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Hydrogen molecular ion in a strong parallel magnetic field

Yu. P. Kravchenko and M. A. Liberman
Department of Physics, Uppsala University, Box 530, S–751 21, Uppsala, Sweden

and P. Kapitsa Institute for Physical Problems, Russian Academy of Sciences, 117334, Moscow, Russia
~Received 1 August 1996; revised manuscript received 11 November 1996!

The hydrogen molecular ion in a strong external magnetic field parallel to the molecular axis is investigated
using a semianalytical method based on the presentation of the wave function in the form of a double power
series in nonseparable space variables. The solution is determined from the requirement for the coefficients of
the series to obey linear relations imposed by the Schro¨dinger equation. For the ground state, the method
provides accuracy 1028 hartree and higher for magnetic fields from 0 up to 104 T; the applicability of the
technique to excited states is limited to lower field strengths.@S1050-2947~97!01604-1#

PACS number~s!: 31.10.1z, 32.60.1i
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I. INTRODUCTION

The existence of strong magnetic fields discovered on
sars and white dwarf stars has given rise to a signific
interest in the behavior of atoms and molecules in the p
ence of such fields@1#. Particular attention is drawn to su
perstrong magnetic fields existing on the surface of neu
stars ('108 T! and to the region of fields which exist in th
atmospheres of white dwarfs ('1022104 T!.

The presence of a strong magnetic field produces ap
ciable effects on the electronic structure of atoms, and
chemical bonds in molecules. Already the simplest molec
the hydrogen molecular ion H2

1, allows us to observe som
of these effects, such as the contraction of the bond len
and the growth of dissociation energy and vibrational en
gies with the increase of the field strength. The theoret
study of H2

1 is facilitated by the absence of exchange a
correlation effects, because we deal with a single elec
moving in the field of two nuclei. As a consequence, t
simple molecule has attracted a great deal of attention an
the subject of many investigations published in the literatu

The problem of the hydrogen molecular ion in the a
sence of external fields was basically solved already in@2#,
and subsequent work on the subject resulted in publish
extensive exact tables of energy levels@3–5#. Solution of the
field-free problem is greatly facilitated by the fact that t
two-center Schro¨dinger equation is separable in spheroid
coordinates. This is not a surprising fact, because in the c
sical limit the motion of a charged particle in the field of tw
Coulomb centers can be solved by separation of variab
The separability of the Schro¨dinger equation makes it pos
sible to obtain exact solutions for H2

1 and for similar sys-
tems, of which the most physically interesting is t
HeH21 ion @6#.

The presence of an external magnetic field makes the
ation much more complicated. If the field is oriented at
arbitrary angle to the molecular axis, none of the variab
can be separated, and one deals with a complete th
dimensional problem. In the present work we consider o
the situation when the magnetic field is parallel to the m
lecular axis. Under this condition it is possible to separate
dependence of the wave function on the angular variablew,
which is described by the usual multiplier exp(imw), and
551050-2947/97/55~4!/2701~10!/$10.00
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obtain a nonseparable differential equation in two remain
space variables.

If the applied magnetic field is strong enough, the pro
lem can be treated in the adiabatic approximation. In t
approximation, the wave function is presented as the prod
of a Landau orbital by an unknownz-dependent function.
The latter may be found either by a variational method@7# or
by a fully numerical procedure like finite differences in@8# or
numerical integration in@9#. Accuracy of this method can b
substantially improved by taking a combination of seve
Landau orbitals, each multiplied by a separate unkno
function of z, and solving the resulting set of Hartree-Foc
like differential equations for these functions@10#. The adia-
batic approximation works best when the strength of
magnetic field is much larger than 1 a.u. and provides l
accuracy for fields below 105 T.

To achieve good accuracy in low fields, one has to ens
the correct behavior of the wave function in the field-fr
limit, which was done in variational calculations with simp
trial functions reported in@11,12#. The trial function used in
@12# included a Gaussian-like term, and was suitable for
scription of the high-field region as well. Calculations with
single trial function were also performed for the nonpara
field orientation@13#.

Significant attention was devoted to the traditional fin
basis set methods, which were used to describe both par
@14,15# and nonparallel configurations@16–18#. The basis set
used in @15,18# is particularly promising because it is no
restricted to the parallel configuration like the basis set
@14#, or to the two-center problem as the set used in@16,17#.

Other methods of solution include the finite-eleme
method@19# and Monte Carlo calculations@20#. The method
used in@21# is based on the assumption that in spheroi
coordinates variables can be approximately separated
analogy to the field-free case. The solution is presented
product of two functions, and coupled differential equatio
for these functions are solved numerically to obtain appro
mate energy eigenvalues.

In the present work, we demonstrate that the nonsepar
equation in two variables describing the ion in the appl
parallel magnetic field can be solved to a very high degree
accuracy by a method very similar to the technique used
the solution of the field-free problem: we present the solut
2701 © 1997 The American Physical Society
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2702 55YU P. KRAVCHENKO AND M. A. LIBERMAN
in the form of a double power series, obtain linear relatio
for the coefficients of the series, and require the result
system of linear equations to have a nonsingular solut
This technique allows us to obtain nonrelativistic energy
genvalues in the Born-Oppenheimer approximation with p
cision 1028 hartree and higher, depending on the size of
series expansion, the quantum state, and the magnetic
strength. The method is best suited for fields below 104 T, its
application for the high-field regime is hindered by the slo
convergence of the solution. We present basic molecular
rameters of the states 1sg and 1pu , calculated with preci-
sion exceeding the accuracy of corresponding results p
lished in the literature so far.

The paper is organized as follows. In Sec. II, we der
the basic formulas, obtain a system of linear equations
coefficients of the double series, and discuss the techniqu
solution. In Sec. III, we investigate the convergence of so
tion and limits of its applicability. Calculated results an
discussion of the method are presented in Sec. IV.

II. METHOD

The Schro¨dinger equation for the one-electron diatom
molecule in an external magnetic field is

1

2me
S 2 i\“1

e

c
AD 2C2e2S Zar a 1

Zb
r b

DC5EC, ~1!

where A is the vector potential,Za and Zb are nuclear
charges,me is the electron mass, andr a and r b are the dis-
tances from the two nuclei. We consider homogeneous m
netic fieldH directed along the molecular axis and introdu
the spheroidal coordinates

j5
r a1r b
R

, h5
r a2r b
R

, w, ~2!

R being the distance between the nuclei. We choose
gauge of the vector potential in the form

A5~0,0,12Hr'!, ~3!

where r'5(R/2)A(j221)(12h2) is the distance from the
molecular axis. Since divA50, vectorA commutes with“,
and the Schro¨dinger equation takes the form

2
\2

2me
DC2

ie\

2mec
H

]C

]w
1

e2

2mec
2

H2

4
r'
2C

2e2S Zar a 1
Zb
r b

DC5EC. ~4!

We introduce the atomic system of units; that is, we cho
the Bohr radiusa05\2/mee

255.331029 cm as the unit of
length, 1 hartreeE052 Ry5mee

4/\2527.2 eV as the unit
of energy, and the valueH05me

2e3c/\352.353109 G as the
unit of magnetic intensity; the magnetic field is measured
g5H/H0. Eq. ~4! becomes

DC1 ig
]C

]w
2

g2

4
r'
2C12S Zar a 1

Zb
r b

1EDC50. ~5!
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After performing differentiation in the spheroidal coord
nates, we obtain the following equation:

~j221!Cjj1~12h2!Chh12jCj22hCh

1
~j22h2!

~j221!~12h2!
Cww1

igR2

4
~j22h2!Cw

2
g2R4

64
~j22h2!~j221!~12h2!C

1Z1jC1Z2hC1
R2E

2
~j22h2!C50. ~6!

Here Z15R(Za1Zb), Z25R(Zb2Za), and subscriptsj,
h, andw denote partial derivatives.

The dependence of the wave function onw can be sepa-
rated by introducing a new functionf (j,h) according to

C~j,h,w!5~j221! umu/2~12h2! umu/2eimw f ~j,h!, ~7!

wherem is the magnetic quantum number. The equation
f (j,h) is

~j221! f jj1~12h2! f hh12~ umu11!~j f j2h f h!

1Z1j f1Z2h f1
R2

2 SE2
gm

2 D ~j22h2! f

2
g2R4

64
~j22h2!~j221!~12h2! f50. ~8!

We introduce the binding energy defined
Eb5(11m1umu)g/22E and separate the asymptote in t
magnetic field by introducing a functionc(j,h):

f ~j,h!5expF2
gR2

16
~j221!~12h2!Gc~j,h!. ~9!

The functionc satisfies the following equation:

~j221!cjj1~12h2!chh12~ umu11!~jcj2hch!

1Z1jc1Z2hc2p2j2c1p2h2c

2G~j221!~12h2!~jcj2hch!50, ~10!

whereG5gR2/4 andp25R2Eb /2. In the absence of mag
netic field the behavior of the wave function at largej can be
accounted for by the substitution@3#

c~j,h!5~j11!se2pjx~j,h!, ~11!

where

s5
Z1

2p
212umu. ~12!

If h561 and j→`, the net potential of the two nucle
becomes indistinguishable from that of a helium nucle
placed atj51, h50, and the wave function of H2

1 must
behave like the wave function of a singly ionized heliu
atom. Therefore, it must decay exponentially likee2pj @22#.
Although the exact preexponential factor for He1 will be
different from that in Eq.~11!, we nevertheless assume th
(j11)s is a good choice, because it provides rapid conv
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55 2703HYDROGEN MOLECULAR ION IN A STRONG PARALLEL . . .
gence of solution in the field-free case. Substitutingc in the
form of Eq.~11! into Eq.~10!, we obtain the following equa
tion for x:

~j221!xjj1~12h2!xhh

12@2pj21~s1umu11!j2s1p#xj

22~ umu11!hxh1s
~s12umu!j2s

j11
x

1@p2h21Z2h1~2p11!s2p2#x

2G~j221!~12h2!~jxj2hxh!

1Gj~j21!~12h2!~2s1p1pj!x50.

~13!

For the further analysis it is convenient to introduce an in
pendent variable

t5
j21

j11
. ~14!

Equation~13! becomes

t~12t !2x tt1~12h2!xhh1t2~122s2umu!x t

12t~s22p21!x t1~11umu!x t

22~ umu11!hxh1s~s1umu!tx1p2h2x

1Z2hx1@~2p111umu!s2p2#x

22Gt
11t

12t
~12h2!x t1

4Gth

~12t !2
~12h2!xh

1
2Gt~11t !

~12t !3
~12h2!~2p2s1st !x50. ~15!

We look for the solution of Eq.~15! in the form

x~ t,h!5(
i50

`

(
j50

`

ai , j t
ih j . ~16!

Substituting series~16! into Eq. ~15!, we obtain the follow-
ing relation for coefficientsai , j :

Fi11,jai11,j1 (
k523

0

(
l522,21,0,2

Fi1k, j1 lai1k, j1 l

1Fi24,jai24,j50, ~17!

which is formally valid for all i and j if we assume that
ak,l50 if k,0 or l,0. The coefficientsF are

Fi11,j5~ i11!~ i1umu11!, ~18!

Fi , j225p212G i ,

Fi , j215Z2 ,

Fi , j5 i ~25i12s24p23umu!2 j ~ j12umu11!

1~2p111umu!s2p222G i ,
-

Fi , j125~ j11!~ j12!,

Fi21,j22523p212G~2 i22 j1s22p15!,

Fi21,j21523Z2 ,

Fi21,j5~ i21!~10i28s112p12umu210!

13 j ~ j12umu11!1~s26p22umu23!s

13p212G~2 i22 j1s22p15!,

Fi21,j12523~ j11!~ j12!,

Fi22,j2253p212G~2 i12 j22p22!,

Fi22,j2153Z2 ,

Fi22,j5~ i22!~210i112s212p12umu120!

23 j ~ j12umu11!13~2s12p11!s

23p212G~ i22 j12p22!,

Fi22,j1253~ j11!~ j12!,

Fi23,j2252p212G~ i2s23!,

Fi23,j2152Z2 ,

Fi23,j5~ i23!~5i28s14p23umu215!

1 j ~ j12umu11!1~3s22p12umu21!s

1p212G~2 i1s13!,

Fi23,j1252~ j11!~ j12!,

Fi24,j5~ i24!~2 i12s1umu14!2s~s1umu!.

The recurrent relation~17! may be considered as an infi
nite set of homogeneous linear equations, and for Eq.~15! to
have a solution the determinant of the coefficient mat
must be zero. In practice, series~16! has to be truncated to
finite number of terms. The most natural way to make suc
truncation is to choose certain cutoff indicesI andJ and to
set all ai , j for i.I or j.J to zero. Instead of the exac
functionx we now deal with a truncated expansion

x I ,J~ t,h!5(
i50

I

(
j50

J

ai , j t
ih j . ~19!

The coefficientsai , j are demanded to satisfy Eq.~17!. The
resulting set of homogeneous equations can be written in
form

FI ,J~p!A50, ~20!

whereA is a vector of lengthL5(I11)(J11) with ele-
ments given by

Ai1 j ~ I11!5ai , j , i50, . . .I , j50, . . . ,J, ~21!

andFI ,J(p) is anL3L band matrix, whose nonzero elemen
are given by coefficientsFi1k, j1 l from Eq. ~18!,
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2704 55YU P. KRAVCHENKO AND M. A. LIBERMAN
Fi1 j ~ I11!,i1k1~ j1 l !~ I11!
I ,J 5Fi1k, j1 l ,

0< i1k<I , 0< j1 l<J. ~22!

Solution of the problem in the takenI ,J approximation is
given by roots of the equation

det@FI ,J~p!#50. ~23!

We shall denote corresponding approximate values ofEb as
(Eb) I ,J . The principal question is the convergence of tru
cated solutions to the actual solution as the indicesI andJ go
to infinity. This issue is addressed in Sec. III.

III. CONVERGENCE

As in the case of the field-free problem, we do not hav
rigorous proof of the empirical fact that roots of Eq.~23!
converge as indicesI andJ increase. The only way to justify
this statement is to perform numerical analysis of conv
-

a

r-

gence and to demonstrate that the numerical solution d
converge whenI and J independently increase. We pe
formed such an analysis for the hydrogen atom in the m
netic field, for the field-free H2

1 ion, and for H2
1 in an ap-

plied magnetic field, and compared results obtained for
two former problems with the best benchmarks available
date @4,22#. To obtain the numerical solution of equatio
~23!, we used a computer code based on the NAG~Numeri-
cal Algorithms Group! double precision library subroutin
F01LBE, which performsLU decomposition of band matrices

If we put the charge of one of the nuclei to zero~say,
Za51 andZb50), we arrive at the problem of the hydroge
atom in an external magnetic field. Since the Schro¨dinger
equation for this system in the nonrelativistic, infinite nucle
mass approximation has been recently exactly solved@22#,
and extensive tables of energy levels with precision up
10212 hartree are now available, we can use the hydro
data for the preliminary check of our computational meth
and its rate of convergence.
rela-
s
f

148
881
439
420
509
935
609
729
752
758

201
867
189
552
506
3
8

366
1

TABLE I. Convergence of solution for the hydrogen atom in an external magnetic field in the non
tivistic, infinite nuclear mass approximation . Ground state values of (Eb) I ,J are calculated for different set
of I andJ and for three fields strengthg50.01, 0.1, and 1.0 a.u. The parameterR is 2.0 a.u. Exact values o
Eb are taken from Ref.@22#.

I J510 J514 J520 J530

g50.01 ~exact value is 0.504 975 002 759610212)
10 0.504 843 164 768 0.504 843 195 147 0.504 843 195 148 0.504 843 195
20 0.504 969 383 395 0.504 969 413 880 0.504 969 413 881 0.504 969 413
30 0.504 974 574 005 0.504 974 604 438 0.504 974 604 439 0.504 974 604
40 0.504 974 931 984 0.504 974 962 419 0.504 974 962 420 0.504 974 962
50 0.504 974 967 068 0.504 974 997 508 0.504 974 997 509 0.504 974 997
60 0.504 974 971 492 0.504 975 001 934 0.504 975 001 935 0.504 975 001
70 0.504 974 972 166 0.504 975 002 608 0.504 975 002 609 0.504 975 002
80 0.504 974 972 285 0.504 975 002 728 0.504 975 002 729 0.504 975 002
90 0.504 974 972 309 0.504 975 002 751 0.504 975 002 752 0.504 975 002
100 0.504 974 972 314 0.504 975 002 757 0.504 975 002 758 0.504 975 002

g50.1 ~exact value is 0.547 526 480 401610212)
10 0.545 877 600 859 0.545 877 497 140 0.545 877 497 200 0.545 877 497
20 0.547 401 018 482 0.547 401 261 422 0.547 401 260 867 0.547 401 260
30 0.547 510 274 894 0.547 510 810 989 0.547 510 812 189 0.547 510 812
40 0.547 523 536 342 0.547 523 855 071 0.547 523 861 551 0.547 523 861
50 0.547 525 979 430 0.547 525 940 412 0.547 525 949 508 0.547 525 949
60 0.547 526 683 78 0.547 526 350 52 0.547 526 356 64 0.547 526 356 6
70 0.547 526 977 44 0.547 526 449 5 0.547 526 448 3 0.547 526 448 2
80 0.547 527 125 8 0.547 526 481 9 0.547 526 471 0.547 526 471
90 0.547 527 206 0.547 526 497 0.547 526 478 0.547 526 477
100 0.547 527 251 0.547 526 506 0.547 526 49 0.547 526 49

g51.0 ~exact value is 0.831 168 896 733610212)
10 0.823 315 789 589 0.823 886 586 134 0.823 877 944 836 0.823 877 944
20 0.827 225 148 646 0.830 547 700 02 0.830 880 754 783 0.830 881 495 0
30 0.838 021 927 3 0.828 904 472 9 0.831 157 560 0.831 153 652 9
40 0.857 749 50 0.829 056 78 0.831 416 83 0.831 167 9
50 0.875 854 19 0.836 392 3 0.832 483 0.831 169
60 0.889 605 03 0.850 22 0.834 461 0.831 172
70 0.899 753 5 0.866 29 0.836 1 0.831
80 0.907 26 0.881 4 0.834 5 0.832
90 0.912 63 0.894 0.825 0.82
100 0.916 17 0.904 Unstable Unstable
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Table I gives values of the ground-state binding energy
the hydrogen atom in a magnetic field for three different fi
strengths,g50.01, 0.1, and 1.0 a.u., computed at a fix
‘‘internuclear’’ distanceR52.0 ~the second nucleus is ab
sent! for various combinations ofI and J. As we see, for
g50.01 the calculated values steadily converge to the e
solution, and forI5100 andJ520 our result differs from
the true binding energy by only 10212 hartree; forI530 and
J510 the precision is better than 1026 hartree. Convergenc
in J is very rapid; results forJ514 and 20 differ only in the
12th significant digit, and results forJ520 and 30 are,
within our accuracy, identical. Convergence inI is asymp-
totically slower than inJ, as demonstrated by the lowe
curve on Fig. 1, which shows the difference between pair
Eb computed withI which differ from one another by ten
and with the sameJ510. However, alreadyI520 gives five
correct decimal digits of the result.

The situation is not as good forg50.1. The convergence
in J is appreciably slower than forg50.01, and results for
f

ct

f

J520 and 30 still differ in the 12th significant digit. Con
vergence inI is also much less rapid, as demonstrated by
middle curve on Fig. 1, and five correct digits are obtain
only at I540. In addition, for largeI the computational al-
gorithm becomes numerically unstable and rounding err
reduce the number of reliable digits which can be obtain
using the present method. As a result, the maximum ac
racy is achieved at a certain finite value ofI , which is deter-
mined by the balance between the rate of convergence
numerical instabilities. Forg50.1, we can obtain only eigh
decimal digits atI590 andJ>20. If we increase the field up
to g51.0, the method becomes so unstable that the bes
sult achieved atI550 andJ530 has only six correct digits
for higher fields, the instability renders the method prac
cally useless.

The convergence properties of the magnetized H2
1 prob-

lem are very similar to those observed for the hydrog
atom. This is demonstrated by Table II, which gives valu
of Eb for the state 1sg in the field-free case and for field
s

02
83
94
95
95

53
22
56
75
59
61
70
71
71

46
15
23
86
87
7
8

35
9

TABLE II. Convergence of the solution for the ground state 1sg of the hydrogen molecular ion H2
1.

Calculations of (Eb) I ,J are performed for the field-free ion (g50) and for three different field strength
g50.01, 0.1, and 1.0 a.u. at a fixed internuclear distanceR52.0. The exact value ofEb for g50 is taken
from @4#.

I J510 J514 J520 J530

g50.0 ~exact value is 1.102 634 214 494 9!
6 1.102 634 128 816 1.102 634 214 092 1.102 634 214 102 1.102 634 214 1
8 1.102 634 129 197 1.102 634 214 472 1.102 634 214 483 1.102 634 214 4
10 1.102 634 129 209 1.102 634 214 484 1.102 634 214 494 1.102 634 214 4
12 1.102 634 129 209 1.102 634 214 485 1.102 634 214 495 1.102 634 214 4
14 1.102 634 129 209 1.102 634 214 485 1.102 634 214 495 1.102 634 214 4

g50.01
10 1.107 573 777 781 1.107 573 850 145 1.107 573 850 153 1.107 573 850 1
20 1.107 617 314 016 1.107 617 386 414 1.107 617 386 422 1.107 617 386 4
30 1.107 618 072 051 1.107 618 144 448 1.107 618 144 456 1.107 618 144 4
40 1.107 618 097 971 1.107 618 170 368 1.107 618 170 375 1.107 618 170 3
50 1.107 618 099 355 1.107 618 171 752 1.107 618 171 759 1.107 618 171 7
60 1.107 618 099 457 1.107 618 171 853 1.107 618 171 861 1.107 618 171 8
70 1.107 618 099 466 1.107 618 171 863 1.107 618 171 870 1.107 618 171 8
80 1.107 618 099 467 1.107 618 171 864 1.107 618 171 871 1.107 618 171 8
90 1.107 618 099 467 1.107 618 171 864 1.107 618 171 871 1.107 618 171 8

g50.1
10 1.150 405 200 262 1.150 405 220 941 1.150 405 220 946 1.150 405 220 9
20 1.151 012 103 477 1.151 012 138 532 1.151 012 138 515 1.151 012 138 5
30 1.151 033 414 683 1.151 033 452 810 1.151 033 452 823 1.151 033 452 8
40 1.151 034 869 761 1.151 034 900 220 1.151 034 900 286 1.151 034 900 2
50 1.151 035 018 578 1.151 035 044 739 1.151 035 044 787 1.151 035 044 7
60 1.151 035 038 76 1.151 035 063 47 1.151 035 063 469 1.151 035 063 4
70 1.151 035 042 0 1.151 035 066 4 1.151 035 066 39 1.151 035 066 3
80 1.151 035 042 1.151 035 067 1 1.151 035 066 86 1.151 035 066 8
90 1.151 035 04 1.151 035 067 7 1.151 035 067 2 1.151 035 067
100 1.151 035 0 1.151 035 064 1.151 035 07 1.151 035 06

g51.0
10 1.464 878 255 204 1.465 006 079 242 1.465 004 788 905 1.465 004 788 8
20 1.470 624 782 772 1.470 303 906 582 1.470 342 076 43 1.470 342 134 2
30 1.473 251 707 1 1.470 521 039 7 1.470 530 754 7 1.470 529 580 0
40 1.475 793 69 1.471 049 369 1.470 550 89 1.470 539 31
50 1.477 537 17 1.472 071 8 1.470 558 3 1.470 540 3
60 1.478 555 0 1.473 32 1.470 500 1.470 54
70 1.479 11 1.474 53 1.470 2 1.470 4
80 1.479 40 1.475 6 1.470 1.472
90 1.479 55 1.476 1.47 1.48
100 1.479 58 1.48 Unstable Unstable
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g50.01, 0.1, and 1.0 a.u., computed with the same sets
I andJ and at the same fixed internuclear distanceR52.0. In
the absence of field, the convergence ofEb in I andJ is very
rapid: alreadyI512 andJ520 give 12 correct decimal dig-
its of E. This conclusion agrees with the results reported
@4#, where it was found thatI516 andJ540 ~in our terms!
provide precision better than 10217 hartree.

Figure 2 shows how the strength of the applied magne
field affects the rate of convergence inJ. The latter is mea-
sured as the difference between subsequent values ofEb ob-

FIG. 1. The difference between (Eb) I ,10 and (Eb) I210,10 for the
ground state of the hydrogen atom in a magnetic field as a funct
of the cutoff indexI , computed atR52.0 for three different values
of the field strength.
of

n

ic

tained withI510 andJ510, 14, and 20. The magnetic field
varies in the range 0.01<g<1.0. As we see, forg<0.1 the
convergence inJ is still as good as in the absence of fiel
~the difference between values forJ520 and 30 is less than
10212 hartree!, while for g.0.1 the rate of convergence be
gins to slow down.

Convergence inI is substantially affected already by th
field g50.01, and its rate rapidly decreases with the grow
of the field strength. Figure 3 shows the dependence of

n FIG. 2. Dependence of the rate of convergence overJ for H2
1

on the strength of the applied magnetic field. The convergence
measured by the difference between values (Eb)10,10, (Eb)10,14,
and (Eb)10,20.
84
69
69

40
63
75
28
83
16
2

50
43
TABLE III. Convergence of solution for the hydrogen molecular ion in the 1pu state (m521). The
internuclear distance isR58.0 a.u. Calculations of (Eb) I ,J were performed for the field-free ion (g50) and
for fieldsg50.01 and 0.1. Atg51.0, numerical stability was insufficient to provide reliable results.

I J510 J514 J520 J530

g50.0 ~exact value is 0.259 510 631 269 1!

4 0.259 509 674 909 0.259 510 630 254 0.259 510 631 284 0.259 510 631 2
6 0.259 509 674 894 0.259 510 630 239 0.259 510 631 269 0.259 510 631 2
8 0.259 509 674 894 0.259 510 630 239 0.259 510 631 269 0.259 510 631 2

g50.01
10 0.269 235 727 324 0.269 236 153 158 0.269 236 153 440 0.269 236 153 4
20 0.269 275 707 680 0.269 276 128 867 0.269 276 129 163 0.269 276 129 1
30 0.269 276 189 750 0.269 276 611 283 0.269 276 611 575 0.269 276 611 5
40 0.269 276 202 581 0.269 276 624 135 0.269 276 624 428 0.269 276 624 4
50 0.269 276 203 142 0.269 276 624 690 0.269 276 624 983 0.269 276 624 9
60 0.269 276 203 178 0.269 276 624 724 0.269 276 625 02 0.269 276 625 0
70 0.269 276 203 18 0.269 276 624 7 0.269 276 625 0 0.269 276 625 0

g50.1
10 0.337 702 541 088 0.337 695 300 732 0.337 695 303 112 0.337 695 303 4
20 0.338 603 907 15 0.338 655 551 122 0.338 656 124 43 0.338 656 125 4
30 0.338 657 841 8 0.338 671 245 4 0.338 680 089 1 0.338 680 158
40 0.338 696 326 0.338 671 45 0.338 681 32 0.338 681 00
50 0.338 716 0.338 677 1 0.338 681 8 0.338 678
60 0.338 7240 0.338 68 0.338 68 0.339
70 0.338 72 0.338 7 0.339 0.337
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TABLE IV. The equilibrium internuclear distanceReq, the total electronic energy«T(Req), vibrational
energyvR , and dissociation energy«D for the quantum state 1sg of H2

1 as functions of the applied
magnetic fieldg.

g Req «T(Req) vR «D

0.003100 1.997 19 20.602 634 62 1.059131022 0.102 634 62
1.0031023 1.997 19 20.603 134 46 1.059131022 0.102 634 71
1.2531023 1.997 19 20.603 259 37 1.059131022 0.102 634 76
1.5031023 1.997 19 20.603 384 26 1.059131022 0.102 634 82
2.0031023 1.997 19 20.603 633 98 1.059131022 0.102 634 98

2.5031023 1.997 19 20.603 883 62 1.059131022 0.102 635 18
3.0031023 1.997 19 20.604 133 18 1.059131022 0.102 635 43
4.0031023 1.997 19 20.604 632 05 1.059131022 0.102 636 05
5.0031023 1.997 18 20.605 130 61 1.059131022 0.102 636 86
6.0031023 1.997 18 20.605 628 85 1.059131022 0.102 637 85
8.0031023 1.997 16 20.606 624 36 1.059131022 0.102 640 36

1.0031022 1.997 14 20.607 618 59 1.059131022 0.102 643 59
1.2531022 1.997 11 20.608 859 58 1.059131022 0.102 648 63
1.5031022 1.997 08 20.610 098 56 1.059231022 0.102 654 79
2.0031022 1.996 99 20.612 570 52 1.059331022 0.102 670 47
2.5031022 1.996 88 20.615 034 47 1.059431022 0.102 690 61

3.0031022 1.996 74 20.617 490 41 1.059631022 0.102 715 19
4.0031022 1.996 39 20.622 378 33 1.060131022 0.102 777 63
5.0031022 1.995 93 20.627 234 31 1.060631022 0.102 857 61
6.0031022 1.995 38 20.632 058 43 1.061331022 0.102 954 91
8.0031022 1.993 99 20.641 611 44 1.063131022 0.103 200 44
1.0031021 1.992 21 20.651 038 20 1.065331022 0.103 511 72
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differenceu(Eb) I ,102(Eb) I210,10u on I for g50.01, 0.1, and
1.0. Forg50.01 the accuracy 10212 hartree was achieved
only at I580; for stronger magnetic fields such a precisio
could not be achieved at all because of the loss of numer
stability. Forg51.0 the precision of the most reliable value
is only about 1025 hartree.

FIG. 3. The difference between (Eb) I ,10 and (Eb) I210,10, com-
puted for H2

1 in the state 1sg atR52.0, as a function of the cutoff
index I for g50.01, 0.1, and 1.0 a.u.
al

Table III shows the convergence ofEb for the state 1pu
~the field-free 2ppu) with m521. While in the absence o
field the convergence of results inI is even faster than in the
previous case, in the presence of magnetic field the situa
is worse than for 1sg , and reliable results can be obtaine
only for g&0.01; for g51.0 the method is completely un
stable.

As we see, the method under consideration is applica
only for fields not exceeding 0.01–0.1 a.u., depending on
quantum state, and is practically useless for fields stron
than g51.0. It is interesting to compare our results with
semianalytical method for the hydrogen atom in a magn
field reported in Ref.@23#. The authors of@23# represented
the hydrogen wave function as a truncated double po
series in the parabolic-cylindrical coordinate system and
tained a system of linear equations analogous to Eq.~20!,
which was required to have a nonsingular solution. Th
found that the convergence of results forg.0.5 a.u. be-
comes slower, and forg51 the accuracy 1026 hartree was
obtained only when the degree of the truncated polynom
was about 50, which is quantitatively close to our obser
tions.

To check if the rate of convergence depends on the e
form of the multiplier in substitution~11!, we performed
calculations with the functionx(j,h) defined as

c~j,h!5e2pjx~j,h!. ~24!
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TABLE V. Values ofReq, «T(Req), vR , and«D for the hydrogen molecular ion in the quantum sta
1pu (m521) calculated in the interval 0<g<0.01.

g Req «T(Req) vR «D

0.003100 7.930 714 20.134 513 816 1.212 4631023 9.513 81631023

1.0031024 7.930 712 20.134 613 792 1.212 4631023 9.513 82231023

1.2531024 7.930 712 20.134 638 779 1.212 4631023 9.513 82631023

1.5031024 7.930 711 20.134 663 763 1.212 4631023 9.513 83131023

2.0031024 7.930 708 20.134 713 723 1.212 4631023 9.513 84331023

2.5031024 7.930 705 20.134 763 670 1.212 4631023 9.513 85831023

3.0031024 7.930 701 20.134 813 606 1.212 4731023 9.513 87631023

4.0031024 7.930 691 20.134 913 443 1.212 4731023 9.513 92331023

5.0031024 7.930 677 20.135 013 233 1.212 4731023 9.513 98331023

6.0031024 7.930 661 20.135 112 977 1.212 4831023 9.514 05731023

8.0031024 7.930 620 20.135 312 325 1.212 5031023 9.514 24431023

1.0031023 7.930 568 20.135 511 486 1.212 5231023 9.514 48631023

1.2531023 7.930 485 20.135 760 175 1.212 5531023 9.514 86231023

1.5031023 7.930 385 20.136 008 573 1.212 5931023 9.515 32331023

2.0031023 7.930 129 20.136 504 496 1.212 6831023 9.516 49431023

2.5031023 7.929 800 20.136 999 255 1.212 8131023 9.518 00031023

3.0031023 7.929 398 20.137 492 849 1.212 9631023 9.519 84031023

4.0031023 7.928 376 20.138 476 547 1.213 3531023 9.524 51831023

5.0031023 7.927 063 20.139 455 595 1.213 8531023 9.530 52331023

6.0031023 7.925 462 20.140 429 998 1.214 4731023 9.537 84831023

8.0031023 7.921 399 20.142 364 896 1.216 0231023 9.556 42531023

1.0031022 7.916 205 20.144 281 310 1.218 0131023 9.580 16531023
-
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In the field-free case the convergence inI was five times
slower than with Eq.~11!, and an accuracy within 10212

hartree was achieved only atI560. However, the conver
gence rate forg>0.01 was practically the same as with de
nition ~11!. Therefore, although substitution~11! is the best
known choice for a field-free hydrogen molecular ion, it do
not offer appreciable advantages over Eq.~24! when the
magnetic field is present.

IV. RESULTS AND CONCLUSIONS

We performed a calculation of basic molecular para
eters for two quantum states of the hydrogen molecular
in the magnetic field. The ground state 1sg , which evolves
from the field-free ground state 1ssg , is studied in the field
range 0<g<0.1. The state 1pu , which is the lowest state
with m521, and which corresponds to the field-free sta
2ppu , is studied in the range 0<g<0.01 a.u.

The calculated parameters include the equilibrium int
nuclear distanceReq, the total electronic energy at the equ
librium distance«T(Req), the energies of the small~har-
monic! vibrations about the equilibrium position in th
direction parallel to the magnetic field, and the dissociat
energies«D of the process H2

1→H1p1. The total elec-
tronic energy is measured with respect to the free elec
energyg/2 and is defined as«T(R)51/R2Eb(R); its abso-
lute value is equal to the dissociation energy of the proc
s

-
n

e

-

n

n

ss

H2
1→p11p11e2. To determine the energy of the diss

ciation into a neutral hydrogen atom and a free proton,
used values ofEb for the hydrogen atom from Ref.@22#. The
vibrational energyvR is determined as

vR5S 1m d2«T
dR2 D 1/2UR5Req

, ~25!

wherem5mp /2 is the reduced mass of the system of tw
nuclei.

Molecular parameters of the ground state 1sg are given in
Table IV. The total electronic energy is almost linear wi
respect to the magnetic field strengthg, the other quoted
parameters are quadratic ing. Forg<0.1 their dependencie
on the field strength can be described by the following
proximate formulas~all quantities are given in atomic units!:

Req
1sg~g!51.9971920.5g261025, ~26a!

@«T
1sg~Req!#~g!520.602 634 6220.5g10.16g2

6~102811022g3!, ~26b!

vR
1sg~g!50.01059110.006284g261026. ~26c!
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TABLE VI. Comparison of results obtained by the present method with previously reported calcula
for the ground state of H2

1 in magnetic field. Present results are given in the first line of each entry,B is the
magnetic field strength, and other quantities are the same as in Table IV.

B,T g Req «T(Req) vR «D

0 0.0 1.997 19 20.602 634 62 1.059131022 0.102 634 62

1.997a 1.0831022 a

103 4.254 3831023 1.997 19 20.604 758 91 1.059131022 0.102 636 24

1.997a 1.0831022 a

104 4.254 3831022 1.996 28 20.623 616 62 1.060231022 0.102 796 32

1.996a 1.0931022 a

1.996b 20.623 62b 0.102 80b

23104 8.508 7631022 1.993 57 20.644 021 36 1.063631022 0.103 273 50

1.993a 1.0931022 a

aReference@16#.
bReference@21#.
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The corresponding data for the state 1pu ~the lowest quan-
tum state withm521) are given in Table V. Approximate
expressions for the molecular parameters which are vali
the range 0<g<0.01 are

Req
1pu~g!57.9307142146.1g26~10261104g4!,

~27a!

@«T
1pu~Req!#~g!520.134 513 8162g12.33g2

6~10291100g4!, ~27b!

vR
1pu~g!51.212463102310.0555g26231028.

~27c!

Table VI presents a comparison of results obtained by
present method with previously reported accurate calc
tions of H2

1 in magnetic fields below 0.1 a.u. The compa
son is restricted only to the ground state, since paramete
the state 1pu are reported only for fields from 104 T and
stronger@21#, which exceeds the field range considered
our work. As we see, our results are in very good agreem
with previous computations.

In the absence of magnetic field the potential ene
curve of the state 1pu exhibits a small hump which is lo
cated atR'25.81 a.u. and whose value in the maximum
equal to20.124 856 hartree. In the presence of a modera
strong magnetic field this qualitative picture of the ener
curve behavior remains the same, although the curve
shifted down due to the increase of binding energy of
hydrogen atom in 2p21 state.

Results of our work indicate that the employed semia
lytical method of solution is best suited for weak and mo
erately strong magnetic fields (<104–105 T!. This conclu-
sion is in agreement with the results of Ref.@23#, where it
in

e
a-

of

nt

y

ly
y
is
e

-
-

was found that a similar technique applied to the hydrog
atom in a magnetic field converges very well forg<0.5, and
exhibits slower convergence for stronger fields.

Although the onset of the numerical instability on theg
scale may be delayed to a some extent by performing ca
lations with quadruple precision, the convergence of the
lution in the cutoff indicesI andJ becomes slower with the
growth of g, which means that a longer computational tim
will be required to find the determinant of the band mat
FI ,J(p). This fact can, in turn, impose limitations on th
range ofg for which the method is practically applicable an
on quantum states which can be treated.

A substantial advantage of the applied method over
usual finite basis set and variational methods resides in
high accuracy, which is not affected by selection of ba
functions or by choice of variational parameters, and wh
can be controlled in a straightforward manner by increas
the degrees of the expansion~19!. This fact allows one to
perform an accurate calculation of other important physi
parameters which may depend on the exact distribution
the electron density~e.g., multipole moments!. In addition,
benchmark results obtained using the present method ca
used to check the validity of alternative computational me
ods which may be applied to the magnetized hydrogen m
lecular ion.

It should be pointed out that the technique used in
present work is not restricted to the hydrogen molecular
only. It is applicable without modifications for the treatme
of other two-center one-electron problems, including that
HeH21 in a parallel magnetic field.
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