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Quantum-classical correspondence via Liouville dynamics.
I. Integrable systems and the chaotic spectral decomposition

Joshua Wilkie and Paul Brumer
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

~Received 14 June 1996!

A general program to show quantum-classical correspondence for bound conservative integrable and chaotic
systems is described. The method is applied to integrable systems and the nature of the approach to the
classical limit, the cancellation of essential singularities, is demonstrated. The application to chaotic systems
requires an understanding of classical Liouville eigenfunctions and a Liouville spectral decomposition, devel-
oped herein. General approaches to the construction of these Liouville eigenfunctions and classical spectral
projectors in quantum and classical mechanics are discussed and are employed to construct Liouville eigen-
functions for classically chaotic systems. Correspondence for systems whose classical analogs are chaotic is
discussed, based on this decomposition, in the following paper@Phys. Rev. A54, 43 ~1996!#.
@S1050-2947~96!05112-8#
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I. INTRODUCTION

The correspondence principle requires that the laws
quantum dynamics reproduce the predictions of classical
chanics when the energy and mass of a dynamical system
very large with respect to Planck’s constant@1#. In other
words, the correspondence principle asserts that the fu
mental laws of physics that are valid on the atomic scale
also responsible for the observed classical dynamics of m
roscopic systems. It is therefore surprising, considering
important conceptual role of the correspondence princi
that there is little direct evidence to support its general
lidity @2–4#. In fact it has been controversially@4,5# argued
that the absence of chaos in quantum dynamics plus its p
ence in the dynamics of classical systems prevents any
sibility of correspondence@3#. The main goal of this pape
and its companion@6# is to provide a consistent theory o
correspondence in both integrable and chaotic systems.

To understand correspondence requires that we first a
a framework in which quantum and classical dynamics
be realistically compared. The Liouville picture in classic
mechanics in combination with a phase-space represent
of quantum dynamics provides such a framework. Here b
classical and quantum mechanics are represented by ob
defined on phase space and by operators defined on
objects@7#. Our correspondence approach is then based
the desire to prove that the quantum dynamics of pha
space distributions obeys classical mechanics in the clas
limit. We do so by focusing on the correspondence of w
we argue to be the essential elements in dynamics,
eigendistributions and eigenvalues of the classical and q
tum Liouville operators@8,9# ~the Poisson bracket with th
classical HamiltonianH, and the commutator with the
Hamiltonian operatorĤ, respectively!.

We outline this correspondence program in Sec. II a
describe the progress made and developments required i
application to regular and chaotic systems. The approach
phasizes the significance of the eigenfunctions of the cla
cal Liouville operator and of the classical spectral projecto
551050-2947/97/55~1!/27~16!/$10.00
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These eigenfunctions are obtained in Sec. III for both regu
and chaotic systems. The correspondence program is
implemented for integrable systems in Sec. IV and the n
singular nature of the approach to the classical limit is d
played. This approach to correspondence proves inappro
ate for chaotic systems. In this case a description of
dynamics in terms of classical spectral projectors is requir
These quantities are introduced and discussed in Sec. V
companion paper@6# shows quantum-classical correspo
dence for chaotic systems.

II. LIOUVILLE PICTURE: THE CORRESPONDENCE
PROGRAM

Arguments in favor of the Liouville picture as the conce
tual framework most suited for the study of corresponde
have been presented elsewhere@10,11#. Here we briefly sum-
marize. First, the Liouville picture of classical dynamic
which deals with the time evolution of phase-space densit
is conceptually superior to the trajectory viewpoint becau
it implicitly recognizes the imperfect nature of classic
preparation and measuring devices. That is, one cannot
tially prepare the exact points in phase space that defin
single trajectory. Similarly, the limitations of quantum m
chanical preparation and measurement can be incorporat
the von Neumann~quantum Liouville! equation for the den-
sity matrix; i.e., the von Neumann equation admits solutio
that are not states of maximal information. Thus, the Lio
ville equation plays a similar role in quantum and classi
dynamics. Second, our approach takes advantage of the
larity between the dynamics of classical distributions
phase space, as governed by the classical Liouville equa
and the dynamics of quantum density matrices, governed
the von Neumann equation in the Wigner-Weyl represen
tion. Adopting this perspective, both classical and quant
mechanics have similar structures and rely upon sim
quantities. Finally, formal classifications of classical syste
as integrable, ergodic, mixing, etc. are most properly don
terms of the eigenfunctions and eigenvalues of the class
Liouville operator @12#, i.e., the Poisson bracket with th
27 © 1997 The American Physical Society
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28 55JOSHUA WILKIE AND PAUL BRUMER
Hamiltonian. Hence this provides the most fundamenta
frameworks.

The time evolution of the quantum density matrixr̂ is
given by the solution to the von Neumann~or quantum Liou-
ville! equation:

]r̂

]t
52 i\21@Ĥ,r̂ #52 iL r̂, ~1!

whereL5\21@Ĥ, # is the quantum Liouville operator, an
@ ,# is the commutator. Solutions to Eq.~1! are of the form

r̂5 r̂l,ae
2 ilt ~2!

if r̂l,a satisfies the eigenvalue problem

L r̂l,a5lr̂l,a . ~3!

The labela is introduced to accommodate degeneracies
sociated with the eigenvaluel. In particular, a complete
characterization of the quantum Liouville eigenvalue pro
lem requires the specification of a complete set of comm
ing superoperators in the same way that solution of
Schrödinger eigenvalue problem requires a complete se
commuting observables@8#. This complete set of commutin
superoperators can be constructed in the following way. S
pose

Ĥ,K̂1 , . . . ,K̂r 821 ~4!

for r 8<s is a complete set of observables for a system os
degrees of freedom such that@Ĥ,K̂ i #50 and@K̂ i ,K̂ j #50 for
all i , j<r 821. It follows that the complete set of 2r 8 com-
muting quantum superoperators is

L,H,
1

\
@K̂1 , #,

1

2
@K̂1 , #1 , . . . ,

1

\
@K̂r 821 , #,

1

2
@K̂r 821 , #1 ,

~5!

whereH5 1
2@Ĥ, #1 is the energy superoperator, and@ ,#1

denotes the anticommutator, i.e.,@Â,B̂#15ÂB̂1B̂Â. A
Liouville eigenstate for the system is completely specified
it is an eigenstate of all 2r 8 superoperators. Thusr̂l,a in Eq.
~3! is an eigenfunction of the collection of superoperators
Eq. ~5!, with the labela denoting the eigenvalues of a
superoperators other thanL.

Equations~1! and ~3! are of the following form in the
Wigner-Weyl representation@13# @x5(p,q) denotes the col-
lection of momentap and coordinatesq#

]rw~x,t !

]t
52 iL ~x!rw~x,t ! ~6!

and

L~x!rl,a
w ~x!5lrl,a

w ~x!, ~7!

where
f

s-

-
t-
e
f

p-

f

n

L~x!5
2

\
iH ~x!sin~\s/2!

5
2

\
iH ~x!sinF\

2 S ]Q

]q
•

]W

]p
2

]Q

]p
•

]W

]qD G . ~8!

Heres implies the Poisson bracket, i.e.,

A~x!sB~x!5$A,B%5
]A~x!

]q
•

]B~x!

]p
2

]A~x!

]p
•

]B~x!

]q
~9!

and the arrows over the derivatives indicate that the der
tive is taken of the function preceding or following the d
rivative operator.

Given the solution to Eq.~7!, the dynamics of any distri-
bution rw(x,t), with initial condition rw(x,t50)5r(x,0),
can be written as

rw~x,t !5(
l,a

cl,arl,a
w ~x!e2 ilt, ~10!

where

cl,a5E dx0r~x0,0!rl,a
w* ~x0!. ~11!

That is,

rw~x,t !5E dx0r~x0,0!F(
l,a

rl,a
w ~x!rl,a

w* ~x0!Ge2 ilt.

~12!

Consider now the analogous approach in classical
chanics, which considers the dynamics of phase-space d
butions r(x,t). In particular,r(x,t) satisfies the Liouville
equation

]r~x,t !

]t
52 iL cr~x,t !, ~13!

where the classical Liouville operatorLc is given by

Lc5 i $H~x!, %. ~14!

HereH(x… is the Hamiltonian and$,% denotes the Poisso
bracket@Eq. ~9!#. The time evolution ofr(x,t) is given by

r~x,t !5rlc,a~x!e2 ilct ~15!

if rlc,a(x) satisfies the eigenvalue problem

Lcrlc,a~x!5lcrlc,a~x!. ~16!

Once againa contains the labeling associated with states t
arelc degenerate. In particular, a complete characteriza
of the classical Liouville eigenvalue problem requires t
specification of a complete set of commuting operators
the classical Hilbert space@11,14#. Suppose the classical ana
log of our quantum system hasr independent constants o
motion. Then we can constructr21 functionsKj (x), which
are constants of the motion, i.e.,$H(x),Kj (x)%50, and
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55 29QUANTUM-CLASSICAL . . . . I. . . .
which are in involution so that$Ki(x),Kj (x)%50 for all
i , j<r21. The complete set of commuting operators on
classical Hilbert space is then

Lc ,H~x!,i $K1~x!, %,K1~x!, . . . ,i $Kr21~x!, %,Kr21~x!,
~17!

whereLc ,i $K1(x), %, . . . ,i $Kr21(x), % are first-order linear
differential operators andH(x),K1(x), . . . ,Kr21(x) are mul-
tiplicative operators. A Liouville eigenstate for the classic
problem is usually completely specified if it is an eigenst
of all 2r classical operators@14#.

Given such solutions, the evolution of any classical d
tribution r(x,t) can be written as

r~x,t !5 (
lc,a

clc,arlc,a~x!e2 ilct, ~18!

where

clc,a5E dx0r~x0,0!r* lc,a~x0! ~19!

or

r~x,t !5E dx0r~x0,0!F (
lc,a

rlc,a~x!r* lc,a~x0!Ge2 ilct.

~20!

Both Eqs.~12! and~20! express the time evolution of th
phase-space density in terms of the initial distributi
r(x0,0), the eigenvaluesl,lc, and a term comprised o
products of Liouville eigenfunctions contained within brac
ets. This rewriting of the right-hand sides of the equatio
and the term in brackets in particular, will prove to play
central role in the correspondence program we develop
these papers. Indeed the term in brackets, in Eqs.~12! and
~20!, is related to the Liouville spectral projection operato
which are heavily emphasized in this paper.

A comparison of Eqs.~12! and ~20! motivates our corre-
spondence approach. Specifically, it suggests that one
show quantum-classical correspondence by showing tha
h→0 limit of the quantum Liouville eigenfunctions and i
eigenvalues are the classical Liouville eigenfunctions and
genvalues. This approach has proven successful for i
grable systems~see Ref.@10# and Sec. IV B below!. How-
ever, as shown below and in the following paper@6#, it is an
incorrect approach for chaotic systems. In such cases
quantum Liouville eigenstates have no classical lim
Rather, one must deal with quantum and classical spe
projection operators, which have singularity-free classi
limits. These are related to the objects contained wit
brackets in Eqs.~12! and ~20!.

The status of this correspondence program is readily s
marized for integrable systems (r5r 85s). Berry @15# dem-
onstrated correspondence for the stationary Liouville eig
functions un&^nu where un& are eigenstates of th
Hamiltonian operator with corresponding energiesEn and
the s integersn label the quantum states of the Schroding
picture. Specifically, he showed that
e
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rn,n
w ~x![h2s/2E dv eip•v/\^q2v/2un&^nuq1v/2&

→\s/2r In,0~x! ~21!

in the h→0 limit, where I n5(n1b)\, the constantsb are
the Maslov indices@10,16#, rn,n

w is the Wigner transform of
the stationary Liouville eigenstateun&^nu, and the classica
Liouville eigenfunctionsr I8,k(x) are defined below@Eq.
~30!#. Correspondence for the nonstationary Liouville eige
functions un&^mu and eigenvaluesln,m5(En2Em)/\ was
considered by Jaffe´ and Brumer@10#. In particular, they ex-
amined the Wigner transformrn,m

w (x) of un&^mu and showed
that for nÞm,

rn,m
w ~x![h2s/2E dv eip•v/\^q2v/2un&^muq1v/2&

→\s/2r In,m ,n2m~x!, ~22!

and

ln,m→l In,m ,n2m
c ~23!

ash→0, where they surmised thatI n,m5(I n1Im)/2. How-
ever, as we will later show, thisI n,m is an approximation to
the exact result, which depends intimately on the eigenva
of the complete set of commuting observables@Eq. ~4!#.
These classical Liouville eigenvaluesl I8,k

c are defined below
@Eq. ~31!#.

By contrast, the correspondence program for syste
whose classical analogs are chaotic has been left largely
developed. The nature of the classical Liouville eigenfun
tions and eigenspectrum is not clearly understood@17#, and
only the correspondence limits of the stationary Liouvi
eigenfunctions have been explored. Berry@18# and Voros
@19# were able to show that the Wigner function associa
with a stationary Liouville eigenstateun&^nu ~here
r5r 851) concentrates in the classical limit to a unifor
distribution over the classical energy surface of the sa
energyEn , i.e.,

rn,n
w ~x!→hs/2

d„En2H~x!…

E dx8d„En2H~x8!…

. ~24!

Investigations of the semiclassical corrections to this lim
have shown that the unstable periodic orbits of the cha
classical system strongly influence the quantum eigenfu
tions, resulting in accentuations of probability in the vicini
of periodic orbits@4,20#. Semiclassical corrections have als
been studied for the stationary Liouville eigenfunctions
regular systems@15#. However, no results have been o
tained for the correspondence of the nonstationary Liouv
eigenfunctions or eigenspectrum for the chaotic case.
reason for this is made clear in the following paper, whe
we show that thern,m

w (x), nÞm, for chaotic systems do no
have classical limits. Rather, one must deal with the class
and quantum spectral projection operators discussed be
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30 55JOSHUA WILKIE AND PAUL BRUMER
III. CLASSICAL LIOUVILLE EIGENFUNCTIONS
AND EIGENSPECTRUM

The classical Liouville eigenvalue problem@Eq. ~16!# re-
quires that one find a complete set of orthogonal Liouv
eigenfunctionsrl,a(x) with eigenvaluesl; i.e., they must
satisfy

E dx rl8,a8
* ~x!rl,a~x!50 ~25!

for lÞl8 or aÞa8, and

(
l,a

rl,a* ~x0!rl,a~x!5d~x2x0!. ~26!

~Note that for notational simplicity, classical eigenvalues
the remainder of the paper are denotedl, rather thanlc.! For
the case ofs degrees of freedom andr constants of the
motion we must find simultaneous eigenstates of the c
plete set of 2r operators@Eq. ~17!#.

If a distribution f (x) is an eigenstate of a real multiplica
tive operator A(x) with eigenvalue A8, then
@A(x)2A8# f (x)50. That is,f (x)50 for all x not satisfying
A(x)5A8 so that all nontrivial solutionsf (x) must be pro-
portional tod„A(x)2A8…. That is, all distributions that are
eigenstates of the multiplicative operato
H(x),K1(x), . . . ,Kr21(x) must be proportional to

d„E2H~x!…P j51
r21d„Kj~x!2Kj8…. ~27!

Little more can be said about the general case of arbit
r . We therefore focus on the two interesting special cas
r5s, corresponding to integrable systems, andr51, which
includes the case of chaotic motion.

A. Integrable systems

For r5s we can introduce action variablesI and conju-
gate angle variables u such that H(x)5H(I ), and
Kj (x)5Kj (I ) for j51, . . . ,s21. It follows that there exists
an I 8 such that

d„E2H~x!…P j51
r21d„Kj~x!2Kj8…}d„I ~x!2I 8… ~28!

and that the classical Liouville eigendistributionsrl,a(x…
must be of the form d„I (x)2I 8…F(u(x)). Since
Lc52 iv(I )•]/]u the Liouville eigenequation is

2 iv~ I 8!•
]

]u
F~u!5lF~u! ~29!

with solutionsF(u)5eia•u, l5a•v(I 8). If the system is pe-
riodic in the angle variables thena5kPZs, i.e.,a is a vector
of s integers. Thus the classical Liouville eigenfunctions
an integrable system are given by

r I8,k~x!5
1

~2p!s/2
d~ I 82I !eik•u, ~30!

with eigenvalue

l I8,k5k•v~ I 8!. ~31!
-

ry
s:

r

Note that these eigenfunctions are also eigenfunctions of
differential operatorsi $Kj (x), %52 i ]Kj (I )/]I•]/]u with
corresponding eigenvaluesk•]Kj (I 8)/]I 8. If the Kj (I )5I j
then the eigenvalues are simplykj . This set of eigenfunc-
tions is complete and orthogonal, i.e.,

(
k
E dI 8r I8,k

* ~x8!r I8,k~x!5d~x2x8!, ~32!

and

E dx r I9,k8
* ~x!r I8,k~x!5dk,k8d~ I 82I 9!. ~33!

We comment briefly on the character of the Liouvil
eigenfunctions for integrable systems; a detailed discus
and related computations are provided elsewhere@11#. The
spectrum of an integrable system on a given torusI 85I (x) is
discrete and is given by the set of frequencies$k•v(I 8)uk
PZs%. On the energy surfaceE5H(x), the spectrum of an
integrable system is the union of all sets$k•v(I 8)ukPZs%
from tori I 85I (x) with H(I 8)5E. Typically, v(I 8) varies
with I 8, so that the spectrum of an integrable system on
energy surface is continuous. In our terminology@21# eigen-
functions with frequenciesl I8,k5k– v(I 8) with kÞ0 belong
to the continuous spectrum while those withk50 belong to
the point spectrum. Examination of Eq.~30! reveals that the
eigenfunctionsr I8,k(I ,u) are identically zero off the torus
I (x)5I 8. Eigendistributions withk50 are stationary and
uniform on the torus, and as a set they project out the lo
time limit of any given initial probability distribution. For
kÞ0 the character of the eigendistribution is determined
the underlying orbit structure of the torusI (x)5I 8. If the
frequenciesv1 ,v2 , . . . ,vs of the torus are commensura
then the orbits of the torusI (x)5I 8 are all periodic@22#. The
eigendistributions associated with commensurate tori
nonuniform and stationary whenk•v(I 8)50 andkÞ0, and
nonuniform and nonstationary whenk•v(I 8)Þ0.

The eigendistributions associated with incommensur
tori are nonuniform and nonstationary forkÞ0. Eigendistri-
butions for integrable systems are supported only ove
given torusI 85I (x), but every orbit of the torus contribute
to the construction of the eigenfunction@23#.

B. Chaotic systems

Now consider the case wherer51. In addition to being
chaotic we assume that the system is hyperbolic, i.e., th
has a countable number of isolated unstable periodic or
on each surface of constant energy. Thus, our chaotic sys
has positive Kolmogorov entropy, exhibits sensitivity to in
tial conditions~i.e., possesses 2s22 nonvanishing Liapunov
exponents!, and is mixing, and hence is weak mixing an
ergodic @12#. Such familiar properties of chaotic system
~i.e., ergodicity, weak mixing, mixing, etc.! may be related to
the spectral properties of the Liouville operator@12#. For
example, ifl50 is a nondegenerate point eigenvalue of t
Liouville operatorLc on the energy surface then the syste
is ergodic. Ifl50 is the only point eigenvalue ofLc on the
energy surface then the system is weak mixing. If the res
the spectrum is continuous then the system is mixing. In
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55 31QUANTUM-CLASSICAL . . . . I. . . .
section we determine the form of the generalized eigenfu
tions that correspond to the point and continuous Liouv
eigenspectrum@12,21# for chaotic systems.

In accord with Eq.~17! we seek eigenfunctions of th
complete setLc andH(x…. As eigenstates of the energy mu
tiplication operatorH(x) they must be proportional to
d„E2H(x)… where E is the corresponding energy eige
value. Consider then the functiont(x), which is conjugate to
the constant of the motionH(x), i.e., $t(x),H(x)%51. Then
the distributiond„E2H(x)…eilt(x) is an eigenfunction of the
classical Liouville operator with eigenvaluel since
Lc5 i $H(x), %52 i ]/]t. Note that e2 iL ctt„x…5t„X(x,
2t)…5t(x)2t, where X(x,2t) is the phase-space poin
from which x evolves over the timet. Thus, for a given
choice of the origin of time along each orbit of the syste
we can construct a functiont(x), which specifies the time o
an arbitrary pointx along the orbit, since trajectories do n
intersect one another in phase space. However, the dist
tions d„E2H(x)…eilt(x) @24# do not form a complete set o
Liouville eigenfunctions since they do not account for t
infinite degeneracy of the classical Liouville spectrum
chaotic systems@12#.

To properly define eigenfunctions we must consider
manner in which points in phase space are labeled. Spe
cally we introduce a system of variables:H(x), which is the
energy of a point in phase space,t(x) a function that assigns
a time to every point in phase space, and 2s22 stationary
variables h(x), which label the trajectories on the energ
surface. The functionst andh are continuous only along a
orbit: t increments smoothly whileh remains constant alon
an orbit. Theh variables are chosen to have the property t

d~x02x!5d„H~x0!2H~x!…d„t~x0!

2t~x!…d„h~x0!2h~x!…. ~34!

As one moves off a trajectory the variablest andh must
take on all possible values infinitely often since~a! there are
an infinite number of chaotic trajectories,~b! every chaotic
trajectory comes arbitrarily close to every phase space p
on every other trajectory, and~c! chaotic trajectories return
arbitrarily close to themselves infinitely often. We now i
troduce a complete set of square integrable orthonor
functionsx l (h), lPZ, i.e.,

(
l

x l* „h ~x0!…x l„h~x!…5d„h~x0!2h~x!… ~35!

and

E dh x l 8
* ~h!x l~h!5d l 8,l . ~36!

Classical Liouville eigenfunctions for chaotic system
rE,l
l (x) are then defined as

rE,l
l ~x!5

1

A2p
d„E2H~x!…eilt~x!x l„h~x!…. ~37!

Here the integerl labels the infinite but countable dege
eracy of the Liouville eigenvaluel for the continuous part o
the spectrum@12# at energyE. The distributionsrE,l

l (x) are
c-

,

u-

r

e
ifi-

t

nt

al

supported over the entire energy surfaceE5H(x) and so are
in some sense constructed from every orbit of the ene
surface. It can be readily verified that these eigenfuncti
are both orthogonal and complete~see Appendix A!:

E dx rE8,l8
l 8* ~x!rE,l

l ~x!5d l ,l 8d~E2E8!d~l2l8!,

(
l
E
0

`

dEE
2`

`

dl rE,l
l* ~x0!rE,l

l ~x!5d~x2x0!. ~38!

Here we note that the introduction of the complete set
x l is necessary to achieve the correctd(x2x0… term in Eq.
~38! and that these eigenfunctions are quite different fr
those proposed elsewhere, which we have shown to be
correct@17#.

The eigenfunctions in Eq.~37! have a structure that at firs
sight appears to violate several well-known properties
chaotic systems. For example, the existence of station
square integrable functionsx l„h(x)…, which are not functions
of the Hamiltonian, appears to contradict the fact that
ergodic systems the only stationary square integrable di
butions are functions of the Hamiltonian. However, t
x l„h(x)… distributions are not square integrable on the e
ergy surface. That is,

E dH dt dh d~E2H !ux l„h~x!…u25E dt5`. ~39!

In addition, it might appear objectionable thatx l„h(x)… is a
global constant of the motion independent of the Ham
tonian. However, this is not the case since the set of po
x satisfying x l„h(x)…5x8, where x8 is some constant, a
most contains points from a countable number of trajecto
and so cannot divide the phase space in any meaningful w
Thus the functionsx l„h(x)… are not true constants of th
motion.

The relation between these eigenfunctions and the Li
ville spectrum on the energy surfaceE5H(x) is not imme-
diately clear. Examination of the spectral decomposition
Eq. ~38! reveals no separation of point and continuous sp
trum, although the Liouville eigenfunctions have the corre
degeneracy for the continuous spectrum. A proper treatm
of the separation of point and continuous spectrum is gi
in Sec. V B.

IV. CORRESPONDENCE: INTEGRABLE SYSTEMS

Having established the essential features of the class
eigenstate picture we now examine correspondence. We
sume thatr 85r , i.e., that the complete set of commutin
quantum observables has as many members as there are
stants of the classical motion.

Given the complete set of commuting observab
Ĥ,K̂1 , . . . ,K̂r21 for r<s, the complete set of 2r commuting
superoperators is given by@Eq. ~5!#

L̂,H,
1

\
@K̂1 , #,

1

2
@K̂1 , #1 , . . . ,

1

\
@K̂r21 , #,

1

2
@K̂r21 , #1 .

~40!
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We denote the simultaneous eigenstates of ther observables
by un& wheren5(n1 , . . . ,nr) are the quantum numbers, an
the corresponding eigenvalues areEn ,K1(n), . . . ,Kr21(n).
We further denote the Wigner-Weyl representation of
quantum observablesĤ,K̂ j by H(x), and Kj

w(x), for
j51, . . . ,r21.
The Liouville eigenstatesrn,m

w must be an eigenstate of
corresponding set of 2r superoperators in the Wigner-We
representation, which are

L~x!,H~x!,
2i

\
Kj
w~x!sinS \s

2 D ,Kj
w~x!cosS \s

2 D , . . .
. . . ,

2i

\
Kr21
w ~x!sinS \s

2 D ,Kr21
w ~x!cosS \s

2 D , ~41!

with L(x)5(2i /\)H(x)sin(\s/2) and H(x)
5H(x)cos(\s/2). By comparison the classical complete s
is

Lc~x!,H~x!,i $K1~x!, %,K1~x!, . . . ,i $Kr21~x!, %,Kr21~x!.
~42!

We assume that limh→0Kj
w(x)5Kj (x). Since

limh→0cos(\s/2)51 and limh→0(2i /\)sin(\s/2)5 is, we
note that formally the quantum operator set@Eq. ~41!# be-
comes the classical operator set@Eq. ~42!# in the classical
limit. The first eigenequation is the time-independent v
Neumann~quantum Liouville! equation

L~x!rn,m
w ~x!5ln,mrn,m

w ~x!, ~43!

whereL(x) is the quantum Liouville operator in the Wigne
Weyl representation andln,m5(En2Em)/\. Second,rn,m

w

must satisfy the eigenequation for the Hermitian energy
eratorĤ5 1

2@Ĥ, #1 , i.e., the anticommutator equation

1

2
~@Ĥ,un&^mu#1!w[H~x!cos~\s/2!rn,m

w ~x!

5
En1Em

2
rn,m
w ~x! ~44!

or

H~x!rn,m
w ~x!5En,mrn,m

w ~x!, ~45!

where En,m5(En1Em)/2. Similarly, for j51, . . . ,r21,
eigenfunctionsrn,m

w (x) satisfy the equations

S 1\ @K̂ j ,un&^mu# D w[
2i

\
Kj
w~x!sin~\s/2!rn,m

w ~x!

5
Kj~n!2Kj~m!

\
rn,m
w ~x!, ~46!

and
e

t

n

-

S 12 @K̂ j ,un&^mu#1D w[Kj
w~x!cos~\s/2!rn,m

w ~x!

5
Kj~n!1Kj~m!

2
rn,m
w ~x!. ~47!

We can readily explore the classical limit of the 2r quan-
tum eigenequations, Eqs.~43!–~47!, if

lim
h→0

rn,m
w ~x!→rn,m

c ~x!, ~48!

wherern,m
c (x) is to be determined. However, this assum

tion is not generally valid. That is, for quantum system
whose classical analogs are chaotic (r5r 851), as we dem-
onstrate in Ref.@6#, individual quantum eigenfunction
rn,m
w (x), nÞm, display essential singularities ash→0, and
hence do not have correspondence limits. Rather, the spe
projection operators introduced later below~Sec. V! do have
correspondence limits. Nonetheless, we can adopt Eq.~48!
primarily for notational convenience; the arguments that f
low can be reformulated in terms of quantum and class
spectral projection operators when Eq.~48! is invalid.

We assume that theh→0 limit of Kj
w(x) is K(x). In

particular, if we consider the case where the set of 2r quan-
tum operators@Eq. ~41!# gives the classical set@Eq. ~42!# in
the classical limit and that Eq.~48! holds then each of the
eigenvalue equations@Eqs. ~43!–~47!# reduces to the set o
classical eigenvalue equations forrl,a(x) with the same ei-
genvalues as in the quantum eigenequations. If this is
case then the quantumrn,m

w (x) goes to the classica
rl,a(x), with clearly identifiable eigenvalues and correspo
dence is established.

An example of this approach, applied to integrable s
tems, is provided below.

A. Integrable systems: Formal correspondence

In this section we first apply this approach to determ
the complete set of correspondence rules for integrable
tems. The resulting picture of correspondence for integra
systems is exceptionally clear but gives no insight into
approach to the classical limit. This is treated in the n
subsection.

In this instance Eq.~48! has been proven by Berry@15#
and by Jaffe´ and Brumer@10# and is clarified in Sec. IV B
below. Thus, in accord with the previous section, the eig
functionsrn,m

w (x) satisfy 2s classical eigenequations in th
classical limit:

Lc~x!rn,m
c ~x!5ln,mrn,m

c ~x!, ~49!

H~x!rn,m
c ~x!5En,mrn,m

c ~x!, ~50!

i $Kj~ I !, %rn,m
c ~ I ,u!5

Kj~n!2Kj~m!

\
rn,m
c ~ I ,u!, ~51!

Kj~ I !rn,m
c ~ I ,u!5

Kj~n!1Kj~m!

2
rn,m
c ~ I ,u!, ~52!



i-

r

ed

nce

-
ns

r
.

Eq.
e
e

tial

ary
n-

55 33QUANTUM-CLASSICAL . . . . I. . . .
for j51, . . . ,s21. As in Eq. ~28! we conclude that
rn,m
c (x) is proportional to

d„E2H~x!…P j51
s21d„Kj~x!2Kj8…, ~53!

where E5En,m , and Kj85@Kj (n)1Kj (m)#/2. Since
H(x)5H(I ), andKj (x)5Kj (I ) for j51, . . . ,s21 there ex-
ists anI n,m such that

d„E2H~x!…P j51
s21d„Kj~x!2Kj8…}d~ I2I n,m!. ~54!

Hencern,m
c (x)}d(I2I n,m)Fn,m(u).

From Eqs.~49! and ~51! it then follows that

2 iv~ I n,m!•
]

]u
Fn,m~u!5

En2Em

\
Fn,m~u! ~55!

and

2 i
]Kj

]I
~ I n,m!•

]

]u
Fn,m~u!5

Kj~n!2Kj~m!

\
Fn,m~u!.

~56!

By WKB @10,15,16# En;H(I n) where I n5(n1b)\ and
whereb are the Maslov indices. Similarly we may approx
mateKj (n);Kj (I n). Assuming that

I n,m2I n;O~h!;I n,m2Im!I n,m ~57!

it follows that

En2Em

\
;
H~ I n!2H~ Im!

\

;
H„I n,m2~ I n,m2I n!…2H„I n,m2~ I n,m2Im!…

\

;v~ I n,m!•~n2m! ~58!

by the Taylor expansion ofH(I n) and H(Im) about I n,m .
Similarly one can show that

Kj~n!2Kj~m!

\
;

]Kj

]I
~ I n,m!•~n2m!. ~59!

Substituting Eqs.~58! and~59! into Eqs.~55! and~56! shows
thatFn,m(u);ei (n2m)•u. Thus, up to a normalization facto

rn,m
w ~x!→\s/2r In,m ,n2m~x! ~60!

in the limit ash→0.
More specifically, we have to see thatrn,m

w , an eigenfunc-
tion of the 2s quantum operators

L~x!,H~x!,
2i

\
Kj
w~x!sinS \s

2 D ,Kj
w~x!cosS \s

2 D , . . .
. . . ,

2i

\
Ks21
w ~x!sinS \s

2 D ,Ks21
w ~x!cosS \s

2 D , ~61!

with corresponding eigenvalues
ln,m ,En,m ,
K1~n!2K1~m!

\
,
K1~n!1K1~m!

2
, . . .

. . . ,
Ks21~n!2Ks21~m!

\
,
Ks21~n!1Ks21~m!

2
~62!

approaches a classical limitrn,m
c (I ,u)5\s/2r In,m ,n2m(x),

which is an eigenfunction of the 2s classical operators

Lc~x!,H~x!,i $K1~x!, %,K1~x!, . . . ,i $Ks21~x!, %,Ks21~x!,
~63!

with corresponding eigenvalues

l In,m ,n2m ,En,m ,~n2m!•
]K1

]I
~ I n,m!,

K1~n!1K1~m!

2
, . . .

. . . ,~n2m!•
]Ks21

]I
~ I n,m!,

Ks21~n!1Ks21~m!

2
. ~64!

Using a completely different argument that employ
primitive WKB wave functions Berry showed@15# that the
stationary Liouville eigenfunctions have the corresponde
limit

rn,n
w ~x!→\s/2r In,0~x!, ~65!

whereI n5@n1b#\. SinceI n,n[I n both results are in agree
ment. For the case of nonstationary Liouville eigenfunctio
Jafféand Brumer@10# proved the general formula, Eq.~60!,
where they surmised thatI n,m5(I n1Im)/2. However,I n,m is
obtained correctly by solving thes equations

~En1Em!/25H~ I n,m! ~66!

and

@Kj~n!1Kj~m!#/25Kj~ I n,m! ~67!

for j51, . . . ,s21. The surmise of Jaffe´ and Brumer@10# is
an approximation that is good to first order inh. To see this
note that for v(0)Þ0 we can expand
H(I );v(0)•I1O(I2). Equation ~66! then reduces to
v(0)•@ I n,m2(I n1Im)/2#1O(h2);0 for which I n,m;(I n

1Im)/2 is clearly a solution to first order inh. If
]Kj (0)/]IÞ0 for all j then it can be shown in a simila
fashion thatI n,m;(I n1Im)/2 is a first-order solution of Eqs
~67!. Thus, the approximation@10# I n,m;(I n1Im)/2 is good
to first order in Planck’s constant.

B. Integrable systems: Approach to the limit

The method described above assumes the validity of
~48! and fails to provide insights into the behavior of th
eigendistributions ash→0. Here we extend and reexamin
our previous proof@10# of Eq. ~48! for integrable systems
with particular interest in the mechanism by which essen
singularities are avoided ash→0. The following argument
also determines the correspondence limits of the station
and nonstationary Liouville eigenfunctions in a unified ma
ner.
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In the h→0 limit the eigenfunctions of the Hamiltonian
^qun&, are well approximated by linear combinations
primitive WKB wave functions, i.e.,

^qun&;(
j

~2p!2s/4Udet]2Rj~q,I n!

]q]I U1/2eiRj ~q,In!/\e2 in jp/2,

~68!

whereRj (q,I )5*q0
q pj (q8,I )•dq8 are the actions correspond

ing to the different branches of the multivalued moment
functionspj (q,I ), and n j are the Maslov indices. Thus,
follows that

rn,m
w ~x!5h2s/2E dv eip•v/\^q2v/2un&^muq1v/2&

;(
j ,k

Cn,m
j ,k ~x!, ~69!

where
owever,

time, as
similar

ace
Cn,m
j ,k ~x!5~2ph!2s/2E dvUdet]2Rj~q2v/2,I n!

]q]I
det

]2Rk~q1v/2,Im!

]q]I U1/2eip•v/\eiRj ~q2v/2,In!/\e2 iRk~q1v/2,Im!/\ei ~n j2nk!p/2,

~70!

and where, in principle, we must retain all contributions to the double sum from the different sheets of the phases. H
one of us has argued@10# that thejÞk terms should make a negligible contribution torn,m

w (x) due to the rapidly oscillatory
character of their integrands. Before examining thej5k terms that yield the classical limit ash→0, we briefly demonstrate
that the jÞk terms are indeed small if some averaging over phase space~essentially an energy average! is performed.~We
would prefer to carry out an average over wave functions at different energies, corresponding to a restriction to finite
in the chaotic case@6#, but it is unclear as to how to do this. We expect the phase-space average to achieve a technically
result.!

Making the change of variablev→hv Eq. ~70! can be written in the form

Cn,m
j ,k ~x!5\s/2E dvUdet]2Rj~q2hv/2,I n!

]q]I
det

]2Rk~q1hv/2,Im!

]q]I U1/2e2p ip•veiRj ~q2hv/2,In!/\e2 iRk~q1hv/2,Im!/\ei ~n j2nk!p/2.

~71!

Note the presence of essential singularities in each of the factorseiR(q2hv/2,In)/\ ande2 iR(q1hv/2,Im)/\. Expanding the actions
R in powers ofh, we have

Rj~q2hv/2,I n!;Rj~q,I n!2
h

2
pj~q,I n!• ṽ1

h2

8
v•

]pj~q,I n!

]q
• ṽ, ~72!

and

Rk~q1hv/2,Im!;Rk~q,Im!1
h

2
pk~q,Im!• ṽ1

h2

8
v•

]pk~q,Im!

]q
• ṽ. ~73!

We also assume that the determinant factors in the integrand are slowly varying, i.e.,

Udet]2Rj~q2hv/2,I n!

]q]I
det

]2Rk~q1hv/2,Im!

]q]I U1/2;Udet]2Rj~q,I n!

]q]I
det

]2Rk~q,Im!

]q]I U1/2. ~74!

Here the tilde denotes the transpose~a column vector! of the row vectorv. Substituting these expressions into Eq.~71! and
performing the integral overv shows that Eq.~71! becomes

Cn,m
j ,k ~x!5~2i /p!s/2Udet]2Rj~q,I n!

]q]I
det

]2Rk~q,Im!

]q]I U1/2FdetS ]pj~q,I n!

]q
2

]pk~q,Im!

]q D G21/2

ei [Rj ~q,In!2Rk~q,Im!]/\

3expH 22i ~p2pj ,k!F]pj~q,I n!]q
2

]pk~q,Im!

]q G21

~p2p̃j ,k!/\J ei ~n j2nk!p/2, ~75!

wherepj ,k5@pj (q,I n)1pk(q,Im)#/2. The contributionsCn,m
j ,k (x) are therefore highly oscillatory functions of the phase-sp

variables.
We now smooth Eq.~75! over intervals of lengthDp about each momentum variablepl , l51, . . .s. In the stationary phase

approximation~for h→0)
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~Dp!2sE
2Dp/2

Dp/2

duFdetS ]pj~q,I n!

]q
2

]pk~q,Im!

]q D G21/2

expH 22i ~p1u2pj ,k!F]pj~q,I n!]q
2

]pk~q,Im!

]q G21

~ p̃1u2pj ,k!/\J
→~p\/2i !s/2VDp~p2pj ,k!, ~76!

whereVDp(p)51/(Dp)s if plP@pl2Dp/2,pl1Dp/2# for l51, . . . ,s, and is zero otherwise. It follows that smoothing E
~75! over a classically small interval in momentum gives

Cn,m
j ,k ~x!;\s/2Udet]2Rj~q,I n!

]q]I
det

]2Rk~q,Im!

]q]I U1/2ei [Rj ~q,In!2Rk~q,Im!]/\VDp~p2pj ,k!e
i ~n j2nk!p/2. ~77!

Further smoothingCn,m
j ,k (x) over intervals of lengthDq about each coordinate variableql , l51, . . .s, one can show that the

Cn,m
j ,k (x) contribution torn,m

w (x) is proportional to

)
l51

s

sinc@~pj
l2pk

l !Dq/2\#, ~78!

wherepj
l is the l th component ofpj (q,I ). Thus, for jÞk Eq. ~78! is O(hs), while for j5k Eq. ~78! is O~1!. Thus, we have

shown that smoothing over phase space effectively eliminates contributions from thejÞk terms.
Focusing now on thej5k terms, and dropping the subscriptj , it follows that the diagonal contributions take the form

Cn,m
j , j ~x!;\s/2Udet]2R~q,I n!

]q]I
det

]2R~q,Im!

]q]I U1/2ei [R~q,In!2R~q,Im!]/\d„p2 1
2 @p~q,I n!1p~q,Im!#…, ~79!

where we have replacedVDp$p2 1
2@p(q,I n)1p(q,Im)#% by the delta functiond„p2 1

2@p(q,I n)1p(q,Im)#… since we are free to
chooseDp small. Assume now that there is an actionI n,m such thatp(q,I n,m);

1
2@p(q,I n)1p(q,Im)# ~see Ref.@10#!, and we

also assume thatI n , Im , andI n,m satisfy relation~57!, then it readily follows that

R~q,I n!2R~q,Im!

\
5
R@q,I n,m2~ I n,m2I n!#2R@q,I n,m2~ I n,m2Im!#

\
;

]R~q,I n,m!

]I
•~n2m! ~80!

by Taylor expansion ofR(q,I n) andR(q,Im) aboutI n,m . Further since]R(q,I )/]I5u, we obtain

Cn,m
j , j ~x!;\s/2Udet]2R~q,I n!

]q]I
det

]2R~q,Im!

]q]I U1/2d„p2p~q,I n,m!…ei ~n2m!•u~x!. ~81!
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Finally, summing over the different sheetsj @Eq. ~69!#, as-
suming that for smallh

Udet]2R~q,I n!

]q]I
det

]2R~q,Im!

]q]I U1/2;Udet]2R~q,I n,m!

]q]I U,
~82!

and changing variables in the delta function we have

rn,m
w ~x!;\s/2d„I ~x!2I n,m…e

i ~n2m!•u~x!, ~83!

which is the correct correspondence limit. In particul
rn,m
w becomes the classical Liouville eigenfunction@Eq. ~30!#
with I 85I n,m and k5(n2m) in the classical limit. Two
things are noteworthy. First, an average overDpDq was
necessary to eliminate highly oscillatory terms in thejÞk
contribution to Eq.~69!. Second, under these circumstanc
the essential singularities in the original expression canc

V. CLASSICAL LIOUVILLE SPECTRAL
DECOMPOSITION

Attempts to follow a similar correspondence approach
chaotic systems fail. That is, Eq.~48! is not true insofar as
,

s
.

r

individual eigendistributionsrn,m
w (x), even when suitably av-

eraged, do not have proper classical limits. Examination
our motivating equations~12! and ~20! suggests that a one
to-one correspondence of quantum to classical eigenfu
tions is not necessary to establish quantum-classical co
spondence ash→0. Rather, we require a relation betwee
the quantities in brackets in Eqs.~12! and ~20! ash→0. In
this section this idea is quantified, for classical systems,
introducing the classical spectral projectors that we sub
quently relate@6#, in theh→0 limit, to the analogous quan
tum projectors. In addition, we provide a general approach
computing the classical projectors for arbitrary systems.

The classical projectors will be seen to offer a bet
method of describing chaotic systems than do the class
Liouville eigenfunctions introduced above@Eq. ~37!#. Spe-
cifically, they are not based on the arbitrary setx l , they are
completely defined as opposed to therE,l

l (x), which are de-
fined to within an overall phase, and they offer a means
separating the spectrum into continuous and discrete com
nents@21#.

We also extend the approach and separate the sing
spectrum of the periodic orbits from the rest of the contin
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ous spectrum. The resulting periodic orbit spectral project
operators are used in the companion paper on corres
dence in chaotic systems@6#.

To develop an energy-frequency spectral decomposi
we must isolate the fixed frequency and energy compon
of an arbitrary time evolving phase-space probability den
r(x,t) for a conservative classical Hamiltonian system os
degrees of freedom. Phase-space probability dens
r(x,t)5r„X(x,2t),0… evolve in classical mechanics in a
cord with the classical Liouville equation, Eq.~13!. Consider
that

r~x,t !5E dx0r~x0,0!d„x02X~x,2t !…, ~84!

whered„x02X(x,2t)… is the kernel of the Liouville propa
gator, which can be rewritten as

r~x,t !5E
2`

`

dt8d~ t2t8!E dx0r~x0,0!d„x02X~x,2t8!….

~85!

Making the replacementd(t2t8)5(1/2p)*2`
` dle2 il(t2t8)

we obtain

r~x,t !5E
2`

`

dt8
1

2pE2`

`

dl e2 il~ t2t8!

3E dx0r~x0,0!d„x02X~x,2t8!…. ~86!

Finally inserting a closure relation for the energ
15*0

`dE d„E2H(x)… gives

r~x,t !5E
0

`

dEE
2`

`

dl e2 iltE dx0r~x0,0!YE,l~x;x0!,

~87!

where
n
n-

n
ts
y

es

YE,l~x;x0!5
1

2p
d„E2H~x0!…E

2`

`

dt8eilt8

3d„x02X~x,2t8!…. ~88!

Equation~87! provides an expansion ofr(x,t) in terms of
the classical spectral projection operatorsYE,l , which are
expressed, in Eq.~88!, in terms of the dynamics. Specifi
cally,YE,l(x;x0) is the Fourier transform of the kernel of th
Liouville propagator, restricted to the energy shell. Equat
~87! is a restatement of Eq.~20!, which emphasizes the clas
sical spectral projection operators as being central to
analysis of the dynamical evolution of distributionsr(x,t).

The distributionYE,l(x;x0), as a function ofx, is an
eigenfunction of the Liouville operator with eigenvaluel.
To see this consider that propagation with respect to thx
variables gives

e2 iL ctYE,l~x;x0!5
1

2p
d„E2H~x0!…E

2`

`

dt8eilt8

3d„x02X~x,2t82t !…

5e2 iltYE,l~x;x0!, ~89!

where we have made the change of variablet81t→t8. Simi-
larly, with Lc(x0)5 i @]H(x0)/]x0#J]/] x̃0 operating on the
x0 variables, LcYE,l(x;x0)52lYE,l(x;x0). †Here
J5( I

0
0
2I) is the (2s32s)-dimensional symplectic matrix

@25#‡. Thus,YE,l(x;x0) is an eigenfunction ofLc with eigen-
valuel (2l) in the x (x0) variables. These properties a
consequences of the fact thatYE,l(x;x0)5YE,2l(x0 ;x),
which is in turn a consequence of the fact thatLc is unitarily
equivalent to2Lc .

The decomposition in Eq.~87! holds for all distributions
and all phase-space pointsx, including periodic orbits. To
show this, suppose thatx lies on a periodic orbit. Then by
Eq. ~88!
YE,l~x;x0!5
1

2p
d„E2H~x0!…E

2`

`

dt8eilt8d„x02X~x,2t8!…

5
1

2p
d„E2H~x0!… (

j52`

`

ei j ltE
2t/2

t/2

dt8eilt8d„x02X~x,2t8!…

5d„E2H~x0!… (
j52`

`

d~l22p j /t!
1

tE2t/2

t/2

dt8e2p i j t 8/td„x02X~x,2t8!…, ~90!

wheret is the fundamental period of the orbit. Thus we have

YE,l~x;x0!5d„E2H~x0!… (
j52`

`

d~l22p j /t!
1

tE2t/2

t/2

dt8e2p i j t 8/td„x02X~x,2t8!… ~91!

on periodic orbits. Now inserting this expression into the right-hand side of Eq.~87! and performing the integrals overl and
E gives
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r~x,t !5E dx0r~x0,0! (
j52`

`
1

tE2t/2

t/2

dt8e2p i j ~ t82t !/td„x02X~x,2t8!…

5E dx0r~x0,0! (
j52`

` E
2t/2

t/2

dt8d~ t82t2 j t!d„x02X~x,2t8!…

5E dx0r~x0,0!d„x02X~x,2t !…. ~92!

Performing the integrals overdx0 gives the probability density on the pointx of the periodic orbit, as required. Thus, th
expansion~87! and its associated closure relation hold for points on periodic orbits.

Since Eq.~87! holds for allr and allx it implies the existence of the closure relation

E
0

`

dEE
2`

`

dlYE,l~x;x0!5d~x02x!. ~93!

Two unsatisfactory issues require more careful attention: First, there is no clear separation of the point spectrum
continuous spectrum@21#. Second, a comparison of Eq.~87! with Eq. ~20! suggests thatYE,l(x,x0) should relate to the
Liouville eigenfunctionsrE,l

l as a product of an eigenfunction inx0 times an eigenfunction inx. These issues are address
below where we treat the integrable and chaotic cases separately.

A. Integrable systems

To demonstrate the computation ofY consider integrable systems. Here we change to action angle variablesx5(I ,u) and
x05(I0 ,u0) so thatYE,l assumes the form

YE,l~x;x0!5
1

2p
d„E2H~ I0!…E

2`

`

dt8eilt8d~ I02I !d@„u02u1v~ I !t8…mod2p#

5
1

2p
d„E2H~ I0!…E

2`

`

dt8eilt8d~ I02I !
1

~2p!s (kPZs
e2 ik•[u02u1v~ I !t8] , ~94!

where we have used the identity@26#

(
jPZs

d„u02u1v~ I !t822p j )5
1

~2p!s (kPZs
e2 ik•[u02u1v~ I !t8] . ~95!

In terms of the Liouville eigendistributionsr I8,n(I ,u) @Eq. ~30!# Eq. ~94! becomes

YE,l~x;x0!5
1

2p
d„E2H~ I0!…(

n
E dI 8d„l2n•v~ I 8!…r I8,n

* ~ I0 ,u0!r I8,n~ I ,u!. ~96!

Inserting Eq.~96! into Eq. ~87! gives the expansion

r~x,t !5(
n
E dI 8e2 in•v~ I8!tE dI0du0r~ I0 ,u0,0!@r I8,n

* ~ I0 ,u0!r I8,n~ I ,u!#. ~97!
tio

c-
w

This result suggests a natural definition of spectral projec
operators for integrable systems, i.e.,

YI8,n~x;x0!5r I8,n
* ~x0!r I8,n~x!, ~98!

which takes the form of a product of Liouville eigenfun
tions. These spectral projection operators satisfy the follo
ing symmetry, closure and orthonormality relations:

YI8,n~x;x0!5YI8,2n~x0 ;x!, ~99!
n

-

E dI 8YI8,0~x;x0!1 (
nÞ0

E dI 8YI8,n~x;x0!5d~x2x0!,

~100!

and

E dx YI9,n8* ~x;x08!YI8,n~x;x0!5dn,n8d~ I 92I 8!YI8,n~x08 ;x0!.
~101!

Further, the decomposition in Eq.~100! clearly displays the
separation of point and continuous spectrum.
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B. Chaotic systems

The time evolution of a phase-space distribution for
chaotic system that is hyperbolic can be decomposed in
following fashion~see Appendix B!:

r~x,t !5E
0

`

dEE dx0r~x0,0!YE~x;x0!

1E
0

`

dEE—dle2 iltE dx0r~x0,0!YE,l~x;x0!,

~102!

whereYE,l(x;x0) is given by Eq.~88! and

YE~x;x0!5
d„E2H~x0!…d„E2H~x!…

E dx8d„E2H~x8!…

. ~103!

Here *–dl denotes the integral overl with the point spec-
trum at l50 removed, i.e., *–dl5*2`

` dlPE , where
PEr5@r2^r&E#, and

^r&E5

E dx d„E2H~x!…r~x,0!

E dx8d„E2H~x8!…

~104!

is the microcanonical average ofr. The operatorPE projects
distributions onto the continuous spectrum part of the Hilb
space. Properties such as the system is ergodic (l50 is a
nondegenerate point eigenvalue with a corresponding ei
function that is uniform over the energy surface!, weak mix-
ing ~no point eigenvalues other thanl50), and positive
Kolmogorov entropy~i.e., the remainder of the spectrum
continuous! have been incorporated in Eq.~102! in an obvi-
ous way. Since the component ofr(x) with energyE is
given by

E dx0r~x0,0!YE~x;x0!5^r&Ed„E2H~x!… ~105!

we see thatYE projectsr(x) onto the point spectrum part o
the Hilbert space. Similarly,YE,l projects an arbitrary dis
tribution onto the continuous spectrum part of the Hilb
space associated with a frequencyl and energyE. We fur-
ther note that this set of projection operators is complete

E
0

`

dEYE~x;x0!1E
0

`

dEE—dlYE,l~x;x0!5d~x2x0!,

~106!

and orthogonal:

E dx YE8
* ~x;x08!YE~x;x0!5d~E2E8!YE~x08 ;x0!,

~107!

and
he

rt

n-

t

E dx YE8,l8
* ~x;x08!YE,l~x;x0!

5d~E2E8!d~l2l8!YE,l~x08 ;x0!. ~108!

~These relations are proven in Appendix B.! The distribu-
tionsYE andYE,l are thus the kernels of orthogonal statio
ary and nonstationary spectral projection operators for
classical Liouville spectrum. We have thus achieved, in t
approach, the separation of point and continuous spectrum
remains to examine the relationship ofYE,l to the Liouville
eigenfunctions.

To do so insert Eq.~34! into the definition ofYE,l
@Eq.~88!# to obtain

YE,l~x;x0!5
1

2p
d„E2H~x0!…d„E2H~x!…

3e2 il[ t~x0!2t~x!]d„h~x0!2h~x!….

~109!

Inserting Eq.~35! in Eq. ~109! and rewriting in terms of the
definition of the chaotic Liouville eigenfunctions@Eq. ~37!#
gives

YE,l~x;x0!5(
l

rE,l
l* ~x0!rE,l

l ~x!. ~110!

We also define stationary Liouville eigenfunctions,rE(x),
via

rE~x!5
d„E2H~x!…

F E dx8d„E2H~x8!…G1/2, ~111!

such that

YE~x;x0!5rE* ~x0!rE~x!. ~112!

The distributionsrE(x) andrE,l
l (x) are zero off the energy

shell E5H(x). The eigendistributionsrE(x) are stationary
and uniform over the energy shell and belong to the po
spectrum. DistributionsrE,l

l (x) are nonuniform and station
ary for l50, and nonuniform and nonstationary forlÞ0.
The distributionsrE,l

l (x) belong to the continuous spectrum
Finally, note thatrE(x) andrE,l

l (x) are supported over the
entire (2s21)-dimensional energy surfaceE5H(x), in con-
trast to the distributionsr I8,k(x) for integrable systems tha
are supported only on thes-dimensional torusI 85I (x). In
other words, every orbit of the energy surfaceE5H(x) con-
tributes to the construction of a chaotic eigenfunction.

Comparing

YE~x;x0!5rE* ~x0!rE~x! ~113!

with

YE,l~x;x0!5(
l

rE,l
l* ~x0!rE,l

l ~x! ~114!

we see that the stationary spectral projection operatorsYE
are simple products of Liouville eigenfunctions whileYE,l
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are composed of a sum of products of Liouville eigenfun
tions. This structure, i.e., a sum over products, has impor
implications for the correspondence of the nonstationary c
otic quantum Liouville eigenfunctions@6#. Hence we shall
prove here thatYE,l(x;x0) cannot be rewritten as a simp
product of some new, as yet undiscovered, eigenfunction

Suppose that we can write

YE,l~x;x0!5VE,l* ~x0!VE,l~x! ~115!

for some unknown distributionsVE,l(x). Then, in order to
satisfy the orthogonality relation@Eq. ~108!# we must have

E dx VE8,l8
* ~x!VE,l~x!5d~E2E8!d~l2l8!. ~116!

Equations ~115! and ~116! along with the definition of
YE,l then imply that

d~E2E8!d~l2l8!VE,l~x!

5
1

2p
d„E2H~x!…E

2`

`

dt8eilt8VE8,l8„X~x,2t8!…

5d„E2H~x!…d~l2l8!VE8,l8~x!. ~117!

Integrating overl8 andE8 gives

VE,l~x!5d„E2H~x!…E dE8VE8,l~x!, ~118!

which implies that VE,l(x)}d„E2H(x)…. Note that
YE,l(x;x0)50 unlessx0 and x lie on the same trajectory
Thus, if VE,l(x)5d„E2H(x)…Nl(x) then Nl* (x0)Nl(x)
50 unlessx0 andx lie on the same trajectory. However,
x0 andx lie on the same trajectory thenH(x)5H(x0) and so

VE,l* ~x0!VE,l~x!5d„E2H~x0!…Nl* ~x0!d„E2H~x!…Nl~x!

5d„E2H~x!…2Nl* ~x0!Nl~x! ~119!

so thatVE,l* (x0)VE,l(x) would not even be integrable in
delta-function sense. ThusYE,l cannot be written as a
simple product of Liouville eigenfunctions.

Periodic orbits

Periodic orbits play an important role in modern theor
of quantization in chaotic systems. Given that Eqs.~87! and
~102! hold for points on periodic orbits, and given that h
perbolic systems have a countable number of isolated p
odic orbits for any given energy, it is also possible to se
rate the singular spectrum associated with the periodic or
from the rest of the continuous spectrum. To do this
define periodic orbit distributions@extracted from Eq.~91!#:

YE, j
k ~x;x0!5d„E2H~x0!…

1

tk
E

2tk/2

tk/2

dt8e2p i j t 8/tk

3d„xk2X~x,2t8!… ~120!
-
nt
a-

.

s

ri-
-
its
e

wherexk is a point on thekth periodic orbit at energyE.
~Here againtk is the fundamental period of orbitk.! Note
that the distributionsYE,0

k have the property that

E dxdx0YE,0
k ~x;x0!F~x0!G~x!

E dx8d„E2H~x8!…

5^F&E^G&E,0
k , ~121!

whereF and G are any two observables,^F&E denotes a
microcanonical average at energy E, and

^G&E, j
k [(1/tk)*2tk/2

tk/2 dt8e2p i j t 8/tkG„X(xk,t8)… is the j th Fou-

rier component ofG on periodic orbitk at energyE. The
total closure relation now takes the form

E dE YE~x;x0!1E dE(
j

8 (
hkPP

dh~x0!,hk
YE, j
k ~x;x0!

1E dEE—dlYE,l~x;x0!5d~x2x0!, ~122!

whereP[{ huh labels a periodic orbit% and theh variables
are those that we introduced earlier, and where*–dl now
denotes the integral overl with the point and singular spec
trum removed, i.e.,*–dl5*dl SEPE , where

SEr~x!5r~x!2(
j

(
hkPP

dh~x!,hk
^r&E, j

k ~123!

and so

SEPEr~x!5r~x!2^r&E2(
j

(
hkPP

dh~x!,hk
^@r2^r&E#&E, j

k .

~124!

The distributionsYE, j
k (x;x0) are asymmetric in thex, x0

variables, and so a Kronecker deltadh(x0),hk
is introduced as

a factor in the singular spectrum term of Eq.~122! in order to
restore the proper symmetry with respect tox and x0. The
prime over the sum onj denotes that the point spectrum h
been removed, i.e.,( j85( j PE .

One last aspect of definition~120! should be emphasized
For j50 we may write

YE,0
k ~x;x0!5d„E2H~x0!…

1

tk
E

2tk/2

tk/2

dt8d„t~pk,qk!

2t~p,q!1t8…d„E2H~x!…d„hk2h~x!…

5tk
21d„E2H~x0!…d„E2H~x!…d„hk2h~x!….

~125!

But local coordinatesjk(x) of the Poincare surface of sectio
@20,27#, transverse to periodic orbitk, may be introduced
such that
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d„hk2h~x!…5d„jk~x!). ~126!

Note that hk2h(x)Þjk(x) since h(x) are global
t-independent variables, whilejk(x) are t-dependent loca
variables, i.e.,jk(H,t1tk ,h)5Mkjk(H,t,h) whereMk is
the stability matrix of orbitk. However, since

d„jk~H,t1tk ,h!…5
1

udetMku
d„jk~H,t,h!… ~127!

and udetMku51, it follows thatd„jk(H,t,h)… is time inde-
pendent. Thus, the stationary periodic orbit spectral pro
tion operators can be written in the form

YE,0
k ~x;x0!5tk

21d„E2H~x0!…d„E2H~x!…d„jk~x!….
~128!

This particular form will be of use in the companion pap
@6# on correspondence in chaotic systems in which scar c
tributions are related to these spectral projectors. Indeed
analysis of the classical dynamics of distributions, contain
in this section, will prove central to the analysis of classic
quantum correspondence in chaotic systems, discussed i
following paper@6#.

VI. SUMMARY

In summary, we have constructed a coherent framew
for the study of quantum-classical correspondence. We h
c-

r
n-
he
d
-
the

rk
ve

emphasized the importance of considering, in each mech
ics, the entire set of 2r eigenequations in the Liouville pic
ture. We have then shown how this approach, when co
bined with demonstrations of correspondence for
Liouville eigenfunctions, allows a complete understanding
correspondence for integrable systems. General meth
were then discussed for the construction of Liouville spec
decompositions necessary for the study of correspondenc
chaotic systems. These methods were then employed fo
construction of Liouville eigenfunctions for chaotic system
Finally, we reviewed the arguments for the corresponde
of Liouville eigenfunctions for quantum systems with int
grable classical analogs and showed that the primary me
nism of correspondence is the elimination of essential sin
larities when there is an averaging over a small ran
DpDq.

In the following paper@6# we show that the correspon
dence problem for systems with chaotic classical analog
be treated by the methods introduced in this paper.
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APPENDIX A

Here we will prove the orthogonality and completene
relations~38! for the chaotic Liouville eigenfunctionsrE,l

l .
To prove Eq.~38! consider that
E dx rE8,l8
l 8* ~x0!rE,l

l ~x!5E dH dt dh
1

2pE2`

`

dt ei ~l2l8!td~E2E8!d~H2E!x l 8
* ~h!x l~h!

5d l 8,ld~E82E!d~l82l!, ~A1!

where we have used Eq.~36! and the identityd(x)5(1/2p)*2`
` dy eixy.

To show completeness note that

(
l
E
0

`

dEE
2`

`

dl rE,l
l* ~x8!rE,l

l ~x!5
1

2p(
l
E
0

`

dEE
2`

`

dl d„E2H~x8!…d„E2H~x!…eil[ t~x!2t~x8!]x l* „h~x8!…x l„h~x!…

5d„H~x!2H~x8!…d„t~x!2t~x8!…d„h~x!2h~x8!…5d~x2x8!, ~A2!

where we used Eq.~35! and the identityd(x)5(1/2p)*2`
` dy eixy to go from the first line to the second, and Eq.~34! to go

from the second line to the third.

APPENDIX B

Here we will prove the decomposition of Eq.~102! and relations~106!–~108!. To begin we will prove relation~102!. Let
r(x,t) be a solution of the classical Liouville equation. The following decomposition can be verified by inspection:

r~x,t !5E
0

`

dEE dx0r~x0,0!
d„E2H~x0!…d„E2H~x!…

E dx8d„E2H~x8!…

1E
0

`

dErns~x,t !d„E2H~x!…, ~B1!



n

55 41QUANTUM-CLASSICAL . . . . I. . . .
where

rns~x,t !5r~x,t !2^r&E , ~B2!

with ^r&E as given in Eq.~104!. Furthermore, we may write

rns~x,t !5E dx0rns~x0,0!d„x02X~x,2t !…

5E
2`

`

dt8d~ t82t !E dx0rns~x0,0!

3d„x02X~x,2t8!…. ~B3!

Substituting (1/2p)*2`
` dl eil(t82t) for d(t82t) in Eq.

~B3!, inserting 15*0
`dE d„E2H(x)…, and then substituting

Eq. ~B3! into Eq. ~B2! and collecting terms, we obtain

r~x,t !5E
0

`

dEE dx0r~x0,0!YE~x;x0!

1E
0

`

dEE—dle2 il tE dx0r~x0,0!YE,l~x;x0!,

~B4!

where *–dl r5*dl PEr5*dl@r2^r&E#, which proves
Eq. ~102!. Since Eq.~B4! must hold for allt it must also hold
for t50. We thus have shown that

r~x,0!5E
0

`

dEE dx0r~x0,0!YE~x;x0!

1E
0

`

dEE—dlE dx0r~x0,0!YE,l~x;x0!,

~B5!

and since this must hold for allr, relation~106! must be true.
Here of course we have used definitions~103! and ~88!.
-

t
so
The proof of relation~107! is much simpler. Inserting
definition ~103! into the left-hand side of relation~107! gives

E dx YE8
* ~x;x08!YE~x;x0!

5E dx
d„E82H~x08!…d„E82H~x!…

F E dx8d„E2H~x8!…G2 •d„E2H~x0!…

3d„E2H~x!…5d~E2E8!

3
d„E2H~x08!…d„E2H~x0!…

E dx8d„E2H~x8!…

. ~B6!

Simple manipulations and use of definition~103! then give
Eq. ~107!.

Relation~108! can be proven as follows. From definitio
~88! it follows that

E dx YE8,l8
* ~x;x08!YE,l~x;x0!

5
1

~2p!2
d~E2E8!E dxE

2`

`

dt dt8d„E2H~x!…e2 ilt

3eil8t8
•d„x082X~x,2t !…d„x02X~x,2t8!… ~B7!

and this can be rewritten in the form

E dxYE8,l8
* ~x;x08!YE,l~x;x0!

5
1

~2p!2
d~E2E8!E

2`

`

dtdt8d„E2H~x0!…e
2 ilt

3eil8t8
•d„x02X@x08 ,2~ t82t !#… ~B8!

and now changingt8→t1t8 we readily obtain Eq.~108!.
-
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u8~T!5~vT1u8! mod 2p5u8,

which implies that there exists anlPZs such that
T52p l j /v j for all nonzero componentsv j of v. But this
implies thatv1 ,v2 , . . . ,vs are commensurate, in contradic
tion with our assumption. Hence all orbits of an incommens
rate torus are nonperiodic.

@24# Jafféand Brumer~Ref. @11#! had previously proposed these a
Liouville eigenfunctions for chaotic systems.
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