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Positronium hydrides and the Ps2 molecule: Bound-state properties,
positron annihilation rates, and hyperfine structure

Alexei M. Frolov and Vedene H. Smith, Jr.
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6

~Received 20 June 1996; revised manuscript received 16 September 1996!

The bound-state spectra of the positronium hydrides`HPs, TPs, DPs,1HPs, and MuPs are considered. The
properties of the bound groundS states (L50) in these systems and the Ps2 molecule have been determined
by extensive variational calculations. The hyperfine structure of these states is also investigated. The positron
annihilation rates have been evaluated for the positronium hydrides, the Ps2 molecule, and the Ps2 ion and
compared. The positron annihilation ratesGng ~wheren>2) in the positronium hydrides are significantly
closer to those in the Ps2 ion ~the three-body system! than in the Ps2 molecule.@S1050-2947~97!00304-1#

PACS number~s!: 36.10.Dr
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I. INTRODUCTION

In the present study we consider the bound states in
so-called positronium hydrides`HPs, TPs, DPs,1HPs, and
MuPs, each of which has only one bound groundS state
(L50). The boundedness of the groundS state in each of
the positronium hydrides`HPs, TPs, DPs, and1HPs is well
known since the paper by Ore@1#. It could be expected tha
the groundS state in the system MuPs~i.e.,m1e1e2e2) is
bounded as well. The general formula for these systems t
the form A1e1e2e2, whereA denotes the heavy positiv
particle with charge11 and massmA ,e

1 designates the pos
itron, ande2 stands for electrons. In general, all such s
tems can be described as positronium hydrides. The pos
nium molecule Ps2 can be considered to be a speci
positronium hydride, in whichmA51 @2#. Our present goa
is to study the bound groundS states and the positron ann
hilation in positronium hydrides since this process is of
terest for a number of applications.

The production of the positronium hydrides in the labo
tory should not be a much more complicated problem th
that for the Ps2 ion @3,4#. Recently,1HPs has been create
~and observed! in the collisions between positrons and me
ane@5#. The positronium hydrides can be produced~and then
annihilated! inside and outside of hydrogen stars; therefo
the positronium hydrides play a definite role in some as
physical models~see, e.g.,@6–8# and references therein!. In
practice, they can be found inside the hydrogen fuel wh
the positron beam is used together with very intense elec
beams to produce low-temperature thermonuclear ignitio
a dense hydrogen plasma.

The positronium hydride`HPs has been investigate
previously@9–12# ~all references on HPs before 1981 can
found in @12#!. In all of these papers it was assumed that
properties for theA1e1e2e2 system with the very large
~but finite! heavy particle massmA are almost the same as fo
`HPs. However, the appropriate corrections for the real s
tems were not evaluated even approximately. In terms
this, the first goal of our present study is to compute
energies and a number of properties for all positronium
drides `HPs, TPs, DPs,1HPs, and MuPs and for the Ps2
molecule. Another problem, which is even more importa
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is to consider the positron annihilation in such systems a
in particular, evaluate the zero-, one-, two-, and three-pho
annihilation rates.

The present work has the following structure. The boun
state spectra of the positronium hydrides are discussed in
next section, together with some of their properties. The
perfine structure of the positronium hydrides is considered
Sec. III. Positron annihilation in the positronium hydrides
studied in Sec. IV. Following our previous method@13#, we
found the annihilation probabilities for the Ps2 molecule
with the present wave function in Sec. V. It is very intere
ing to compare the appropriate annihilation rates for
Ps2 molecule and those for the positronium hydrides. T
final discussion can be found in Sec. VI. Some compu
tional details are given in the Appendix. Atomic uni
(\51, me51, ande152e251) are used throughout thi
work.

II. THE BOUND-STATE SPECTRA IN THE POSITRONIUM
HYDRIDES

Let us consider the bound-state spectra in the positron
hydrides such asA1e1e2e2. In general, a state in the pos
itronium hydridesA1e1e2e2 is bound if it is stable agains
dissociation into two neutral fragments, i.e
A1e1e2e2→A1e21e1e2. The appropriate threshold en
ergy equals

Etr~mA!52
0.5

11mA
21 20.2552

~31mA
21!

4~11mA
21!

>2
3

4

520.75 a.u. ~1!

The bound-state spectra in such systems has a q
simple structure since they contain only one bound~ground!
S state (L50). Moreover, the structure of these states is a
simple: the total angular momentumL equals 0 and both
electrons form a singlet pair, i.e., their total spin equals
Likewise, in the first and very good approximation~see be-
low! we can assume thatA is a spinless particle. This mean
that the bound state in the systemA1e1e2e2 can be desig-
nated as a2S1/2 state or even as anS state. Thus, in the
present study we consider theS ground bound state in eac
2662 © 1997 The American Physical Society
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TABLE I. Numerical values of the particle massmA , spinSA , magnetic momentmA, and factorg used
in the present calculations.

Particle mA
a SA mA

a g

T1 5496.921 58 1
2 1.622 39231023 3.244 78431023

D1 3670.483 014 1 0.466 975 447 931023 0.466 975 447 9•1023

1H1 1 836.152 701 1
2 1.521 032 20231023 3.042 064 40431023

m1 206.768 262 1
2 4.841 970 9731023 9.683 941 9431023

e1 1.0 1
2 1.001 159 656 74 2.002 319 304 386

aIn atomic units.
bIn Bohr magnetonmB , wheremB50.5 a.u.59.274 015 43310224 J3T21.
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of the positronium hydrides`HPs, TPs, DPs,1HPs, and
MuPs. The masses of the particles and a number of o
properties used in the calculations are given in Table I.

The Hamiltonian for the positronium hydrides may
written in the form~in atomic units!

H52
1

2mA
D12

1

2
D22

1

2
D32

1

2
D41

1

r 12
2

1

r 13

2
1

r 14
2

1

r 23
2

1

r 24
1

1

r 34
, ~2!

where the notation 1~alsoA or p) designates the heavie
particleA1, the notation 2~or 1! means the positron, while
3 ~or 2) and 4~or 2) stand for electrons. The appropria
energies and a number of other properties~expectation val-
ues; see the Appendix! can be found in Tables II and III. I
should be noted that the present variational energies~Table
II ! for all of these systems are the lowest known to date. T
was unexpected since, e.g., for the`HPs system there is a
effective and accurate special procedure~see e.g.,@10# or
@11#!, which is based on the so-called James-Coolidge va
tional expansion in the relative coordinates@14# and can be
successfully applied for all Coulomb four-body systems
which one of the particles is significantly heavier than t
three others~e.g., highly accurate results for the Li atom c
be found in@15#, and for the Be1 ion in @16#!.

It follows from Eq. ~2! that the energy of a positronium
hydride depends only upon the heavy particle massmA since
the electron and positron masses are the same in all c
er

is

a-

es.

Thus we write for the total energy of theA1e1e2e2 system
~in the case wheremA is a very large number, i.e.mA@1)
the expansion

E~A1e1e2e2!5E~`H1e1e2e2!1 (
k51

aks
k, ~3!

where s5mA
21'0 is the inverse mass value an

E(`H1e1e2e2) is the total energy for the`H1e1e2e2

hydride. By fitting the data for the first five systems@17#
from Table II we have found the first two coefficients in th
formula to be

a150.598 937 844 9, a2520.729 461 502 6. ~4!

It should be noted that the coefficienta1 coincides~with very
good accuracy! with the ^2 1

2¹1
2& expectation value for

s50 ~in `H1e1e2e2) in Table III, i.e., 0.599 057 5 a.u
This follows directly from the Hellman-Feynman theore
@18,19#. Note also that analogous formulas can be produ
for the other expectation values in such systems, e.g., for
Dirac d functions or interparticle distances~see Table III!.

In terms of the properties presented in Tables II and
we can expect that the positronium hydrides have the follo
ing structure. This is a cluster that consists of the two neu
systems: the hydrogen atom~e.g., `H1e2) and the positro-
nium atom (e1e2). The distances between the two electro
and between positron and nucleus are significantly lar
than those between each of the positive particles and
appropriate~nearest! electron. However, the distance b
TABLE II. Total variational energies«, the dissociation thresholdsEth , the inverse masss5mA
21 , and

the binding energiese for a number of the positronium hydridesA1e1e2e2.

System « a Etr
a s e b

`H1e1e2e2 20.789 1794 20.750 000 0 0.0 21.066 126
T1e1e2e2 20.789 0705 20.749 909 056 542 1 0.181 920 004 760 231023 21.065 638
D1e1e2e2 20.789 0163 20.749 863 815 249 0 0.272 443 707 322 931023 21.065 394
1H1e1e2e2 20.788 8534 20.749 727 839 716 5 0.544 617 013 310 231023 21.064 661
m1e1e2e2 20.786 2998 20.747 593 472 673 9 0.483 633 218 332 131022 21.053 253
e1e1e2e2c 20.516 0024 20.500 000 1.0 20.435 445

aIn atomic units.
bIn electron volts~1 a.u.5 27.211 396 1 eV!.
cThe positronium molecule Ps2.
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tween the proton and the second~remote! electron is ap-
proximately the same as in the`H2 ion, while the distance
between the first electron and the positron is approxima
the same as the distance between the positron and the re
ly
ote

electron in the Ps2 ion. Since the total electron spin equals
for the positronium hydrides as well as for the H2 and
Ps2 ions, the`H1e1e2e2 system can be represented as t
‘‘physical sum’’ of the Ps2 and `H2 ions, i.e., in terms of
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FIG. 1. Schematic structure of the HPs system in terms of~a! two three-body clusters and~b! two two-body clusters. The computationa
results show that the picture~a! represents significantly better the actual structure of the HPs system. In both of these pictures the sma
designates the electron, while small and large filled~circles! stand for the positron and proton (A1), respectively.
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these two three-body clusters. The main idea of such a
resentation is illustrated in Fig. 1. This picture shows also
principal difference between the appropriate two- and thr
body cluster representations for the positronium hydrides
terms of the three-body cluster model, the energy of
`H1e1e2e2 system can be approximately evaluated as
sum of the energies for the Ps2 and `H2 ions, i.e.,

E~`H1e1e2e2!5E~`H2!1E~Ps2!

'20.527 751 016 523

20.262 005 070 232 6

'20.789 756 086 7 a.u., ~5!

where the energies for the`H2 and Ps2 ions are chosen
from @20# ~see also@21,22#!. Such a simple estimation ha
surprising accuracy since it gives at least three correct d
mal figures for the total energy of the`H1e1e2e2 system
@23#.

In the general case, whenmA→1 in theA1e1e2e2 sys-
tem, this formula@Eq. ~5!# loses accuracy very rapidly sinc
the positrone1 obviously influences the motion of the pos
tive particleA1. Actually, the total energy estimate that ca
be found from formula~5! lies below the real energy valu
for theA1e1e2e2 system. The largest deviation can be o
served in the Ps2 molecule, where the error is approximate
1.5% of the total energy.

III. HYPERFINE STRUCTURE OF BOUND STATES
IN POSITRONIUM HYDRIDES

In the preceding section the particleA1 has been assume
to be a spinless positive particle with charge11 and mass
mA for all positronium hydrides. This means that we stud
the Coulomb structure of the bound state spectra in
A1e1e2e2 systems. Now, let us consider the fine and h
perfine structures of the positronium hydrides. In particu
we wish to show that the respective corrections are relativ
small in comparison to the Coulomb energies.

The hyperfine structure~i.e., the appropriate level shif
and its splitting! is determined by the spin-spin interactio
p-
e
e-
In
e
e

i-

-

d
e
-
r,
ly

between particles. In contrast with this, the so-called fi
structure arises as the result of the spin-orbit interactions
the lightest particles, i.e., for the electrons and positrons
the positronium hydrides. The general expression for the
interaction operator of the lowest order in the positron h
drides takes the form

HF5b1lW 1•sW11b2LW 2•SW 2 , ~6!

whereLW 2 is the total angular momentum for the electron
SW 2 is their total spin,lW 1 is the positron angular momentum
and sW1 is the positron spin.b1 and b2 are two numerical
constants. Since in the positronium hydridesSW 250 ~both
electrons are always in the singlet state! and lW 150 ~the
partial positron wave function has the angular moment
l 50, i.e.,s state!, we haveHF50 for all ground boundS
states (L50) in such systems. Actually, this means th
there is no fine structure in the positronium hydrides~in this
approximation! and the possible level shift can be relat
only with the spin-spin interparticle interaction~or hyperfine
interaction, in terms of the atomic terminology!.

The appropriate general formula for the hyperfine inter
tion can be easily written for the positronium hydrides

HHF52(
~ i j !

ai j sW i•sW j , ~7!

where the sum is calculated for all six pairs of particle
However, this expression can be simplified significan
since the nonrelativistic ground-state wave function for
arbitrary positronium hydride can be written as a product
coordinate-space and spin-space parts. The appropriate
erator of the lowest order for the hyperfine interaction in t
A1e1e2e2 system takes the form@24#

HHF52aIWA•sW12bsW1•SW 22cIWA•SW 2 , ~8!

whereSW 2 is the total electron spin,sW1 is the positron spin,
and IWA is the spin of theA particle~see Table I!. Since both
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TABLE IV. Hyperfine corrections in atomic units (me51, \51, ande51) of the lowest order for the
ground boundS states (L50) in the positronium hydridesA1e1e2e2.

Hyperfine
correction T1e1e2e2 D1e1e2e2 1H1e1e2e2 m1e1e2e2

a 1.220 660 831029 1.756 420 2310210 1.143 618 031029 3.611 271 231029

e(J50) 0.915 49631029 0.857 71431029 2.708 45331029

e(J5
1
2) 1.756 420310210

e(J51) 20.305 16531029 20.285 90531029 20.902 81831029

e(J5
3
2) 20.878 21310210
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electrons are in the singlet state, we haveSW 250 and
HHF52aIWA•sW1 , wherea is a numerical factor. The explici
expression for the factora is

a5
8pa2

3
mB
2gAg1^dA1&5

2pa2

3
gAg1^dA1&

'2.233 174 540 431024gA^dA1& ~9!

where a50.729 735 30831022 is the fine structure con
stant. The Bohr magnetonmB5e\/2me equals 1

2 in the
atomic units (e51, \51, andme51), while its value in SI
units is 9.274 015 43310224 J T21. The masses, spin va
ues, magnetic momentsmA, and factorsgA are given in
Table I. The valuê dA1& is the expectation value for th
proton-positron Diracd function in atomic units, i.e.,

^dA1&5
^Cud~rWA2rW1!uC&

^CuC&
. ~10!

The diagonalization of theHHF operator yields the ener
gies e(J50)5 3

4a and e(J51)52 1
4a for all positronium

hydrides, except only for the DPs system. HereJ denotes the
total spin value for the nucleus-positron pair. In particul
J50 means the singlet state, whileJ51 designates the ap
propriate triplet state. For the DPs system there are the d
blet state withJ5 1

2 and quadruplet state withJ5 3
2. The re-

spective energies aree(J5 1
2)5a and e(J5 3

2)52 1
2a. The

numerical results for these hyperfine corrections can
found in Table IV. Actually, it follows from Table IV that
these corrections are very small in comparison to the ap
priate Coulomb energies. For instance, they do not cha
the Coulomb energies in Table II in any significant decim
figure. This is a very important result for our present p
poses.

IV. POSITRON ANNIHILATION IN POSITRONIUM
HYDRIDES

Positron annihilation in the positronium hydride
A1e1e2e2 can be written in terms of the general equatio

A1e1e2e25@A11e2#1ng , ~11!

wheren means the total number of the emittedg quanta or
photons. The expression@A11e2# designates that the fina
state in the two-body systemA1e2 is either a bound state o
a state from its continuous spectrum~i.e., an unbound state!.
In most cases the final state is not of interest for the con
,

u-

e

o-
ge
l
-

d-

eration of positron annihilation, in contrast with the so-call
annihilation rates~or probabilities! Gng . These values de
pend uponn and the expectation value for the appropria
Dirac d functions.

Positron annihilation in positronium hydrides was initial
considered long ago@25#. Later, the positron annihilation in
`H1e1e2e2 was studied in a few papers@9–11#. Actually,
only results for the`H1e1e2e2 system can be found in th
modern literature. Moreover, in all previous papers only
two-photon annihilation rateG2g was estimated. Obviously
the two-photon annihilation is the dominant process, but i
very interesting to evaluate even approximately the pr
abilities for positron annihilation when the total number
the emitted photons differs from two.

The two-photon annihilation rateG2g for positronium hy-
drides can be found from the general formula for a syst
that containsn electrons and one positron~i.e. n electron-
positron pairs!

G2g5pna4ca0
21^d12&

'50.308 740 453109n^d12& sec21, ~12!

wheren52 for all positronium hydrides. In this formula th
velocity of light c is 0.299 792 4583109 m sec21, the fine
structure constanta50.729 735 30831022, and the Bohr ra-
dius is 0.529 177 249310210 m @26,27#. In Eq. ~12! the ex-
pectation value of the electron-positron Diracd function
^d12&

^d12&5
^Cud~rW22rW1!uC&

^CuC&
~13!

is used in atomic units. The approximate values for the hi
est annihilation ratesGng with an even number of photon
~i.e., n52k.2) can be easily found fromG2g . Indeed,
Gng5a2(k21)G2g , where n52k>2. The results for the
many-photon annihilation ratesGng in the positronium hy-
drides andPs2 molecule can be found in Table V.

To find the three-photon annihilation rateG3g we shall
apply the so-called Ferrante relations@28#. However, the
method used in our previous work@13# cannot be generalized
directly to the positronium hydrides for the following rea
sons. In@13# we considered the consequence of the appro
ate two-, three- and four-body polyelectron systems such
Ps, Ps2, and Ps2. The principal point was that the boun
state spectra of the Ps2 ion and the Ps2 molecule are com-
pletely similar @29#. Therefore, the Ferrante relation can
used for the Ps2 molecule if it works for the Ps2 ion. Un-
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TABLE V. Approximate many-photon annihilation ratesGng ~in sec21), wheren50,1,2, . . . ,10, for thepositronium hydrides, Ps2
molecule, and Ps2 ion.

Rate `H1e1e2e2 T1e1e2e2 D1e1e2e2 1H1e1e2e2 m1e1e2e2 e1e1e2e2 e1e2e2

G0g 9.16031028 9.14931028 9.14331028 9.12731028 8.87031028 2.23931029

G1g 8.07731021 8.07231021 8.07031021 8.063531021 7.96331021 1.97331021 3.826 0331022

G2g 2.43613109 2.43603109 2.43593109 2.43573109 2.43283109 4.44513109 2.092 803109

G3g 2.18703106 2.18693106 2.18683106 2.18663106 2.18413106 3.99093106 1.878 813106

G4g 1.29723105 1.29723105 1.29713105 1.29703105 1.29553105 2.36733105 1.1144 43105

G5g 1.16463102 1.16453102 1.16453102 1.16443102 1.16303102 2.12523102 1.000493102

G6g 6.9080 6.9077 6.9075 6.9069 6.8988 12.606 5.934 56
G7g 6.201631023 6.201331023 6.201231023 6.200731023 6.193431023 1.131731022 5.327 7431023

G8g 3.678631024 3.678431024 3.678331024 3.678 031024 3.673731024 6.712831024 3.160 2331024

G9g 3.302 531027 3.302 331027 3.302231027 3.302031027 3.298131027 6.026531027 2.837 1031027

G10g 1.958931028 1.958831028 1.958831028 1.958631028 1.956331028 3.574731028 1.682 8731028
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fortunately, for the positronium hydrides the appropria
two-body systems are unknown and the three-body syst
~e.g., H1e1e2) have no bound state~details can be found in
@30#!. Actually, the bound states can be found only in t
four-body systems, i.e., in the positronium hydrides the
selves.

Nevertheless, the Ferrante relations can be applied to
positronium hydrides since their structure can be represe
as the Ps2 ion in the field of the proton. Moreover, th
structure of the Ps2 ion in this case is approximately th
same as for the free ion~see Sec. II!. Therefore, the Ferrant
relation can be applied to the positronium hydrides sinc
works for the free Ps2 ion. In other words, we assume th
the proton’s presence gives proportional corrections to b
G2g andG3g , i.e.

G2g~HPs!

G3g~HPs!
5

G2g~Ps2!

G3g~Ps2!
, ~14!

whereG2g(Ps
2) andG3g(Ps

2) are the appropriate two- an
three-photon annihilation rates for the Ps2 ion. Finally, after
a number of simple transformations@13#, we find the expres-
sion

G3g~HPs!5
4~p229!a

9p
G2g~HPs!'4.516 459 701

3107n^d12~HPs!& sec21, ~15!

where n52. Now, by applying the found value o
G3g(HPs) and the approximate relationG (2n11)g(HPs)
5a2(n21)G3g(HPs) we can estimate approximately all an
hilation ratesG (2n11)g~HPs! with an odd number of photon
(n>2).

A. The first one-photon annihilation rate

The one-photon positron annihilation can proceed in
positronium hydridesA1e1e2e2 as the regular two-photon
annihilation, followed by internal conversion of one of th
two emittedg quanta either by the second~remaining! elec-
tron or by the particleA1 @31#. In the first case the fas
electron is emitted and the overall equation takes the for

A1e1e2e25A11e2~0.510 999 06 MeV!1g. ~16!
s

-

he
ed

it

th

e

The g quantum energy is also 0.510 999 06 MeV. The s
ond case

A1e1e2e25A1~0.510 999 06 MeV!1e21g ~17!

differs from this since there is no fast electron emission a
in principle, the two-body hydrogenlike systemA1e2 can be
found in one of its bound states. According to this, we c
find in the positronium hydridesA1e1e2e2 two different
one-photon annihilation rates, which are designated below
Gg(HPs,e

2) and Gg(HPs,A
1), so that Gg(HPs)

5Gg(HPs,e
2)1Gg(HPs,A

1). In this subsection we con
sider the first one-photon annihilation rate, i.e
Gg(HPs,e

2).
By applying the approach from@32# we can write the

following expression forGg(HPs,e
2):

Gg~HPs,e2!5y
16p2

3
za8ca0

21^d122~HPs!&5y

31.065 757 443103^d122~HPs!& sec21,

~18!

where the value of the proportionality constantz5 4
9 is used

~this value was found in@32#; for more details see the dis
cussion and references in@13,20#!. The unknown factory
can be found from accurate quantum-electrodynamics ca
lations. We shall assume below thaty51. This means that in
terms of such an approximation there is no difference
tween one-photon positron annihilation in the Ps2 ion and
that in theA1e1e2e2 hydrides. For our present purpose
this is a very good approximation. However, it should
noted that the conversion of ag quantum in the Ps2 ion can
be only complete, while in theA1e1e2e2 hydrides one
finds also the so-called partial conversion, i.e., t
(g,e21g8) process, which can be described as Comp
scattering of annihilationg quanta in the Coulomb field o
theA1 particle.

The formula forGg(HPs,e
2) can be rewritten in anothe

form

Gg~HPs,e2!5y
8p

3
za4 ^d122~HPs!&

^d12~HPs!&
G2g~HPs!
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5Wg,2g~e!G2g~HPs!

5y31.055 838 57931028 ^d122~HPs!&

^d12~HPs!&

3G2g~HPs!, ~19!

whereWg,2g(e) is the one-photon internal conversion coe
ficient for theg radiation. Thus the approximate value~at
y51) for the Wg,2g(e) coefficient is 1.055 838 579
31028R, whereR is the ratio of the respectived functions.

B. The second one-photon annihilation rate

Let us consider now the opposite case, i.e., when the e
ted photon is converted by the particleA1 ~or proton! in the
positronium hydrideA1e1e2e2. The appropriate annihila
tion rate can be designated asGg(HPs,A

1). It can be shown
that the value of Gg(HPs,A

1) does not differ sig-
nificantly from the Gg(HPs,e

2) value, i.e.
Gg(HPs,A

1)'Gg(HPs,e
2), and we can use the relatio

Gg(HPs,A
1)5uGg(HPs,e

2), where the factoru approxi-
mately equals 1. This means actually that~i!
Gg(HPs)5Gg(HPs,e

2)1Gg(HPs,A
1)5(11u)Gg(HPs,e

2)
'2Gg(HPs,e

2) and~ii ! theGg(HPs,A
1) value is very small

in comparison toG2g ,G3g , etc.
However, in this case~in contrast with all other cases! the

question about the final state for the hydrogenlike two-bo
systemA1e2 is of specific interest. Indeed, in this case t
particleA1 takes the energyEe'0.510 999 06 MeV and be
gins to move. Its velocity is determined by the relation

vA5v~A1!5c
AEe

212mAEe

mA1Ee
50.299 792 4583109

3
A112•x

11x
m sec215

1

a

A112x

~11x!
a.u., ~20!

wherex5mA(MeV)/0.510 999 06 MeV andmA is the par-
ticle energy at rest in MeV. It follows from this formula tha
after positron annihilation in the`H1e1e2e2, we find
v(`H1)50 and the remaining`H1e2 is probably in the
bound state, while for the Ps2 moleculev(e1)5(A3/2)c
and the appropriate systeme1e2 is definitely unbound. For
the real positronium hydrides such as TPs, DPs,1HPs, and
MuPs the final system~i.e., T, D, 1H, andm1e2 atoms! can
be found after positron annihilation either in the bound or
the unbound state. Let us evaluate the appropriate proba
ties.

First, let us compare the respective time values. T
electron-positron annihilation itself takes time which can
estimated as

ta5
Le

c
'
3.861 593 223310213

2.997 924 583108

'1.288 088 5310221 sec, ~21!

whereLe is the Compton wavelength of the electron. T
changes in the electronic structure proceed for the chara
istic time, which is approximately equal to
it-

y

ili-

e
e

er-

te5
a0
v

'
0.529 177 249310210

a32.997 924 583108

'2.418 884 332310217 sec, ~22!

wherea0 is the Bohr radius andv is the electron speed in th
first Bohr orbit.

Since ta!te , the so-called sudden approximatio
should be very good for consideration of annihilation in t
polyelectron systems, including positronium hydrides. In t
approximation the amplitude to find the final system in t
final statef f i(rWk1,r

W
k2
, . . . ,rWkn) is represented as the overla

integral @33#

Ain;fi5E drWk1dr
W
k1
•••drWknf in~rWk1,r

W
k2
, . . . ,rWkn!

3ffi~rWk1,r
W
k2
, . . . ,rWkn!

5E drWk1dr
W
k2
•••drWkn@ŜP̂C~rW1,rW2, . . . ,rWN!#

3ffi~rWk1,r
W
k2
, . . . ,rWkn!, ~23!

where C(rW1 , . . . ,rWN) is the initial wave function for the
many-body system~i.e., its wave function before annihila
tion in the present study! andffi(rWk1, . . . ,r

W
kn
) is the known

wave function for the final state. We assume that both
these functionsC andffi are given in the symmetrical form
on all identical particles and they are normalized to unity
the whole space.

It should be noted that the total number of variables c
be changed after the physical process~e.g., after positron
annihilation! or they can correspond to different particle
which are produced in the result of such a process. The
erator P̂5 P̂(rWk1,r

W
k2
, . . . ,rWkn;r

W
1 ,rW2 , . . . ,rWn) is the projec-

tion operator, which corresponds to the real physi
process ~i.e. P̂25 P̂ and P̂15 P̂). The operator
Ŝ5Ŝ(rW i1,r

W
i2
, . . . ,rW i n;r

W
k1
,rWk2, . . . ,r

W
kn
) is the symmetrization

operator. This operator permutes indistinguishable partic
which either take part in the process or can be found in
final state. The probability of finding the systemA1e2 in the
final state, after annihilation equalsvfi5uAin,fiu2.

In the case of the positronium hydridesA1e1e2e2 we
have

f in5ŜP̂C5@C~0,r A3,0,0,0,0!1C~0,0,0,r A4,0,0!#
1

A4p
,

~24!

where the subscripts 3 and 4 stand for the electrons anA
designates the particleA1. The wave functionC is deter-
mined variationally by solving the initial four-body problem
for theA1e1e2e2 system.

When the final hydrogenlike systemA1e2 is at rest after
the positron annihilation the final-state wave functi
f f i(rWk1, . . . ,r

W
kn
) takes the form
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ffi5wnl ~r !Yl mS rWr D 5wnl ~r !Yl m~ r̂ !, ~25!

wherer̂5rW/r andwnl (r ) are the radial eigenfunctions of th
discrete spectrum for the hydrogenlikeA1e2 system@24#.
Yl m( r̂ ) are the usual spherical harmonics@34#. In this case
the overlap integrals Eq.~23! take the form

Ain;fi5Ain;nl 5E
0

1`

@C~0,0,0,r ,0,0!

1C~0,r ,0,0,0,0!#wnl ~r !r 2dr. ~26!

This case corresponds to then-photon annihilation pro-
cess in the positronium hydrides, wheren>2 and after pos-
itron annihilation the particleA1 is immovable. Note also
that when theg quantum is converted by the remaining ele
tron the final state for theA1e2 system is definitely unbound
~see the previous and following subsections!.

Now, to complete our consideration we need to study o
the case when the emittingg quantum is converted by th
heavy particleA1, which begins to move. In this case th
final stateffi is represented in the form

ffi5wnl ~r !Yl mS rWr D exp~ ıqWAe•RW Ae!, ~27!

where wnl (r ) and Yl m(rW/r ) are the same as determine
above. The function exp(ıqWAe•RWAe) corresponds to the fre
motion ~in outside space! of the final hydrogenlikeA1e2

system. HereRW Ae are the coordinates for the center of ma
of the systemA1e2, i.e.,

RW Ae5
merWe1MARW A

me1MA
5

merWAe
me1MA

1RW A, ~28!

whererWAe5rWe2RW A are the electron coordinates with respe
to the nucleusRW A @i.e., rW5rWAe , whererW is used in Eq.~27!#.
The variableRW A can be left out since for our present pu
poses only internal variables~i.e., rWAe5rW) are important.

Finally, we find forffi

ffi5wnl ~r !Yl mS rWr D expS ı qWAe
11MA

rW D ~29!

in atomic units. By applying the well-known plane-wave e
pansion we can compute the amplitude and then find
appropriate total probability to find the quasiatomA1e2 in
the unl & bound state

vnl 5~2l 11!u E
0

1`

@C~0,0,0,r ,0,0!1C~0,r ,0,0,0,0!#

3 j l ~qer !wnl ~r !r 2dru2, ~30!

where the parameterqe takes the form~in atomic units!:

qe5
qAe

11MA
5vAe5vAA MA

11MA
, ~31!
-

y

s

t

e

where the value ofvA after annihilation has been determine
above@Eq. ~20!#.

Now, from Eq. ~30! we can calculate the probability o
finding the movingA1e2 system to be bound after positro
annihilation:vB5(n,l vn,l , while for an unbound state we
havevU512vB . In particular, the total probability for the
system to be in the rotationally excited bound states~with
l >1) equals v l >15(n,l >1vn,l , where n5s1l 11,
s50,1,2, . . . @35#.

C. Zero-photon annihilation rate

Since each of the positronium hydrides is a four-bo
system, positron annihilation can proceed also as a pro
without emittingg radiation. The first emittedg quantum is
converted by the remaining electron, while the second em
tedg quantum is converted by the particleA1. Actually, it is
almost impossible to find the two-body systemA1e2 in the
bound state after zero-photon annihilation in t
A1e1e2e2 hydride. It is easy to understand that such
process has a relatively small probability, which is rep
sented in the form

G0g~HPs!5j
147A3p3

2
a12ca0

21^dA122& sec21,

~32!

where^dA122& is the so-called four-particled function and
all other values are the same as determined above. The
known, dimensionless factorj is approximately equal to 1
For the Ps2 molecule its value is exactly 1@13#.

Following our earlier work@13#, we rewrite the expres-
sion for theG0g(HPs) in a different form

G0g~HPs!5j
147A3p2

4
a8 ^dA122~HPs!&

^d12~HPs!&
G2g~HPs!

5W0,2gG2g~HPs!5j30.505 173 540 9

310214^dA122~HPs!&

^d12~HPs!&
G2g~HPs!, ~33!

whereW0,2g is the two-photon internal conversion coefficie
for the Ps2 molecule. Unfortunately, the expression for th
factorj is unknown. However, to evaluate the order of ma
nitude for G0g(HPs) we can assume thatj51 ~as for the
Ps2 molecule!. Such an evaluation is given in Table V.

V. POSITRON ANNIHILATION IN THE POSITRONIUM
MOLECULE

Positron annihilation in the positronium molecule Ps2 was
studied in detail in our previous work@13#. However, in@13#
we used in the calculations a wave function that was no
accurate as the present one. Now, we apply a significa
better wave function for the positronium molecule. T
variational expression for this wave function contains 2
basis functions with better optimized exponents. Its yie
the lowest energy for the Ps2 molecule,20.516 002 4 a.u.,
while the best value known previously is20.515 980 a.u.
@36#.

The improved results for a number of properties of t
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Ps2 molecule can be found from Table III together wi
those for the positronium hydrides. We note that the ‘‘bo
length’’ between a positron andA1, namely,̂ r 12&, increases
with decreasing mass ofA1 and the ‘‘stiffness’’ of the bond
measured by the Pearson coefficientp125A^r 12

2 &/^r 12&
221

does the same. The same statement holds for the elec
electron bond descriptors^r 34& andp34. In general, the pos
itronium hydrides are all about the same geometrical ‘‘siz
and much more compact than Ps2.

Following in detail@13#, we have calculated a number o
the different annihilation rates for the Ps2 molecule~as well
as for the Ps2 ion!. They are given in Table V, and the
comparison with the appropriate values for the positroni
hydrides is very interesting. In particular, allGng (n is an
arbitrary integer! for the positron hydridesA1e1e2e2 de-
crease monotonically when the massmA diminishes. It can
be explained easily, since in this case the appropr
d-function expectation values change respectively. On
comparison with the Ps2 molecule and Ps2 ion we note the
following. According to @37–40#, the two-photon annihila-
tion rate for the polyelectron system that containsn electrons
andm positrons is determined by the general relation

G2g5Cn
1Cm

1 ^d12&B5nm^d12&B, ~34!

where theCn
k are the binominal coefficients,^d12& is the

expectation value for the electron-positrond function and
B 550.308 740 453109 sec21.

The physical meaning of the factorB is quite simple. It is
the annihilation rate for the (e2,e1) pair, which is in an
indefinite spin state. If such a pair is in the1S0 state ~or
para-state! thenG2g54pa4ca0

21^d12& sec21, while for the
3S1 state~or orthostate! G2g50. Since the1S0 state is non-
degenerate and the3S1 state has the multiplicity 3, for an
arbitrary (e2,e1) pair in theS state with the indefinite tota
spin we find

G2g5
1

113
@G2g~1S0!13G2g~3S1!#5pa4ca0

21^d12&

5B^d12&, ~35!

whereB550.308 740 453109 sec21.
It follows from Eq. ~34! that the more electron-positro

pairs (nm) in the system the larger the value found forG2g
~and, moreover, for allGng , wheren>2). The largerG2g
value means the shorter lifetimet2g for such a polyelectron
system against two-photon annihilation (t2g.1/G2g).

It should be mentioned in conclusion that the^d12& ex-
pectation values are quite close to each other for all pos
nium hydrides ('2.4031022 a.u.!, the Ps2 molecule
('2.2031022 a.u.!, and the Ps2 ion ('2.0731022 a.u.!
@41#. Therefore, the deviations in theG2g values~as well as
in all Gng values, wheren>2) are related mainly with the
total number of the electron-positron pairs in the system
contrast with this, the expectation values of the^d122& are
comparable only for the Ps2 molecule and Ps2 ion. For the
positronium hydrides the values of^d122& and ^d1122&
are significantly larger than those for the Ps2 molecule. This
means that the difference in theG1g and G0g can be ex-
plained mainly in terms of the deviations in the^d122& and
d

on-

’

te
e

o-

n

^dA122& expectation values. Likewise, in the present stu
theG1g andG0g values for the positronium hydrides conta
the three parameters (y,u andj) that must be determined in
further quantum-electrodynamics calculations.

VI. CONCLUSION

Thus the bound-state spectra have been considered in
present study for the positronium hydrides, such as`HPs,
TPs, DPs,1HPs, and MuPs. A number of basic properties
such systems have been calculated numerically by appl
the very extensive variational expansion on the so-called
dimensional~or four-body! gaussioids@42#. In particular, a
quite accurate interpolation formula is presented for the
pendenceE(mA

21). Also, we considered the fine and hype
fine structures for the bound states in such systems.
analysis of the (e2,e1) pair or positron annihilation is the
main content of the present work. The appropriate value
Gng (n50,1,2, . . . ,10) arecalculated numerically or evalu
ated approximately for all five positronium hydrides as w
as for the positronium molecule~Ps2) and for the positro-
nium ion Ps2. It is shown that the many-photon annihilatio
ratesGng ~wheren>2) for the positronium hydrides are sig
nificantly closer to the appropriate values for the Ps2 ion
than those for the Ps2 molecule. For these values we ca
write

Gng~Ps2!,Gng~HPs!,Gng~Ps2! ~36!

and, moreover,Gng(HPs)'Gng(Ps
2). It should be men-

tioned that the presented formulas for th
Gg(HPs,e

2), Gg(HPs,H
1), andG0g(HPs) contain the three

unknown factorsy,u, and j, which are close to unity. The
exact values of these factors should be found in the follo
ing quantum-electrodynamics considerations. Also, we d
cussed the final-state problem for the remaining~after anni-
hilation! quasiatomicA1e2 system.
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APPENDIX

To compute the bound state in the considered Coulo
four-body systems we used the variational expansion in
basis of the many-dimensional gaussoids proposed in@42#.
The appropriate six-dimensional~or four-body! variational
anzatz is

CL505A1234(
k51

N

Ckexp~2a12
k r 12

2 2a13
k r 13

2 2a23
k r 23

2 2a14
k r 14

2

2a24
k r 24

2 2a34
k r 34

2 ! ~A1!

whereCk are the linear variational parameters anda i j
k are the

non-linear parameters. The operatorA1234 designates the ap
propriate symmetrizer~or antisymmetrizer!, i.e., a projection
operator that produces the final wave function with the c
rect permutation symmetry. Actually, in the present stu



ar

e

In
x

um

m

n

ia

nd
-

nd
s-
cial

a-

es
p-

e
ian

ur-

n

55 2671POSITRONIUM HYDRIDES AND THE Ps2 MOLECULE: . . .
there are a maximum of two different pairs of identical p
ticles and the operatorA1234 can be easily constructed.

To present explicit formulas for the matrix elements w
use the@42# notation

^au5^a~k!u5expS 2 (
i. j51

A

a i j
k
•r i j

2 D ,
and

ub&5ub~ l !&5expS 2 (
i. j51

A

b i j
l r i j

2 D , ~A2!

whereA is the total number of the particles in the system.
the present caseA54. In this notation the overlap matri
element̂ aub& takes the form

^aub&5^a~k!ub~ l !&5p3A2~1/2!D23/2, ~A3!

whereD is the determinant of the (A21)3(A21) matrix
with the matrix elements

bii5(
jÞ i

A

~a i j
k 1b i j

l !, i51,2, . . . ,A21

bi j52a i j
k 2b i j

l , iÞ j51,2, . . . ,A21 . ~A4!

For an arbitrary potential that may be written as the s
of the central~partial! potentials, i.e.,W5( ( i j )V( i j )(r i j ), the
formula for the appropriate matrix elements takes the for

(
~ i j !

^auV~ i j !~r i j !ub&5
4

Ap
^aub&

3(
~ i j !

E
0

1`

V~ i j !S xADi j

D D exp~2x2!•x2dx,

~A5!

where Di j5]D/]a i j5]D/]b i j . The explicit expressions
for five ~and even more! forms of the potentials often used i
calculations can be found in@42# @including formulas for
lower bound estimates (EL) for an arbitraryA-particle sys-
tem#. In particular, matrix elements of the Coulomb potent
energy are~in quasi-atomic-units!

(
~ i j !

^auVi j ~r i j !ub&5(
~ i j !

K aU qiqjr i j
Ub L

52AD

p
^aub&(

~ i j !

qiqj

ADi j

, ~A6!

where (i j ) 5 ~21!, ~31!, ~32!, ~41!, ~42!, and ~43! and
^aub& is the appropriate overlap matrix element. In Eq.~A6!
the qi ( i51,2, . . . ,A) are the charges of the particles a
Di j5]D/]a i j5]D/]b i j . The matrix elements for the ki
netic energy take the form~in quasi-atomic-units!

^buTua&5
3

2D F (
i jk51

A
a ikb jk

mk
~Dik1Djk2Di j !G ^bua&,

~A7!
-

l

wheremi ( i51,2, . . . ,A) are the masses of the particles a
iÞ jÞk. The following symmetrization of the given expre
sions on the identical particles does not present any spe
difficulties.

For an arbitrary self-adjoint operatorX̂ the correspond-
ing property~or the expectation value! is determined as

^X&5
^cuX̂uc&

^cuc&
, ~A8!

where uc& is the appropriate wave function found in vari
tional calculations. WhenX̂5 f (r i j ) we used the formula to
compute the appropriate matrix elements

^au f ~r i j !ub&5^a~k!u f ~r i j !ub~ l !&5
4

Ap
^aub&

3E
0

1`

f S xADi j

D D exp~2x2!x2dx.

~A9!

In particular, forf (y)5y2n21 (n50,1,2, . . . ) we find

^aur i j
2n21ub&5

2

Ap
^aub&n! SDi j

D D ~2n21!/2

, ~A10!

while for f (y)5y2n (n50,1,2, . . . ) wehave

^aur i j
2nub&5^aub&

~2n11!!!

2n SDi j

D D n, ~A11!

where (2n11)!! means 133353•••3(2n11). When
f (y)5y22 the appropriate formula takes the form

^aur i j
22ub&52^aub&

D

Di j
. ~A12!

It should be noted that by applying the expectation valu
given in Table III we can calculate a number of other pro
erties, e.g., the Pearson correlation coefficientsp i j ,

p i j5
A^r i j

2 &2^r i j &
2

^r i j &
, ~A13!

and ^r i j •r kl& values.
Let us consider the analytical formulas for thed func-

tions, which can be also found in@13#. First, it should be
mentioned that all expectation values for thecuspvalues@43#
vanish since for Eq.~A1! one finds

limrW i→rW j
d~rW i2rW j !

]CL50

]r i j
50 ~A14!

andCL50 is a finite function at therW i5rW j point. This means
that directcusp value calculations are impossible for th
variational expression on the many-dimensional Gauss
basis functions such as Eq.~A1!.

The analytical expressions for two-, three-, and fo
particled functions can be found, e.g., in@13#. The simplest
expression can be found for the four-particle delta-functio
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^aud4321ub&51. ~A15!

The analytical formula for the three-particle~321! d function
is

^aud321ub&5S p

a141a241a34
D 3/2, ~A16!

where ai j5a i j1b i j . Analogous expressions for the oth
expectation values of the three-particle~431!, ~432!, and
~421!, d functions can be obtained from this expression
simple permutations. For the two-body~41! d function we
find

^aud41ub&5S p

ABD 3, ~A17!
-
.

U

v.

-

he
y

where B5(a121a241a23)(a131a341a23)2a23
2 Again, all

formulas for the other two-particle~21!, ~31!, ~32!, ~42!, and
~43! d functions can be obtained from this expression
simple permutations.

The so-called dimensionless virial factorx ~see Table III!
is

x5u11
2^T&

^V&
u'0, ~A18!

where ^T& is the expectation value of the kinetic energ
while ^V& is the expectation value of the potential energ
The deviation of this parameter from zero indicates the qu
ity of the wave function used. In the casex50 the virial
theorem holds exactly~see, e.g.,@44#!.
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