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Hydrogen molecular ion in a strong parallel magnetic field
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The hydrogen molecular ion in a strong external magnetic field parallel to the molecular axis is investigated
using a semianalytical method based on the presentation of the wave function in the form of a double power
series in nonseparable space variables. The solution is determined from the requirement for the coefficients of
the series to obey linear relations imposed by the Stihger equation. For the ground state, the method
provides accuracy I¢ hartree and higher for magnetic fields from 0 up td 10 the applicability of the
technique to excited states is limited to lower field strendt84050-2947@7)01604-1

PACS numbd(s): 31.10+z, 32.60+i

I. INTRODUCTION obtain a nonseparable differential equation in two remaining
space variables.

The existence of strong magnetic fields discovered on pul- If the applied magnetic field is strong enough, the prob-
sars and white dwarf stars has given rise to a significanem can be treated in the adiabatic approximation. In this
interest in the behavior of atoms and molecules in the presapproximation, the wave function is presented as the product
ence of such field§l]. Particular attention is drawn to su- of a Landau orbital by an unknown-dependent function.
perstrong magnetic fields existing on the surface of neutroiThe latter may be found either by a variational methojdor
stars 10 T) and to the region of fields which exist in the by a fully numerical procedure like finite differenceq 8] or
atmospheres of white dwarfs<(10?— 10" T). numerical integration if9]. Accuracy of this method can be

The presence of a strong magnetic field produces appresubstantially improved by taking a combination of several
ciable effects on the electronic structure of atoms, and ohandau orbitals, each multiplied by a separate unknown
chemical bonds in molecules. Already the simplest moleculefunction of z, and solving the resulting set of Hartree-Fock-
the hydrogen molecular ion H, allows us to observe some like differential equations for these functiof0]. The adia-
of these effects, such as the contraction of the bond lengthatic approximation works best when the strength of the
and the growth of dissociation energy and vibrational enermagnetic field is much larger than 1 a.u. and provides low
gies with the increase of the field strength. The theoreticahccuracy for fields below 0T.
study of H* is facilitated by the absence of exchange and To achieve good accuracy in low fields, one has to ensure
correlation effects, because we deal with a single electrothe correct behavior of the wave function in the field-free
moving in the field of two nuclei. As a consequence, thislimit, which was done in variational calculations with simple
simple molecule has attracted a great deal of attention and isial functions reported ifi11,12. The trial function used in
the subject of many investigations published in the literature[12] included a Gaussian-like term, and was suitable for de-

The problem of the hydrogen molecular ion in the ab-scription of the high-field region as well. Calculations with a
sence of external fields was basically solved alreadj2in  single trial function were also performed for the nonparallel
and subsequent work on the subject resulted in publishinfield orientation[13].
extensive exact tables of energy levi8s-5]. Solution of the Significant attention was devoted to the traditional finite
field-free problem is greatly facilitated by the fact that thebasis set methods, which were used to describe both parallel
two-center Schidinger equation is separable in spheroidal[14,15 and nonparallel configuratiofi$6—18. The basis set
coordinates. This is not a surprising fact, because in the clasised in[15,18 is particularly promising because it is not
sical limit the motion of a charged particle in the field of two restricted to the parallel configuration like the basis set in
Coulomb centers can be solved by separation of variable$14], or to the two-center problem as the set useflli$y17].

The separability of the Schdinger equation makes it pos- Other methods of solution include the finite-element
sible to obtain exact solutions for,H and for similar sys- method[19] and Monte Carlo calculatiorfg0]. The method
tems, of which the most physically interesting is theused in[21] is based on the assumption that in spheroidal
HeH* ion [6]. coordinates variables can be approximately separated in

The presence of an external magnetic field makes the sitianalogy to the field-free case. The solution is presented as a
ation much more complicated. If the field is oriented at anproduct of two functions, and coupled differential equations
arbitrary angle to the molecular axis, none of the variablegor these functions are solved numerically to obtain approxi-
can be separated, and one deals with a complete threesate energy eigenvalues.
dimensional problem. In the present work we consider only In the present work, we demonstrate that the nonseparable
the situation when the magnetic field is parallel to the mo-equation in two variables describing the ion in the applied
lecular axis. Under this condition it is possible to separate th@arallel magnetic field can be solved to a very high degree of
dependence of the wave function on the angular varighle accuracy by a method very similar to the technique used for
which is described by the usual multiplier eipf), and the solution of the field-free problem: we present the solution
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in the form of a double power series, obtain linear relationsAfter performing differentiation in the spheroidal coordi-
for the coefficients of the series, and require the resultinghates, we obtain the following equation:

system of linear equations to have a nonsingular solution. ) 5

This technique allows us to obtain nonrelativistic energy ei- (D)Wt (1= )Wt 28V — 29V,
genvalues in the Born-Oppenheimer approximation with pre- (&= 7?) i yR?

cision 10°8 hartree and higher, depending on the size of the +— =W+ (-,
series expansion, the quantum state, and the magnetic field (&=1)(1=7") 4

strength. The method is best suited for fields belo®T0ts 2R4

application for the high-field regime is hindered by the slow - 763 (2= ) (-1 (1—- >V
convergence of the solution. We present basic molecular pa-

rameters of the statess}, and 1w, calculated with preci- R2E

sion exceeding the accuracy of corresponding results pub- +Z,6V+Z_n¥+ 7(52— 7?)¥=0. (6)

lished in the literature so far.

The paper is organized as follows. In Sec. II, we deriveHere 7z, =R(Z,+Z,), Z_=R(Z,—Z,), and subscripts,
the basic formulas, obtain a system of linear equations fo, and¢ denote partial derivatives.
coefficients of the double series, and discuss the technique of The dependence of the wave function grcan be sepa-

solution. In Sec. ”l, we inVeStigate the convergence of SOIUTated by introducing a new functior(g'n) according to
tion and limits of its applicability. Calculated results and

discussion of the method are presented in Sec. IV. V(& 7m,0)=(£2-1)M2(1— p2)ImliZgimet (g 2),  (7)
Il. METHOD Wherem is the magnetic quantum number. The equation for
f(&,7) is
The Schrdinger equation for the one-electron diatomic > 2
molecule in an external magnetic field is (&= Dt (1=t 2(ml+ 1)(Ef = 7f )
2 m
1 e \? Z, Z A AL P T
(—iﬁv+—A v 22 Dly—gy, Tzt S B )(§ 7
2mg C ra Iy

: - YR o 2

where A is the vector potentialZ, and Z, are nuclear ~ 62 (&= n9)(&—1)(1—n5)f=0. (8)

chargesm, is the electron mass, ang andr, are the dis-
tances from the two nuclei. We consider homogeneous magnye  introduce the binding energy defined as

netic fieldH directed along the molecular axis and introduceg, = (1+m-+|m|) y/2— E and separate the asymptote in the

the spheroidal coordinates magnetic field by introducing a function(¢, »):
gt Crarp B YR )

R being the distance between the nuclei. We choose th&he functiony satisfies the following equation:

auge of the vector potential in the form
gaud P (&= et (L= 72+ 2( M|+ 1) (Ehe— i)

A=(0,03Hr)), 3 +ZL YT Zo Y= PPEYTpI Y
wherer , = (R/2)y(£~1)(1- %) is the distance from the —T(&=1)(1— n*) (4= np,) =0, (10

molecular axis. Since div=0, vectorA commutes withV,

Y . herel'= yR?/4 andp?=R?E,/2. In the absence of mag-
and the Schrdinger equation takes the form wher 4 P b S .

netic field the behavior of the wave function at laigean be
accounted for by the substitutidB]

h? ieh  g¥ e’ H?
— 5 AV AL 4 (4 1)0e- Pt
2m, 2mec de  2msc? 4 P& m)=(E+1)7e "X (&, m), (1)
Z, Z where
—e? 24 2|y =Ev. (4)
la lp ZJr
o=-——1—|m|. (12
We introduce the atomic system of units; that is, we choose 2p

P —_ 32 2__ —9 ;
the Bohr radiusay=7%°/m.e~=5.3x10 ° cm as the unit of f p=+1 and {&—, the net potential of the two nuclei

— — 4132 __ H
length, 1 hartredso=2 Ry=mce'/A"=27.2 eV as the unit ocomes indistinguishable from that of a helium nucleus
of energy, and the valud,=mZe3c/43=2.35x 10° G as the placed até=1, »=0, and the wave function of 4 must

unit of magnetic intensity; the magnetic field is measured agehave like the wave function of a singly ionized helium
y=H/H,. Eq. (4) becomes atom. Therefore, it must decay exponentially lieP¢ [22].
Ty A_Ithough the exact preexponential factor for Hevill be

AV +iy———r2¥+2 v=0, (5 different from thatin Eq(11), we nevertheless assume that

Za Zb
—+—+E
do 4 (¢+1)7 is a good choice, because it provides rapid conver-

la My
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gence of solution in the field-free case. Substituting the Fijs2=(+1)(j+2),
form of Eq.(11) into Eq.(10), we obtain the following equa- '
tion for y: Fi_1j_2=—3p*+2l(—-i—2j+0—2p+5),
(52_1)X§§+(1_772)X7777 Fi,l’j,1:_3z,,
_p£2 _
T2[—p&t(otml+1)E—o+plx, Fi_1;=(i—1)(10— 80+ 12p+2|m| - 10)
(o+2[m)é-—o +3j(j+2|m|+1)+(oc—6p—2/m|-3)o

—2(|m[+1)px,+0o Fr1
+3p%+ 2l (—i—2j+0-2p+5),
+[p*n*+Z_n+(2p+1)o—p?lx
—T(&-1)(1- 7)) (éxe—nx,)
+TE(E=1) (1= 72)(— o+ p+PEX=0. Fioojo=3pit2l(=i+2i-2p-2),

(13) Fi—2,j—1:3z—’

Fic1jr2=—3(j+1)(j+2),

For the further analysis it is convenient to introduce an inde-

pendent variable Fi_2j=(i—2)(—10i+120—12p+2|m|+20)

=3j(j+2|m|+1)+3(—o+2p+1)o

t=%- (14) —3p2+2I'(i—2j+2p—2),
Equation(13) becomes Fi2j+2=3(j+1)(j+2),
t(1—t)%xu+ (1= ) x 21— 20—|m|)x, Fi_gj_2=—p*+2l(i—0—3),
+2t(0—2p—1) x¢+ (1+]m]) x; Fiisj1=—Z_,

=2(|m[+1) nx,+ o(o+|m)tx+p*n°x Fi_3;=(i—3)(5i—80+4p—3|m| - 15)

+Z px+[(2p+1+|m)o—px +i(j+2/m+1)+(30—2p+2|m - 1)

4Tty 24 ol (—i
—ZFt—(l 772)Xt+(1 t)z(l )Xy Tpor2l(mirot3),

Figjr2=—(+D(j+2),

L >)(2p—o+tot)x=0. (19
(1—p)3 = mepmoTmax=0. Fi_gy=(i—4)(—i+20+|m|+4)—o(o+|m]).
We look for the solution of Eq(15) in the form The recurrent relatioil7) may be considered as an infi-
e - nite set of homogeneous linear equations, and for(Eg).to
t) _E E il 16 have a solution the determinant of the coefficient matrix
x(tm)= et it (16 must be zero. In practice, serigb) has to be truncated to a

finite number of terms. The most natural way to make such a
Substituting serie$16) into Eqg. (15), we obtain the follow- truncation is to choose certain cutoff indicesindJ and to
ing relation for coefficients, ;: set alla;; for i>1 or j>J to zero. Instead of the exact

o function y we now deal with a truncated expansion

FI+1JaI+lj+ 2 > Fivkj+1@ik,j+1 : o
Z31=-2-1,02 X'J(t,n):igo ]2,0 aj jt'y'. (19
TFi_4jai-4;=0, 17
o ) ) o The coefficientsa; ; are demanded to satisfy E(L7). The
which is formally valid for alli andj if we assume that |egyiting set of homogeneous equations can be written in the

ay, =0 if k<0 orl<0. The coefficients- are form
Firyj=(+1)(i+[m[+1), (18 3 (p)A=0, (20
Fij_2=p?+2r1i, where A is a vector of lengthL=(1+1)(J+1) with ele-

ments given by
Fi’j_]_:Z_, . .
Ai+j(|+1):ai'j, i=0,...1, JIO,...,\], (21)
Fij=i(=5i+20—4p—3|m|)—j(j+2/m|+1) L3y i
andg’ ~(p) is anL X L band matrix, whose nonzero elements
+(2p+1+|m|)o—p?-2Ti, are given by coefficients; . ;. from Eq.(18),
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gence and to demonstrate that the numerical solution does
converge whenl and J independently increase. We per-
formed such an analysis for the hydrogen atom in the mag-
netic field, for the field-free K" ion, and for H in an ap-
plied magnetic field, and compared results obtained for the
two former problems with the best benchmarks available to
date [4,22]. To obtain the numerical solution of equation
(23), we used a computer code based on the NA@meri-

cal Algorithms Group double precision library subroutine
Fo1LBE, which performd.U decomposition of band matrices.

If we put the charge of one of the nuclei to zesay,
Z,=1 andZ,=0), we arrive at the problem of the hydrogen
atom in an external magnetic field. Since the Sdiwger
equation for this system in the nonrelativistic, infinite nuclear

lll. CONVERGENCE mass approximation has been recently exactly so[\2j,

As in the case of the field-free problem, we do not have @nd extensive tables of energy levels with precision up to
rigorous proof of the empirical fact that roots of E@3) 1012 hartree are now available, we can use the hydrogen
converge as indicesandJ increase. The only way to justify data for the preliminary check of our computational method
this statement is to perform numerical analysis of converand its rate of convergence.

1,
Sitja+1itkr(+no+n=Fitkj+
O<i+k<I, O<j+I<J. (22)

Solution of the problem in the takeinJ approximation is
given by roots of the equation

def3'~(p)]=0. (23

We shall denote corresponding approximate valueSohs
(Ep), 5. The principal question is the convergence of trun-
cated solutions to the actual solution as the indlcasdJ go

to infinity. This issue is addressed in Sec. Ill.

TABLE I. Convergence of solution for the hydrogen atom in an external magnetic field in the nonrela-

tivistic, infinite nuclear mass approximation . Ground state value&gy, (; are calculated for different sets
of I andJ and for three fields strength=0.01, 0.1, and 1.0 a.u. The paramdgeis 2.0 a.u. Exact values of
E, are taken from Ref.22].

J=10

J=14

J=20

J=30

vy=0.01 (exact value is 0.504 975 002 7540 1?)

10 0.504 843 164 768 0.504 843 195 147 0.504 843 195 148 0.504 843 195 148

20 0.504 969 383 395 0.504 969 413 880 0.504 969 413 881 0.504 969 413 881

30 0.504 974 574 005 0.504 974 604 438 0.504 974 604 439 0.504 974 604 439

40 0.504 974 931 984 0.504 974 962 419 0.504 974 962 420 0.504 974 962 420

50 0.504 974 967 068 0.504 974 997 508 0.504 974 997 509 0.504 974 997 509

60 0.504 974 971 492 0.504 975 001 934 0.504 975 001 935 0.504 975 001 935

70 0.504 974 972 166 0.504 975 002 608 0.504 975 002 609 0.504 975 002 609

80 0.504 974 972 285 0.504 975 002 728 0.504 975 002 729 0.504 975 002 729

90 0.504 974 972 309 0.504 975 002 751 0.504 975 002 752 0.504 975 002 752

100 0.504 974 972 314 0.504 975 002 757 0.504 975 002 758 0.504 975 002 758
y=0.1 (exact value is 0.547 526 480 4010 19

10 0.545 877 600 859 0.545 877 497 140 0.545 877 497 200 0.545 877 497 201

20 0.547 401 018 482 0.547 401 261 422 0.547 401 260 867 0.547 401 260 867

30 0.547 510 274 894 0.547 510 810 989 0.547 510 812 189 0.547 510 812 189

40 0.547 523 536 342 0.547 523 855 071 0.547 523 861 551 0.547 523 861 552

50 0.547 525 979 430 0.547 525 940 412 0.547 525 949 508 0.547 525 949 506

60 0.547 526 683 78 0.547 526 350 52 0.547 526 356 64 0.547 526 356 63

70 0.547 526 977 44 0.547 526 449 5 0.547 526 448 3 0.547 526 448 28

80 0.547 527 1258 0.547 526 4819 0.547 526 471 0.547 526 471

90 0.547 527 206 0.547 526 497 0.547 526 478 0.547 526 477

100 0.547 527 251 0.547 526 506 0.547 526 49 0.547 526 49
y=1.0 (exact value is 0.831 168 896 7330 9

10 0.823 315 789 589 0.823 886 586 134 0.823 877 944 836 0.823 877 944 366

20 0.827 225 148 646 0.830 547 700 02 0.830 880 754 783 0.830 881 495 01

30 0.838 021927 3 0.828 904 4729 0.831 157 560 0.831 1536529

40 0.857 749 50 0.829 056 78 0.831 416 83 0.8311679

50 0.875 854 19 0.836 392 3 0.832 483 0.831 169

60 0.889 605 03 0.850 22 0.834 461 0.831 172

70 0.899 753 5 0.866 29 0.836 1 0.831

80 0.907 26 0.8814 0.8345 0.832

90 0.912 63 0.894 0.825 0.82

100 0.916 17 0.904 Unstable Unstable
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Table | gives values of the ground-state binding energy ofl=20 and 30 still differ in the 12th significant digit. Con-
the hydrogen atom in a magnetic field for three different fieldvergence irl is also much less rapid, as demonstrated by the
strengths,y=0.01, 0.1, and 1.0 a.u., computed at a fixedmiddle curve on Fig. 1, and five correct digits are obtained
“internuclear” distanceR=2.0 (the second nucleus is ab- only at1=40. In addition, for largd the computational al-
senj for various combinations of andJ. As we see, for gorithm becomes numerically unstable and rounding errors
vy=0.01 the calculated values steadily converge to the exaceduce the number of reliable digits which can be obtained
solution, and forl =100 andJ=20 our result differs from using the present method. As a result, the maximum accu-
the true binding energy by only 182 hartree; fod =30 and  racy is achieved at a certain finite valuelofvhich is deter-
J=10 the precision is better than 1Dhartree. Convergence mined by the balance between the rate of convergence and
in J is very rapid; results fod= 14 and 20 differ only in the numerical instabilities. Foyy=0.1, we can obtain only eight
12th significant digit, and results fa#=20 and 30 are, decimal digits at=90 andJ=20. If we increase the field up
within our accuracy, identical. Convergencelinis asymp- to y=1.0, the method becomes so unstable that the best re-
totically slower than inJ, as demonstrated by the lower sult achieved at=50 andJ= 30 has only six correct digits;
curve on Fig. 1, which shows the difference between pairs ofor higher fields, the instability renders the method practi-
E, computed withl which differ from one another by ten, cally useless.
and with the samd=10. However, already= 20 gives five The convergence properties of the magnetizgt ptob-
correct decimal digits of the result. lem are very similar to those observed for the hydrogen

The situation is not as good far=0.1. The convergence atom. This is demonstrated by Table II, which gives values
in J is appreciably slower than foy=0.01, and results for of E, for the state &y in the field-free case and for fields

TABLE II. Convergence of the solution for the ground staie,lof the hydrogen molecular ion H.
Calculations of Eyp), ; are performed for the field-free ionyE0) and for three different field strengths
v=0.01, 0.1, and 1.0 a.u. at a fixed internuclear distéRee2.0. The exact value dE, for y=0 is taken

from [4].
| J=10 J=14 J=20 J=30
v=0.0 (exact value is 1.102 634 214 494 9
6 1.102 634 128 816 1.102 634 214 092 1.102 634 214 102 1.102 634 214 102
8 1.102 634 129 197 1.102 634 214 472 1.102 634 214 483 1.102 634 214 483
10 1.102 634 129 209 1.102 634 214 484 1.102 634 214 494 1.102 634 214 494
12 1.102 634 129 209 1.102 634 214 485 1.102 634 214 495 1.102 634 214 495
14 1.102 634 129 209 1.102 634 214 485 1.102 634 214 495 1.102 634 214 495
y=0.01
10 1.107 573777 781 1.107 573 850 145 1.107 573 850 153 1.107 573 850 153
20 1.107 617 314 016 1.107 617 386 414 1.107 617 386 422 1.107 617 386 422
30 1.107 618 072 051 1.107 618 144 448 1.107 618 144 456 1.107 618 144 456
40 1.107 618 097 971 1.107 618 170 368 1.107 618 170 375 1.107 618 170 375
50 1.107 618 099 355 1.107 618 171 752 1.107 618 171 759 1.107 618 171 759
60 1.107 618 099 457 1.107 618 171 853 1.107 618 171 861 1.107 618 171 861
70 1.107 618 099 466 1.107 618 171 863 1.107 618 171 870 1.107 618 171 870
80 1.107 618 099 467 1.107 618 171 864 1.107 618 171 871 1.107 618 171 871
920 1.107 618 099 467 1.107 618 171 864 1.107 618 171 871 1.107 618 171 871
vy=0.1
10 1.150 405 200 262 1.150 405 220 941 1.150 405 220 946 1.150 405 220 946
20 1.151 012 103 477 1.151 012 138532 1.151 012 138 515 1.151 012 138515
30 1.151 033 414 683 1.151 033 452 810 1.151 033 452 823 1.151 033 452 823
40 1.151 034 869 761 1.151 034 900 220 1.151 034 900 286 1.151 034 900 286
50 1.151 035018 578 1.151 035 044 739 1.151 035 044 787 1.151 035 044 787
60 1.151 035038 76 1.151 035 063 47 1.151 035 063 469 1.151 035 063 47
70 1.151 0350420 1.151 035 066 4 1.151 035 066 39 1.151 035 066 38
80 1.151 035 042 1.151 035067 1 1.151 035 066 86 1.151 035066 8
920 1.151 03504 1.151 035067 7 1.151 035067 2 1.151 035 067
100 1.1510350 1.151 035 064 1.151 035 07 1.151 035 06
vy=1.0
10 1.464 878 255 204 1.465 006 079 242 1.465 004 788 905 1.465 004 788 835
20 1.470 624 782 772 1.470 303 906 582 1.470 342 076 43 1.470 342 134 29
30 14732517071 1.470521 0397 1.4705307547 1.4705295800
40 1.475793 69 1.471 049 369 1.470 550 89 1.470539 31
50 1.477 537 17 1.4720718 1.470558 3 1.4705403
60 1.4785550 1.473 32 1.470 500 1.470 54
70 1.47911 1.474 53 1.4702 1.4704
80 1.479 40 1.4756 1.470 1.472
20 1.47955 1.476 1.47 1.48
100 1.479 58 1.48 Unstable Unstable
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[(Epy 16~ (Bpr10,10l (hartree)
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FIG. 1. The difference betweerkf), ;o and Eyp),- 10,10 for the .
ground state of the hydrogen atom in a magnetic field as a function FIG. 2. Dependence of the rate of convergence dviar H, )
of the cutoff index!, computed aR= 2.0 for three different values ©ON the strength of the applied magnetic field. The convergence is
measured by the difference between valukg){o 10, (Ep)10,14s
and Eb)10,20-

vy=0.01, 0.1, and 1.0 a.u., computed with the same sets of

of the field strength.

| andJ and at the same fixed internuclear distaRee2.0. In
the absence of field, the convergenceegfin | andJ is very

T

) :
107 | —e— |(Ey)i0,4~En)i0,10l

| —B— [Ep)1020~(En)i0,14l /
107
. / /IZ/
10—10 /

e .
1072 —

1072 107

¥ (a.u.)

tained withl =10 andJ=10, 14, and 20. The magnetic field
varies in the range 0.614y=<1.0. As we see, foly<0.1 the

rapid: alreadyl =12 andJ=20 give 12 correct decimal dig- convergence inl is still as good as in the absence of field
its of E. This conclusion agrees with the results reported in(the difference between values fd= 20 and 30 is less than

[4], where it was found thdt=16 andJ=40 (in our term$
provide precision better than 18 hartree.

field affects the rate of convergencednThe latter is mea-
sured as the difference between subsequent valugg ob-

gins to slow down.
Figure 2 shows how the strength of the applied magnetic Convergence in is substantially affected already by the

TABLE Ill. Convergence of solution for the hydrogen molecular ion in the,state (n=—1). The

internuclear distance B=28.0 a.u. Calculations ofH},), ; were performed for the field-free iony&0) and
for fields y=0.01 and 0.1. Aty=1.0, numerical stability was insufficient to provide reliable results.

J=10

J=14

J=20

J=30

(]

10
20
30
40
50
60
70

10
20
30
40
50
60
70

v=0.0 (exact value is 0.259 510 631 269 1

0.259 509 674 909
0.259 509 674 894
0.259 509 674 894

0.269 235 727 324
0.269 275 707 680
0.269 276 189 750
0.269 276 202 581
0.269 276 203 142
0.269 276 203 178
0.269 276 203 18

0.337 702 541 088
0.338 603 907 15
0.338 6578418
0.338 696 326
0.338 716

0.338 7240

0.338 72

0.259 510 630 254
0.259 510 630 239
0.259 510 630 239

y=0.01

0.269 236 153 158
0.269 276 128 867
0.269 276 611 283
0.269 276 624 135
0.269 276 624 690
0.269 276 624 724
0.269 276 624 7

vy=0.1
0.337 695 300 732
0.338 655 551 122
0.3386712454
0.338 67145
0.338677 1
0.338 68
0.3387

0.259 510 631 284
0.259 510 631 269
0.259 510 631 269

0.269 236 153 440
0.269 276 129 163
0.269 276 611 575
0.269 276 624 428
0.269 276 624 983
0.269 276 625 02
0.269 276 6250

0.337 695303 112
0.338 656 124 43
0.338 680089 1
0.338 681 32
0.3386818
0.338 68
0.339

0.259 510 631 284
0.259 510 631 269
0.259 510 631 269

0.269 236 153 440
0.269 276 129 163
0.269 276 611 575
0.269 276 624 428
0.269 276 624 983
0.269 276 625 016
0.269 276 625 02

0.337 695 303 450
0.338 656 125 443
0.338 680 158
0.338 681 00
0.338678
0.339
0.337

10~ 2 hartree, while for y>0.1 the rate of convergence be-

field y=0.01, and its rate rapidly decreases with the growth
of the field strength. Figure 3 shows the dependence of the
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TABLE IV. The equilibrium internuclear distandg,,, the total electronic energyr(R.g), vibrational
energy wg, and dissociation energyp for the quantum state d; of H,"™ as functions of the applied
magnetic fieldy.

Y Req e1(Reg wR &p

0.00x 1¢° 1.997 19 —0.602 634 62 1.059410°? 0.102 634 62
1.00x 1073 1.997 19 —0.603 134 46 1.059110? 0.102 634 71
1.25x 1073 1.997 19 —0.603 259 37 1.059410°2 0.102 634 76
1.50x 1073 1.997 19 —0.603 384 26 1.059410°? 0.102 634 82
2.00x10°3 1.997 19 —0.603 633 98 1.059410°? 0.102 634 98
2.50x10°3 1.997 19 —0.603 88362 1.059410°2 0.102 635 18
3.00x 1073 1.997 19 —0.604 13318 1.059410°2 0.102 635 43
4.00x 1073 1.997 19 —0.604 632 05 1.059410°? 0.102 636 05
5.00x 1073 1.997 18 —0.605 130 61 1.059410°? 0.102 636 86
6.00x 1073 1.997 18 —0.605 628 85 1.059110? 0.102 637 85
8.00x 1073 1.997 16 —0.606 624 36 1.059410°2 0.102 640 36
1.00x 1072 1.997 14 —0.607 618 59 1.059110°2 0.102 643 59
1.25x 1072 1.997 11 —0.608 859 58 1.059410°2 0.102 648 63
1.50x 1072 1.997 08 —0.610 098 56 1.059210°2 0.102 654 79
2.00x10°2 1.996 99 —0.61257052 1.059810 2 0.102 670 47
2.50x 102 1.996 88 —0.615 034 47 1.059410°2 0.102 690 61
3.00<10°? 1.996 74 —0.617 490 41 1.059610 2 0.102 715 19
4.00x 1072 1.996 39 —0.622 37833 1.060410°2 0.102 777 63
5.00x 102 1.995 93 —0.627 234 31 1.060610° 2 0.102 857 61
6.00x 102 1.995 38 —0.632 058 43 1.061810°2 0.102 954 91
8.00x 1072 1.993 99 —0.641 611 44 1.063110°2 0.103 200 44
1.00x10°! 1.992 21 —0.651 038 20 1.065810° 2 0.103511 72

difference|(Ey); 10~ (Ep)i-101d on | for y=0.01, 0.1, and Table Il shows the convergence Bf, for the state i,

1.0. For y=0.01 the accuracy 10 hartree was achieved (the field-free D) with m=—1. While in the absence of
only at|=80; for stronger magnetic fields such a precisionfield the convergence of resultsliris even faster than in the
could not be achieved at all because of the loss of numericairevious case, in the presence of magnetic field the situation
stability. Fory=1.0 the precision of the most reliable values is worse than for &, and reliable results can be obtained
is only about 10° hartree. only for y=<0.01; for y=1.0 the method is completely un-
stable.

As we see, the method under consideration is applicable
only for fields not exceeding 0.01-0.1 a.u., depending on the
quantum state, and is practically useless for fields stronger
than y=1.0. It is interesting to compare our results with a
semianalytical method for the hydrogen atom in a magnetic
field reported in Ref[23]. The authors of23] represented
the hydrogen wave function as a truncated double power
series in the parabolic-cylindrical coordinate system and ob-
tained a system of linear equations analogous to (£Q),
which was required to have a nonsingular solution. They
found that the convergence of results fer-0.5 a.u. be-
comes slower, and foy=1 the accuracy 1% hartree was
obtained only when the degree of the truncated polynomial
was about 50, which is quantitatively close to our observa-
1072 , , | | | L tions.

20 30 40 S50 60 70 8 90 To check if the rate of convergence depends on the exact

I form of the multiplier in substitution(11), we performed
calculations with the functioy (&, ) defined as

107

107

10°¢

1078

10—10

[(Eo)1,10~(Ep)-10,10l (hartree)

FIG. 3. The difference betweerkf), 10 and Ep),- 10,10, COM-
puted for " in the state g atR=2.0, as a function of the cutoff
index | for y=0.01, 0.1, and 1.0 a.u. P& m)=e Pix (£, 7). (24)
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TABLE V. Values 0fReq, £7(Reg), wr, andep for the hydrogen molecular ion in the quantum state
17, (m=—1) calculated in the interval€®y=<0.01.

Y Req er( Reo) WR €p

0.00x 10° 7.930 714 —0.134 513816 1.212 46103 9.513 816102
1.00x 104 7.930 712 —0.134 613792 1.212 46103 9.51382x 103
1.25x10°4 7.930 712 —0.134 638 779 1.212 46103 9.513 826<10° 3
1.50x 104 7.930 711 —0.134 663 763 1.212 46103 9.51383% 103
2.00<10°4 7.930 708 —0.134 713723 1.212 46103 9.51384% 103
2.50x10°4 7.930 705 —0.134 763 670 1.212 4610 3 9.513 85& 10 3
3.00x 1074 7.930 701 —0.134 813 606 1.212 471073 9.513 87610 °
4.00x 10°* 7.930 691 —0.134 913 443 1.212 471073 9.51392% 103
5.00< 1074 7.930 677 —0.135013 233 1.212 471073 9.51398% 1073
6.00x 1074 7.930 661 —0.135 112 977 1.212 48103 9.514 05% 103
8.00< 1074 7.930 620 —0.135 312 325 1.2125010 3 9.514 2441073
1.00x 102 7.930 568 —0.135 511 486 1.2125210 3 9.514 486< 103
1.25x 108 7.930 485 —0.135 760 175 1.2125510 3 9.514 86X 10 3
1.50x 10 3 7.930 385 —0.136 008 573 1.2125910 3 9.51532% 10 3
2.00x10° % 7.930 129 —0.136 504 496 1.2126810°3 9.516 494102
2.50x1073 7.929 800 —0.136 999 255 1.2128410°8 9.518 000x 10°°
3.00<10°3 7.929 398 —0.137 492 849 1.212 96103 9.519 840x 103
4.00<10°3 7.928 376 —0.138 476 547 1.2133510 3 9.524 51& 103
5.00x 1073 7.927 063 —0.139 455 595 1.2138510°3 9.53052% 103
6.00<10 2 7.925 462 —0.140 429 998 1.214 47103 9.537 84& 103
8.00x 1073 7.921 399 —0.142 364 896 1.216 0210 3 9.556 425¢ 103
1.00x 1072 7.916 205 —0.144 281 310 1.2180410 3 9.580 165¢ 10 3

In the field-free case the convergenceliwas five times H," —p*™+p*+e~. To determine the energy of the disso-
slower than with Eq.(11), and an accuracy within I8°  ciation into a neutral hydrogen atom and a free proton, we
hartree was achieved only &t60. However, the conver- used values oF,, for the hydrogen atom from ReR22]. The
gence rate fory=0.01 was practically the same as with defi- vibrational energywg, is determined as

nition (11). Therefore, although substitutiqdl) is the best

known choice for a field-free hydrogen molecular ion, it does

not offer appreciable advantages over E§4) when the _<

1 d28T 1/2]
 apore SELC
magnetic field is present.

n dR?

R= Req’ (25)

where u=m,/2 is the reduced mass of the system of two
IV. RESULTS AND CONCLUSIONS nuclei.

We performed a calculation of basic molecular param-_ Molecular parameters of the ground state,&re given in

eters for two quantum states of the hydrogen molecular ior @0l V. The total electronic energy is almost linear with
in the magnetic field. The ground state-d, which evolves respect to the magnetic field strenggh the other quoted

from the field-free ground statesir,, is studied in the field ~Parameters are quadraticn For y<0.1 their dependencies
range O<y=<0.1. The state 4,, which is the lowest state on the field strength can bg _descrlbe.d by. the foII_owm_g ap-
with m=—1, and which corresponds to the field-free stateProximate formulagall quantities are given in atomic unjts

2pm,, is studied in the range<9y=<0.01 a.u.

The calculated parameters include the equilibrium inter- R79(y)=1.99719-0.5y2+ 105, (269
nuclear distanc®,,, the total electronic energy at the equi- .
librium distanceet(Rey), the energies of the smalhar-

monic) vibrations about the equilibrium position in the [g#"g(Req)](y):—O.GOZ 634 62 0.5y+0.16y?
direction parallel to the magnetic field, and the dissociation
energiesep of the process k" —H+p™. The total elec- +(107%+107%9%), (26b)

tronic energy is measured with respect to the free electron
energyy/2 and is defined ast(R)=1/R—E,(R); its abso-

1o, _ 2 6
lute value is equal to the dissociation energy of the process wg %(y)=0.0105910.006284°+10 " (269
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TABLE VI. Comparison of results obtained by the present method with previously reported calculations
for the ground state of 51 in magnetic field. Present results are given in the first line of each dhti/the
magnetic field strength, and other quantities are the same as in Table IV.

B, T Y Req ST(Reo) WR €D

0 0.0 1.99719  —0.602 634 62 1.059410 2 0.102 634 62
1.997 1.08x 10722

10° 4.25438¢10°3 1.997 19 —0.604 758 91 1.059410 2 0.102 636 24
1.997 1.08x10 22

104 4.25438¢10 2 1.996 28 —0.623616 62 1.060210 2 0.102 796 32
1.996 1.09x10 22
1.99¢ —0.62362° 0.102 80

2x 10 8.508 76< 102 1.993 57 —0.644 021 36 1.063610 2 0.103 27350
1.99% 1.09x10 22

8Referencd 16].

PReference 21].

The corresponding data for the state 1(the lowest quan- was found that a similar technique applied to the hydrogen

tum state withm= —1) are given in Table V. Approximate atom in a magnetic field converges very well fg=0.5, and

expressions for the molecular parameters which are valid iexhibits slower convergence for stronger fields.

the range & y<0.01 are Although the onset of the numerical instability on the
scale may be delayed to a some extent by performing calcu-
lations with quadruple precision, the convergence of the so-
lution in the cutoff indiced andJ becomes slower with the

(278  growth of y, which means that a longer computational time
will be required to find the determinant of the band matrix

1m _ 2 —6 4
Req“(y)—7.930714— 146.1y“* (10 +104y ),

[s#”“(Req)](y)=—0.134 513 816 y+2.33)? &'J(p). This fact can, in turn, impose limitations on the
. 4 range ofy for which the method is practically applicable and
+(107°+100y%), (27D on quantum states which can be treated.
A substantial advantage of the applied method over the
wéwu(y):1_21246< 1073+ 0.0555/%+2x 10°¢. usual finite basis set and variational methods resides in its

high accuracy, which is not affected by selection of basis
(2790 functions or by choice of variational parameters, and which
_ ) can be controlled in a straightforward manner by increasing
Table VI presents a comparison of results obtained by the,e degrees of the expansioh9). This fact allows one to
present mfthOd with previously reported accurate calculdyerform an accurate calculation of other important physical
tions of H," in magnetic fields below 0.1 a.u. The compari- parameters which may depend on the exact distribution of
son is restricted only to the ground st.ate, since parameters ¢fa glectron densitye.g., multipole momentsIn addition,
the state r, are reported only for fields from $0T and  penchmark results obtained using the present method can be
stronger[21], which exceeds the field range considered inyseq to check the validity of alternative computational meth-
Ogr WOI’k._ As we see, Ol_Jr results are in very good agreemergds which may be applied to the magnetized hydrogen mo-
with previous computations. lecular ion.

In the absence of magnetic field the potential energy |t should be pointed out that the technique used in the
curve of the state &, exhibits a small hump which is lo- present work is not restricted to the hydrogen molecular ion
cated atR~25.81 a.u. and whose value in the maximum isgn|y. It is applicable without modifications for the treatment
equal to—0.124 856 hartree. In the presence of a moderatelyf other two-center one-electron problems, including that of
strong magnetic field this qualitative picture of the energyqeH+ in a parallel magnetic field.
curve behavior remains the same, although the curve is
shifted down due to the increase of binding energy of the
hydrogen atom in @_, state. ACKNOWLEDGMENTS
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