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Positronium hydrides and the Ps molecule: Bound-state properties,
positron annihilation rates, and hyperfine structure
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The bound-state spectra of the positronium hydritd®s, TPs, DPs!HPs, and MuPs are considered. The
properties of the bound grouristates [ =0) in these systems and the,Ruolecule have been determined
by extensive variational calculations. The hyperfine structure of these states is also investigated. The positron
annihilation rates have been evaluated for the positronium hydrides, thenélscule, and the Psion and
compared. The positron annihilation ratEg, (wheren=2) in the positronium hydrides are significantly
closer to those in the Psion (the three-body systenthan in the Ps molecule.[S1050-2947@7)00304-1

PACS numbes): 36.10.Dr

[. INTRODUCTION is to consider the positron annihilation in such systems and,
in particular, evaluate the zero-, one-, two-, and three-photon

In the present study we consider the bound states in thgnnihilation rates

so-called posﬂromqm hydrideSHPs, TPs, DPs;HPs, and The present work has the following structure. The bound-
MuPs, each of which has only one bound groddtate  giate spectra of the positronium hydrides are discussed in the
(L=0). The boundedness of the grouBdstate in each of next section, together with some of their properties. The hy-
the positronium hydride$HPs, TPs, DPs, antHPs is well  perfine structure of the positronium hydrides is considered in
known since the paper by Ofé]. It could be expected that Sec. III. Positron annihilation in the positronium hydrides is
the grounds state in the system MuRse., u"e"e"e”) is  studied in Sec. IV. Following our previous methfiB], we
bounded as well. The general formula for these systems takésund the annihilation probabilities for the Psnolecule
the formA*e*e e™, whereA denotes the heavy positive with the present wave function in Sec. V. It is very interest-
particle with charget-1 and massn, ,e* designates the pos- ing to compare the appropriate annihilation rates for the
itron, ande™ stands for electrons. In general, all such sys-Ps, molecule and those for the positronium hydrides. The
tems can be described as positronium hydrides. The positrdinal discussion can be found in Sec. VI. Some computa-
nium molecule P§ can be considered to be a Specific tional details are given in the AppendiX. Atomic units
positronium hydride, in whichm,=1 [2]. Our present goal (=1, me=1, ande”=—e"=1) are used throughout this
is to study the bound ground states and the positron anni- work.

hilation in positronium hydrides since this process is of in-

terest for a number of applications. Il. THE BOUND-STATE SPECTRA IN THE POSITRONIUM

The production of the positronium hydrides in the labora- HYDRIDES
tory should not be a much more clompllcated problem than | ¢ s consider the bound-state spectra in the positronium
that for the Ps_ ion [3,4]_. _Recently, HPs ha_s been created hydrides such as*e*e e". In general, a state in the pos-
(and observe)dm. the _coII|S|on§ between positrons and meth-jironium hydridesA*e*e e~ is bound if it is stable against
ane[5]. The positronium hydrides can be producedd then  gissociation into two neutral  fragments, i.e.,
annihilated inside and outside of hydrogen stars; thereforea+e*e-e~—A*e~+e*e . The appropriate threshold en-
the positronium hydrides play a definite role in some astroergy equals
physical modelgsee, e.g.[6—8] and references therginn
practice, they can be found inside the hydrogen fuel when 0.5 (3+ mgl) 3
the positron beam is used together with very intense electron Ev(ma)=— 1em. 1 0.25= - m> 2
R A A
beams to produce low-temperature thermonuclear ignition in
a dense hydrogen plasma. =-0.75 a.u. 1)
The positronium hydride’HPs has been investigated
previously[9-12] (all references on HPs before 1981 can be The bound-state spectra in such systems has a quite
found in[12]). In all of these papers it was assumed that thesimple structure since they contain only one bougbund
properties for theA*e" e~ e~ system with the very large S state ( =0). Moreover, the structure of these states is also
(but finite) heavy particle mass, are almost the same as for simple: the total angular momentum equals 0 and both
“HPs. However, the appropriate corrections for the real syselectrons form a singlet pair, i.e., their total spin equals O.
tems were not evaluated even approximately. In terms okikewise, in the first and very good approximatitsee be-
this, the first goal of our present study is to compute thdow) we can assume that is a spinless particle. This means
energies and a number of properties for all positronium hythat the bound state in the systéiie”e" e~ can be desig-
drides *HPs, TPs, DPs!HPs, and MuPs and for the Ps nated as a®S,;, state or even as a8 state. Thus, in the
molecule. Another problem, which is even more important,present study we consider ti&ground bound state in each
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TABLE I. Numerical values of the particle mass,, spinS,, magnetic momeng,, and factorg used
in the present calculations.

Particle mp 2 S wa® g

T 5496.921 58 3 1.622 3910 ° 3.244 7841073

D" 3670.483 014 1 0.466 975 44K40 3 0.466 975 447 9102
I+ 1836.152 701 2 1.521 032 201073 3.042 064 40% 1073
ut 206.768 262 : 4.8419709% 103 9.683 941 94102
et 1.0 : 1.001 159 656 74 2.002 319 304 386

8n atomic units.
®In Bohr magnetorug, whereug=0.5 a.u=9.274 015 4% 10 2* Jx T~ L.

of the positronium hydrides’HPs, TPs, DPs!HPs, and  Thus we write for the total energy of the"e e e~ system
MuPs. The masses of the particles and a number of othdin the case wheren, is a very large number, i.eny>1)

properties used in the calculations are given in Table I.  the expansion
The Hamiltonian for the positronium hydrides may be
written in the form(in atomic unitg E(Atete e )=E(*H'e*e e )+ as (3
k=1
_ 1 1 1 1 1 1
H= 2mAA1_ EAZ 28 §A4+ f1p I13 where s=m,’~0 is the inverse mass value and
E(*H*e*e e7) is the total energy for the’'H ete e~
B i _ i B i " i @) hydride. By fitting the data for the first five systeris7]
Fia Toz Toa T34 from Table Il we have found the first two coefficients in this

) ) ~ formula to be
where the notation lalso A or p) designates the heaviest

particleA*, the notation Zor +) means the positron, while a;=0.598 937 8449, a,=-0.7294615026. (4)

3 (or —) and 4(or —) stand for electrons. The appropriate

energies and a number of other propertiespectation val- It should be noted that the coefficieat coincides(with very

ues; see the Appendixan be found in Tables Il and IIl. It good accuracy with the (—%Vi) expectation value for

should be noted that the present variational ener@ieble s=0 (in “H*e"e"e™) in Table I, i.e., 0.599 057 5 a.u.

II) for all of these systems are the lowest known to date. Thighis follows directly from the Hellman-Feynman theorem

was unexpected since, e.g., for thielPs system there is an [18,19. Note also that analogous formulas can be produced

effective and accurate special procedysee e.g.[10] or  for the other expectation values in such systems, e.g., for the

[11]), which is based on the so-called James-Coolidge variaBirac § functions or interparticle distancésee Table II).

tional expansion in the relative coordinafd<!] and can be In terms of the properties presented in Tables Il and Il

successfully applied for all Coulomb four-body systems inwe can expect that the positronium hydrides have the follow-

which one of the particles is significantly heavier than theing structure. This is a cluster that consists of the two neutral

three otherge.qg., highly accurate results for the Li atom cansystems: the hydrogen atofe.g., “"H*e™) and the positro-

be found in[15], and for the B€& ion in [16]). nium atom g"e ™). The distances between the two electrons
It follows from Eq. (2) that the energy of a positronium and between positron and nucleus are significantly larger

hydride depends only upon the heavy particle nmgsince than those between each of the positive particles and the

the electron and positron masses are the same in all casegpropriate(nearest electron. However, the distance be-

TABLE Il. Total variational energieg, the dissociation thresholds;,, the inverse mass= m,;l, and
the binding energies for a number of the positronium hydridés" e* e e™.

System e? Ey? s €P

“Htete e~ —0.789 1794 —0.750 0000 0.0 —1.066 126
Trete e —0.7890705 —0.7499090565421 0.181 920 004 760203 —1.065 638
Dtete e —0.7890163 —0.7498638152490 0.272 443 707 322 0 3 —1.065 394
IH*ete e —0.7888534 —0.7497278397165 0.544 617 013 310 203 —1.064 661
nrete e —0.786 2998 —0.7475934726739 0.483 633218 332102 —1.053 253
efete e ¢ —0.516 0024 —0.500 000 1.0 —0.435 445

4n atomic units.
®In electron volts(1 a.u= 27.211 396 1 ey,
“The positronium molecule Bs
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TABLE III. Expectation values in atomic units (m,=1,A=1, and e= 1) of some properties for the ground bound S states (L=0) of the
positronium hydrides A*e e e ™.

System “H*e e e” T*ete e D¥ete e H*e*e e utete e etete e
Particles 123 4 123 4 123 4 123 4 123 4 123 4
(r2) 3.660 270 3.660 855 3.661 145 3.662 019 3.675763 6.032613
(riz) 2310813 2.311 345 2.311 609 2.312 405 2.324918 4.486 844
(ro) 3.479 405 3.479 689 3.479 831 3.480 256 3.486 942 4.486 844
(r3a) 3.573 280 3.574010 3.574373 3.575 465 3.592 620 6.032613
(riy 16.2324 16.2378 16.2405 16.2486 16.3758 46.356 07
(r¥) 7.802 02 7.805 78 7.807 65 7.81327 7.901 84 29.102 98
) 15.5698 15.5727 15.5741 15.5785 15.6464 29.102 98
(3 15.8516 15.8582 15.8615 15.8714 16.0275 46.356 07
(r3) 84.776 84.820 84.842 84.907 85.943 443.272
(r35) 35.059 35.085 35.098 35.137 35.751 252.748
(r3n 84.162 84.187 84.200 84.238 84.827 252.748
(3 84.211 84.265 84.292 84.373 85.645 443272
(riy 511.4 511.7 511.9 512.5 521.1 51825
(rty 196.7 196.9 197.0 197.3 201.9 2797.3
(ra) 529.9 530.1 530.2 530.6 536.0 2797.3
(r3D 523.0 523.5 523.7 524.4 535.1 5182.5
(ri3} 0.347 507 0.347 456 0.347 431 0.347 354 0.346 161 0.220 797
(rah 0.729 728 0.729 579 0.729 505 0.729 282 0.725 789 0.368 401
(rah) 0.418 519 0.418 497 0.418 487 0.418 455 0.417 954 0.368 401
(rd 0.370 607 0.370 533 0.370 496 0.370 386 0.368 662 0.220 797
(riz 0.172 206 0.172 158 0.172 134 0.172 062 0.170 943 0.734 489X 107!
(rig 1.206 803 1.206 333 1.206 099 1.205 397 1.194 411 0.303 099
(rad) 0.349 086 0.349 064 0.349 052 0.349 019 0.348 495 0.303 099
(rid) 0.213 984 0.213 897 0.213 854 0213725 0.211 704 0.734489X 107!
T 0.459 992 0.460 009 0.460 017 0.460 043 0.460 445 0.523 243
T3 0.679 038 0.679 060 0.679 072 0.679 105 0.679 621 0.667 551
T 0.534 880 0.534 906 0.534919 0.534 958 0.535 579 0.667 551
Tas 0.491 404 0.491 416 0.491 422 0.491 439 0.491 707 0.523 243
(-3 0.599 0575 0.598 7823 0.598 6455 0.598 234 3 0.5918157 0.129001 5
(-39 0.136 8549 0.1368 497 0.136 8471 0.136 839 3 0.136 718 4 0.129 001 5
(—3V3) 0.326 1726 0.326 067 0.326014 5 0.325 856 8 0.323390 5 0.129001 5
(61) 0.168 514X 1072 0.168 456X 1072  0.168 427X 1072 0.168 341X 1072  0.166988x 1072  0.635208x 107>
(813) 0.174 650 0.174 551 0.174 503 0.174 356 0.172 060 0.220203%x 107!
(8y3) 0.241 340X 1071 0.241328X107" 0.241322X10"! 0.241303x107! 0.241018X 107! 0.220203x 107!
(830) 0.449 670X 1072 0.449 356X 1072  0.449201X1072 0.448 732X 1072  0.441451x107% 0.635208% 1073
(8123) 091032X1073  0.90962X107%  0.90927X107>  0.90822x107%  0.89196X107*  0.92580X10™*
{(8134) 0.70841X 1072 0.70747X1072  0.70701X1072  0.70560X 1072  0.68394X1072  0.92580x10™*
(8334) 0.37891X1073 0378 70X107% 0378 60x107%  0.37830x107% 0.37359x107%  0.92580x10™*
(81230 0.17963X 1073  0.17941x107%  0.17930x107>  0.178 98X 1073  0.17395x107%  0.43908x107°
(T) 0.789 200 1 0.789 0927 0.789 039 3 0.788 878 7 0.786 3617 0.516 006 0
(3V) —0.789 189 8 ~0.789 081 6 —0.789 027 8 —0.788 866 0 —0.786 330 7 —0.516 004 1
% 0.131x107* 0.141x107* 0.146x10™* 0.160x 1074 0.394x 1074 0.356x 1077

tween the proton and the secof@motg electron is ap- electron in the PS ion. Since the total electron spin equals 0
proximately the same as in tHeH™ ion, while the distance for the positronium hydrides as well as for the Hand
between the first electron and the positron is approximatelys™ ions, the*H*"e" e~ e~ system can be represented as the
the same as the distance between the positron and the remdfghysical sum” of the PS and “H™ ions, i.e., in terms of
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HPs ~ ™ + = H~ + Ps~
. ° . o °
(a)
HPs ~ ) + = H + Ps
o ° o °

(8)

FIG. 1. Schematic structure of the HPs system in term&)afvo three-body clusters ar@) two two-body clusters. The computational
results show that the pictufe) represents significantly better the actual structure of the HPs system. In both of these pictures the small circle
designates the electron, while small and large filleiccles stand for the positron and protoA (), respectively.

these two three-body clusters. The main idea of such a refetween particles. In contrast with this, the so-called fine
resentation is illustrated in Fig. 1. This picture shows also thestructure arises as the result of the spin-orbit interactions for
principal difference between the appropriate two- and threethe lightest particles, i.e., for the electrons and positrons in
body cluster representations for the positronium hydrides. Irthe positronium hydrides. The general expression for the fine
terms of the three-body cluster model, the energy of thenteraction operator of the lowest order in the positron hy-
“H*e*e e~ system can be approximately evaluated as thalrides takes the form

sum of the energies for the Psand “H™ ions, i.e.,

He=b,/,-s,+b L -S_, 6

E("H"e*e"e™)=E(*H")+E(Ps) P ©
~—0.527 751 016 523 whereL _ is the total angular momentum for the electrons,
0262 005 070 232 6 S_ is their total spin/ . is the positron angular momentum

ands, is the positron spinb, andb_ are two numerical
constants. Since in the positronium hydric§s=0 (both

electrons are always in the singlet sfated /., =0 (the
partial positron wave function has the angular momentum

~—0.789756 0867 a.u., (5

where the energies for thEH™ and Ps ions are chosen
from [20] (see alsd21,27)). Such a simple estimation has
surprising accuracy since it gives at least three correct dec( 0, i.e.,s statg, we haveHg=0 for all ground bounds

mal figures for the total energy of theH e*e~e~ system states [=0) in such systems. Actually, this means that
[23] there is no fine structure in the positronium hydridiesthis

approximation and the possible level shift can be related
only with the spin-spin interparticle interactigar hyperfine
interaction, in terms of the atomic terminology

The appropriate general formula for the hyperfine interac-
tion can be easily written for the positronium hydrides

In the general case, when,—1 in theA*e"e e sys-
tem, this formuld Eq. (5)] loses accuracy very rapidly since
the positrone* obviously influences the motion of the posi-
tive particleA*. Actually, the total energy estimate that can
be found from formula5) lies below the real energy value
for theA*e*e e~ system. The largest deviation can be ob-
served in the Psmolecule, where the error is approximately Hye= — 2 aijgi 51, @
1.5% of the total energy. )

lIl. HYPERFINE STRUCTURE OF BOUND STATES where the sum is calculated for all six pairs of particles.
IN POSITRONIUM HYDRIDES However, this expression can be simplified significantly

since the nonrelativistic ground-state wave function for an

In the preceding section the partidd has been assumed arbitrary positronium hydride can be written as a product of
to be a spinless positive particle with chargd and mass coordinate-space and spin-space parts. The appropriate op-
my for all positronium hydrides. This means that we studiederator of the lowest order for the hyperfine interaction in the
the Coulomb structure of the bound state spectra in the*ete e~ system takes the fori24]
AfeTe e systems. Now, let us consider the fine and hy-
perfine structures of the positronium hydrides. In particular, Huye=—als-S,—bs, - § —cix-S_, ®)
we wish to show that the respective corrections are relatively
small in comparison to the Coulomb energies.

The hyperfine structuréi.e., the appropriate level shift whereS_ is the total electron spirs, is the positron spin,
and its splitting is determlned by the spin-spin interaction andIA is the spin of theA particle (see Table)l Since both
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TABLE IV. Hyperfine corrections in atomic unitsn,=1, #=1, ande=1) of the lowest order for the
ground bounds states [ =0) in the positronium hydridea*e*e e™.

Hyperfine

correction Tete e D*tete e Htete e nrete e

a 1.220660 10 °  1.756420Xx10°° 114361810 ° 3.611271X%10°°
€(J=0) 0.915 496¢10°° 0.857 714 10°° 2.708 45% 10°°
eI=3) 1.756 420¢< 10710

e(J=1) —0.305 165¢10°° —0.28590%10°° —0.90281810°°
e(I=3 -0.878 21x 10710

electrons are in the singlet state, we haS8e=0 and

Huye= —aTA- §+ , Wherea is a numerical factor. The explicit
expression for the facta is

2ma?

8ma? a
T9A9+< Sa+)

a= TMZBQA9+<5A+> =

~2.233 174 540 %10 *ga(Sas) 9
where a=0.729 735 30& 10 2 is the fine structure con-
stant. The Bohr magnetopg=e#/2m, equals 3 in the
atomic units =1, A=1, andm,=1), while its value in SI
units is 9.274 0154810 24 J T L. The masses, spin val-
ues, magnetic momentg,, and factorsg, are given in
Table I. The valug(8,, ) is the expectation value for the
proton-positron DiradS function in atomic units, i.e.,

(V]8(ra—r)|P)
(¥[w)

(Ons)= (10

The diagonalization of thél,e operator yields the ener-
gies e(J=0)=3a and e(J=1)=—3a for all positronium
hydrides, except only for the DPs system. H&menotes the
total spin value for the nucleus-positron pair. In particular,
J=0 means the singlet state, while=1 designates the ap-

eration of positron annihilation, in contrast with the so-called
annihilation rates(or probabilities I',,. These values de-
pend uponn and the expectation value for the appropriate
Dirac § functions.

Positron annihilation in positronium hydrides was initially
considered long agfR5]. Later, the positron annihilation in
“H*e*e" e~ was studied in a few papef8—11]. Actually,
only results for the*"H"e* e~ e~ system can be found in the
modern literature. Moreover, in all previous papers only the
two-photon annihilation raté¢',, was estimated. Obviously,
the two-photon annihilation is the dominant process, but it is
very interesting to evaluate even approximately the prob-
abilities for positron annihilation when the total number of
the emitted photons differs from two.

The two-photon annihilation rate, ., for positronium hy-
drides can be found from the general formula for a system
that containsn electrons and one positrgine. n electron-
positron pairs

r,,= mnatcay (6, )

~50.308 740 4% 10°n(5, _) !

sec -, (12
wheren=2 for all positronium hydrides. In this formula the
velocity of light ¢ is 0.299 792 458 10° m sec %, the fine
structure constant=0.729 735 30& 10" 2, and the Bohr ra-

propriate triplet state. For the DPs system there are the doius is 0.529 177 249107 1° m [26,27. In Eq. (12) the ex-

blet state withJ= 3 and quadruplet state with= 3. The re-
spective energies are(J=31)=a and e(J=2)=—1a. The

pectation value of the electron-positron Dirdk function
(3.-)

numerical results for these hyperfine corrections can be

found in Table IV. Actually, it follows from Table IV that

these corrections are very small in comparison to the appro-
priate Coulomb energies. For instance, they do not change

the Coulomb energies in Table Il in any significant decimal
figure. This is a very important result for our present pur-
poses.

IV. POSITRON ANNIHILATION IN POSITRONIUM
HYDRIDES

Positron annihilation in the positronium hydrides
ATe*e e can be written in terms of the general equation
Atete e =[AT+e J+ny (11
wheren means the total number of the emittgdquanta or
photons. The expressigi* + e~ ] designates that the final

state in the two-body systes’ e~ is either a bound state or
a state from its continuous spectriyie., an unbound state

(W|8(r_—r,)|¥)
(W]W)

(8:-)= (13

is used in atomic units. The approximate values for the high-
est annihilation rate$’,, with an even number of photons
(i.e., n=2k>2) can be easily found froni’,,. Indeed,
Iy,=a?® Y, where n=2k=2. The results for the
many-photon annihilation ratés,,,, in the positronium hy-
drides andPs, molecule can be found in Table V.

To find the three-photon annihilation ratg;, we shall
apply the so-called Ferrante relatiof@8]. However, the
method used in our previous work3] cannot be generalized
directly to the positronium hydrides for the following rea-
sons. In[13] we considered the consequence of the appropri-
ate two-, three- and four-body polyelectron systems such as
Ps, Ps, and Ps. The principal point was that the bound
state spectra of the Psion and the Ps molecule are com-
pletely similar[29]. Therefore, the Ferrante relation can be

In most cases the final state is not of interest for the considused for the Pg molecule if it works for the Ps ion. Un-
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TABLE V. Approximate many-photon annihilation raté%,, (in sec 1), wheren=0,1,2 .. .,10, for thepositronium hydrides, Bs
molecule, and Ps ion.

Rate “H'eTe e T'ete e D*tete e Hfete e nete e etete e ete e
Lo, 9.160<10 8 9.149< 10 ® 9.143<10°® 9.127x10°® 8.870<10°®  2.239x10°°

Iy, 8.077x10°* 8.072<10°! 8.070<10° !  8.0635<10°'  7.963x10°' = 1.973x10°'  3.82603<10 2
I, 2.4361x 10° 2.4360< 10° 2.4359< 10° 2.4357< 10° 2.4328<10° 4.4451x 10° 2.092 80x 10°
I3, 2.1870x 10° 2.1869< 10° 2.1868< 10° 2.1866x 10° 2.1841x10°  3.9909< 10° 1.878 81 10°
Iy, 1.2972< 10° 1.2972< 10° 1.2971x 10° 1.2970x 10° 1.2955x 10° 2.3673x 10° 1.1144 & 10°
Is, 1.1646< 107 1.1645< 107 1.1645< 107 1.1644< 107 1.1630<10°  2.1252<10° 1.00049 107
Te, 6.9080 6.9077 6.9075 6.9069 6.8988 12.606 5.934 56
r,, 6.2016<10° %  6.2013<10°°%  6.2012x10° %  6.2007x 102  6.1934x10 %  1.1317x 102 5.327 74 10°°
g, 3.6786<10° %  3.6784x10°*  3.6783%10 % 3.6780<10°% 3.673X%10 % 6.7128<10°*  3.16023« 10 ¢
Ty, 3.3025<1077  3.3023x10°7  3.3022<10° 7  3.3020<10° 7  3.2981x10° 7  6.0265<10 "  2.837 10<10 '
T10, 1.9589<10°8  1.9588x10°8  1.9588<10°®  1.9586x10° % 19563108 3.574%10°% 1.6828% 108

fortunately, for the positronium hydrides the appropriateThe y quantum energy is also 0.510 999 06 MeV. The sec-

two-body systems are unknown and the three-body systemend case

(e.g., H'e*e™) have no bound stafgletails can be found in

[30]). Actually, the bound states can be found only in the

four-body systems, i.e., in the positronium hydrides them-
differs from this since there is no fast electron emission and,
Nevertheless, the Ferrante relations can be applied to tHa principle, the two-body hydrogenlike systekie™ can be
positronium hydrides since their structure can be representddund in one of its bound states. According to this, we can
as the PS ion in the field of the proton. Moreover, the find in the positronium hydride&*e*e e~ two different
structure of the PS ion in this case is approximately the one-photon annihilation rates, which are designated below as

selves.

same as for the free ioisee Sec. )l Therefore, the Ferrante T',(HPsg™)

and T (HPsA™),

SO

A*e"e"e"=A"(0.510999 06 MeY+e +y (17)

that I',(HPs)

relation can be applied to the positronium hydrides since it=I",(HPsg™)+T,(HPSA™). In this subsection we con-
works for the free Ps ion. In other words, we assume that sider
the proton’s presence gives proportional corrections to botf' (HPsg™).
I',,andl’;,, ie.

I5,(HP9 T, (PS)

I'3,(HP9 T'3(Ps)’

first

one-photon

annihilation

rate, i.e.,

By applying the approach frorfi32] we can write the
following expression fod",(HPs,e”):

(14
I' (HPsg™)=y

wherel',,(Ps’) andI';,(Ps") are the appropriate two- and
three-photon annihilation rates for the P®n. Finally, after
a number of simple transformatiohk3], we find the expres-

2

167 8. 1
S {a%cag (5, (HP9)=y

x1.065 757 4% 10%(5, __(HPg) sec?,

sion (18
M(72—9)a where the value of the proportionality constdnt 3 is used
I's(HP9 = g—szy(HPs)m4.516 459 701 (this value was found ii32]; for more details see the dis-

cussion and references [i3,20)). The unknown factory
can be found from accurate quantum-electrodynamics calcu-
lations. We shall assume below that 1. This means that in
where n=2. Now, by applying the found value of terms of such an approximation there is no difference be-
I';,(HPs) and the approximate relatiofi,,),(HPS) tween one-photon positron annihilation in the P®n and
= az(“‘l)ng(HPs) we can estimate approximately all anni-that in theA*e*e e~ hydrides. For our present purposes
hilation ratesl” ,p 4 1),(HP9 with an odd number of photons this is a very good approximation. However, it should be
(n=2). noted that the conversion ofyaquantum in the Ps ion can
be only complete, while in thé\*e*e e~ hydrides one
finds also the so-called partial conversion, i.e., the
éy,e_+7’) process, which can be described as Compton
Scattering of annihilationy quanta in the Coulomb field of
the A" particle.

The formula forl",(HPsg™) can be rewritten in another
form

x10'n(8, _(HPs) sec?, (15

A. The first one-photon annihilation rate

The one-photon positron annihilation can proceed in th
positronium hydridefA"e" e~ e~ as the regular two-photon
annihilation, followed by internal conversion of one of the
two emittedy quanta either by the secofilemaining elec-
tron or by the particleA™ [31]. In the first case the fast

electron is emitted and the overall equation takes the form 8 4<5+__(HPS)>

PATPSE Y g RSy

Atete e =A*+e (0.510 999 06 MeV+y. (16) T'2)(HPS
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ag 0.52917724%10 1°

=W, (e, (HPg 0
n2r( &2yl TeT T ax2.997 924 5% 1CF
=yXx1.055 838 57% 1043@ ~2.418 884 33%10 17 sec (22
' (04 -(HPs) ' '
XT3, (HP9, (19 wherea, is the Bohr radius and is the electron speed in the
first Bohr orbit.
whereW, ,.(e) is the one-photon internal conversion coef- Since 7,<7., the so-called sudden approximation

ficient for the y radiation. Thus the approximate valt@  should be very good for consideration of annihilation in the
y=1) for the W,,(e) coefficient is 1.055838579 polyelectron systems, including positronium hydrides. In this
X 10 8R, whereR is the ratio of the respectivé functions.  approximation the amplitude to find the final system in the

final stateyi(ry ., - - - F« ) is represented as the overlap
B. The second one-photon annihilation rate integral[33]

Let us consider now the opposite case, i.e., when the emit-
ted photon is converted by the partiéde (or proton in the - - - - - -
positronium hydrideA*e*e~e™. The appropriate annihila- Ain:fi:j dri,dri, - - dric @in(Mie M - - - Tk
tion rate can be designated B(HPsA™). It can be shown . .
that the value ony(HPsA+) does not differ sig- X¢fi(rkl,rk2, ... ,rkn)
nificantly ~ from  the I, (HPsg™) value, i.e.
I (HPsA*)~I ., (HPsg™), and we can use the relation _J' TR S X e b
FZ(HPSA*)zulZy(HPs;e*), where the factou approxi- = ) drigdrig - dn [SPW(ryra, . )]
mately equals 1. This means actually thafi) - o -
I'(HPs)=T (HPseg)+I (HPsA*)=(1+u)I' (HPsg") XNy Ty - - =Mk (23)
~2I",(HPsge™) and(ii) thel' ,(HPsA™) value is very small

in comparison td',,,I's,,, etc. where W(r,, ... ry) is the initial wave function for the

However, in this casén contrast with all other casgthe ; : : o
) ' , , many-body systenti.e., its wave function before annihila-
guestion about the final state for the hydrogenlike two-body y y systent

systemA™e™ is of specific interest. Indeed, in this case thelion in the present stud)_and i(Tiys - - - Tie,) IS the known

particleA* takes the energ.~0.510 999 06 MeV and be- Wave function for the final state. We assume that both of

gins to move. Its velocity is determined by the relaton  these functionst” and ¢ are given in the symmetrical form
on all identical particles and they are normalized to unity in

\/Ee2+ 2mpE, the whole space.

va=v(AT)=c =0.299 792 458& 10° It should be noted that the total number of variables can

MatEe be changed after the physical procdssy., after positron
J1+2.x 1 J1+2x annihilation or they can correspond to different particles,
XM sec?l:; 1% a.u., (200 which are produced in the result of such a process. The op-
erator P=P(ry ,l\, ... M iT1.l2, .. f) iS the projec-

wherex=m,(MeV)/0.510 999 06 MeV andn, is the par- tion operator, which corresponds to the real physical
ticle energy at rest in MeV. It follows from this formula that process (i.e. P?=P and P*=P). The operator
after positron annihilation in thé’'H*e*e e™, we find =& 1,
v(*H")=0 and the remaining’H*e™ is probably in the il
bound state, while for the Bsmoleculev(e*)=(/3/2)c
and the appropriate systeaie™ is definitely un%c;t;nd. For
the real positronium hydrides such as TPs, DR4Ps, and .. S - 5
MuPs the final systerfi.e., T, D, *H, andu*e~ atoms can f'n?l s;thate, after ?Tg'h'lat'qtn equaiﬁri]_(]'lAgéi; .
be found after positron annihilation either in the bound or inhavr:a € case ot the positronium hydr eee we
the unbound state. Let us evaluate the appropriate probabili-
ties.

First, let us compare the respective time values. The ~n 1
electron-positron annihilation itself takes time which can be ¢in:SP‘I':[‘I'(OvrA&O’O'O’QJF‘P(O’OvOIMvO’O)]\/ﬁv
estimated as (24)

.. ,Fin;Fkl,sz, ce ,Fkn) is the symmetrization
operator. This operator permutes indistinguishable particles,
which either take part in the process or can be found in the
final state. The probability of finding the systeie™ in the

A, 386159322310 " .

— where the subscripts 3 and 4 stand for the electronsfand

¢ 2.997 924 5810° designates the particla®™. The wave function? is deter-
~1.288 088 %X 10 2! sec, (21)  mined variationally by solving the initial four-body problem

for theAte"e e system.

where A, is the Compton wavelength of the electron. The ~When the final hydrogenlike systefi’e™ is at rest after

changes in the electronic structure proceed for the charactefd® Ppositron annihilation the final-state wave function

istic time, which is approximately equal to ¢fi(rk1, o ,rkn) takes the form

Ta=
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. where the value of 5 after annihilation has been determined
=on ANY, m(r), (25  above[Eg. (20)].
Now, from Eq.(30) we can calculate the probability of

A s L : finding the movingA™e™ system to be bound after positron
wherer=r/r and¢, (r) are the radial eigenfunctions of the annihilation:wg =3, @, ,, while for an unbound state we

: gl
discrete spectrum for the hydrogenlike system[24]. havew,=1-wg. In particular, the total probability for the
Y,m(r) are the usual spherical harmoni@. In this case  system to be in the rotationally excited bound stateih
the overlap integrals Eq23) take the form /=1) equals w,—,=3, -10,,, where n=s+/+1,
s=0,1,2 ... [35].

r
¢fi:<Pn/(r)Y/m(F

+ o0
Ain;fi:Ain;n/:f [¥(0,0,0r,0,0
0 C. Zero-photon annihilation rate

+W¥(0,,0,0,0,0]¢n (r)rdr. (26) Since each of the positronium hydrides is a four-body
) o system, positron annihilation can proceed also as a process
This case corresponds to timephoton annihilation pro-  without emitting y radiation. The first emitteds quantum is
cess in the positronium hydrides, where2 and after pos-  converted by the remaining electron, while the second emit-
itron annihilation the particleA™ is immovable. Note also ted y quantum is converted by the partiddé . Actually, it is
that when they quantum is converted by the remaining elec- aimost impossible to find the two-body systéxiie™ in the
tron the final state for th& e~ system is deflnltely unbound bound state after Zero-photon annihilation in the
(see the previous and following subsections Atete e hydride. It is easy to understand that such a

Now, to complete our consideration we need to study onlyjprocess has a relatively small probability, which is repre-
the case when the emitting quantum is converted by the sented in the form

heavy particleA™, which begins to move. In this case the
final state¢y; is represented in the form 147373 o 1 4
FOY(HPs)sza cag (Sar__) sec-,

(32

.

r - -
obq= ‘Pn/(r)Y/m( F) exp(1gae Rae), (27)
where( 8,4 __) is the so-called four-particlé function and

where ¢,,(r) and Y,(r/r) are the same as determined all other values are the same as determined above. The un-
above. The function exfifs,Rad cOrresponds to the free KNOWN, dimensionless factdy is approximately equal to 1.
motion (in outside spadeof the final hydrogenlikeA*e™ For the P.§ molecule 1ts value is exactly ﬂl?’]‘

Herd3 h i for th ¢ Following our earlier work13], we rewrite the expres-
system. Her Ae are the coordinates for the center of massg;q ., 1o thel's (HPs) in a different form
of the systemA™ e, i.e.,

147372 _(Sps-—(HPS))

> meFe+ MAF_éA meFAe - FOY(HPS)=§ o Fz (HPQ
= -~ 4 5,_(HPs v
Ra= W “moama TRy @9 (8, (HP9))
o =Wo5,I"2,(HP9 = £x0.505 173 540 9
wherer po=r.— R4 are the electron coordinates with respect 5 HP
to the nucleusR, [i.e.,r=rpe, wherer is used in Eq(27)]. % 10—14Wr27(|.|p9, (33)
The variableﬁA can be left out since for our present pur- (9.—(HPS)
poses only internal variabldse., rp.=r) are important. whereW, ,, is the two-photon internal conversion coefficient
Finally, we find for ¢y for the Ps, molecule. Unfortunately, the expression for the
- - factor ¢ is unknown. However, to evaluate the order of mag-
_ r Jae - nitude for 'y, (HPs) we can assume thgt=1 (as for the
¢f'_‘p”/(r)Y/m(r)eXp< "1+ MAr) 29 Ps, moleculd. Such an evaluation is given in Table V.

in atomic units. By applying the well-known plane-wave ex-, - qirp N ANNIHILATION IN THE POSITRONIUM
pansion we can compute the amplitude and then find the

appropriate total probability to find the quasiatéie™ in MOLECULE
the|n/) bound state Positron annihilation in the positronium molecule,Re&s
studied in detail in our previous wofl 3]. However, in[13]
o . . .
np we used in the calculations a wave function that was not as
on=(2/+1)) fo [¥(0,0,0r,0,0+%(0r,0,0,0,0] accurate as the present one. Now, we apply a significantly

better wave function for the positronium molecule. The
X j Al ) @p A1)r2dr?, (300 variational expression for this wave function contains 200
basis functions with better optimized exponents. Its yields
the lowest energy for the Bsnolecule,—0.516 002 4 a.u.,

while the best value known previously i50.515 980 a.u.
Jae Ma [36]
Q=7 —Vae=Va\ 7 (31) o .

1+Mj 1+Mj The improved results for a number of properties of the

where the parametey, takes the form(in atomic units:
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(8a+ - —) expectation values. Likewise, in the present study

those for the positronium hydrides. We note that the “bondtheI";, andI'y, values for the positronium hydrides contain

length” between a positron andl™, namely,(r,), increases
with decreasing mass &* and the “stiffness” of the bond

measured by the Pearson coefficient= \{r2,)/(r)?—1

does the same. The same statement holds for the electron-

electron bond descriptofs ;,) and 4. In general, the pos-
itronium hydrides are all about the same geometrical “size”
and much more compact than Ps

Following in detail[13], we have calculated a number of
the different annihilation rates for the Pmolecule(as well

the three parametery,(u and£) that must be determined in
further quantum-electrodynamics calculations.

VI. CONCLUSION

Thus the bound-state spectra have been considered in the
present study for the positronium hydrides, such*&Ps,
TPs, DPs,'HPs, and MuPs. A number of basic properties for
such systems have been calculated numerically by applying

as for the Ps ion). They are given in Table V, and their the very extensive variational expansion on the so-called six-
comparison with the appropriate values for the positroniunflimensional(or four-body gaussioidg42]. In particular, a

hydrides is very interesting. In particular, dll,, (n is an
arbitrary integer for the positron hydride®\"e"e" e de-
crease monotonically when the masg diminishes. It can
be explained easily, since in this case the appropriat

quite accurate interpolation formula is presented for the de-
pendenceE(m,;l). Also, we considered the fine and hyper-
fine structures for the bound states in such systems. The
analysis of the € ,e™) pair or positron annihilation is the

s-function expectation values change respectively. On th&hain content of the present work. The appropriate values of

comparison with the Rsmolecule and Ps ion we note the
following. According to[37-40, the two-photon annihila-
tion rate for the polyelectron system that containslectrons
andm positrons is determined by the general relation

I'2,=CiCi(d: )B=nm(s, )B, (34)
where theC¥ are the binominal coefficient¢s, _) is the
expectation value for the electron-positrénfunction and
B =50.308 740 4% 10° sec ™.

The physical meaning of the factBris quite simple. It is
the annihilation rate for thee(",e™) pair, which is in an
indefinite spin state. If such a pair is in tH&, state (or
para-statethenl",, = 47a*cag (8, ) sec”?, while for the
8s, state(or orthostatgI',,=0. Since the'S, state is non-
degenerate and th&S, state has the multiplicity 3, for an
arbitrary ~,e™) pair in theS state with the indefinite total
spin we find

I', ZL[F (1Sp) +3I 2,38y ]=ma’cay (5, )
Y 143 2y 2y 1 +—

=B(8,), (39
whereB=50.308 740 45 10° sec ™.

It follows from Eq. (34) that the more electron-positron
pairs (nm) in the system the larger the value found 1oy,
(and, moreover, for all',,,, wheren=2). The largerl’,,
value means the shorter lifetimg,, for such a polyelectron
system against two-photon annihilation, (=1/T",,).

It should be mentioned in conclusion that th&, _) ex-

Iy, (n=0,1,2...,10) arecalculated numerically or evalu-
ated approximately for all five positronium hydrides as well
as for the positronium molecul@s,) and for the positro-
nium ion Ps. It is shown that the many-photon annihilation
ratesl,,, (wheren=2) for the positronium hydrides are sig-
nificantly closer to the appropriate values for the Pisn
than those for the Bsmolecule. For these values we can
write

Tny(PS)<T,(HPS<T',(Ps) (36
and, moreover[', (HPsy~=T", (Ps’). It should be men-
tioned that the presented formulas for the
I, (HPsg™), FY(HPSH+), andl’y,(HPs) contain the three
unknown factorsy,u, and &, which are close to unity. The
exact values of these factors should be found in the follow-
ing quantum-electrodynamics considerations. Also, we dis-
cussed the final-state problem for the remainiafier anni-
hilation) quasiatomicA*e~ system.
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APPENDIX

To compute the bound state in the considered Coulomb
four-body systems we used the variational expansion in the
basis of the many-dimensional gaussoids proposedzh
The appropriate six-dimension&br four-body variational

pectation values are quite close to each other for all positro@nzatz is

nium hydrides 2.40x10 2 a.u), the Ps molecule
(=2.20x10°2 a.u), and the PS ion (=2.07X10 2 a.u)
[41]. Therefore, the deviations in tHg,, values(as well as
in all I';,, values, wherem=2) are related mainly with the

total number of the electron-positron pairs in the system. In

contrast with this, the expectation values of {f#& __) are
comparable only for the Bsmolecule and Ps ion. For the
positronium hydrides the values ¢6, __) and (&, __)

are significantly larger than those for the,Rrolecule. This
means that the difference in tHe,;, and I'y, can be ex-
plained mainly in terms of the deviations in thé, __) and

N

- ko2 k.2 k.2 k.2
Vo= «4123421 Crexpl — gl 1~ gl 13~ a3l 23~ @1 14

- a§4r 34_ a'§4r§ (A1)
whereC, are the linear variational parameters arﬁdare the
non-linear parameters. The operatdy,;, designates the ap-
propriate symmetrizefor antisymmetrizex i.e., a projection
operator that produces the final wave function with the cor-
rect permutation symmetry. Actually, in the present study
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there are a maximum of two different pairs of identical par-wherem, (i=1,2, ... A) are the masses of the particles and

ticles and the operatad;,3, can be easily constructed. i # ] #k. The following symmetrization of the given expres-
To present explicit formulas for the matrix elements wesions on the identical particles does not present any special
use theg42] notation difficulties.
A For an arbitrary self-adjoint operatirthe correspond-
(a]=(a™)] =exp( _ 2 aikj ) rﬁ) , ing property(or the expectation valyds determined as
i>]=1 ~
(wIX|y)
X)= : (A8)
and ="l
A
18)= |,8</)>=exp( S Bﬁfﬁ ) (A2) vyhere| ¥) is the appropriate wave function found in varia-
i>j=1 tional calculations. WheiX=f(r;;) we used the formula to

. ) . compute the appropriate matrix elements
whereA is the total number of the particles in the system. In

the present casé=4. In this notation the overlap matrix 4
element(a| B) takes the form (alf(rip]By=(a™If(r;)|B"))= \/——<a|[>’>
a
<a|ﬁ>=<a(k)|ﬂ(/)>: m3A- (1232 (A3) o 5
N iadl]} 22
whereD is the determinant of theA—1)X (A—1) matrix x fo f(x D )exp( X)xdx.
with the matrix elements
(A9)
A
B _ 2 _l _ .
bii:;, (a:(ﬁﬁﬁ), i=12 ... A—-1 In particular, forf(y)=y“""* (n=0,1,2...) we find
2 2 \ (2n-1)/2
2n-1j o\ _ i
bj=—ak—B;, i#]=12,...A-1 . (A4 (a|rf’ |B>—ﬁ<alﬁ>n!(3> . (A10)
For an arbitrary potential that may be written as the SUMyhile for f(v)=v2" (n=0.1 we have
of the centralpartia) potentials, i.e.W=X;;,Vij,(rj;), the W)=y 120
formula for the appropriate matrix elements takes the form o (2n+1)!t [ Dy;\"
(alefl8)=talp) (2] e

4
(iEj) <a|V(ij)(rij)|B>:\/_;<a|B>

+ o0 D
X D V(ij)(xwi)exq—xz)xzdx,
M Jo D

(A5)

where (h+1)!! means X3X5X---X(2n+1). When
f(y)=y 2 the appropriate formula takes the form

s D
(alrj |B>:2<Q|B>D_ij- (A12)

It should be noted that by applying the expectation values
given in Table Illl we can calculate a number of other prop-
erties, e.g., the Pearson correlation coefficients

where Dj;=dD/da;j=dD/dB;;. The explicit expressions
for five (and even moneforms of the potentials often used in
calculations can be found iM2] [including formulas for

lower bound estimatesE( ) for an arbitraryA-particle sys- (2N — ()2
tem]. In particular, matrix elements of the Coulomb potential jj =M, (A13)
energy arg(in quasi-atomic-units (rij)
qiq and(ri;-ry,) values.
> (alVi(rp|BY=2 <a - ﬂ> Let us consider the analytical formulas for tidefunc-
(i) (i) i tions, which can be also found ii3]. First, it should be

D il mentioned that all expectation values for thespvalues43]
:2\ﬁ a|p)>, —, (Ae)  vanish since for Eq(A1) one finds
' | ><ij) \VDj;
. RN

where (j) = (22), (31), (32, (41), (42), and (43 and limyr o(ri—rp)—:
(«|B) is the appropriate overlap matrix element. In B&6)

theq; (i=12,...A) are the charges of the particles and gnqy, _ is a finite function at the;=r; point. This means
Djj=dD/dajj=0D/dp;; . The matrix elements for the ki- that directcusp value calculations are impossible for the

—=0 (Al14)
ij

netic energy take the forrtin quasi-atomic-units variational expression on the many-dimensional Gaussian
3 A 8 basis functions such as E@AL).
%ikPjk The analytical expressions for two-, three-, and four-
Tla)= == ——— (Dix+ Dj—Dj;i , . ) ! .
(BIT|e) 2D ijél my (Di* Dj=Dij) [ (Bl ) particle 8 functions can be found, e.g., ja3]. The simplest

(A7)  expression can be found for the four-particle delta-function
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(a|843218)=1. (A15)  where B=(a;,+ay,+azs)(ajstasstass) — a§3 Again, all

. . _ formulas for the other two-particl@l), (31), (32), (42), and
The analytical formula for the three-partidlg21) ¢ function  (43) § functions can be obtained from this expression by

1S simple permutations.
- a2 The so-called dimensionless virial factpr(see Table Il
a|é =\l— , Al6 is
(a| 8321 8) arat Apat A (A16)
g+ B i 2T
where a;; = «;; + B;; . Analogous expressions for the other =1+ ( >|%0’ (A18)

expectation values of the three-partialé31), (432, and
(421, S functions can be obtained from this expression by

simple permutations. For the two-bod¢l) & function we \yhere (T) is the expectation value of the kinetic energy,
find while (V) is the expectation value of the potential energy.
The deviation of this parameter from zero indicates the qual-
ity of the wave function used. In the cage=0 the virial
theorem holds exactlysee, e.g.[44]).

(alé4|B)= ( %) : (A7)
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