atom ionization, understood with the introduction of the projectile-electron
charge transfer, excitation, etcRecently, measurements of interaction, which is treated perturbatively in the FB3\6].
differential cross sections that take into account the momenta If we focus our attention on ion-atom ionization pro-
of the recoil atom have been reported]. Triply differential  cesses, there are many theories that incorporate the
cross section§TDCSg, in which the momentum of the pro- projectile-electron interaction at the final channel, but with
jectile is considered, are known in some particular geomdifferent approximate initial states. The continuum distorted
etries of electron-atom ionizatidi®]. However, they remain wave (CDW) eikonal initial state(EIS) approximation[7]
an open question for ion-atom collisions. and the impulse approximatidiA) [8] include the electron-
The choice of approximate wave functions has been foundlarget and the electron-projectile interactions in the final
to be critical when comparing theory with experimental re-channel and the projectile-target interaction is introduced in
sults. Initial attempts to describe total cross sectigiSS9  an eikonal way. The Coulomb projectile-target interaction is
were carried out decades ago. The wave functions includeiticluded on an equal basis in the multiple scatterihtp)
in that theory were simply plane waves for the three outgoapproximatiori9]. All these theories show qualitative agree-
ment with DDCS in fast bare ion-atom ionizations. In spite
of the relative success of these theories in the description of
*Permanent address: Departamento aéch| Universidad Nacio- the overall features of the DDCS, many discrepancies remain
nal del Sur, Avenida Alem 1253, 8000 BahBlanca, Argentina. unexplained.
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The final state in the CDW-EIS approximation, the IA,
and the MS approximation is constructed througduperpo-
sition of two-body wave functions, relying on the assumption
that the target does not play any role in the projectile-
electron interaction and, similarly, the projectile does not
exert any influence on the electron-target interaction. These
final wave functions are built as products of confluent hyper-
geometric functions related to each two-body interaction. In
this way coupling between the pairs of motions is not con-
sidered in any of these theories.

On the other hand, there have been many improvements
to the simple product of two-body wave functions in
electron-atom collision processes since the pioneering works
of Peterkog10] and Rudge and Seat¢hl], where the cor- 2
relation between the two-body motions is incorporated
through velocity-dependent charges. Berakdar and Briggs FIG. 1. Scheme of the coordinates system used in this work.
[12] extended these results to the MS wave function. Effec-
tive charges dependent on spatial positions of the particleand, of courser;; = —r;; . Associated with these coordinates,
were recently proposed by Berakdag]. In this way he was we define the position vectoR;,, Ry3, andRy3. The vec-
able to write MS-like wave functions that are asymptotically tors R;; describe the position of the partidierelative to the
correct not only when all particles are far from each othercenter of masgc.m) of the particlesi andj (i#j#k) as
but also when two partides are close and the third one is fa|hd|cated in F|g 1. The Jacobi pa|{'5i] !Rij} diagona”ze the
from them. In another approach devised by Alt andkinetic energy in the c.m. of the three-particle system. There
Mukhamedzhanov, correlation is accounted for by intrOdUC-are Simp|e relations between the Jacobi pairs that are de-
ing space-dependent relative momenta and requiring the cokcribed elsewher§l6]. In this work it will be enough to

rect behavior in all the asymptotic regiofB4]. This wave  rite down the relations between coordinatgsandR;,:
function has been used by Jones and Madison to calculate

cross sections of ionization processes in electron-atom colli- Rio=ajof o3t bior 13,  roz=RistDbiory,,
sions[15]. It is clear that a better description of the final
states of ionization processes is needed and some investiga- rp=ry3—ry3, Tr13=Rpp—agliy, (1)
tion should be carried out in order to solve the wave equa-
tions in a more accurate way. where

Following this point of view, we present in this work a
wave function that can be obtained as an approximate solu- alzzL: '“_12, b12=L= H12 )
tion of the Schrdinger equation for three charged particles m+m, m mp+m; My

when two of them have large masses than the third one. We .

show that under some approximations, the wave equatioind We define the reduced masggs=mm;/(m;+m;) and
could be separated as a system of coupled differential equdii = (Mi+M)mi/(mi+m;+my), i#j7+k. Since the par-
tions. The solution can be written as a product of a two-body//CleS interact in pairs through Coulombic potentialy
wave function for the heavy particles and a hypergeometric- ZiZ;/Tij » the Schrdinger equation for any given Jacobi
function of two variables, which includes the correct Cou-Par {rij ,Rij} is

lomb asymptotic conditions. In Sec. | we introduce the nota-
tion and a set of curvilinear parabolic coordinates useful for
our purposes. In Sec. Il we show the procedure in order to
obtain the wave function, while in Sec. Ill we analyze the zEa(r-- R) 3)
general properties and the asymptotic behavior of the wave LR

function obtained. We briefly discuss the results we shouldyhere the eigenenergy will be written considering that all the
expect when using this function in the calculation of trans"particles are in the continuum and the pfis;,K,;} repre-
i

tion matrices and differential cross sections. Finally, the CONgents the conjugated momentaftg, ,R;;}. We choose the

clusions of our work are drawn. The Appendix S“mmarize?acobi pair(r15,Ry5), but the selection of this pair is arbi-

some important properties of hypergeometric functions Oy ..y ‘The yse of other Jacobi coordinates leads to equivalent
two varlables._ Atomic units are used thorough this paperequations, which do not affect the following resuits.
unless otherwise noted. The set of the six Cartesians coordinatds,
=(x,Y,2),R1,=(X,Y,Z)} completely defines the problem.
These coordinates can be replaced by any convenient set of
We will focus our attention on the problem of three curvilinear ones. The particular case of the parabolic set re-
charged particles labeled 1, 2, and 3 with the masgeand  sembles the treatment of the two-body Coulomb problem
chargesz; {i=1,2,3, respectively. We choose the set of and it has been successfully used by some authors when

relative coordinates;; defined as studying the approximate solution to E@). These coordi-
nates have been proposed by Klar and allow one to separate

Mo=ri1=ra, T13=r3=T1, T23=I370 the Schrdinger equation when all the particles are far from

1 _
- _Véij+V12+V23+V13 W(ri,Rij)

. v 2]

2,U,|J rii 2Vij

I. STATEMENT OF THE PROBLEM
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each other{17]. Using relations(1), this parabolic set of 2 52 J
coordinated & , 7} can be defined in terms of as Al =————|ni—=+(1-iKkn)—/|
L&k f T &) | T I g,
E1=T3t Koz I3, M1=T3— Koz I3, g 3
.. . .. Bi=(V, &)—+(V, n)—. (11
Er=r13TKig 13, 1m=Tr13—Kig iz, §3=r1ot Ky Mo, =0 K dm

The vector scalar products iD; can be expressed in the
terms of parabolic coordinates. We observe gicontains
one-variable derivatives and the mixed derivatives are all
included inD;. The D, term contains the well-known non-
orthogonal kinetic energy of CDW theori€s].
biottos Equation(8) is a six-variable elliptical partial differential
—Kya. equation with a non-denumerable infinite number of solu-
2 (5) tions. We will look for some of those solutions with physical
meaning, assuming that E¢B) is separable in a system of
Coordinates given by Eq$4) allow a natural expression of coupled differential equations. A possible separation is given
Coulombic asymptotic conditions for the three-body waveby [17]
function.

73=" 10— Kiz T12, (4)

where k;3 and ko3 are the unit vectors determined by the
directions of the relative momenta

M13 AioM13 M23
Kig=——Kyo=———Ki, Koz=—Kg,
V12 Mi12 V12

DO\PZO, (12)
Il. APPROXIMATE SOLUTIONS

TO THE WAVE EQUATION D,¥=0. (13
Consider a final state of a collision process between a The main feature of this system is that the first equation
charged projectile 1 and a target arrangement. The final staigself is totally separable. All three terms By, are equiva-
is the one in which the target is formed by a particle labeledent to the two-body Coulomb problem, where azimuthal
3, which may be an electron, and a charged particle 2, botsymmetry was imposed around the relative momegfa
interacting through Coulomb potentials giving rise to a threeEquation (12) describes the dynamic of a problem where
body final continuum state. The dynamic of the particles iseach pair of particles interacts through a Coulombic potential
governed by the three-body Schinger equation. Because while the other particle is considered free. TBg term

we are looking for continuum states, we remove the kineticcouples the three “independent” pairs and correlates their

energy by
W(ry,,Ryp) = (2m) ¥Rzt ikizniap (1, Ry, (6)

in Eqg. (3), which leads to

L e s Tv sy, A2
21, 12 2vpp Rz pg, 212 V_12 12 R,
VOVASRVAVA
T Troe 1 W(ry,R1)=0 (7)
23 13

since the eigenenergy in the stat¥(r;,,R;) is E

=kif2p1p+ K5S2v1,. )
As was shown by Klaf17], the Schrdinger equation
acquires a symmetric aspect written in term of the(4jt

whereD, andD; are given by

3

Do= 2 [A'+A +Vy], 9)
i=1i7)+k
2 3 i
_1I+l
D,=> > cu Bi- B (10
i=1j=1+1 Mg

and we have defined the operators

2 52 _ 9
ST (L+ikué) -

A IE I& |’

' :Mjk(§i+ 7;)

kinetic energy.
NeglectingD4, a general solution to E¢12) can be ob-
tained by proposing a separable function

3
\If=|[[1 fL(&,m) (14)

such that(12) splits in three equations. As was analyzed by
Klar, the different solutions depend on the asymptotic behav-
ior imposed on the wave functiofl7]. For outgoing
asymptotic conditions the ansdtk4) reduces to

3
%{Il fi(&) (15)

and the corresponding solutiofigé) are (#m#n) [18]

f1(§) =N, 1F1(iamnl,—iKmeé), (16)
whereN; are the constants that normalize the wave function
to outgoing unit flux

Nj=e" "I (1—iap) 17
and an=ZmZn ! Kmn-

The wave function(15) is commonly known as th€3
function and was proposed by Garibotti and Miragkg to
study the ion-atom ionization process. As was shown by Be-
rakdar, ¥ -5 is an exact asymptotic solution of E¢) only
in a limited region of the coordinate space since
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oA
D1Wc3~0<r£2) 19 [A; +A; +V1,]x=0, (20
1) )
when all the interparticle distances tend to infirjit]. Con- > (A +A; +Vj3)+D;|e=0. (21)
sequently, W3 is not a suitable solution for the three-body =1
problem in the condensation region where the distances be-
tween the particles are small. This separation of the wave equation is an alternative to that
Similar solutions can be written for other asymptotic con-given by Eqs.(12) and (13). It is also arbitrary because the
ditions, which are dictated by the physical properties of thecoefficientsa™* in D, depend on the six parabolic variables,
system. For example, the final state of an ion-atom ionizatiomut guided by the physical assumptions, i.e., in the descrip-
process should correspond to a boundary condition withion of the dynamics of the heavy particles we neglect the
three outgoing waves, while two incoming and one outgoingnfluence of the light one. Equatiai20) has as a solution a
wave would be a proper boundary condition for the finaltwo-body Coulomb wave function that can be outgoing or
state of a capture to the continuum process. CBefunction  incoming according to the required asymptotic conditions.
has been widely used to calculate transition matrices and Now we consider Eq21), which is a four-variable partial
differential cross sections of atomic ionization by electrondifferential equation. The operat®, depends onré; and
and ion impact. 73 and thereforep would be parametrically dependent on
The function W3 is physically aceptable in the these two variables. To obtain a solution that couples the
asymptotic regior{19]. However, for finite distances, cou- relative motion between the pairs of particles (1,3) and
pling between two-body motion and the third particle must(2,3) we should take into account in E(1) the mixed
be relevant. This means that we should look for other decomderivatives included i, at least in a suitable approximated
positions of the operatdDd, alternative to that given by Egs. way.
(12) and (13). This can be done in infinite ways. Therefore, We will look for solutions of this system that verify out-
rather than propose a decomposition of the operator and thejping asymptotic conditions. As in E¢15), one way to
look for solutions, we will assume a definite shape for thesatisfy these requirements is to assume
wave function and then derive the proper decomposition for
D. First, we should point out that there are different masses 0=o0(é1,6,). (22)
included inDy andD; that introduce a particular asymmetry
that results in an important problem at the moment of pro- : .
posing solutions in a general case. Assumingm,ms, Then Eq.(21) reduces to a two-variable equation
we deal with continuum states from an ionization process of
atomic systems by heavy particles, where the particle labeled
mj3 represents the electron. This allows us to neglect the two
terms of Eq.(10) that contain the heavy masses and
m,. Thus the expression fd, reduces to

2

2‘1 (A" +V3)+D;

¢=0. (23

Equation (23) still includes the dependence on the other

1 92 92 92 parabolic coordinates in a parametric way. The evaluation of
-+ - ++ ; -+ ; ; ;
D, e~ FTNT: +a %0 +a EPT the functiona™ ™ requires the expressions of Cartesian coor-
3 1752 19772 mos2 dinates in terms of the parabolic ones. This must be inter-
. 52 preted as a transformation in the six-dimensional phase space
+a’ ’ from (rij 'Rij !kij !Kij) to (§| y i ,k13,k23) and ShOWS that
197 B ! . / _
a” " is a very involved algebraic function of the parabolic

variables.
The solution of Eq.(23) is unknown. WhenD; is ne-

S o~ e A a glected, Eq(23) separates in two independent equations and
a=m=a""(£1.71,62, 72,83, 73) = (T23% Kag) - (F13* Kyg). its solution is a product of two single-variable confluent hy-
pergeometric functions. Even whé&, is not neglected, Eq.
(23) can be separated in a system of teoupledsecond-
order differential equations. The best-known systems of this
kind are associated with two-variable hypergeometric func-
gons[ZO]. However, the reduction of EqR3) to one of those
Systems requires a particular choicesof" that should lead
to a solution with correct physical properties. We observe
thata™* contains the additive terms

where we have defined

On this basis, the simplest generalization to Bd) is

V=0(&1, 71,62, m2) (€3, 773). (19

This ansatz introduces a coupling between the motion of th
light particle relative to the two heavy ions.
The application of operatdd to the wave functior(19)
gives
1

—+_

2
1 - 1 _ &1 &
;[A§+A3 +Vilx+ P J_Zl (A +A; +Vj3)+Dy|¢=0, 4 T, +

Erxtny S1tm

(29)

-+

where theAji operators are defined by Eqd.1). We sepa- such thata™ *=a; "+a, ©. Then we are able to separate

rate this equation as Eqg. (23) as
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2 52 . . K2aé1
z (Ai++vi3)+a1_+ﬂ§ o0& ¢=0, (25 N 1F1(iag21,—iK1263) Gy, Koot
= 1752 v= o (32)
. . 2361
P N 1F1(ia1p1,—ik1263) Gy, P >1,
a, " =0. 26
2 9€10&, (29
where
Equation(25) can be separated again into [ Kastn g (- _ . . Kyat,
1=\ = (I)l Ia23+la13,la13,1+|a13,—
P iy P 3 ki3éo kiaéo
[51(3,—2“‘F&W"‘(l"‘ikzagl)g*‘ﬂzazzzs ¢=0,
! 3 17e2 ! _ik23§1)r (33
¢ i + A, a—2+(1+ik £+ 17,75 0=0 Kosty | 128 Kysé
2872 m3 1652851 1352 652 St A | 2:<_23 1) ‘I)l(ia23+ial3,ia23,1+ia23,—13 2
(27 Kiaé2 Koaé1
Thus an outgoing analytical solution of E®) for one elec- - ik13§2) ' (34

tron and two heavy ions when, *(9%@/3¢,0¢,) is ne-

glected can be given in terms of confluent hypergeometrigndN is a normalization constant. All the features of these
functions as wave functions will be analyzed elsewhggd].
There are eight different solutions to equations similar to
Vi=Ne(&,E)x(&3), (28 Eqg. (28). These are all the different ways to group the vari-

ables that lead to alternative asymptotic behavior. If we take
where the normalization constaMN in such a way that we have a
unit of outgoing flux, then the wave functiqR9) is written
O(£1,60) = Dy(i gy irg 1~ ikoafy, —ikists), (29) 2°

Wi=N ®,(iays,iaisl,—ikygér, —iKizé))

= 1F (i apl,—ikpés). 30
X(£3)=1F1(ia1p1,~ikyks) (30 X1 Fa(iaral,— iKysks), (39

That is to say, Eq(29) is an exact solution of Eq27) and
N is a normalization constant. The function
(I)z(_a,a’,b,x,y) is a generalized confluent hypergeometricN:em/z)(a12+a13+a23>1~(1_ialz)r(l_ials_iaza)_ (36)
defined by(see the Appendix

We have obtained a set of approximate solutions to the
(a)p(a’), xmy" Schralinger equation for three charged particles under the
" (B)psy M NI (3D condition that two of them are heavier than the other one.
This solution should fulfill some physical properties in order
to be eligible for the calculation of transition matrices. These
properties are analyzed in detail in the following section.

d)z(a,a’,b,x,y):Z

m,n

In Sec. Il we will prove that¥'; has correct physical prop-
erties.

Even though Eq(28) is an approximate solution of Eq.
(8), we see that it is possible to find solutions that couple the lll. PROPERTIES OF THE WAVE FUNCTION
variables. This can be considered as a first step to solve the | thjs section we will perform a detailed analysis of the

Schralinger equation in a closed form through the use ofyrgperties of this two-center continuum wave function. First,
generalized multiple-variable functions. Of course a comyye analyze the general properties and then we discuss the

plete coupling of the six variableg;, 7} should be ex- asymptotic behavior of the wave function.
pected in a general solution. There exists the possibility that

the full equation(8) could be separated into a set of six
coupled differential equations. This system could have solu-
tions expressed as many-variable hypergeometric functions. According to the previous sections, the functidn con-
However, the study of this topic is precluded by the poorstructed with the coupled variabl€s9) describes the motion
knowledge of the mathematical properties of Lauricella func-of Coulomb particles in generalized parabolic coordinates
tions and their corresponding systems of differential equafé;} as is the case o¥ .3, assuming, of course, the same
tions. asymptotic behavior, i.e., outgoing waves. In contrast to
In addition to the wave functiori29), there exist other W3, the wave functionV'; does not separate into a product
approximate solutions, with the form of E{.9), that can be  of three two-body Coulomb continuum states, but decouples
written in terms of generalized confluent hypergeometricthe problem into a two-body Coulomb continuum state for
functions(see the Appendijx the dynamic of the heavy particles and a function that corre-

A. General properties
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lates the motion of the electron to them. An interesting result
can be obtained using the series expansion in terms of the
coordinate§ Eq. (A6)]

m(i a13)m(i @23)m
m! (M) (1) 2m ",
X [Kog€1] M Kiaé2]M1F 1(i apgt m,14+2m, —ik3é;)

XlFl(ial3+ m,1+ 2m,_ik13§2). (37)

Wi=N ;Fq(i a12a11_ik12§3)§ (-1

It can be seen from Ed37) that theW 5 is included as a
first order of this series expansion. Certainly, it is a conse-
guence of the two-center behavior ¥f;. Thus, if the inter-
action between the two pairs of particles (1,3) and (2,3) does
not exist, the best representation is the product of the two
independent one-center wave functions, as in@3 case.

FIG. 2. Reduced particle distributiom(a;s,a3,r12,R19)/

Now, to make a comparative analysis of this wave function(¢:0) @s a function of thez; coordinate forkzs=(1 a.u)x,

we take the square module of §§5), which can be consid- Kis=(1 a.u)(x+y), andry,=—(6 a.ux.

ered as a quantum-mechanical particle distribution. We de- o
fine ticle distributionn(a3,a230) andnecs( @3, @r3,0). As we

can see from Eqg17) and(40)

ﬁ(a,§)=|q/1|2 4 2
~ . . . . T (13003
=N(a,0)|P,(i z,i @131, —iKoaé1, —ik13és) Nca( @3, a23,0)=NyN3= (%5 1)(e? 55 1) "
X F1(ia1pl,—ikié3)|%, (39) (4D

where we have included the constant of normalization giverthe functional form of this equation is very different. In fact,
by Eq. (36) to the unit of outgoing flux a®(a,0)=|N|?, n(aq3,a230) presents the characteristics of the two-center
which gives the density along the directioﬁ§. In these function, that is, the density is not separable as the product of

directions a, " (d%¢/d&10é,)=0 and the above density WO coefficients as in the case of E¢1). , _
agrees with the exact one. As we can see, the dependence ofSince in the spectra of the electrons emitted in bare ion-

the particle distribution on the position vectgy is through atom collisions the normalization factof «,0) gives rise to
the variablest={¢,, i=1,2,3, but it also depends on the the forward cusps known as soft electr®@E) and electron

Sommerfeld parameters={ a5, ays,a;3) corresponding to capture to the cc_JntinuurfECC) pgaks in the double differ—_
each interaction. ential cross sections, as a function of the electron velocity,

Thus the functiom(a,£¢) describes the particle distribu- the differences between(ays,az30) andncs(aas,a230)

tion of the three-body problem through the approximated®©come important22—24. The principal shortcoming pre-

solution¥;. Now, as stated before, the differences betweerreNted bycs(«,0) is that it describes the ECC and the soft
C3 and the solutior35) come from the functiord,. Then, electron as two independent structuf@s]; however, only

to see these differences we define a reduced particle distﬁ(—)r Iarg.e relatives yelocities betyveen the projectile and target
bution n(ays, ays. £1.£5) can this assumption be considered correct. On the other

hand,n(«,0), given by Eq.(38), may give a better descrip-
tion of these structures due to the two-center form introduced
by Eq. (40). The ECC peak is located at a velocity of the
=N(ay3,0230)| (i ars,i 13,1, iKpgé1, —iky36r)|?, electron relative to the projectile that is equal to zero and the
(39) SE peak appears at a velocity equal to zero relative to the
target. These peaks are due to the diverging number of states

n(a137a231511§2)

where available at the threshold of the projectile and the target con-
tinuum and their asymmetry results from the residual two-
N( a3, @ps,0)=|e™ (13" @292 (1 — 03— apg)|? center effect. Even though the principal features of asymme-
try of the soft electron and ECC peaks are due to the
2m(aizt azy) (40) behavior of the wave function for small relative velocities,

1—e ?mlastazy)” the two-center particle densify(«,0) can take an important
role in its description because it could be interpreted as a Jost

We may write a particle distribution associated with thefynction for a two-center wave functid@6]. Furthermore, it
dynamics of the electron in the potential of particles 1 ands possible thafi(«,0) also improves the description of the
2 as described by our approximate solution of B). The  collision process in the zone between the target and projec-
functionn(ay3,@23,0) in Eq.(40) gives us the density along tile, in the velocity space, because Hg0) is larger than
the directionsk,s: F,3=0 andkjs-r;3=0. Ncs(a,0) in this region.

The first distinctive characteristic betwe®; andW¥, is In Fig. 2 we show an example of the particle distribution
related to the normalization factor, that is through the pargiven by Eq.(39) in the configuration space where we have
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FIG. 3. Similar to Fig. 2, but forngs(ayz,az3,r12,R19)/ FIG. 4. Reduced particle distributiom(az,a23,r12,R12)/
Ncs(e,0). n(a,0) with kos=10"2 (a.u)x. The other magnitudes are the same
as in Fig. 2.

set the origin at r,s=0. The figure shows
N(aq3, @53, 12,R12)/N(«,0) for a fixed distance between the
heavy particles. Here;»=6 a.u. along thex coordinate and

unknown for the three-body Coulomb problem we may think
that the maxima result for an effect similar to that occurring
N , ) in the two-body problem.
ko= kig=1 a.u., whereky; is antiparallel to the relative Now we will discuss several limiting cases of physical
position vectorr,. The unit vectork,; forms an angle of interest. The wave function gives a description equivalent to
wl4 with the ko3 direction, which defines the value of the C3 approach for the relative motion of the heavy par-
ki,=1.41 a.u. The charge of the particles @&g= Z,=1 ticles. However, it is well known that the normalization fac-
andZz;=—1. tor corresponding to the projectile-target wave function leads
In Fig. 3 we show a representation of t0 an exponential decree}se in the cross section; for Igrge
Nea( @13, @312, R12)/Nea(a,0) for the same conditions. Values of the corresponding Bohr parameter attained either

Evident in both distributions are the confluent hypergeometfor small relative momentd,, or large Z,. This can be
ric fins along the directions defined by the conditions@voided through a suitable modification of the Born param-

- A L eter that appears in the normalization fadtar and has been
Koz ro3=—1 andkq3-r13=1. In other directionsncz shows discussedpeﬁsewhe[e3] a3
the simple superposition of the hyperbolically shaped waves The limit for soft electron emission results when the mod-

associated with both one-variable hypergeometric functiongq of the asymptotic momentuky; becomes small. In this
without any correlation between them. Meanwhile, in.ace the wave function is expressed by

Nn(aq3,@53,r12,R19) the fins are connected through the coor-

dinate space, showing that the relative motions are corre- ) . 1 (lag3)m
lated. We observe that a two-center symmetry dominates ¥1=N 1F1(Ia12,1,—|k12§3)§ (ZoZa)™ mi(m)
over the hyperbolic one in the region where the interactions 273 ' "
are competitive. Furthermore, timedistribution is enhanced X [Koaé11™Mom(—2iVZZ3¢1)

relatively tongs in the region between the heavy patrticles,
i.e., the saddle between the Coulomb potentials. This shows
that the wave function accounts for two-center effects. In

addition, then distribution exhibits a shape similar g5 for which has a significativg different functional form when

lar ,I & This indicates that th 3 di compared with the behavior @3 [27]. As we can see the
ge vaiues Olrp3. ThiS Indicates that the corrésponding series(42) depends on the position and momentum of the

wave functions have the same correct asymptotic behaviogeciron relative to the target and therefore includes a two-

These general features of the particle distributions remaiQener effect in the description of the electron wave function
similar for others set of value$R;,,kp3,K13,Z1,Z55. We  near the ionization threshold.

XlFl(ia13+ m,1+2m,_ik13§2), (42)

should note thah(a,s,a,3,r12,R;2) is exact along the di- In Fig. 4 the particle densityn(ais,azs,M12,R10)/
rections ofk;3 andkys since the functionV'; is a solution of  n(q,0) is shown fork,s=10"2 a.u. andk;5=1 a.u. The
the wave equation in this case. coordinates, angles, etc. are the same as those in Figs. 2 and

When the particle densities for the two-body Coulomb3, The three-body problem considered again is one formed
problems are described, the mentioned fins become a uniqly two charged heavy particles and one electron. It is
maximum along one particular direction, the direction of theclear from the figure that the density of electrons is
relative momentum between the particles. For this case thdominated by the target-electron interaction still in
maximum could be associated with a well-known optical ef-nq3(aq3,a23,r12,R12); see Fig. 5. The electrons are distrib-
fect: the glory or the rainbow caustics depending of the signuted around the target in a way similar to the two-body Cou-
of the intervening charges. When these charges are taken dsmb problem and an evident correlation still exists between
for example, our 2 and 3 particles, then we are dealing withthe different maxima of the distribution. The mentioned
the glory effect[26]. Thus, even when this phenomenon is maxima have superposed oscillations, reminiscence of the
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tween particlg and the center of mass of the pdll() tends
to infinity, i.e., R, — o0, while the distance between particles
k andl| satisfies the constraimt,/Ry,—0.

As was shown by Alt and Mukhamedzhangi4], the
Schralinger equation can be solved in a closed form up to
order 1de, whered; stands for the interparticle distances
that go to infinity in each asymptotic regidn;. Further-
more, a test for every new approximate wave function is that,
asymptatically, it should be a solution of the wave equation
in this sense.

Just for simplicity we confine the treatment to outgoing
waves and restrict the analysis only for E85) since similar
conclusions can be obtained with the other asymptotic con-
ditions. As a first step we study the cddg. The behavior of
FIG. 5. Similar to Fig. 4, but forncs(ais,as3,r12,R12)/  the confluent hypergeometrid-4(a,b,z) for large values of
Nes(a,0). the argument is well known and the generalized confluent

hypergeometric functio®,(a,a’,b,x,y) is representable by
two-body Coulomb problem, just as in the case ofa convergent series of two variables, as we have shown in
Nca(@i3, a23,M12,R12); see Fig. 5. Egs.(31)—(37). In the same way as fofF(a,b,z), ®, has

As we see, the dynamic of the electron is correlated evean asymptotic representation in terms of generalized Whit-
for small relatives velocities, which is not the case of thetaker's functions of two variables, see the Appendix. There
density given bynca( a3, @z3,r12,R17). Having in mind the  are different representation @b, in term of Whittaker's
behavior of the electron in this field, we can suggest that theunctions depending on which variabbe,or y, tends to in-
correlation shown byn(a;3,@3,r12,R12) gives rise to the finity. If we use the expansion for the cases, y—, and
enhancement presented by the DDCS all along the velocitieg— x— o [Eq. (A7)] and write it in terms of the coordinates
comprised between the ECC and the soft electron peaks. rij, the asymptotic expansion fdb, outside of the nonsin-

An equation similar to Eq(42) could be written when gular region, i.e.k; - #1, reads
ki3—0. The ECC peak asymmetry is associated with the R
wave function at this limit. The expression firc; function em(aigt azy)
in this region is easy to obtain and gives the continuation P2~
through the threshold predicted by the two-body Coulomb

e aognkagfy g —iaignkysés

F(l—ia13—ia23)

problem. Nevertheless, our wave function gives a very dif- 1
ferent description since it leaves the electron correlated to the X11+0{— 1" Kiats
. 2361 1352
target still in the casé&;3=0. (20 1)
For smqll vz_alues of the total enerdy the form of the _ermea o (r3* kst~ agdnlipsts —kyy)
wave function is T(iaym)
1 (D)™ (iag) eikasta 11
¥,=C>, - S X—— 1140, ——
m (Z21Z3)" (Z3Z3)™ ml(m)y, Kosé1 Kaaé1 " Kizo
. . m(ay3—1)
X Jom(—2iVZ3Z381)dom( = 2iVZ1Z385) _ eI‘(' v ; ai(a1g+ agg)inkygty — i apgn(kaats —kyat2)
: ia
X Jo( = 2INZ1Z,£3). (43) R
eikizéz 1
The behavior of the wave function when all the momenta are X 1+0| v—, —) ] . (44)
k136> Koaé1 " Kiséo

small, that is, the Wannier zone, could give us some infor-
mation about the behavior of the transition matrix for a col-

- L An inspection clearly shows that the leading term is
lision process in this energy range.

There are two important differences betwednh and (2 a1zt azg)
V3. The function; modifies the form of the Coulomb d,~ i i @~ Taagnkagty g —iaggnkysés
factor and the asymmetry of the SE and ECC peaks. A quan- I'(1-iayg—iag)
titative analysis through the evaluation of a TDCS or a 1 1
DDCS with our wave function could show some details of +0 —,—). (45)
these differences. &1 &2

, . Hence, taking in account the asymptotic behavior of
B. Asymptotic behavior 1F1(a,b,z), Eq. (31) reduces to

A critical point of every approximate solution for a three-
body Coulomb problem is its asymptotic behavior. There are e(m2)(aygt agptazy
two kind o_f asymptonc regions that shqulfj .be_ analyzepl: ¥y~ T(1—ia )T (1—ias— i)
Q,, all the interparticle distances tend to infinity in an arbi-

trary manner, i.e.r;;—, and(Q;, where the distance be- X Neazdnkosy —Tardnkishy—Tardikisty — (46)
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which has, in fact, exactly the same functional asymptotic e7(at a1y
behavior as th€3 wave fuqction apart from a normalization ¥i~N T(1=iap)(1-ia) e
constant. From Eq(46) it is clear that we must take the
constantN as given by Eq(36) in order to normalize the , ) ) , 1
wave function to an outgoing unit of flux. X Ps| iags, iz l-iarg, —iKasty, — ikaty)

We should note, as we said before, that the asymptotic
functional form of our wave functionl; in this region is (48)
equal toWcs. However, they have different normalization where®c(a,a’,c,x,1/ly) is the generalized confluent hyper-
factors: the first is a two-center factor, while the second is th@eometric of Whittaker given in the Appendix. Since this
superposition of two single-center factors. As we see, wdunction is defined by a series convergent for small values of
may have different functions with the same asymptotic be{x| and large values dfy|, the partial derivative/®s/dy is
havior and this can lead to different outgoing or incomingproportional to Iy?. This will allow us to properly include
units of flux. This can be considered as the starting point irthe terms neglected in the Hamiltonian. Let us consider the
the search for normalization and the wave function, whichleading orders ofV'; as a function of parabolic coordinates
take in account the three-center behavior. The main feature
of our wave function is the two-center representation for the W1 E(£3)E(62)T(£1,1185), (49)
dynamics of .the elgctron as depending on the Coordina,t%hereg(gj)=exp(—iamrJnk,nr§j) is an eikonal function and
associated with pa_trhc!es 1 and 2._Th|s kind of repregentatm@ represents the leading orders of the functibe,
leads to a normalization factor with the corresponding two-
center behavior. f(&,1éx)xF (&) +G(&1)]Es, (50)

The wave function(35) gives theRedmond asymptotic
behaviorwhen all the interparticle distances tend to infinity. WhereF and G are confluent hypergeometric functions of
In the same way as fo€3, our wave function is an exact One variable andf/d¢,=1/¢. In this way we are consider-
solution up toO(1/r?) of the total Schidinger equatiorg). ~ Ind that the asymptotic representation in the variagleand

We can now consider the behavior of the wave functionés IS mainly given by the eikonal functions, whileintro-

¥, in the regiond; . First, we should point out that neither duces only a small coupling betwegq and &,. If we re-
W3 nor ¥, is an exact solution in); in the sense men- place this ansatz in the Scldioger equation and take into

tioned before because the neglected terms of the Hamiltonia?lCCOunt the leading orders of each function, we obtain:

in each approximation are of orderd]l/ However these

terms can be considered as small corrections in each of the

regions{}; and can be incorporated in the wave functions

through a modification of relative momenta of each pair of 1[a " (98(.52)} of a~t %

particles. Alt and Mukhamezdanov have studied the case of +m3 (&) 9E, |0& M3 d€10E,

the W5 function[14] and Colavecchiat al. devised a gen-

eral method to obtain modifications required for a correctThe term that includes the partial derivative of the eikonal

asymptotic behavior of the wave function §iy [28]. E(&,) is of order 1£, and will be included as a small cor-
We will briefly discuss the application of this method in rection of the relative momentk,;. In this way we can

the region(),, where the target and the electrguarticles 2  define

and 3, respective)yare close to each other, while the projec-

tile is far from them. The asymptotic behavior of E85)

when, for exampler, 3 is finite butr,, andr 43 go to infinity,

corresponding to the region éI,, can be carried out using

the asymptotic expansion of the hypergeometric functiorNow, the term that contains the mixed partial derivatives of

®, given by Eq.(A9), specialized to the present case. A fastthe functionf can be written as

inspection clearly shows that the leading term in that expan- 2f o2 2f

sion is a "’ =a; " +a, - 52
IE0E, T 0E10E, TP 9€10&, 52

—iaygnkypéz—iaggnky gty

J°f _ of
519_51 +(1- Ik23§l)(9_§1

+ Zf
M2l 23 Haals }

=0. (51

a3 Ti3—Kis

koa=k
23 23 ~ A
l13 1_k13'r13

If we take into account thaft represents the asymptotic be-
~—— iaggnkggh havior of the wave functionV;, the first term of the right-
F(1-iay) hand side of Eq(52) is exactly considered, even in the re-
gion Q,. However, in this regiona2f/a§1a§2o<§2‘2 and
thereforea, *(92f/9¢,0¢,) will be included as a small cor-
rection of order 1§,. Then we obtain the equation for(up
(47  to order 1£,)

eﬂ'ﬂ/ls

P,

X Ds| i@z, iaizl—iazs, —ikysér,— ikyaés)”

%f 9%f of

Hence, taking again into account the asymptotic behavior of gla_gl té2 VE0E, (1+y— |k23§l)&_§1 + 23l Z3f=0,

the ;F,(a,b,z), Eq. (35 reduces to (53)
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where seems to be a remarkable improvement oWgs;, which
R R shows the asymptotic hyperbolic symmetry even in the con-
i P ( ro Kis kzg) densation region. However, as it has been pointed out before,

eris oz T2z I13 a suitable change in the normalization fackdr, should be

seriously considered to avoid the exponential decrease in the
It is clear that the solution of E53) is the leading order €SS section when the projectile charge is large or the im-
of the function ®s. We should remember that the two- Pact energy is smaj29]. Such modifications have been suc-
variable functionds verifies a coupled system of two equa- ¢€sSfully used in a multiple-scattering approximation in
tions. However, it is easy to see that the second equation &:2€) processe$l2], but, to the best of our knowledge, the

of order greater than .5,2 and can be neglected in this treat- applicgtion .Of this method in ion—atom' collisions has n_ot
ment. Therefore, we can obtain an exact solutioiy in- been investigated yet. Another alternative would be an im-

troducing small corrections in the functidih, . This solution pact parameter approximation where the _hypergeometrlc
will match also the solution ifdq. In a similar way, we function of the heavy pair is replaced by an eikonal phase in

. . . ) . ¥, [1].
obtain the asymptotic functions in regiots, and Q5. In 1 . . . .
short, we hav)(/a :fvoided the details o? these calcu?ations b The computation of these transition matrices with the gen-

writing down the final solution, exact up to ordeldiﬁn all gral function'y can be an mvolyed task since eaph caleula-
; P tion of the function®, would imply the evaluation of a
asymptotic regions: X ) ) i
series of products of one-variables hypergeometric functions

Wi(r,R)=N"1Fy(iaf,1,—ik]pés) with coordinate-dependent parameters. Preliminary results
recently obtained show that the introduction of coordinate-
X Dy(i apg,iayg 1+ y, —ikysér, —ikisér), dependent momenta in the wave function is very expensive
(54) in terms of computational timgL5]. As a first step we con-
sider that the functiof¥ ,, instead of the functiod’; would
where the primed momenta are defined as be a §uit§1b!e election for the development of new scattering
theories in ion-atom processes.
, o1y Togt Koz  @1s81, 13— Kys Finally, we would I|ke_to r_emark _that the properties _of
kipo=Kio— r ——+ r = systems of coupled partial differential equations involving
23 1tkagTas 13 1-kizris three or more variables are poorly known. This seriously
L restricts the study of possible separations of the wave equa-
DS @23 ra3tKas tions and a complete investigation of those systems is needed
By, 1+Kog Tos in order to improve the results presented in this work. Fur-

ther research is being carried out in order to obtain an ana-

and a/,,=ZmZn /K. €tc., whilek,; and y have been de- lytical expression of the transition matrix in some adequate

fined above. approximation.
The wave functior(35) is a generalization o¥ ; obtained
in Sec. Il. The coordinate-dependent momenta modify as-
ymptotically the wave function in such way that the obtained ACKNOWLEDGMENTS
function fulfills the correct asymptotic conditions in both

0, andQ; . We would like to acknowledge M. Kornberg and W.

Cravero for helpful discussions.

CONCLUSION
APPENDIX

In this work we have obtained a class of approximate In thi di 76 the basic definiti fth
wave functions for the three-body Coulomb problem in the n this appendix we summarize the basic definitions of the
ypergeometric function introduced in Sec. lll. The principal

case of a system composed of one light and two hea aft . ,
ticles, Whicr): can be inEt)erpreted as agstate resulting fr\gympapprmulas can be foun(_j in the works of Appell and Kannee
ion-atom ionization collision. These functions can be Written':ermpo:| and E'rdelyl[SO,SJ]. . .
in terms of hypergeometric functions of two variables. We The , genera_llzed . confluent hypergeor_netnc function
have shown that they couple the electron-target and electror22(2:2",0.x,y) is defined by the double series
projectile interactions, but treating them on an equal footing.
We would like to point out that the main features of these ,
wave functions correctly include the Coulomb asymptotic Dyaa bxy)=S (@m@)hn " (A1)
conditions. mn mint(b) s

The functions obtained here can be considered a good
alternative to the functions previously used in the calculatiorwhich converges for every finite value afandy; the pa-
of transition matrices and DDCSs. For example, these funcrametersa anda’ are arbitrary and#0,—1,—2,....Ifa
tions can replace th@ -5 function in a CDW or a multiple- or a’ is a negative integer number, the function
scattering approacf®]. Numerical examples show thdt,  ®,(a,a’,b,x,y) reduces to a polynomial in the variabie
has a two-center symmetry in the inner region, i.e., when thé¢y) of degregal (degrega’|). If both a anda’ are negative
distances between the three particles are comparable. Thigteger numbers then the function represents a polynomial in
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x andy of degree|a| and|a'|. For general values of the ®,(a,a’,b,x,y)
variables and parameters, the function can be defined in

terms of contour integralg30]. =S -1y (a)(a’)y o
The function(Al) satisfies the pair of differential equa- r'(b+r—1),(b)y,
tions
X Fi(a+r,b+2r,x) 1Fi(a@’ +r,b+2r,y).
> + ” +(b—x) i d,=0 (A9
X~ —X)——a|P,=0,
ax? yﬁXﬁy X 2 A2) The asymptotic behavior ob,(a,a’,b,x,y) when |x|—c,
|y| =<0, and|y—x|—c can be written as
2 P ‘ ’ . ’
[y_z ( _y)__a q_) =0. elw(a+a )F(b) el-:r(a+2a —b)l—'(b)
X axay _
ady y Z Fi-a-a) Z,+ @) Zs
This set has, in general, three linearly independent solutions eim@ ~br ()

that can be represented in terms of the generalized hypergeo-
metric functions

+ TZ& (A?)

with
zo=Py(a,a’,b,x,y), (A3) L
z,=x"2y" 2, a+a’—b+1,a,a’,—;,—§),
! ! X
z;=x3 "PTly~a'}p at+a’ —b+ 1,a’,a’—b+2,—,x), , ,
y 25:(_X)a+a 7b(y_x)7a e
IxI<Ivl (Ad) Xd,y1-ab—a—a’,a’ Tt
4 [l ] ixix_y [}
Z,=x"3y3a Ptlp, a+a’—b+1,a,a—b+2,¥,y>, Zg=(X—Yy) 3(—y)2*"2 ~bey
XD, 1- b— ! 1)
a’,ab—a—a',—,—
(A5) 4 'y=x'y

where®d, is one of the generalized Whittaker functions and

where®,(a,b,c,x,y) is a generalized confluent hypergeo- is defined by the series

metric function of two variables defined §$2]

m+nama,n
2 (a)m(a’)

1
(@msn(Pm 0 ®4 caa’,— 5 __) = min!(—x)M(—y)"
®,(a,b,c,x,y)= E o XY x| <1. 88)
) ) The expansion of EqA7) whenx, y, andx—Yy go to infinity
Thus a general solution of the system can be write as leads to the asymptotic expressiotd) of Sec. IV B since
the functiond, can be considered a constant in this limiting
z=Az+Bz+Cz, case. On the other hand, in the case in which one of the
variables is smallfor example,x) and the other tends to
whereA, B, andC are arbitrary constants. infinity (they variable, for examplethe asymptotic expan-

In addition to the functions defined in Eq8A3)—(A5)  sion ofz, is
there is another solution of EgA2) that is expressible by
convergent hypergeometric series of two varialp&d, but b=
this can be written in terms of the functions already defined. 27 T(@)
The relations

el m(a’~1)

(x—y) 3(—y)2ta' 1

1 1
l1-a',a,l-a—a',—,—

Y
xe'Py y—x'y

J a
5¢2(a,a b, X, y)= bez(aJr la’,b+1x,y),

imwa’

_a,
Ta—ayy s

1
a,a’,l—a’,x,y), (A9)

a
—y<I> »(a,a’,b,x,y)= —‘P 2(a,@a’+1b+1x,y) with ®; given by the series

aacx =3 (@)m(@)y X"y "

s _m,n (©)m-n m! n!

show that the derivatives of th&, function are expressible (A10)

in terms of the function itself in a way similar to the conflu-
ent hypergeometrigF(a,b,z). One of the multiple series which is another Whittaker function. Expanding the function
expansions forb, is d5 up to first order in 3, we obtain Eq(50).




2820 G. GASANEOet al. 55

[1] M. R. C. McDowell and J. P Colemarntroduction to the (American Institute of Physics, New York, 199%. 341.
Theory of lon-Atom CollisiongNorth-Holland, Amsterdam, [16] D. S. F. Crothers and L. Dube, iddvances in Atomic, Mo-
1970. lecular and Optical Physicsedited by D. Bates and D. Beren-

[2] R. Moshammegkt al, Phys. Rev. Lett73, 3371(1994. son(Academic, New York, 1993 Vol. 30, p. 287.

[3] M. Brauner, J. S. Briggs, and H. Klar, J. Phys.2B, 2265 [17] H. Klar, Z. Phys. D16, 231(1990.

(1989. [18] L. J. Slater, irHandbook of Mathematical Functiopadited by

[4] H. Bethe, Ann. Phys(Leipzig) 5, 325(1930. M. Abramowitz and |. A. SteguDover, New York, 1970 p.

[5] M. W. Lucas and E. Steckelmacher, lifigh-Energy lon Atom 505; see also A. ErdelyHigher Trascendental Functions, Vol.
Collis:ions edited by [_). Bereny gnd G. Hock, Lecture Notes in | (McGraw-Hill, New York, 1953, p. 248.

Physics Vol. 294Springer, Berlin, 198 p. 229. [19] P. J. Redmondunpublishegt L. Rosenberg, Phys. Rev. 8,

[6] R. G. Pregliasco, C. R. Garibotti, and R. Barrachina, Nucl.
Instrum. Methods Phys. Res. Sect8B, 168 (1994).

[7]1 D. S. F. Crothers and J. F. J. McCann, J. Physl&3 3229
(1983; N. Stolterfoht, R. DuBois, and R. Rivarola, Rev. Mod.
Phys.(to be published

[8] J. E. Miraglia and J. Macek, Phys. Rev.48, 5919(199).

1833(1973.

[20] P. Appell and J. Kampede Feriet, Fonctions Hyper-
geomeriques et Hypersphigues; Polynenes d’Hermite
(Gauthier-Villars, Paris, 1926

[21] G. Gasaneo, F. D. Colavecchia, and C. R. Garibitipub-

[9] C. R. Garibotti and J. E. Miraglia, Phys. Rev. &1, 572 Iished:
(1980; J. Berakdar, J. S. Briggs, and H. Klar, Z. Phys2®, [22] A. Salin, J. Phys. B2, 631 (1969.
351 (1992, [23] A. Salin, J. Phys. B, 979 (1972.

[10] R. K. PeterkopTheory of lonization of Atoms by the Electron [24] J. Macek, Phys. Rev. A, 235 (1970.
|mpact (Colorado Associated University Press, Boulder, [25] C. R. Garibotti and R. O. Barrachina, Nucl. Instrum. Methods

1977. Phys. Res. Sect. B6, 96 (1994).
[11] M. R. H. Rudge and M. J. Seaton, Proc. R. Soc. London Ser. A26] I. Samengo, R. G. Pregliasco, and R. O. Barracliurgpub-
283 262 (1969; M. R. H. Rudge, Rev. Mod. Phy40, 564 lished.
(1968. [27] H. van HaeringenCharged Particle InteractiongCoulomb,
[12] J. Berakdar and J. Briggs, Phys. Rev. L&&, 3799(1994. Leyden, 198%
[13] J. Berakdar, Phys. Rev. B3, 3214(1996. [28] F. D. Colavecchia, G. Gasaneo, and C. R. Garibwitipub-
[14] E. O. Alt and M. Mukhamedzhanov, Phys. Rev.4%, 2004 lished.
(1993. [29] C. R. Garibotti and J. Miraglia, Phys. Rev.25, 1440(1982.

[15] S. Jones and D. H. Madison, Rroceedings of XIXth Interna- [30] A. Erdelyi, Proc. R. Soc. Edinburg9, 224 (1938.
tional Conference on the Physics of Electronic and Atomic[31] A. Erdelyi, Proc. R. Soc. Edinburg0, 344 (1939.
Collisions AIP Conf. Proc. No. 360, edited by L. Dulet al. [32] P. Humbert, Proc. R. Soc. Edinbudd, 73 (1921.



