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Quantum-classical correspondence via Liouville dynamics.
l. Integrable systems and the chaotic spectral decomposition
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A general program to show quantum-classical correspondence for bound conservative integrable and chaotic
systems is described. The method is applied to integrable systems and the nature of the approach to the
classical limit, the cancellation of essential singularities, is demonstrated. The application to chaotic systems
requires an understanding of classical Liouville eigenfunctions and a Liouville spectral decomposition, devel-
oped herein. General approaches to the construction of these Liouville eigenfunctions and classical spectral
projectors in quantum and classical mechanics are discussed and are employed to construct Liouville eigen-
functions for classically chaotic systems. Correspondence for systems whose classical analogs are chaotic is
discussed, based on this decomposition, in the following pdfieys. Rev. A54, 43 (1996)].
[S1050-294{@6)05112-9

PACS numbd(s): 03.65—w

[. INTRODUCTION These eigenfunctions are obtained in Sec. 1l for both regular
and chaotic systems. The correspondence program is then
The correspondence principle requires that the laws ofmplemented for integrable systems in Sec. IV and the non-
quantum dynamics reproduce the predictions of classical mesingular nature of the approach to the classical limit is dis-
chanics when the energy and mass of a dynamical system ap¢ayed. This approach to correspondence proves inappropri-
very large with respect to Planck’s constdaf. In other ate for chaotic systems. In this case a description of the
words, the correspondence principle asserts that the fundgynamics in terms of classical spectral projectors is required.
mental laws of physics that are valid on the atomic scale ardNese quantities are introduced and discussed in Sec. V. A
also responsible for the observed classical dynamics of magempanion papef6] shows quantum-classical correspon-

roscopic systems. It is therefore surprising, considering thd€nce for chaotic systems.

important conceptual role of the correspondence principle,

that there is little direct evidence to support its general va- Il. LIOUVILLE PICTURE: THE CORRESPONDENCE
lidity [2—4]. In fact it has been controversially,5] argued PROGRAM

that the absence of chaos in quantum dynamics plus its pres- Ao ments in favor of the Liouville picture as the concep-

ence in the dynamics of classical systems prevents any pOgya| framework most suited for the study of correspondence
sibility of correspondencg3]. The main goal of this paper hayve peen presented elsewhii®,11]. Here we briefly sum-
and its companior6] is to provide a consistent theory of mgarize. First, the Liouville picture of classical dynamics,
correspondence in both integrable and chaotic systems.  which deals with the time evolution of phase-space densities,
To understand correspondence requires that we first adop§ conceptually superior to the trajectory viewpoint because
a framework in which quantum and classical dynamics carit implicitly recognizes the imperfect nature of classical
be realistically compared. The Liouville picture in classical preparation and measuring devices. That is, one cannot ini-
mechanics in combination with a phase-space representatiqially prepare the exact points in phase space that define a
of quantum dynamics provides such a framework. Here botRingle trajectory. Similarly, the limitations of quantum me-
classical and quantum mechanics are represented by objeefsanical preparation and measurement can be incorporated in
defined on phase space and by operators defined on thegg von Neumaniiquantum Liouvillé equation for the den-
objects[7]. Our correspondence approach is then based osity matrix; i.e., the von Neumann equation admits solutions
the desire to prove that the quantum dynamics of phasehat are not states of maximal information. Thus, the Liou-
space distributions obeys classical mechanics in the classicgille equation plays a similar role in quantum and classical
limit. We do so by focusing on the correspondence of whatlynamics. Second, our approach takes advantage of the simi-
we argue to be the essential elements in dynamics, therity between the dynamics of classical distributions in
eigendistributions and eigenvalues of the classical and quaphase space, as governed by the classical Liouville equation,
tum Liouville operatorg8,9] (the Poisson bracket with the and the dynamics of quantum density matrices, governed by
classical HamiltonianH, and the commutator with the the von Neumann equation in the Wigner-Weyl representa-
Hamiltonian operatoH, respectively. tion. Adopting this perspective, both classical and quantum
We outline this correspondence program in Sec. |l andnechanics have similar structures and rely upon similar
describe the progress made and developments required in thj@antities. Finally, formal classifications of classical systems
application to regular and chaotic systems. The approach enas integrable, ergodic, mixing, etc. are most properly done in
phasizes the significance of the eigenfunctions of the classterms of the eigenfunctions and eigenvalues of the classical
cal Liouville operator and of the classical spectral projectorsLiouville operator[12], i.e., the Poisson bracket with the
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Hamiltonian. Hence this provides the most fundamental of 2 _
frameworks. L(x)= %IH (X)sin(hal2)
The time evolution of the quantum density matfixis

-

given by the solution to the von Neumafor quantum Liou- _ Tala 4 o 4

ville) equation: =%|H(x)sm 5 % . a_p_% . % . (8
O’)A . R . . . .
% _ —iAYALp]=—iLp, 1) Here o implies the Poisson bracket, i.e.,

t
! JA(X) &B(x)_aA(x) dB(X)

aq ap ap aq

SAely 4 . A(X)oB(x)={A,B}=
whereL=%""[H, ] is the quantum Liouville operator, and

[,] is the commutator. Solutions to E€L) are of the form €)
A A int and the arrows over the derivatives indicate that the deriva-
P=Pr.a® 2 tive is taken of the function preceding or following the de-
R o ) rivative operator.
if p) satisfies the eigenvalue problem Given the solution to Eq(7), the dynamics of any distri-
R R bution p"(x,t), with initial condition p%¥(x,t=0)=p(x,0),
Loxa=MPra- (3 can be written as

The labela is introduced to accommodate degeneracies as- w _

sociated with the eigenvaluk. In particular, a complete pW(X,t)=>\2a Cr 0Py (X)€", (10
characterization of the quantum Liouville eigenvalue prob-

lem requires the specification of a complete set of commutwhere

ing superoperators in the same way that solution of the

Schralinger eigenvalue problem requires a complete set of B W
commuting observabld8]. This complete set of commuting Cra™ | dXop(X0,00pxa(Xo)- (12)
superoperators can be constructed in the following way. Sup-
pose That is,
HKqy, oo Koy (4) pW(X,t)=f dxgp(Xg,0) p p‘{”ya(x)vafa(xo)}e—m_
for r'<s is a complete set of observables for a systers of (12

degrees of freedom such thad ,K;]=0 and[K; ,K;]=0 for Consider now the analogous approach in classical me-

alli,j<r’—1. It follows that the complete set off2com-  chanjcs, which considers the dynamics of phase-space distri-
muting quantum superoperators is butions p(x,t). In particular, p(x,t) satisfies the Liouville
equation

LR 151K, S[R3 g TRe s ]
AT 1y by 1y d+ 000y r’'—1s Ih 5 r'—1y 1+ J t
h 2 h 2 (5) pi;: ) =—iLep(X,t), 13

where H=1[H, ], is the energy superoperator, apd, Where the classical Liouville operatay is given by

denotes the anticommutator, i.g.A,B] . =AB+BA. A Le=i{H(x), } (14)
Liouville eigenstate for the system is completely specified if ¢ T

it is an eigenstate of alli2 superoperators. Thys, . in EQ.  Here H(x) is the Hamiltonian and,} denotes the Poisson
(3) is an eigenfunction of the collection of superoperators iNhracket[Eq. (9)]. The time evolution op(x,t) is given by
Eq. (5), with the labela denoting the eigenvalues of all

superoperators other than p(X,1)=pyec (X)efim (15)
Equations(1) and (3) are of the following form in the ’ “

Wigner-Wey! representatiofi3] [x=(p,q) denotes the col- if y,. (x) satisfies the eigenvalue problem
lection of momentg and coordinates]
Lepre,a(X) =AEpyec o(X). (16)

=—iL(X)p"(x,t) (6) Once againv contains the labeling associated with states that
are \® degenerate. In particular, a complete characterization
of the classical Liouville eigenvalue problem requires the
specification of a complete set of commuting operators on
the classical Hilbert spadé&1,14]. Suppose the classical ana-
LX) px o(X)=Npy 4(X), (7)  log of our quantum system hasindependent constants of
motion. Then we can construct-1 functionsK;(x), which
where are constants of the motion, i.e{H(x),K;(x)}=0, and

ap™(x,t)
ot

and
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which are in involution so tha{K;(x),K;(x)}=0 for all W e ip-vi
i,j<r—1. The complete set of commuting operators on the ~ Pnna(X})=h J dv e’ (q—vi2n)(nlq-+v/2)
classical Hilbert space is then
—1%p;_o(X) (21
LC,H(X),i{Kl(X), }!Kl(x)! e ii{Kr—l(X)! }vKr—l(X)v
(17 in the h—0 limit, wherel,=(n+ B)#, the constant® are
] ) . ] the Maslov indice$10,16, py , is the Wigner transform of
whereL,i{Ky(x), J, ... i{K;_4(x), } are first-order linear ihe stationary Liouville eigenstai@)(n|, and the classical
differential operators andl(x),K1(x), . . . K, 1(x) aremul- | iqyyille eigenfunctionsp,: (x) are defined belowEq.
tiplicative operators. A Liouville eigenstate for the classical (30)]. Correspondence for the nonstationary Liouville eigen-
problem is usm_JaIIy completely specified if it is an eigenstatesnctions InY(m| and eigenvalues., = (En— En)/% was
of all 2r classical operatorgl4]. , _ _ considered by Jaffand Brumer[10]. in particular, they ex-
Given such solutions, the evolution of any classical dis-;mined the Wigner transforpt”,. (x) of |n)(m| and showed
tribution p(x,t) can be written as that forn#m, :m

_ —inCt )
P(th)_)\cEa C)\C,ap)\c,a(x)e , (18) px/‘m(x)EhstZJ dv elp-v/h<q_V/2|n><m|q+V/2>
where —17%%py - n-m(X), (22
- * and
C)\C,a_f dXop(Xg,0)p* \c o(Xo) (19
An,m_’)\fnym,n—m (23)

or

ash—0, where they surmised thé ,,=(I,+1,)/2. How-
2 Pre.o(X)p* e o(Xo) e I\t ever, as we will later show, this, , is an approximation to
AC,a the exact result, which depends intimately on the eigenvalues
(200  of the complete set of commuting observabl&gy. (4)].
These classical Liouville eigenvalur$ , are defined below
Both Egs.(12) and(20) express the time evolution of the [Eq. (31)]. ’
phase-space denSity in terms of the initial distribution By Contrast, the Correspondence program for Systems
p(%0,0), the eigenvalues,\®, and a term comprised of whose classical analogs are chaotic has been left largely un-
products of Liouville eigenfunctions contained within brack- developed. The nature of the classical Liouville eigenfunc-
ets. This reWriting of the right-hand sides of the equationStionS and eigenspectrum is not C|ear|y understbbzl and
and the term in brackets in particular, will prove to play agnly the correspondence limits of the stationary Liouville
central role in the correspondence program we develop igigenfunctions have been explored. Beff8] and Voros
these papers. Indeed the term in brackets, in Eb.and  [19] were able to show that the Wigner function associated
(20), is related to the Liouville spectral projection operators,yith a stationary Liouville eigenstate|n)(n| (here
which are heavily emphasized in this paper. r=r’=1) concentrates in the classical limit to a uniform

A comparison of Egs(12) and(20) motivates our corre-  distribution over the classical energy surface of the same
spondence approach. Specifically, it suggests that one cathergyE, | i.e

show quantum-classical correspondence by showing that the

p(X,t)=f dXop(Xo,0)

h—0 limit of the quantum Liouville eigenfunctions and its S(E,—H(x))

eigenvalues are the classical Liouville eigenfunctions and ei- p‘r’]\"n(x)—)hyz n . (29
genvalues. This approach has proven successful for inte- J'dxfé(E —H(x"))

grable systemgsee Ref[10] and Sec. IV B beloyw How- "

ever, as shown below and in the following papé}; it is an
incorrect approach for chaotic systems. In such cases tHavestigations of the semiclassical corrections to this limit
guantum Liouville eigenstates have no classical limit.have shown that the unstable periodic orbits of the chaotic
Rather, one must deal with quantum and classical spectralassical system strongly influence the quantum eigenfunc-
projection operators, which have singularity-free classications, resulting in accentuations of probability in the vicinity
limits. These are related to the objects contained withirof periodic orbits[4,20]. Semiclassical corrections have also
brackets in Egs(12) and(20). been studied for the stationary Liouville eigenfunctions of
The status of this correspondence program is readily sunregular systemg15]. However, no results have been ob-
marized for integrable systems=r’=s). Berry[15] dem- tained for the correspondence of the nonstationary Liouville
onstrated correspondence for the stationary Liouville eigeneigenfunctions or eigenspectrum for the chaotic case. The
functions |n){(n| where |n) are -eigenstates of the reason for this is made clear in the following paper, where
Hamiltonian operator with corresponding energies and ~ we show that they ,(x), n#m, for chaotic systems do not
the s integersn label the quantum states of the Schrodingerhave classical limits. Rather, one must deal with the classical
picture. Specifically, he showed that and quantum spectral projection operators discussed below.



30 JOSHUA WILKIE AND PAUL BRUMER 55
lll. CLASSICAL LIOUVILLE EIGENFUNCTIONS Note that these eigenfunctions are also eigenfunctions of the
AND EIGENSPECTRUM differential operatorsi{K;(x), }=—idK;(I1)/dl-a/90 with
corresponding eigenvaluds dK;(1")/dl". If the K;(1)=1;
then the eigenvalues are simgly. This set of eigenfunc-
tions is complete and orthogonal, i.e.,

The classical Liouville eigenvalue probldiag. (16)] re-
quires that one find a complete set of orthogonal Liouville
eigenfunctionsp, ,(x) with eigenvalues\; i.e., they must
satisfy
> f di’pf (X )pr k(¥ =8(x—x"), (32

f dx py, 4 (X)py,a(X)=0 (25
and
for \#\" or a#a’, and

dx pji . (X)p 1 (X)= S (1" —1"). (33
)\E Pf,a(xo)l))\,a(x):é(x—xo), (26) f 1"k 1"k K,k

We comment briefly on the character of the Liouville
(Note that for notational simplicity, classical eigenvalues ineigenfunctions for integrable systems; a detailed discussion
the remainder of the paper are denatedather tham\°.) For  and related computations are provided elsewli¢ig. The
the case ofs degrees of freedom and constants of the spectrum of an integrable system on a given tofusl(x) is
motion we must find simultaneous eigenstates of the comdiscrete and is given by the set of frequendiksw(1’)|k

plete set of 2 operatord Eq. (17)]. e Z%}. On the energy surfacE=H(x), the spectrum of an
If a distributionf(x) is an eigenstate of a real multiplica- integrable system is the union of all sdts w(l’)|k € Z5}
tive operator A(x) with eigenvalue A’, then from tori I’=1(x) with H(l')=E. Typically, (l’) varies

[A(x)—A"]f(x)=0. That is,f(x) =0 for all x not satisfying  with |’, so that the spectrum of an integrable system on an
A(X)=A’ so that all nontrivial solution$(x) must be pro- energy surface is continuous. In our terminoldgi] eigen-
portional to §(A(x)—A’). That is, all distributions that are functions with frequencies, ,=k- w(l1") with k#0 belong

eigenstates of  the multiplicative operators to the continuous spectrum while those witk 0 belong to
H(x),K(x), ... ,K,_1(X) must be proportional to the point spectrum. Examination of E@O) reveals that the
1 , eigenfunctionsp, (1,6) are identically zero off the torus

S(E—HO)IT 21 6(K;(x) —Kj). (27 1(x)=1". Eigendistributions withk=0 are stationary and

Littl b id ab h | ¢ arbi uniform on the torus, and as a set they project out the long-
lttle more can be said about the general case of arbitrary g jimjt of any given initial probability distribution. For

r. We therefore focus on the two interesting special cases; . g the character of the eigendistribution is determined by
r=s, corresponding to integrable systems, ardl, which

) . i the underlying orbit structure of the torug¢x)=1". If the
includes the case of chaotic motion. frequenciesw;,,, . . . ,.ws Of the torus are commensurate
then the orbits of the torugx)=1" are all periodid22]. The
A. Integrable systems eigendistributions associated with commensurate tori are

For r=s we can introduce action variablésand conju- Nnonuniform and stationary whea e(1’)=0 andk#0, and

gate angle variables ¢ such that H(x)=H(l), and nonuniform and nonstationary whénw(l')#0.
K;(x)=K;(l) for j=1,... s—1. It follows that there exists The eigendistributions associated with incommensurate
anl’ such that tori are nonuniform and nonstationary fot 0. Eigendistri-
butions for integrable systems are supported only over a
S(E—- H(x))H};}&(KJ(x) - Kj’)oca(l x)—1") (28 given torusl’ =1(x), but every orbit of the torus contributes
to the construction of the eigenfunctig®3].
and that the classical Liouville eigendistributiopg ,(X)
must be of the form_ 5(|(x)— I ’)F(_0(x)_). Since B. Chaotic systems
L.=—iw(l)-d/36 the Liouville eigenequation is
Now consider the case where=1. In addition to being
) d chaotic we assume that the system is hyperbolic, i.e., that it
—ia(l") —5F(0)=\F(0) (29 has a countable number of isolated unstable periodic orbits
on each surface of constant energy. Thus, our chaotic system
with solutionsF(6) =e'®? A =a- w(l'). If the system is pe- has positive Kolmogorov entropy, exhibits sensitivity to ini-
riodic in the angle variables thex=k € Z5, i.e.,ais a vector  tial conditions(i.e., possessess2-2 nonvanishing Liapunov

of s integers. Thus the classical Liouville eigenfunctions forexponents and is mixing, and hence is weak mixing and
an integrable system are given by ergodic [12]. Such familiar properties of chaotic systems

(i.e., ergodicity, weak mixing, mixing, efanay be related to

1 , .o the spectral properties of the Liouville opera{dr2]. For
i k(X)= Wﬁ5(| —he™?, (30 example, ifA =0 is a nondegenerate point eigenvalue of the
Liouville operatorL. on the energy surface then the system
with eigenvalue is ergodic. IfA=0 is the only point eigenvalue a&f, on the

energy surface then the system is weak mixing. If the rest of
Nr=koo(l). (31 the spectrum is continuous then the system is mixing. In this
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section we determine the form of the generalized eigenfuncsupported over the entire energy surf&ceH(x) and so are

tions that correspond to the point and continuous Liouvillejn some sense constructed from every orbit of the energy

eigenspectruni12,21] for chaotic systems. surface. It can be readily verified that these eigenfunctions
In accord with Eq.(17) we seek eigenfunctions of the are both orthogonal and completee Appendix A

complete set.. andH(x). As eigenstates of the energy mul-

tiplication operatorH(x) they must be proportional to s | , )

S(E—H(x)) where E is the corresponding energy eigen- j dx pe/\ (X)pe (X)) =6 1 S(E—E")8(A—N"),

value. Consider then the functiai(x), which is conjugate to

the constant of the motioH (x), i.e.,{7(x),H(x)}=1. Then " "

the distributions(E — H(x))e™ "™ is an eigenfunction of the > f dEf d\ pEy(X0)pE A (X) = 8(X—Xo). (39)

classical Liouville operator with eigenvalue. since hJo o

L.=i{H(x), }=—idldr. Note that e '“c'7(x)=r(X(X, , _
—1))=r(x)—t, where X(x,—t) is the phase-space point Here we note that the introduction of the complete set of

x| is necessary to achieve the corrék—x,) term in Eq.
(38) and that these eigenfunctions are quite different from
those proposed elsewhere, which we have shown to be in-

from which x evolves over the timé. Thus, for a given
choice of the origin of time along each orbit of the system,
we can construct a functior(x), which specifies the time of
an arbitrary point along the orbit, since trajectories do not correct[17].

intersect one another in phase space. However, the distribu- The eigenfunctions in E37) have a structure that at_first
tions S(E —H(x))e*"™ [24] do not form a complete set of sight appears to violate several well-known properties of

Liouville eigenfunctions since they do not account for theChaOt'C.StySterEIS' fFor t_exar?ple,)theh_eﬁlstencet ]?f sigﬂonary

infinite degeneracy of the classical Liouville spectrum forSguare integrable TUncliong 7(x)), whic are not lunctions

chaotic system§L2]. of the. Hamiltonian, appears Fo contradict the fact that_for.
To properly define eigenfunctions we must consider th ergodic systems the only stationary square integrable distri-

manner in which points in phase space are labeled. Speci utions are fungtlons of the Ham|lt(_)n|an. However, the
cally we introduce a system of variablé$(x), which is the X1 (1(x)) d'St”bUt'or_‘S are not square integrable on the en-
energy of a point in phase spae€x) a function that assigns ergy surface. That is,

a time to every point in phase space, arg-2 stationary

variables 7(x), wh_ich label the trajegtories on the energy J' dH dr dy 5(E—H)|X|(77(X))|2=J dr=o, (39
surface. The functions and » are continuous only along an

orbit: 7 increments smoothly whiley remains constant along

an orbit. Thex variables are chosen to have the property thaf? 2ddition, it might appear objectionable thg(z(x)) is a
global constant of the motion independent of the Hamil-

S(Xg—X)= 8(H(xg) —H (X)) 8(7(Xp) tonian. However, this is not the case since the set of points
x satisfying x;(9(X))=x', where y' is some constant, at
= 7(X))8(3p(x0) = 1(X))- (34 most contains points from a countable number of trajectories

and so cannot divide the phase space in any meaningful way.

As one moves Off a trajectory the variablesand » must Thus the functionsy,(#(x)) are not true constants of the

take on all possible values infinitely often sin@ there are .
S ) ) : .~ motion.

an infinite number of chaotic trajectoried) every chaotic The relation between these eigenfunctions and the Liou-

trajectory comes arbitrarily close to every phase space point. 9

on every other trajectory, an@) chaotic trajectories return \éli!:taelsp?:lcégjrmEc:(r;rt:iiaetinoer:g(* ?ﬁgafe;:rgl() dlgcr(])(r)rt] 'Z]S'Ri%'n in
arbitrarily close to themselves infinitely often. We now in- y ' P P

troduce a complete set of square integrable orthonorma%'wz‘q'(%) reveals no sgparaﬂon of pomt'and continuous spec-
functionsy, (), | €7, i.e rum, although the L|0U\{|Ile eigenfunctions have the correct

AT T degeneracy for the continuous spectrum. A proper treatment

of the separation of point and continuous spectrum is given

Zl XF (p (Xo)xi(m(x))=8(m(x)—9(x)) (35  in Sec. VB.

and IV. CORRESPONDENCE: INTEGRABLE SYSTEMS

Having established the essential features of the classical
f dy x\(Mxi(m=6,. (36)  eigenstate picture we now examine correspondence. We as-
sume thatr’ =r, i.e., that the complete set of commuting
Classical Liouville eigenfunctions for chaotic systemsquantum observables has as many members as there are con-
PIE A(x) are then defined as stants of the classical motion.
' _ Given the complete set of commuting observables
| 1 nr) H,Kq, ... K,_; forr=<s, the complete set ofr2commuting

PEN(X) = Eé(E—H(x))e xi(m(x). 37 guperoperators is given HEq. (5]

Here the integet labels the infinite but countable degen- ~ _ 1 - 1 - 1 - 1.
eracy of the Liouville eigenvalue for the continuous part of L’H’%[Kl' ]’E[Kl’ Teoon ’%[K“l’ ]’E[Kr’l’ I+
the spectrunj12] at energyE. The distributionso'E')\(x) are (40
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We denote the simultaneous eigenstates of thbservables 1 . w

by |n) wheren=(ny, ... n,) are the quantum numbers, and (E[Kj ,|n><m|]+) =K;j'(x)cog%0/2) py m(X)

the corresponding eigenvalues d&g,K.(n), ... ,K,_1(n).

We further denote the Wigner-Weyl representation of the Kj(n)+K;(m)

quantum observabled,K; by H(x), and K{(x), for == X (47
j=1,...r—1.

The Liouville eigenstatep,, , must be an eigenstate of a e can readily explore the classical limit of the quan-
corresponding set ofr2superoperators in the Wigner-Weyl tym eigenequations, Eq&13)—(47), if
representation, which are
) lim P\r,wv,m(x)ﬂpﬁ,m(x)’ (48)
2i _[fhao\ ho h—0
L(x),H(x),%Kj (x)sm(7) Kj (x)cos(7), ce
wherepﬁym(x) is to be determined. However, this assump-
2i ho ho tion is not generally valid. That is, for quantum systems
S ‘f’_l(x)sin( 7) ,K‘,”_l(x)cos< 7) (41)  whose classical analogs are chaotie¢’'=1), as we dem-
onstrate in Ref.[6], individual quantum eigenfunctions
. ] ) pnm(X), n#m, display essential singularities &as-0, and
with L(x)=(2i/7)H(x)sin(o/2) and H(X)  hence do not have correspondence limits. Rather, the spectral
=H(x)cos(io/2). By comparison the classical complete setygjection operators introduced later belé8ec. \j do have
IS correspondence limits. Nonetheless, we can adopt(4).
primarily for notational convenience; the arguments that fol-
Le(X),H(X),i{K1(x), },K1(X), ... i{K-1(X), K- 1(X). low can be reformulated in terms of quantum and classical
(42 spectral projection operators when E48) is invalid.
We assume that the—0 limit of K{'(x) is K(x). In
We assume that IimﬂoK}N(x)z K;(x). Since  particular, if we consider the case where the setrofjdan-
limy_ocosto/2)=1 and lim,_q(2i/%)sin(ia/2)=ic, we  tum operatorg§Eqg. (41)] gives the classical s¢Eq. (42)] in
note that formally the quantum operator $Ef. (41)] be-  the classical limit and that Eq48) holds then each of the
comes the classical operator $€ig. (42)] in the classical eigenvalue equation€qs. (43)—(47)] reduces to the set of
limit. The first eigenequation is the time-independent vonclassical eigenvalue equations foy ,(x) with the same ei-

Neumann(quantum Liouvill¢ equation genvalues as in the quantum eigenequations. If this is the
case then the quantumpy.(X) goes to the classical
LX) oY m(X)=NpmPi m(X), (43)  pr.«(X), with clearly identifiable eigenvalues and correspon-

dence is established.

whereL (x) is the quantum Liouville operator in the Wigner- AN €xample of this approach, applied to integrable sys-
Weyl representation andl,, ,=(E,—Ep)/%. Second,py , tems, is provided below.

must satisfy the eigenequation for the Hermitian energy op-

erator{=13[H, 1., i.e., the anticommutator equation A. Integrable systems: Formal correspondence

In this section we first apply this approach to determine
1 . w_ w the complete set of correspondence rules for integrable sys-
5([H’|”><m|]+) =H(x)cog£0/2) pp m(X) tems. The resulting picture of correspondence for integrable
systems is exceptionally clear but gives no insight into the
EntEm approach to the classical limit. This is treated in the next
== Pam(¥) (44 subsection.
In this instance Eq(48) has been proven by Berifyl5]
or and by Jaffeand Brumer{10] and is clarified in Sec. IV B
below. Thus, in accord with the previous section, the eigen-
functionSp‘,QV'm(x) satisfy X classical eigenequations in the

H(x)p‘,’{m(x)z Enymp‘,’{m(x), (49 classical limit:
where E, =(E,+En)/2. Similarly, for j=1,...r—-1, Lc(X)pry m(X)=Np.mPp.m(X), (49
eigenfunctionsgy, (x) satisfy the equations
1 Wi H(X)P(r:],m(x):En,mP(r:],m(X)r (50)
% bow : w
(g[Kj,|n>(m|]) E%KJ (X)Sin(f a/2) py, m(X) | C KK (m)
I{Kj(l)!}pn,m(lio):—pn,m(lvo)r (51)
Ki(m—K;(m) fi
= —pn(®, (49
Ki(n)+K;(m
and K05 0= e e, G2
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for j=1,...5—1. As in Eq. (28) we conclude that
pn.m(X) is proportional to

S(E—H)ITZI8(K; (%) —K)), (53)
where E=E,,, and K{=[K;(n)+K;(m)]/2. Since
H(x)=H(I), andK;(x) =K;(l) for j=1,... s—1 there ex-
ists anl, ,, such that

SE—HOIITZ18(K;(x) K)o 8(1 =1y ). (54)
Hencepﬁ,m(x)“ 5(' l n,m)Fn,m( 0)-
From Egs.(49) and(51) it then follows that
. J . En—Em
_””(In,m)'é,_ol:n,m( 0)= TFn,m( 0) (55
and
K a _ Kj(n)=Kj(m)
—I &_I(ln,m)‘a_aFn,m(a)_ TFn,m(a)-
(56)

By WKB [10,15,16 E,~H(l,) wherel,=(n+B)% and
where B8 are the Maslov indices. Similarly we may approxi-
mateK;(n)~K;(l,). Assuming that

In,m_Inwo(h)wln,m_lm<|n,m (57)
it follows that
En_Em H(ln)_H(lm)
o %
H(In,m_(ln,m_ln))_ H(In,m_(ln,m_lm))
N %
Nw(ln,m)'(n_m) (58)

by the Taylor expansion ofi(l,) and H(I,) aboutl, .
Similarly one can show that

Ki(nN)—Ki:(m) dK;
B A A | (n—
; L (m-(n=m). (59
Substituting Eqs(58) and(59) into Egs.(55) and(56) shows
that F, m(6)~€'"™-% Thus, up to a normalization factor
p\rql,m(x)_)hS/zpln'm ,nfm(x) (60)
in the limit ash—0.
More specifically, we have to see th#},,, an eigenfunc-
tion of the 5 quantum operators

2i | ho ho
L(x),H(x),zK}”(x)sm(T) ,K}"’(x)cos{T), -

2i (ho\ ho
e ,?Ks_l(x)&n(?) ,Ks_l(x)co{T), (61

with corresponding eigenvalues
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Ki(n)—Ky(m) Ky(n)+Ky(m)
n,ms»=nm> % ’ 2 Yoo
Ks—1(N) =Ks_1(m) Kg_1(n)+Kg_1(m) 62)

L} ﬁ ’ 2

approaches a classical Iim'ybﬁ'm(l,a)zﬁs’zmn m,n_m(x),
which is an eigenfunction of thes2classical operators

LC(X)rH(X)!i{Kl(X)v }1K1(X)1 e vi{stl(X)i },KS,]_(X),
(63)

with corresponding eigenvalues

oK K¢(n)+Ky(m)
)\In’m,nfmvEn,ma(n_m)'Wl(ln,m)al(fl(v---
IKs_1 Ks—1(N)+Ks_1(m)
c(n=m) — =l m), 2 . (69

Using a completely different argument that employed
primitive WKB wave functions Berry showefd5] that the
stationary Liouville eigenfunctions have the correspondence
limit

Pan(¥) =152 o(X), (65)
wherel,=[n+ B]#4. Sincel , ,=I,, both results are in agree-
ment. For the case of nonstationary Liouville eigenfunctions
Jaffeand Brumef10] proved the general formula, E¢50),
where they surmised thag ,,=(I,+1,)/2. However | . is
obtained correctly by solving the equations

(En+Em)/2=H(|n,m) (66)

and

[Kj(n)+K;(m)]712=K;(In m) (67)
for j=1,... s—1. The surmise of Jaffand Brumer10] is
an approximation that is good to first orderhinTo see this
note that for «w(0)#0 we  can expand
H(1)~w(0)-1+0(1?). Equation (66) then reduces to
(0) [l m—(In+1m)/2]+0(h?)~0 for which I, »~ (I,
+1,)/2 is clearly a solution to first order irh. If
dK;(0)/a1#0 for all j then it can be shown in a similar
fashion thatl, ,,~ (I,+1,)/2 is a first-order solution of Egs.
(67). Thus, the approximatiofiLO] I, ,~ (I,+1,)/2 is good
to first order in Planck’s constant.

B. Integrable systems: Approach to the limit

The method described above assumes the validity of Eq.
(48) and fails to provide insights into the behavior of the
eigendistributions ab—0. Here we extend and reexamine
our previous proof10] of Eg. (48) for integrable systems
with particular interest in the mechanism by which essential
singularities are avoided ds—0. The following argument
also determines the correspondence limits of the stationary
and nonstationary Liouville eigenfunctions in a unified man-
ner.
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In the h— 0 limit the eigenfunctions of the Hamiltonian, functionsp;(q,l), and v; are the Maslov indices. Thus, it
(qg|ny, are well approximated by linear combinations of follows that
primitive WKB wave functions, i.e.,

9°Ri(q,|
de i(q,10)
dqal

1/2 w —h—s2 ip-Vih/~_
SR @iy Pam(X)=h fdve (q—=Vv/2n){m|q+V/2)

<0||n>~2i (2m) 5

(€8 =3 ), (69
whereR;(q,!) =fgopj(q’,l) -dqg’ are the actions correspond- '
ing to the different branches of the multivalued momentumwhere

2 _ 2 12
det[? Ri(q—Vv/2,ln) ~ d"R(q+V/2,l ) PV R} (A= V2. )/ g = IR (V12 ) i (v~ ) 2

cL;km(x)z(zwh)*S’Zf dv

C

dqal € elotell

(70

and where, in principle, we must retain all contributions to the double sum from the different sheets of the phases. However,
one of us has argudd 0] that thej #k terms should make a negligible contributionﬂ)ﬁﬁm(x) due to the rapidly oscillatory
character of their integrands. Before examining jlek terms that yield the classical limit &s— 0, we briefly demonstrate
that thej #k terms are indeed small if some averaging over phase ggasentially an energy average performed.(We
would prefer to carry out an average over wave functions at different energies, corresponding to a restriction to finite time, as
in the chaotic casg], but it is unclear as to how to do this. We expect the phase-space average to achieve a technically similar
result)

Making the change of variable— hv Eq. (70) can be written in the form

2 _ 2 1/2
detﬂ Ri(q—hv/2,l;) J R(a+hv/2,| ) @271P-VgiR| (A= hVI2| )/t g = IRy(aH+hVI2,| )/ gi (vj =~ 1) T2

U

dqal € dqal

ClLX () =h? f dv
(72)

Note the presence of essential singularities in each of the fagftifs "V/2!W/% gnde~Ra+hvi2lm/i "Exnanding the actions
R in powers ofh, we have

h ~ h* apia,ly)
R,-(q—hv/Z,ln)~R;(q,ln)—Epj(q,ln)~V+§V-J&—q”~v, (72)
and
h - h? ap(aly,) —
Rk(q+hv/2,lm)~Rk(q,Im)+Epk(q,lm)‘v+§v-a—q'v. (73)

We also assume that the determinant factors in the integrand are slowly varying, i.e.,

1/2

(74)

U

FR(q—hvi2,ly) - PR(q+hvi2,l )
) ERE aqal

1/2~ +‘92Rj(qv|n) *ﬁsz(QJm)
L] ©9g0l

Here the tilde denotes the transpgaecolumn vectorof the row vectorv. Substituting these expressions into Efl) and
performing the integral over shows that Eq(71) becomes

/ ~1
12{ e( apj(Q.1n) 8pk(Q.|m)” 1Zei[Rj(q,In)—Rk(q,lm)]/h
aq aq

de+‘92Rj(qr|n)de?sz(qilm)
L] © o 9q0l

ché (%)= (2i/m)s?

-1

DAl P(a, )
79 79

><exp{ —Zi(p—pj‘k) (ﬁj,k)/ﬁ]ei(w—w)v&, (75)

wherep; . =[p;(d,1,) +px(a,Im)1/2. The contributions(:L"fT](x) are therefore highly oscillatory functions of the phase-space
variables.

We now smooth Eq.75) over intervals of lengtih p about each momentum varialpg, 1=1,. . .s. In the stationary phase
approximation(for h—0)
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_[Ape api(Aly)  Ipk(alm) ap;(a,1n)  Ipk(Q,lm)
o2 =
( p) ApIZdU[de a9 aq aq aq

— (mh/21) %205 p(P—Pj 10 (76)

-1

-1/2
exp{—Zi(eru—pj,k)[ (5+U—pj,k)/ﬁ]

where Q,,(p)=1/(Ap)® if pie[p—Ap/2,pj+Ap/2] for I=1,... s, and is zero otherwise. It follows that smoothing Eq.
(75) over a classically small interval in momentum gives

R PR
© ool " aqal

1/2
ei[Rj(qJn)7Rk(qu)]/ﬁQAp(p_ pj’k)ei(”j7 Vk)77/2. (77)

Chin(0)~#

_Further smoothing:{{":n(x) over intervals of lengtkA g about each coordinate varialge, | =1, . . .s, one can show that the
CJn'ffn(x) contribution topy (x) is proportional to

ﬂl sind (p; — p)Aa/2h], (78)

Wherep} is thelth component op;(q,!). Thus, forj#k Eq. (78) is O(h®), while for j=k Eq. (78) is O(1). Thus, we have
shown that smoothing over phase space effectively eliminates contributions fro# theerms.
Focusing now on thé=k terms, and dropping the subscriptit follows that the diagonal contributions take the form

i aZR(CIvln) ‘92R(Qa|m) v
cli ~ #5952 det t i[R(a.In) —R(a.Im)]/ % —1 +
nm(X)~%7* det 9qal gl € o(p—z[p(a,ly) +p(a,1m)]), (79)

where we have replace@,p{p— sp(a,1,)+p(a,1m) 1} by the delta functions(p— 3[ p(q,!,) +p(d.1,,) 1) since we are free to
chooseAp small. Assume now that there is an actign, such thap(q,l,, m)~3[pP(a,1,) +p(a,Im)] (see Ref[10]), and we
also assume thay,, I, andl, , satisfy relation(57), then it readily follows that

R(qsln)_R(Qalm) _ R[q’ln,m_(ln,m_In)]_R[q’In,m_(ln,m_lm)] _ aR(q!In,m) (n

7 7 pT (n—m) (80)
by Taylor expansion oR(q,l,) andR(q,l,,) aboutl, ,,. Further since’R(q,!1)/dl = 6, we obtain
. PR(G,1n) - *R(Q, 1) [ .
1,) __%5SI2 + + _ i(n—m)- 6(x)
Cam(X)~ A= det— o —det— 21 S(p—p(a,Inm))e : (81)

Finally, summing over the different sheqt4Eq. (69)], as-  individual eigendistributions}! (x), even when suitably av-
suming that for smalh eraged, do not have proper classical limits. Examination of
our motivating equationsl2) and (20) suggests that a one-

2 2 1/2 2
deta R(G.1n) {9 R(9.Im) _|get R(9.In.m) , to-one correspondence of quantum to classical eigenfunc-
999! 990l 990 tions is not necessary to establish quantum-classical corre-
(82) spondence ah—0. Rather, we require a relation between
and changing variables in the delta function we have the quantities in brackets in Eqd2) and(20) ash—0. In
_ this section this idea is quantified, for classical systems, by
P m(X) ~ 72801 () =1, m)e' "™ A, (83 introducing the classical spectral projectors that we subse-

quently relatg 6], in theh—0 limit, to the analogous quan-

'tum projectors. In addition, we provide a general approach to

computing the classical projectors for arbitrary systems.
The classical projectors will be seen to offer a better

S . ; oy method of describing chaotic systems than do the classical
necessary to eliminate highly oscillatory terms in fhek

o ) Liouville eigenfunctions intr . . -
contribution to Eq.(69). Second, under these circumstances fouvitie eigentu ctions introduced abp\[Eq (37)]. Spe
o S I ! cifically, they are not based on the arbitrary get they are
the essential singularities in the original expression cancel. . .
completely defined as opposed to W{gx(x), which are de-
fined to within an overall phase, and they offer a means of
separating the spectrum into continuous and discrete compo-
nents[21].
Attempts to follow a similar correspondence approach for We also extend the approach and separate the singular
chaotic systems fail. That is, E48) is not true insofar as spectrum of the periodic orbits from the rest of the continu-

which is the correct correspondence limit. In particular
pn.m becomes the classical Liouville eigenfunctidty. (30)]
with 1'=1, , and k=(n—m) in the classical limit. Two
things are noteworthy. First, an average ovgpAq was

V. CLASSICAL LIOUVILLE SPECTRAL
DECOMPOSITION
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ous spectrum. The resulting periodic orbit spectral projection 1 o o
operators are used in the companion paper on correspon- YE,)\(X;XO):Ea(E_H(XO))J dt’e'™
dence in chaotic systenf§]. -

To develop an energy-frequency spectral decomposition X 8(Xg— X(X, —t")). (89)

we must isolate the fixed frequency and energy components
of an arbitrary time evolving phase-space probability densityequation(87) provides an expansion gf(x,t) in terms of
p(x,t) for a conservative classical Hamiltonian systemsof the classical spectral projection operatdfg , , which are
degrees of freedom. Phase-space probability denS|t|e§Xpressed in Eq(88), in terms of the dynamics. Specifi-
p(x,t)=p(X(x,~1),0) evolve in classical mechanics in ac- cally, Yg ,(x;Xo) is the Fourier transform of the kernel of the
cord with the classical Liouville equation, E4.3). Consider  Ljouville propagator, restricted to the energy shell. Equation
that (87) is a restatement of E420), which emphasizes the clas-

sical spectral projection operators as being central to the

p(x't):f dxXop(X0,0) 8(Xo— X(X, — 1)), (84)  analysis of the dynamical evolution of distributiopéx,t).
The distributionYg ,(x;Xo), as a function ofx, is an

eigenfunction of the Liouville operator with eigenvalie
To see this consider that propagation with respect toxthe
variables gives

where §(xo— X(x,—1)) is the kernel of the Liouville propa-
gator, which can be rewritten as

1 = . d ,5 —t’ d ,0 5 _X ! . . 4] .,
P(X t) J_OC t (t t)j XOp(XO ) (XO (X t)) eILCIYEJ\(X;XO):%5(E_H(XO))J' dt!el)\t

(85)
Making the replacemens(t—t')=(1/2m) " dre M t-t) X 8= X(x,~t' 1))
we obtain =e MY, (X;Xo), (89)
p(X,t)= fw dt’ ifm d) e M=t where we have made the change of varidblet—t’. Simi-
- 27 ) larly, with L.(xo)=i[dH(Xg)/dxy]Jdl Xy, operating on the

Xo variables LYEa(XX0)=—AYEg\(X;X0). [Here
xfdxop(xo,O)ﬁ(xo—X(x,—t’)). 86) J=(9,") is the (Zx2s)-dimensional symplectic matrix
[25]]. Thus Y e (X;Xo) is an eigenfunction of . with eigen-
Finally inserting a closure relation for the energy Value\ (—X) in thex (xo) variables. These properties are

1=J3dE 8(E—H(x)) gives consequences of the fact thatg ,(X;Xg) =Yg —\(X0;X),
which is in turn a consequence of the fact thatis unitarily

I * it _ equivalent to— Le. S
p(x,t) o dE %d)\ e dXop(X0,0) Y g\ (X;X0), The decomposition in E¢87) holds for all distributions
(87) and all phase-space points including periodic orbits. To
show this, suppose thatlies on a periodic orbit. Then by
where Eq. (89)

. _i _ - 1 AiNt! _ Y
YE,A(X7X0)—2W5(E H(Xo))ﬁwdt e S(xg—X(x,—1"))

1 < 12 o
=5 S(E—H(%) > e'wf dt’e™M S(xg—X(x,—t"))
j==e 2

— 7/

* 1 (72 o
=8(E—H(x0) >, 5()\—277j/7-);f dt’ e2™It 7 5(xy— X(x, —t")), (90)
j=—x —17/2
where 7 is the fundamental period of the orbit. Thus we have
* 1 (72 L
Y e\ (XX0) = S(E—H(Xp)) > 5()\—277']/7');J’ dt’ eIt 7 5(xo— X(x, —t')) (91
j=—x —7/2

on periodic orbits. Now inserting this expression into the right-hand side of@&gand performing the integrals ovarand
E gives
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S ) o
p(X,t)=f dxop(X0,0) p dt’e2™1 (M =07 5(x— X (%, — 1))
j=—x —1/2

* 712
=J dxop(xo,O)ij J, U8t = 7) 80~ X(x, 1))

=J dxgp(Xg,0) 8(xg— X(X, —1)). (92

Performing the integrals ovetx, gives the probability density on the poirtof the periodic orbit, as required. Thus, the
expansion87) and its associated closure relation hold for points on periodic orbits.
Since Eq.(87) holds for allp and allx it implies the existence of the closure relation

Jodefj AN Y g\ (X;Xg) = 8(Xg—X). (93

Two unsatisfactory issues require more careful attention: First, there is no clear separation of the point spectrum from the
continuous spectrurfi2l]. Second, a comparison of E(B7) with Eq. (20) suggests tha¥ g ,(x,X,) should relate to the
Liouville eigenfunctionso'm as a product of an eigenfunction xg times an eigenfunction irR. These issues are addressed
below where we treat the integrable and chaotic cases separately.

A. Integrable systems

To demonstrate the computation Yfconsider integrable systems. Here we change to action angle varab(ésf) and
Xo=(lp,8p) so thatYg , assumes the form

Y (XiXo) = %5(E— H(|0))f:dt'ei“’5(|o—|)5[(00— 0+ o(1)t')mod2r]

1 ® . 1 .
— _ PN _ —ik-[y— 0+ w()t']
—27T5(E H(IO))f_mdte 81 |)(2W)Ske§z,se , (94)

where we have used the ident[i®6]

> 8(6y— 0+ ()t —27)) = <> e ikl ret] (95)
jezs (27T) kezS

In terms of the Liouville eigendistributions;: (1, 6) [Eq. (30)] Eq. (94) becomes
1
Y (X X) = 25(E—H(|o)); f d|'5()\—n'w(l'))Prr,n(loﬁo)f’w,n(',0)- (96)
Inserting Eq.(96) into Eg. (87) gives the expansion

px0=3 [ aire ™o diodtup(lo, 0oOLp7,ol0,B0)or o1, O] (97

This result suggests a natural definition of spectral projection ) ’
operators for integrable systems, i.e., J dl ylr,o(X;Xo)"”l;O f dl’ V7 n(X;X0) = 6(X—Xo),
(100
N n(Xi%0) =p}s n(Xo) P17 n(X), ©® 4
which takes the form of a product of Liouville eigenfunc- J dx V5 (XY (XX =S 81" =1V (X-:x
tions. These spectral projection operators satisfy the follow- Vi (%) Vir.nlXi%0) = O, 6 I n(X0i%o0)-
ing symmetry, closure and orthonormality relations: (101

Further, the decomposition in EQLOO) clearly displays the
Vi n(X:%0) =V —n(Xo;X), (99 separation of point and continuous spectrum.
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B. Chaotic systems

* ! .
The time evolution of a phase-space distribution for a J X Y\ (X6 X0) YA (X X0)

chaotic system that is hyperbolic can be decomposed in the

following fashion(see Appendix B =3(E-E")0(N=N)Ye\(X0iX0). (108

w (These relations are proven in Appendix) Bhe distribu-
p(X,t)=J dEJ dxpp(Xg,0) Y g(X;Xo) tionsYg andYg , are thus the kernels of orthogonal station-
0 ary and nonstationary spectral projection operators for the
o _ classical Liouville spectrum. We have thus achieved, in this
+J dE d)\e*'“f dXop(X0,0) Y g\ (X;X0), approach, the separation of point and continuous spectrum. It
0 remains to examine the relationship g , to the Liouville
(102 eigenfunctions.
To do so insert Eq(34) into the definition of Yg ,

whereY g, (X;Xo) is given by Eq.(88) and [Eq.{(88)] to obtain

YE(X;XO):5(E—H(XO))5(E—H(><))_ (103 YE’}\(X;XO)=%6(E—H(x0))5(E—H(X))

fdx’&(E—H(x’))

x e~ N0 =71 5( 5 x,) — 7(X)).

Here £d\ denotes the integral over with the point spec- (109

trum at A=0 removed, i.e,fd\=J7_d\Pg, where |nserting Eq.35) in Eq.(109 and rewriting in terms of the

Pep=[p—{p)e], and definition of the chaotic Liouville eigenfunctiori&qg. (37)]
gives

dx S(E—H(x))p(x,0)
<p>E:f b (104) YE,x(X§Xo)=2|: PEL(X0) P\ (X). (110

fdx’&(E—H(x’))

We also define stationary Liouville eigenfunctionss(x),

via
is the microcanonical average of The operatoPg projects
distributions onto the continuous spectrum part of the Hilbert S(E—H(x))
space. Properties such as the system is ergodie() is a pe(X)= 2 (111

nondegenerate point eigenvalue with a corresponding eigen- J dx' S(E—H(x"))
function that is uniform over the energy surfaceeak mix-
ing (no point eigenvalues other than=0), and positive  g,ch that

Kolmogorov entropy(i.e., the remainder of the spectrum is

continuoug have been incorporated in EG.02) in an obvi- Y e(X;X0) = pE (X0) pe(X). (112
ous way. Since the component p{x) with energyE is
given by The distributionspg(x) and plE')\(X) are zero off the energy

shell E=H(x). The eigendistributiongg(x) are stationary
and uniform over the energy shell and belong to the point

f dXop(%0,0) Ye(XiX%0) =(p)ed(E—H(X)) (105  gpectrum. Distributiong , (x) are nonuniform and station-
ary for A=0, and nonuniform and nonstationary fer0.

we see thal ¢ projectsp(x) onto the point spectrum part of The distributionsg , (x) belong to the continuous spectrum.
the Hilbert space. SimilarlyY g, projects an arbitrary dis- Finally, note thatpg(x) and pe A (X) are supported over the
tribution onto the continuous spectrum part of the Hilbertentire (Z— 1)-dimensional energy surfaée=H(x), in con-
space associated with a frequericyand energye. We fur-  trast to the distributiong, ((x) for integrable systems that
ther note that this set of projection operators is complete, are supported only on thedimensional torug’=1(x). In
other words, every orbit of the energy surfdce H(x) con-

o % tributes to the construction of a chaotic eigenfunction.
fo dEYe(X;Xg) + jo dEF-dAY g\ (X;X0) = 8(X—Xo), Comparing
(108 Y e(X;%0) = pE (Xo) pe(¥) (113
and orthogonal: with
f dX YE, (X,%0) Ye(X;X0) = S(E—E") Y (X4 X0), YE,}\(X;XO):Z e\ (X0) P\ (X) (114
(107

we see that the stationary spectral projection operatqrs
and are simple products of Liouville eigenfunctions whifg: ,
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are composed of a sum of products of Liouville eigenfunc-wherex is a point on thekth periodic orbit at energf.

tions. This structure, i.e., a sum over products, has importariHere againr, is the fundamental period of orbit.) Note

implications for the correspondence of the nonstationary chathat the distributiond & o have the property that

otic quantum Liouville eigenfunctiongs]. Hence we shall '

prove here thall g \(x;Xp) cannot be rewritten as a simple

product of some new, as yet undiscovered, eigenfunctions. f dxdeY'é o X; Xo) F(X0) G(X)
Suppose that we can write '

=(F)e(G)Eo, (121
Y\ (XiXo) = O (X0) Qe A (X) (115 f dx’ S(E—H(X))

for some unknown distribution8¢ , (x). Then, in order to
satisfy the orthogonality relatiofEq. (109] we must have ~ WhereF and G are any two observable¢F)e denotes a
microcanonical average at  energy E, and

<G>gjE(l/rk)fikfk,zdt'e%”t'/TkG(X(xk,t')) is thejth Fou-

rier component ofG on periodic orbitk at energyE. The
total closure relation now takes the form

f dx QF, ,, () Qg (X)=8E—E")S(A—\"). (116

Equations (115 and (116) along with the definition of
Y, then imply that ,
E\ J' dE YE(x;xo)+f dE; 27; 5,7(X0)’,7KY||(5’]-(X;X0)
7]kE
S(E—E")d(N=N")Qg\(X)

1 o _ +f dE-dMY g ) (X;Xg) = 8(X—Xo), (122
:Zﬁ(E_H(X))j7 dt'e'MIQE,')\/(X(X,—t'))

_ _ N where P={ 7| 5 labels a periodic orbjtand the 5 variables
SE=HC))IA=A) Qe (%), (117 are those that we introduced earlier, and wheh. now
. ) o denotes the integral ovar with the point and singular spec-
Integrating ove” andE’ gives trum removed, i.e.£d\=fd\ ScPg, where

QE,X(X):é(E_H(X))fdE,QE’,)\(X)v (118 Sep()=p(X) =2 2 Sunlp)E; (123
j m,eP

which implies that Qg ,(x)*8(E—H(x)). Note that
Ye \(X;X0) =0 unlessxy and x lie on the same trajectory.
Thus, if Qg ,\(X)=8E—H(x))N,(x) then N} (Xo)N,(X)

=0 unlessxy andx lie on the same trajectory. However, if p _ _ _ S _ Kk
X, andx lie on the same trajectory the(x) = H(x,) and so SePep()=p(X)~(p)e 2 ,,kzep wo.ndlP=(Plele-
(124

and so

QE 5 (X0) Qe \ (X) = S(E —H(X0) N} (X0) S(E—H(X))N\ (X)

The distributionsYEj(x;xo) are asymmetric in the, Xg
variables, and so a Kronecker defgy ) ,, is introduced as

a factor in the singular spectrum term of Ej22) in order to

so thatQ)g , (Xo) Qg \(x) would not even be integrable in a restore the proper symmetry with respectxt@nd xo. The
delta-function sense. Thu¥'g, cannot be written as a prime over the sum op denotes that the point spectrum has

= 8(E—H(X))?N (X)Nx(X) (119

simple product of Liouville eigenfunctions. been removed, i,eEj’ =3;Pe.
o _ One last aspect of definitiof120 should be emphasized.
Periodic orbits For j=0 we may write

Periodic orbits play an important role in modern theories
of quantization in chaotic systems. Given that &) and 1 (72
(102 hold for points on periodic orbits, and given that hy- YE,O(X;X0)=5(E—H(X0))—f dt’ 8((p*,g")
perbolic systems have a countable number of isolated peri- Tk =nd2

odic orbits for any given energy, it is also possible to sepa- —7(p,q) +t")S(E—H (X)) 3(m— 7(X))
rate the singular spectrum associated with the periodic orbits
from the rest of the continuous spectrum. To do this we =T[lé(E—H(xo))é(E—H(x))6(1;k— 7(X)).
define periodic orbit distributionfextracted from Eq(91)]: (125
K o 1 (™2 o omit'ss
Yg (X %o) = S(E— H(XO))T_J_ Tk/zdt e k But local coordinateg (x) of the Poincare surface of section

[20,27], transverse to periodic orbk, may be introduced
X (XK= X(x,—t")) (120  such that
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S(mp— (X)) = 8(&(X)). (126) emphasized the importance of considering, in each mechan-
ics, the entire set of 2eigenequations in the Liouville pic-

Note that m— n(x)#&(X) since x(x) are global ture. We have then shown how this approach, when com-
7-independent variables, whil§(x) are ~-dependent local bined with demonstrations of correspondence for the
variables, i.e.&(H, 7+ ., p) =M &(H, 7, ) whereM, is  Liouville eigenfunctions, allows a complete understanding of

the stability matrix of orbitkk. However, since correspondence for integrable systems. General methods
were then discussed for the construction of Liouville spectral

1 decompositions necessary for the study of correspondence in

S(&(H, 7+ Tk,ﬂ))zmﬁ(gk(H,T, n) (127  chaotic systems. These methods were then employed for the
K construction of Liouville eigenfunctions for chaotic systems.

and|deM =1, it follows that S(&(H, . 7)) is time inde-  Finally, we reviewed the arguments for the correspondence

pendent. Thus, the stationary periodic orbit spectral projecOf Liouville eigenfunctions for quantum systems with inte-
tion operators can be written in the form grable classical analogs and showed that the primary mecha-

nism of correspondence is the elimination of essential singu-
larities when there is an averaging over a small range
ApAq.

In the following paper[6] we show that the correspon-
dence problem for systems with chaotic classical analog can

This particular form will be of use in the companion paperpe treated by the methods introduced in this paper.
[6] on correspondence in chaotic systems in which scar con-

tributio_ns are related_ to these spectral _pro_ject_ors. Indeeq, the ACKNOWLEDGMENT

analysis of the classical dynamics of distributions, contained

in this section, will prove central to the analysis of classical- We thank the Natural Sciences and Engineering Research
guantum correspondence in chaotic systems, discussed in th@uncil of Canada for support of this work.

following paper[6].

YE ((x;%0) = rk‘lfs(E—H<x0)>5(E—H<x>>5<§k<x))(.
1

APPENDIX A

VI. MMARY . .
SU Here we will prove the orthogonality and completeness

In summary, we have constructed a coherent frameworkelations(38) for the chaotic Liouville eigenfunctions'E’)\.
for the study of quantum-classical correspondence. We havEo prove Eq.(38) consider that

’ 1 * : ’
f dx plE,*’)\,(XO)p:E’)\(X)ZJdH drdnzf_ dr & MTS(E—E)S(H—E)x} (mxi(7)

:5|/'|5(E,_E)5()\,_)\), (Al)

where we have used E(B6) and the identitys(x) = (1/2m) [ .dy €.
To show completeness note that

" ® 1 ® % _ )
S [ e[ a0k 0053 [ dE [T an sE-HOODSE-HO0EN T G ()
= S(HO0 ~ HOX D00~ 7x Nt~ 3 )= 6x-x), 82

where we used Eq35) and the identitys(x) = (1/27) [“_.dy € to go from the first line to the second, and E84) to go
from the second line to the third.

APPENDIX B

Here we will prove the decomposition of E{.02) and relationg106)—(108). To begin we will prove relatiorf102). Let
p(x,t) be a solution of the classical Liouville equation. The following decomposition can be verified by inspection:

S(E—H(Xg))3(E—H(X))

f dx' S(E—H(x"))

P(X,t)=f:d5f dXop(X0,0) +f0wdEpns(X,t)5(E—H(X)), (B1)



where

pas(X,)=p(X,t) = (p)e, (B2)

with {p)g as given in Eq(104). Furthermore, we may write

Pns(X,t) = f dXopns(X0,0) 6(Xg— X(X,—1))

o

=f_wdt’5(t’—t)

X 8(Xg— X(x,—t")).

JdXOPnS(XO:O)
(B3)
Substituting (1/2)f” .dx €™M0 for S(t'—t) in Eq.

(B3), inserting 1= [;dE S(E—H(x)), and then substituting
Eq. (B3) into Eq.(B2) and collecting terms, we obtain

p(x,t)=f:dEf dXxop(Xg,0) Y e(X;Xo)

+f dEJ(—d)\e‘”‘tf dXop(X0,0) Y £\ (X Xo),
0

(B4)

where fd\ p=[d\ Pgp=[d\[p—(p)g], which proves
Eq.(102. Since Eq(B4) must hold for allt it must also hold
for t=0. We thus have shown that

p(x,0)= f:dE f dxop(X0,0) Y £(X;Xo0)

+f dE d)\jdXOP(XOyO)YE,)\(X;XO)a
0

(B5)

and since this must hold for all, relation(106) must be true.
Here of course we have used definitiqd®3 and (88).

QUANTUM-CLASSICAL ... .
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The proof of relation(107) is much simpler. Inserting
definition (103 into the left-hand side of relatiof107) gives

de Y £ (X:%0) Y E(X; %)
5 r__ ! 5 r_
fdx (E' —H(x0))8(E H(ZX))-ﬁ(E—H(Xo))
U dx’ S(E—H(x"))

X S(E—H(x))=S8(E—E")
" S(E—H(x0))8(E—H(x))

j dx' S(E—H(x"))

(B6)

Simple manipulations and use of definitigh03) then give
Eqg. (107.

Relation(108) can be proven as follows. From definition
(89) it follows that

f dx Y, 5/ (X:%0) Ye A (X:Xo)
1 o0 .
zwg(E—E’)j dxj, dt dt' S(E—H(x))e M

xeML 5(xh—X(x, — 1)) 8(Xg— X(x,—t")) (B7)

and this can be rewritten in the form
fdXYng(X;X())YE,x(X;Xo)
=i5(E—E')F dtdt’ S(E—H(xg))e ™M
(21)2 e 0

X e S(xg—X[x5,— (t'—1)]) (B8)

and now changing’ —t+t’ we readily obtain Eq(108).
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