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Correlated continuum wave functions for three particles with Coulomb interactions
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We present an approximate solution of the Schro¨dinger equation for the three-body Coulomb problem. We
write the Hamiltonian in parabolic curvilinear coordinates and study the possible separation of the wave
equation as a system of coupled partial differential equations. When two of the particles are heavier than the
others, we write an approximate wave equation that incorporates some terms of the Hamiltonian that before
had been considered as a perturbation. Its solution can be expressed in terms of a confluent hypergeometric
function of two variables. We show that the proposed wave function includes a correlation between the motion
of the light particle relative to the heavy particles and verifies the correct asymptotic behavior when all
particles are far from each other. Finally, we discuss the possible uses of this function in the calculation of
transition matrices and differential cross sections in ionizing collisions.@S1050-2947~97!00504-0#

PACS number~s!: 34.50.Fa, 34.10.1x, 03.65.Nk
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INTRODUCTION

The full three-body Coulomb problem has particular im
portance in many areas of physics, especially in atomic
lisions. The initial and the final channel of ion-atom
electron-atom collisions can be considered as three-b
Coulomb states in a first approximation when we assume
only one electron of the target atom is active. The charac
istics of these processes are described by the transition
trix in the post or prior form Ti f
5^c f uVf uC i

1&5^C f
2uVi uc i&, respectively. The exact chan

nel functionsC i
1 (C f

2) are not known in the three-bod
case and then they should be replaced by proper approx
tions. These approximate wave functions also determine
channel potentialVf (Vi) @1#. From an experimental point o
view, the spectra of electrons emitted in the collisions rev
the main features of these processes. Nowadays many do
differential cross sections~DDCSs!, in terms of the energy
and direction of the emitted electrons are available for a
riety of processes~ion-atom or electron-atom ionization
charge transfer, excitation, etc.!. Recently, measurements o
differential cross sections that take into account the mome
of the recoil atom have been reported@2#. Triply differential
cross sections~TDCSs!, in which the momentum of the pro
jectile is considered, are known in some particular geo
etries of electron-atom ionization@3#. However, they remain
an open question for ion-atom collisions.

The choice of approximate wave functions has been fo
to be critical when comparing theory with experimental
sults. Initial attempts to describe total cross sections~TCSs!
were carried out decades ago. The wave functions inclu
in that theory were simply plane waves for the three out
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ing particles and their results described the TCS very roug
in fast ion-atom collisions. The main drawback of this a
proach is that it does not take into account the long-ra
behavior of the Coulomb potential among the particles. F
ther approximate wave functions were based on the e
solution of the two-body Coulomb problem that can be wr
ten in terms of the confluent hypergeometric function1F1.
The first Born approximation~FBA! relies on the assumption
that the ejected electron completely screens the target po
tial, including a final state described by the free wave fun
tion of the projectile leaving the collision region, while th
electron interacts with the target through the Coulomb pot
tial @4#. In this way, the final wave function is a product of
plane wave and the solution of the two-body Coulomb pro
lem electron target. This approximation has been usefu
describing the single differential cross sections in the hi
impact-energy regime, but fails to reproduce the well-kno
electron capture to the continuum peak that appears in
double differential cross sections. This effect can only
understood with the introduction of the projectile-electr
interaction, which is treated perturbatively in the FBA@5,6#.

If we focus our attention on ion-atom ionization pro
cesses, there are many theories that incorporate
projectile-electron interaction at the final channel, but w
different approximate initial states. The continuum distort
wave ~CDW! eikonal initial state~EIS! approximation@7#
and the impulse approximation~IA ! @8# include the electron-
target and the electron-projectile interactions in the fi
channel and the projectile-target interaction is introduced
an eikonal way. The Coulomb projectile-target interaction
included on an equal basis in the multiple scattering~MS!
approximation@9#. All these theories show qualitative agre
ment with DDCS in fast bare ion-atom ionizations. In sp
of the relative success of these theories in the descriptio
the overall features of the DDCS, many discrepancies rem
unexplained.
2809 © 1997 The American Physical Society
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2810 55G. GASANEOet al.
The final state in the CDW-EIS approximation, the I
and the MS approximation is constructed through asuperpo-
sitionof two-body wave functions, relying on the assumpti
that the target does not play any role in the project
electron interaction and, similarly, the projectile does n
exert any influence on the electron-target interaction. Th
final wave functions are built as products of confluent hyp
geometric functions related to each two-body interaction
this way coupling between the pairs of motions is not co
sidered in any of these theories.

On the other hand, there have been many improvem
to the simple product of two-body wave functions
electron-atom collision processes since the pioneering w
of Peterkop@10# and Rudge and Seaton@11#, where the cor-
relation between the two-body motions is incorpora
through velocity-dependent charges. Berakdar and Bri
@12# extended these results to the MS wave function. Eff
tive charges dependent on spatial positions of the parti
were recently proposed by Berakdar@13#. In this way he was
able to write MS-like wave functions that are asymptotica
correct not only when all particles are far from each oth
but also when two particles are close and the third one is
from them. In another approach devised by Alt a
Mukhamedzhanov, correlation is accounted for by introd
ing space-dependent relative momenta and requiring the
rect behavior in all the asymptotic regions@14#. This wave
function has been used by Jones and Madison to calcu
cross sections of ionization processes in electron-atom c
sions @15#. It is clear that a better description of the fin
states of ionization processes is needed and some inves
tion should be carried out in order to solve the wave eq
tions in a more accurate way.

Following this point of view, we present in this work
wave function that can be obtained as an approximate s
tion of the Schro¨dinger equation for three charged particl
when two of them have large masses than the third one.
show that under some approximations, the wave equa
could be separated as a system of coupled differential e
tions. The solution can be written as a product of a two-bo
wave function for the heavy particles and a hypergeome
function of two variables, which includes the correct Co
lomb asymptotic conditions. In Sec. I we introduce the no
tion and a set of curvilinear parabolic coordinates useful
our purposes. In Sec. II we show the procedure in orde
obtain the wave function, while in Sec. III we analyze t
general properties and the asymptotic behavior of the w
function obtained. We briefly discuss the results we sho
expect when using this function in the calculation of tran
tion matrices and differential cross sections. Finally, the c
clusions of our work are drawn. The Appendix summariz
some important properties of hypergeometric functions
two variables. Atomic units are used thorough this pa
unless otherwise noted.

I. STATEMENT OF THE PROBLEM

We will focus our attention on the problem of thre
charged particles labeled 1, 2, and 3 with the massesmi and
chargesZi $ i51,2,3%, respectively. We choose the set
relative coordinatesr i j defined as

r125r12r2 , r135r32r1 , r235r32r2
-
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and, of course,r i j52r j i . Associated with these coordinate
we define the position vectorsR12, R13, andR23. The vec-
torsRi j describe the position of the particlek relative to the
center of mass~c.m.! of the particlesi and j ( iÞ jÞk) as
indicated in Fig. 1. The Jacobi pairs$r i j ,Ri j % diagonalize the
kinetic energy in the c.m. of the three-particle system. Th
are simple relations between the Jacobi pairs that are
scribed elsewhere@16#. In this work it will be enough to
write down the relations between coordinatesr i j andR12:

R125a12r231b12r13, r235R121b12r12,

r125r232r13, r135R122a12r12, ~1!

where

a125
m2

m11m2
5

m12

m1
, b125

m1

m11m2
5

m12

m2
~2!

and we define the reduced massesm i j5mimj /(mi1mj ) and
n i j5(mi1mj )mk /(mi1mj1mk), iÞ jÞk. Since the par-
ticles interact in pairs through Coulombic potentialsVi j
5ZiZj /r i j , the Schro¨dinger equation for any given Jacob
pair $r i j ,Ri j % is

F2
1

2m i j
¹ r i j
2 2

1

2n i j
¹Ri j
2 1V121V231V13GC~r i j ,Ri j !

5EC~r i j ,Ri j !, ~3!

where the eigenenergy will be written considering that all
particles are in the continuum and the pair$k i j ,K i j % repre-
sents the conjugated momenta to$r i j ,Ri j %. We choose the
Jacobi pair$r12,R12%, but the selection of this pair is arbi
trary. The use of other Jacobi coordinates leads to equiva
equations, which do not affect the following results.

The set of the six Cartesians coordinates$r12
5(x,y,z),R125(X,Y,Z)% completely defines the problem
These coordinates can be replaced by any convenient s
curvilinear ones. The particular case of the parabolic set
sembles the treatment of the two-body Coulomb probl
and it has been successfully used by some authors w
studying the approximate solution to Eq.~3!. These coordi-
nates have been proposed by Klar and allow one to sepa
the Schro¨dinger equation when all the particles are far fro

FIG. 1. Scheme of the coordinates system used in this work
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55 2811CORRELATED CONTINUUM WAVE FUNCTIONS FOR . . .
each other@17#. Using relations~1!, this parabolic set of
coordinates$j i ,h i% can be defined in terms ofr i j as

j15r 321 k̂23• r̂32, h15r 322 k̂23• r̂32,

j25r 131 k̂13• r̂13, h25r 132 k̂13• r̂13, j35r 121 k̂12• r̂12,

h35r 122 k̂12• r̂12, ~4!

where k̂13 and k̂23 are the unit vectors determined by th
directions of the relative momenta

k135
m13

n12
k122

a12m13

m12
K12, k235

m23

n12
k121

b12m23

m12
K12.

~5!

Coordinates given by Eqs.~4! allow a natural expression o
Coulombic asymptotic conditions for the three-body wa
function.

II. APPROXIMATE SOLUTIONS
TO THE WAVE EQUATION

Consider a final state of a collision process betwee
charged projectile 1 and a target arrangement. The final s
is the one in which the target is formed by a particle labe
3, which may be an electron, and a charged particle 2, b
interacting through Coulomb potentials giving rise to a thr
body final continuum state. The dynamic of the particles
governed by the three-body Schro¨dinger equation. Becaus
we are looking for continuum states, we remove the kine
energy by

C~r12,R12!5~2p!23/2eiK12–R121 ik12–r12C~r12,R12! ~6!

in Eq. ~3!, which leads to

F 1

2m12
¹ r12
2 1

1

2n12
¹R12
2 1

i

m12
K12•¹r12

1
i

n12
k12•¹R12

2
Z1Z2
r 12

2
Z2Z3
r 23

2
Z1Z3
r 13

GC~r12,R12!50 ~7!

since the eigenenergy in the stateC(r12,R12) is E
5k12

2 /2m121K12
2 /2n12.

As was shown by Klar@17#, the Schro¨dinger equation
acquires a symmetric aspect written in term of the set~4!,

DC5@D01D1#C50, ~8!

whereD0 andD1 are given by

D05 (
i51,iÞ jÞk

3

@Ai
11Ai

21Vjk#, ~9!

D15(
i51

2

(
j5 i11

3
~21! i11

mk
Bi•Bj ~10!

and we have defined the operators

Ai
15

2

m jk~j i1h i !
Fj i

]2

]j i
2 1~11 ik jkj i !

]

]j i
G ,
a
te
d
th
-
s

c

Ai
25

2

m jk~j i1h i !
Fh i

]2

]h i
2 1~12 ik jkh i !

]

]h i
G ,

Bi5~¹r jk
j i !

]

]j i
1~¹r jk

h i !
]

]h i
. ~11!

The vector scalar products inD1 can be expressed in th
terms of parabolic coordinates. We observe thatD0 contains
one-variable derivatives and the mixed derivatives are
included inD1. TheD1 term contains the well-known non
orthogonal kinetic energy of CDW theories@7#.

Equation~8! is a six-variable elliptical partial differentia
equation with a non-denumerable infinite number of so
tions. We will look for some of those solutions with physic
meaning, assuming that Eq.~8! is separable in a system o
coupled differential equations. A possible separation is giv
by @17#

D0C50, ~12!

D1C50. ~13!

The main feature of this system is that the first equat
itself is totally separable. All three terms inD0 are equiva-
lent to the two-body Coulomb problem, where azimuth
symmetry was imposed around the relative momentak i j .
Equation ~12! describes the dynamic of a problem whe
each pair of particles interacts through a Coulombic poten
while the other particle is considered free. TheD1 term
couples the three ‘‘independent’’ pairs and correlates th
kinetic energy.

NeglectingD1, a general solution to Eq.~12! can be ob-
tained by proposing a separable function

C5)
l51

3

f l~j l ,h l ! ~14!

such that~12! splits in three equations. As was analyzed
Klar, the different solutions depend on the asymptotic beh
ior imposed on the wave function@17#. For outgoing
asymptotic conditions the ansatz~14! reduces to

CC35)
l51

3

f l~j l ! ~15!

and the corresponding solutionsf l(j l) are (lÞmÞn) @18#

f l~j l !5Nl 1F1~ iamn,1,2 ikmnj l !, ~16!

whereNl are the constants that normalize the wave funct
to outgoing unit flux

Nl5e2pamn/2G~12 iamn! ~17!

andamn5ZmZn /kmn .
The wave function~15! is commonly known as theC3

function and was proposed by Garibotti and Miraglia@9# to
study the ion-atom ionization process. As was shown by
rakdar,CC3 is an exact asymptotic solution of Eq.~7! only
in a limited region of the coordinate space since
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2812 55G. GASANEOet al.
D1CC3;OS 1r i j2 D ~18!

when all the interparticle distances tend to infinity@13#. Con-
sequently,CC3 is not a suitable solution for the three-bod
problem in the condensation region where the distances
tween the particles are small.

Similar solutions can be written for other asymptotic co
ditions, which are dictated by the physical properties of
system. For example, the final state of an ion-atom ioniza
process should correspond to a boundary condition w
three outgoing waves, while two incoming and one outgo
wave would be a proper boundary condition for the fin
state of a capture to the continuum process. TheC3 function
has been widely used to calculate transition matrices
differential cross sections of atomic ionization by electr
and ion impact.

The function CC3 is physically aceptable in the
asymptotic region@19#. However, for finite distances, cou
pling between two-body motion and the third particle mu
be relevant. This means that we should look for other dec
positions of the operatorD, alternative to that given by Eqs
~12! and ~13!. This can be done in infinite ways. Therefor
rather than propose a decomposition of the operator and
look for solutions, we will assume a definite shape for t
wave function and then derive the proper decomposition
D. First, we should point out that there are different mas
included inD0 andD1 that introduce a particular asymmet
that results in an important problem at the moment of p
posing solutions in a general case. Assumingm1 ,m2@m3,
we deal with continuum states from an ionization process
atomic systems by heavy particles, where the particle lab
m3 represents the electron. This allows us to neglect the
terms of Eq.~10! that contain the heavy massesm1 and
m2. Thus the expression forD1 reduces to

D15
1

m3
Fa21

]2

]j1]j2
1a22

]2

]j1]h2
1a11

]2

]h1]j2

1a12
]2

]h1]h2
G ,

where we have defined

a66[a66~j1 ,h1 ,j2 ,h2 ,j3 ,h3!5~ r̂236 k̂23!•~ r̂136 k̂13!.

On this basis, the simplest generalization to Eq.~14! is

C5w~j1 ,h1 ,j2 ,h2!x~j3 ,h3!. ~19!

This ansatz introduces a coupling between the motion of
light particle relative to the two heavy ions.

The application of operatorD to the wave function~19!
gives

1

x
@A3

11A3
21V12#x1

1

w F (
j51

2

~Aj
11Aj

21Vj3!1D1Gw50,

where theAj
6 operators are defined by Eqs.~11!. We sepa-

rate this equation as
e-

-
e
n
h
g
l
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e

@A3
11A3

21V12#x50, ~20!

F (
j51

2

~Aj
11Aj

21Vj3!1D1Gw50. ~21!

This separation of the wave equation is an alternative to
given by Eqs.~12! and ~13!. It is also arbitrary because th
coefficientsa66 in D1 depend on the six parabolic variable
but guided by the physical assumptions, i.e., in the desc
tion of the dynamics of the heavy particles we neglect
influence of the light one. Equation~20! has as a solution a
two-body Coulomb wave function that can be outgoing
incoming according to the required asymptotic conditions

Now we consider Eq.~21!, which is a four-variable partia
differential equation. The operatorD1 depends onj3 and
h3 and thereforew would be parametrically dependent o
these two variables. To obtain a solution that couples
relative motion between the pairs of particles (1,3) a
(2,3) we should take into account in Eq.~21! the mixed
derivatives included inD1 at least in a suitable approximate
way.

We will look for solutions of this system that verify out
going asymptotic conditions. As in Eq.~15!, one way to
satisfy these requirements is to assume

w5w~j1 ,j2!. ~22!

Then Eq.~21! reduces to a two-variable equation

F (
j51

2

~Aj
11Vj3!1D1Gw50. ~23!

Equation ~23! still includes the dependence on the oth
parabolic coordinates in a parametric way. The evaluation
the functiona21 requires the expressions of Cartesian co
dinates in terms of the parabolic ones. This must be in
preted as a transformation in the six-dimensional phase s
from (r i j ,Ri j ,k i j ,K i j ) to (ji ,h i ,k13,k23) and shows that
a21 is a very involved algebraic function of the parabo
variables.

The solution of Eq.~23! is unknown. WhenD1 is ne-
glected, Eq.~23! separates in two independent equations a
its solution is a product of two single-variable confluent h
pergeometric functions. Even whenD1 is not neglected, Eq
~23! can be separated in a system of twocoupledsecond-
order differential equations. The best-known systems of
kind are associated with two-variable hypergeometric fu
tions@20#. However, the reduction of Eq.~23! to one of those
systems requires a particular choice ofa21 that should lead
to a solution with correct physical properties. We obse
thata21 contains the additive terms

a1
215

1

m3
F j1
j21h2

1
j2

j11h1
G ~24!

such thata215a1
211a2

21 . Then we are able to separa
Eq. ~23! as
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F (
j51

2

~Aj
11Vj3!1a1

21
]2

]j1]j2
Gw50, ~25!

a2
21

]2w

]j1]j2
50. ~26!

Equation~25! can be separated again into

Fj1
]2

]j1
2 1

m23

m3
j2

]2

]j1]j2
1~11 ik23j1!

]

]j1
1m23Z2Z3Gw50,

Fj2
]2

]j2
2 1

m13

m3
j1

]2

]j2]j1
1~11 ik13j2!

]

]j2
1m13Z1Z3Gw50.

~27!

Thus an outgoing analytical solution of Eq.~8! for one elec-
tron and two heavy ions whena2

21(]2w/]j1]j2) is ne-
glected can be given in terms of confluent hypergeome
functions as

C15Nw~j1 ,j2!x~j3! , ~28!

where

w~j1 ,j2!5F2~ ia23,ia13,1,2 ik23j1 ,2 ik13j2!, ~29!

x~j3!51F1~ ia12,1,2 ik12j3!. ~30!

That is to say, Eq.~29! is an exact solution of Eq.~27! and
N is a normalization constant. The functio
F2(a,a8,b,x,y) is a generalized confluent hypergeomet
defined by~see the Appendix!

F2~a,a8,b,x,y!5(
m,n

~a!m~a8!n
~b!m1n

xm

m!

yn

n!
. ~31!

In Sec. III we will prove thatC1 has correct physical prop
erties.

Even though Eq.~28! is an approximate solution of Eq
~8!, we see that it is possible to find solutions that couple
variables. This can be considered as a first step to solve
Schrödinger equation in a closed form through the use
generalized multiple-variable functions. Of course a co
plete coupling of the six variables$j i ,h i% should be ex-
pected in a general solution. There exists the possibility
the full equation~8! could be separated into a set of s
coupled differential equations. This system could have so
tions expressed as many-variable hypergeometric functi
However, the study of this topic is precluded by the po
knowledge of the mathematical properties of Lauricella fu
tions and their corresponding systems of differential eq
tions.

In addition to the wave function~29!, there exist other
approximate solutions, with the form of Eq.~19!, that can be
written in terms of generalized confluent hypergeome
functions~see the Appendix!
ic

e
he
f
-

at

-
s.
r
-
-

c

C5H N 1F1~ ia12,1,2 ik12j3!G1 , U k23j1k13j2
U,1

N 1F1~ ia12,1,2 ik12j3!G2 , Uk23j1k13j2
U.1,

~32!

where

G15S k23j1k13j2
D ia13F1S ia231 ia13,ia13,11 ia13,

k23j1
k13j2

2 ik23j1D , ~33!

G25S k23j1k13j2
D 2 ia23

F1S ia231 ia13,ia23,11 ia23,
k13j2
k23j1

2 ik13j2D , ~34!

andN is a normalization constant. All the features of the
wave functions will be analyzed elsewhere@21#.

There are eight different solutions to equations similar
Eq. ~28!. These are all the different ways to group the va
ables that lead to alternative asymptotic behavior. If we ta
the normalization constantN in such a way that we have
unit of outgoing flux, then the wave function~29! is written
as

C15N F2~ ia23,ia13,1,2 ik23j1 ,2 ik13j2!

31F1~ ia12,1,2 ik12j3!, ~35!

with

N5e~p/2! ~a121a131a23!G~12 ia12!G~12 ia132 ia23!. ~36!

We have obtained a set of approximate solutions to
Schrödinger equation for three charged particles under
condition that two of them are heavier than the other o
This solution should fulfill some physical properties in ord
to be eligible for the calculation of transition matrices. The
properties are analyzed in detail in the following section.

III. PROPERTIES OF THE WAVE FUNCTION

In this section we will perform a detailed analysis of th
properties of this two-center continuum wave function. Fir
we analyze the general properties and then we discuss
asymptotic behavior of the wave function.

A. General properties

According to the previous sections, the functionC1 con-
structed with the coupled variables~19! describes the motion
of Coulomb particles in generalized parabolic coordina
$j i% as is the case ofCC3, assuming, of course, the sam
asymptotic behavior, i.e., outgoing waves. In contrast
CC3, the wave functionC1 does not separate into a produ
of three two-body Coulomb continuum states, but decoup
the problem into a two-body Coulomb continuum state
the dynamic of the heavy particles and a function that co
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2814 55G. GASANEOet al.
lates the motion of the electron to them. An interesting res
can be obtained using the series expansion in terms of
coordinates@Eq. ~A6!#

C15N 1F1~ ia12,1,2 ik12j3!(
m

~21!m
~ ia13!m~ ia23!m
m! ~m!m~1!2m

3@k23j1#
m@k13j2#

m
1F1~ ia231m,112m,2 ik23j1!

31F1~ ia131m,112m,2 ik13j2!. ~37!

It can be seen from Eq.~37! that theCC3 is included as a
first order of this series expansion. Certainly, it is a con
quence of the two-center behavior ofC1. Thus, if the inter-
action between the two pairs of particles (1,3) and (2,3) d
not exist, the best representation is the product of the
independent one-center wave functions, as in theC3 case.
Now, to make a comparative analysis of this wave funct
we take the square module of Eq.~35!, which can be consid-
ered as a quantum-mechanical particle distribution. We
fine

ñ~a,j!5uC1u2

5ñ~a,0!uF2~ ia23,ia13,1,2 ik23j1 ,2 ik13j2!

31F1~ ia12,1,2 ik12j3!u2, ~38!

where we have included the constant of normalization gi
by Eq. ~36! to the unit of outgoing flux asñ(a,0)5uNu2,
which gives the density along the directionsk̂ i j . In these
directions a2

21(]2w/]j1]j2)50 and the above densit
agrees with the exact one. As we can see, the dependen
the particle distribution on the position vectorr i j is through
the variablesj5$j i , i51,2,3%, but it also depends on th
Sommerfeld parametersa5$a12,a23,a13% corresponding to
each interaction.

Thus the functionñ(a,j) describes the particle distribu
tion of the three-body problem through the approxima
solutionC1. Now, as stated before, the differences betwe
C3 and the solution~35! come from the functionF2. Then,
to see these differences we define a reduced particle d
butionn(a13,a23,j1 ,j2),

n~a13,a23,j1 ,j2!

5n~a13,a23,0!uF2~ ia23,ia13,1,2 ik23j1 ,2 ik13j2!u2,

~39!

where

n~a13,a23,0!5uep[ ~a131a23!/2]G~12a132a23!u2

5
2p~a131a23!

12e22p~a131a23!
. ~40!

We may write a particle distribution associated with t
dynamics of the electron in the potential of particles 1 a
2 as described by our approximate solution of Eq.~8!. The
functionn(a13,a23,0) in Eq.~40! gives us the density alon
the directionsk̂23• r̂2350 andk̂13• r̂1350.

The first distinctive characteristic betweenCC3 andC1 is
related to the normalization factor, that is through the p
lt
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ticle distributionn(a13,a23,0) andnC3(a13,a23,0). As we
can see from Eqs.~17! and ~40!

nC3~a13,a23,0!5N2N35
4p2a13a23

~e2pa1321!~e2pa2321!
.

~41!

the functional form of this equation is very different. In fac
n(a13,a23,0) presents the characteristics of the two-cen
function, that is, the density is not separable as the produc
two coefficients as in the case of Eq.~41!.

Since in the spectra of the electrons emitted in bare i
atom collisions the normalization factorñ(a,0) gives rise to
the forward cusps known as soft electron~SE! and electron
capture to the continuum~ECC! peaks in the double differ-
ential cross sections, as a function of the electron veloc
the differences betweenn(a13,a23,0) and nC3(a13,a23,0)
become important@22–24#. The principal shortcoming pre
sented byñC3(a,0) is that it describes the ECC and the so
electron as two independent structures@25#; however, only
for large relatives velocities between the projectile and tar
can this assumption be considered correct. On the o
hand,ñ(a,0), given by Eq.~38!, may give a better descrip
tion of these structures due to the two-center form introdu
by Eq. ~40!. The ECC peak is located at a velocity of th
electron relative to the projectile that is equal to zero and
SE peak appears at a velocity equal to zero relative to
target. These peaks are due to the diverging number of s
available at the threshold of the projectile and the target c
tinuum and their asymmetry results from the residual tw
center effect. Even though the principal features of asymm
try of the soft electron and ECC peaks are due to
behavior of the wave function for small relative velocitie
the two-center particle densityñ(a,0) can take an importan
role in its description because it could be interpreted as a
function for a two-center wave function@26#. Furthermore, it
is possible thatñ(a,0) also improves the description of th
collision process in the zone between the target and pro
tile, in the velocity space, because Eq.~40! is larger than
ñC3(a,0) in this region.
In Fig. 2 we show an example of the particle distributio

given by Eq.~39! in the configuration space where we ha

FIG. 2. Reduced particle distributionn(a13,a23,r12,R12)/

n(a,0) as a function of ther23 coordinate fork235(1 a.u.!x̂,
k135(1 a.u.!( x̂1ŷ), andr1252~6 a.u.!x̂.
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set the origin at r2350. The figure shows
n(a13,a23,r12,R12)/n(a,0) for a fixed distance between th
heavy particles. Herer 1256 a.u. along thex coordinate and

k235 k1351 a.u., wherek̂23 is antiparallel to the relative
position vectorr12. The unit vectork̂13 forms an angle of

p/4 with the k̂23 direction, which defines the value o
k1251.41 a.u. The charge of the particles areZ15 Z251
andZ3521.

In Fig. 3 we show a representation o
nC3(a13,a23,r12,R12)/nC3(a,0) for the same conditions
Evident in both distributions are the confluent hypergeom
ric fins along the directions defined by the conditio

k̂23• r̂23521 andk̂13• r̂1351. In other directions,nC3 shows
the simple superposition of the hyperbolically shaped wa
associated with both one-variable hypergeometric functi
without any correlation between them. Meanwhile,
n(a13,a23,r12,R12) the fins are connected through the coo
dinate space, showing that the relative motions are co
lated. We observe that a two-center symmetry domina
over the hyperbolic one in the region where the interacti
are competitive. Furthermore, then distribution is enhanced
relatively tonC3 in the region between the heavy particle
i.e., the saddle between the Coulomb potentials. This sh
that the wave function accounts for two-center effects.
addition, then distribution exhibits a shape similar tonC3 for
large values ofr 23. This indicates that the correspondin
wave functions have the same correct asymptotic behav
These general features of the particle distributions rem
similar for others set of values$R12,k23,k13,Z1 ,Z2%. We
should note thatn(a13,a23,r12,R12) is exact along the di-
rections ofk13 andk23 since the functionC1 is a solution of
the wave equation in this case.

When the particle densities for the two-body Coulom
problems are described, the mentioned fins become a un
maximum along one particular direction, the direction of t
relative momentum between the particles. For this case
maximum could be associated with a well-known optical
fect: the glory or the rainbow caustics depending of the s
of the intervening charges. When these charges are take
for example, our 2 and 3 particles, then we are dealing w
the glory effect@26#. Thus, even when this phenomenon

FIG. 3. Similar to Fig. 2, but fornC3(a13,a23,r12,R12)/
nC3(a,0).
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unknown for the three-body Coulomb problem we may thi
that the maxima result for an effect similar to that occurri
in the two-body problem.

Now we will discuss several limiting cases of physic
interest. The wave function gives a description equivalen
the C3 approach for the relative motion of the heavy pa
ticles. However, it is well known that the normalization fa
tor corresponding to the projectile-target wave function lea
to an exponential decrease in the cross sections for la
values of the corresponding Bohr parameter attained ei
for small relative momentak12 or large Z1. This can be
avoided through a suitable modification of the Born para
eter that appears in the normalization factorN3 and has been
discussed elsewhere@13#.

The limit for soft electron emission results when the mo
ule of the asymptotic momentumk23 becomes small. In this
case the wave function is expressed by

C15N 1F1~ ia12,1,2 ik12j3!(
m

1

~Z2Z3!
m

~ ia13!m
m! ~m!m

3@k23j1#
mJ2m~22iAZ2Z3j1!

31F1~ ia131m,112m,2 ik13j2!, ~42!

which has a significative different functional form whe
compared with the behavior ofC3 @27#. As we can see the
series~42! depends on the position and momentum of t
electron relative to the target and therefore includes a t
center effect in the description of the electron wave funct
near the ionization threshold.

In Fig. 4 the particle densityn(a13,a23,r12,R12)/
n(a,0) is shown fork2351022 a.u. andk1351 a.u. The
coordinates, angles, etc. are the same as those in Figs. 2
3. The three-body problem considered again is one form
by two charged heavy particles and one electron. It
clear from the figure that the density of electrons
dominated by the target-electron interaction still
nC3(a13,a23,r12,R12); see Fig. 5. The electrons are distri
uted around the target in a way similar to the two-body Co
lomb problem and an evident correlation still exists betwe
the different maxima of the distribution. The mentione
maxima have superposed oscillations, reminiscence of

FIG. 4. Reduced particle distributionn(a13,a23,r12,R12)/

n(a,0) with k2351022 ~a.u.!x̂. The other magnitudes are the sam
as in Fig. 2.
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2816 55G. GASANEOet al.
two-body Coulomb problem, just as in the case
nC3(a13,a23,r12,R12); see Fig. 5.

As we see, the dynamic of the electron is correlated e
for small relatives velocities, which is not the case of t
density given bynC3(a13,a23,r12,R12). Having in mind the
behavior of the electron in this field, we can suggest that
correlation shown byn(a13,a23,r12,R12) gives rise to the
enhancement presented by the DDCS all along the veloc
comprised between the ECC and the soft electron peaks

An equation similar to Eq.~42! could be written when
k13→0. The ECC peak asymmetry is associated with
wave function at this limit. The expression forCC3 function
in this region is easy to obtain and gives the continuat
through the threshold predicted by the two-body Coulom
problem. Nevertheless, our wave function gives a very d
ferent description since it leaves the electron correlated to
target still in the casek1350.

For small values of the total energyE the form of the
wave function is

C15C(
m

1

~Z1Z3!
m

~21!m

~Z2Z3!
m

~ ia23!m
m! ~m!m

3J2m~22iAZ2Z3j1!J2m~22iAZ1Z3j2!

3J0~22iAZ1Z2j3!. ~43!

The behavior of the wave function when all the momenta
small, that is, the Wannier zone, could give us some inf
mation about the behavior of the transition matrix for a c
lision process in this energy range.

There are two important differences betweenC1 and
CC3. The functionC1 modifies the form of the Coulomb
factor and the asymmetry of the SE and ECC peaks. A qu
titative analysis through the evaluation of a TDCS or
DDCS with our wave function could show some details
these differences.

B. Asymptotic behavior

A critical point of every approximate solution for a three
body Coulomb problem is its asymptotic behavior. There
two kind of asymptotic regions that should be analyze
V0, all the interparticle distances tend to infinity in an arb
trary manner, i.e.,r i j→`, andV j , where the distance be

FIG. 5. Similar to Fig. 4, but for nC3(a13,a23,r12,R12)/
nC3(a,0).
f

n

e

es

e

n
b
f-
he

e
r-
-

n-

f

e
:

tween particlej and the center of mass of the pair (k,l ) tends
to infinity, i.e.,Rkl→`, while the distance between particle
k and l satisfies the constraintr kl /Rkl→0.

As was shown by Alt and Mukhamedzhanov@14#, the
Schrödinger equation can be solved in a closed form up
order 1/dj

2, wheredj stands for the interparticle distance
that go to infinity in each asymptotic regionV j . Further-
more, a test for every new approximate wave function is th
asymptotically, it should be a solution of the wave equat
in this sense.

Just for simplicity we confine the treatment to outgoi
waves and restrict the analysis only for Eq.~35! since similar
conclusions can be obtained with the other asymptotic c
ditions. As a first step we study the caseV0. The behavior of
the confluent hypergeometric1F1(a,b,z) for large values of
the argument is well known and the generalized conflu
hypergeometric functionF2(a,a8,b,x,y) is representable by
a convergent series of two variables, as we have show
Eqs.~31!–~37!. In the same way as for1F1(a,b,z), F2 has
an asymptotic representation in terms of generalized W
taker’s functions of two variables, see the Appendix. Th
are different representation ofF2 in term of Whittaker’s
functions depending on which variable,x or y, tends to in-
finity. If we use the expansion for the casex→`, y→`, and
y2x→` @Eq. ~A7!# and write it in terms of the coordinate
r i j , the asymptotic expansion forF2 outside of the nonsin-
gular region, i.e.,k̂ i j • r̂ i jÞ1, reads

F2;
ep~a131a23!

G~12 ia132 ia23!
e2 ia23lnk23j1e2 ia13lnk13j2

3H 11OS 1

k23j1
,

1

k13j2
D J

2
ep~a1322a1321!

G~ ia23!
ei ~a131a23!lnk23j12 ia13ln~k23j12k13j2!

3
eik23j1

k23j1
H 11OS 1

k23j1
,

1

k13j2
D J

2
ep~a1321!

G~ ia13!
ei ~a131a23!lnk13j22 ia23ln~k23j12k13j2!

3
eik13j2

k13j2
H 11OS 1

k23j1
,

1

k13j2
D J . ~44!

An inspection clearly shows that the leading term is

F2;
e~p/2!~a131a23!

G~12 ia132 ia23!
e2 ia23lnk23j1e2 ia13lnk13j2

1OS 1j1 , 1j2D . ~45!

Hence, taking in account the asymptotic behavior
1F1(a,b,z), Eq. ~31! reduces to

C1;
e~p/2!~a131a121a23!

G~12 ia12!G~12 ia132 ia23!

3Ne2 ia23lnk23j12 ia13lnk13j22 ia12lnk12j3, ~46!
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which has, in fact, exactly the same functional asympto
behavior as theC3 wave function apart from a normalizatio
constant. From Eq.~46! it is clear that we must take th
constantN as given by Eq.~36! in order to normalize the
wave function to an outgoing unit of flux.

We should note, as we said before, that the asympt
functional form of our wave functionC1 in this region is
equal toCC3. However, they have different normalizatio
factors: the first is a two-center factor, while the second is
superposition of two single-center factors. As we see,
may have different functions with the same asymptotic
havior and this can lead to different outgoing or incomi
units of flux. This can be considered as the starting poin
the search for normalization and the wave function, wh
take in account the three-center behavior. The main fea
of our wave function is the two-center representation for
dynamics of the electron as depending on the coordin
associated with particles 1 and 2. This kind of representa
leads to a normalization factor with the corresponding tw
center behavior.

The wave function~35! gives theRedmond asymptoti
behaviorwhen all the interparticle distances tend to infinit
In the same way as forC3, our wave function is an exac
solution up toO(1/r i j

2 ) of the total Schro¨dinger equation~8!.
We can now consider the behavior of the wave funct

C1 in the regionsV j . First, we should point out that neithe
CC3 nor C1 is an exact solution inV j in the sense men
tioned before because the neglected terms of the Hamilto
in each approximation are of order 1/dj . However these
terms can be considered as small corrections in each o
regionsV j and can be incorporated in the wave functio
through a modification of relative momenta of each pair
particles. Alt and Mukhamezdanov have studied the cas
theCC3 function @14# and Colavecchiaet al. devised a gen-
eral method to obtain modifications required for a corr
asymptotic behavior of the wave function inV j @28#.

We will briefly discuss the application of this method
the regionV1 , where the target and the electron~particles 2
and 3, respectively! are close to each other, while the proje
tile is far from them. The asymptotic behavior of Eq.~35!
when, for example,r23 is finite butr12 andr13 go to infinity,
corresponding to the region ofV1, can be carried out using
the asymptotic expansion of the hypergeometric funct
F2 given by Eq.~A9!, specialized to the present case. A fa
inspection clearly shows that the leading term in that exp
sion is

F2;
epa13

G~12 ia13!
e2 ia13lnk13j2

3F5S ia23,ia13,12 ia23,2 ik23j1 ,2
1

ik13j2
D .

~47!

Hence, taking again into account the asymptotic behavio
the 1F1(a,b,z), Eq. ~35! reduces to
c
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C1;N
ep~a121a13!

G~12 ia12!G~12 ia13!
e2 ia12lnk12j32 ia13lnk13j2

3F5S ia23,ia13,12 ia13,2 ik23j1 ,2
1

ik13j2
D ,

~48!

whereF5(a,a8,c,x,1/y) is the generalized confluent hype
geometric of Whittaker given in the Appendix. Since th
function is defined by a series convergent for small values
uxu and large values ofuyu, the partial derivative]F5 /]y is
proportional to 1/y2. This will allow us to properly include
the terms neglected in the Hamiltonian. Let us consider
leading orders ofC1 as a function of parabolic coordinate

C1}E~j3!E~j2! f ~j1,1/j2!, ~49!

whereE(j j )5exp(2iamnlnkmnjj) is an eikonal function and
f represents the leading orders of the functionF5,

f ~j1,1/j2!}F~j1!1G~j1!/j2 , ~50!

whereF andG are confluent hypergeometric functions
one variable and] f /]j2}1/j2

2. In this way we are consider
ing that the asymptotic representation in the variablesj2 and
j3 is mainly given by the eikonal functions, whilef intro-
duces only a small coupling betweenj1 and j2 . If we re-
place this ansatz in the Schro¨dinger equation and take int
account the leading orders of each function, we obtain:

1

m23r 23
Fj1 ]2f

]j1
1~12 ik23j1!

] f

]j1
1m23Z2Z3f G

1
1

m3
F a21

E~j2!

]E~j2!

]j2
G ] f

]j1
1
a21

m3

]2f

]j1]j2
50. ~51!

The term that includes the partial derivative of the eikon
E(j2) is of order 1/j2 and will be included as a small cor
rection of the relative momentak23. In this way we can
define

k238 5k232
a13

r 13

r̂132 k̂13

12 k̂13• r̂13
.

Now, the term that contains the mixed partial derivatives
the functionf can be written as

a21
]2f

]j1]j2
5a1

21
]2f

]j1]j2
1a2

21
]2f

]j1]j2
. ~52!

If we take into account thatf represents the asymptotic be
havior of the wave functionC1 , the first term of the right-
hand side of Eq.~52! is exactly considered, even in the re
gion V1 . However, in this region]2f /]j1]j2}j2

22 and
thereforea2

21(]2f /]j1]j2) will be included as a small cor
rection of order 1/j2. Then we obtain the equation forf ~up
to order 1/j2)

j1
]2f

]j1
1j2

]2f

]j1]j2
1~11g2 ik238 j1!

] f

]j1
1m23Z2Z3f50,

~53!
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2818 55G. GASANEOet al.
where

g5 lim
V1

r12
r 13
2 •S r12

r 13r 23
1
k̂13
r 23

1
k̂23
r 13

D .
It is clear that the solution of Eq.~53! is the leading order

of the function F5. We should remember that the two
variable functionF5 verifies a coupled system of two equ
tions. However, it is easy to see that the second equatio
of order greater than 1/j2

2 and can be neglected in this trea
ment. Therefore, we can obtain an exact solution inV1, in-
troducing small corrections in the functionC1 . This solution
will match also the solution inV0. In a similar way, we
obtain the asymptotic functions in regionsV2 andV3 . In
short, we have avoided the details of these calculations
writing down the final solution, exact up to order 1/dj

2 in all
asymptotic regions:

C18~r ,R!5N81F1~ ia tp8 ,1,2 ik128 j3!

3F2~ ia238 ,ia138 ,11g,2 ik238 j1 ,2 ik138 j2!,

~54!

where the primed momenta are defined as

k128 5k122
a23b12
r 23

r̂231 k̂23

11 k̂23• r̂23
1

a13a12
r 13

r̂132 k̂13

12 k̂13• r̂13
,

k138 5k132
a23

r 23

r̂231 k̂23

11 k̂23• r̂23
,

andamn8 5ZmZn /kmn8 , etc., whilek238 and g have been de-
fined above.

The wave function~35! is a generalization ofC1 obtained
in Sec. II. The coordinate-dependent momenta modify
ymptotically the wave function in such way that the obtain
function fulfills the correct asymptotic conditions in bo
V0 andV j .

CONCLUSION

In this work we have obtained a class of approxim
wave functions for the three-body Coulomb problem in t
case of a system composed of one light and two heavy
ticles, which can be interpreted as a state resulting from
ion-atom ionization collision. These functions can be writt
in terms of hypergeometric functions of two variables. W
have shown that they couple the electron-target and elect
projectile interactions, but treating them on an equal footi
We would like to point out that the main features of the
wave functions correctly include the Coulomb asympto
conditions.

The functions obtained here can be considered a g
alternative to the functions previously used in the calculat
of transition matrices and DDCSs. For example, these fu
tions can replace theCC3 function in a CDW or a multiple-
scattering approach@9#. Numerical examples show thatC1
has a two-center symmetry in the inner region, i.e., when
distances between the three particles are comparable.
is
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seems to be a remarkable improvement overCC3, which
shows the asymptotic hyperbolic symmetry even in the c
densation region. However, as it has been pointed out bef
a suitable change in the normalization factorN12 should be
seriously considered to avoid the exponential decrease in
cross section when the projectile charge is large or the
pact energy is small@29#. Such modifications have been su
cessfully used in a multiple-scattering approximation
(e,2e) processes@12#, but, to the best of our knowledge, th
application of this method in ion-atom collisions has n
been investigated yet. Another alternative would be an
pact parameter approximation where the hypergeome
function of the heavy pair is replaced by an eikonal phase
C1 @1#.

The computation of these transition matrices with the g
eral functionC18 can be an involved task since each calcu
tion of the functionF2 would imply the evaluation of a
series of products of one-variables hypergeometric functi
with coordinate-dependent parameters. Preliminary res
recently obtained show that the introduction of coordina
dependent momenta in the wave function is very expens
in terms of computational time@15#. As a first step we con-
sider that the functionC1, instead of the functionC18 would
be a suitable election for the development of new scatte
theories in ion-atom processes.

Finally, we would like to remark that the properties
systems of coupled partial differential equations involvi
three or more variables are poorly known. This seriou
restricts the study of possible separations of the wave eq
tions and a complete investigation of those systems is nee
in order to improve the results presented in this work. F
ther research is being carried out in order to obtain an a
lytical expression of the transition matrix in some adequ
approximation.
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APPENDIX

In this appendix we summarize the basic definitions of
hypergeometric function introduced in Sec. III. The princip
formulas can be found in the works of Appell and Kampe´ de
Feriet @20# and Erdelyi@30,31#.

The generalized confluent hypergeometric functi
F2(a,a8,b,x,y) is defined by the double series

F2~a,a8,b,x,y!5(
m,n

~a!m~a8!n
m!n! ~b!m1n

xmyn, ~A1!

which converges for every finite value ofx and y; the pa-
rametersa anda8 are arbitrary andbÞ0,21,22, . . . . If a
or a8 is a negative integer number, the functio
F2(a,a8,b,x,y) reduces to a polynomial in the variablex
(y) of degreeuau ~degreeua8u). If both a anda8 are negative
integer numbers then the function represents a polynomia
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x and y of degreeuau and ua8u. For general values of the
variables and parameters, the function can be define
terms of contour integrals@30#.

The function~A1! satisfies the pair of differential equa
tions

Fx ]2

]x2
1y

]2

]x]y
1~b2x!

]

]x
2aGF250,

~A2!

Fy ]2

]y2
1x

]2

]x]y
1~b2y!

]

]y
2a8GF250.

This set has, in general, three linearly independent solut
that can be represented in terms of the generalized hyper
metric functions

z05F2~a,a8,b,x,y!, ~A3!

z15xa82b11y2a8F1S a1a82b11,a8,a82b12,
x

y
,xD ,

uxu,uyu ~A4!

z25x2aya2b11F1S a1a82b11,a,a2b12,
y

x
,yD ,

uyu,uxu, ~A5!

whereF1(a,b,c,x,y) is a generalized confluent hyperge
metric function of two variables defined by@32#

F1~a,b,c,x,y!5(
m,n

~a!m1n~b!m
m!n! ~c!m1n

xmyn, uxu,1.

Thus a general solution of the system can be write as

z5Az01Bz11Cz2 ,

whereA, B, andC are arbitrary constants.
In addition to the functions defined in Eqs.~A3!–~A5!

there is another solution of Eq.~A2! that is expressible by
convergent hypergeometric series of two variables@30#, but
this can be written in terms of the functions already defin

The relations

]

]x
F2~a,a8,b,x,y!5

a

b
F2~a11,a8,b11,x,y!,

]

]y
F2~a,a8,b,x,y!5

a8

b
F2~a,a811,b11,x,y!

show that the derivatives of theF2 function are expressible
in terms of the function itself in a way similar to the confl
ent hypergeometric1F1(a,b,z). One of the multiple series
expansions forF2 is
in

ns
o-

.

F2~a,a8,b,x,y!

5(
r

~21!r
~a!r~a8!r

r ! ~b1r21!r~b!2r
xryr

3 1F1~a1r ,b12r ,x! 1F1~a81r ,b12r ,y!.
~A6!

The asymptotic behavior ofF2(a,a8,b,x,y) when uxu→`,
uyu→`, anduy2xu→` can be written as

z05
eip~a1a8!G~b!

G~12a2a8!
z41

eip~a12a82b!G~b!

G~a!
z5

1
eip~a82b!G~b!

G~a8!
z6 , ~A7!

with

z45x2ay2a8F4S a1a82b11,a,a8,2
1

x
,2

1

yD ,
z55~2x!a1a82b~y2x!2a8ex

3F4S 12a,b2a2a8,a8,
1

x
,

1

x2yD ,
z65~x2y!2a~2y!a1a82bey

3F4S 12a8,a,b2a2a8,
1

y2x
,
1

yD ,
whereF4 is one of the generalized Whittaker functions a
is defined by the series

F4S c,a,a8,2
1

x
,2

1

yD5(
m,n

~c!m1n~a!m~a8!n
m!n! ~2x!m~2y!n

.

~A8!

The expansion of Eq.~A7! whenx, y, andx2y go to infinity
leads to the asymptotic expression~44! of Sec. IV B since
the functionF4 can be considered a constant in this limitin
case. On the other hand, in the case in which one of
variables is small~for example,x) and the other tends to
infinity ~the y variable, for example! the asymptotic expan
sion of z0 is

F25
eip~a821!

G~a8!
~x2y!2a~2y!a1a821

3eyF4S 12a8,a,12a2a8,
1

y2x
,
1

yD
1

eipa8

G~12a8!
y2a8F5S a,a8,12a8,x,

1

yD , ~A9!

with F5 given by the series

F5S a,a8,c,x,
1

yD5(
m,n

~a!m~a8!n
~c!m2n

xm

m!

y2n

n!
, ~A10!

which is another Whittaker function. Expanding the functi
F5 up to first order in 1/y, we obtain Eq.~50!.
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