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Semiclassical analysis of quasiexact solvability
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Higher-order WKB methods are used to investigate the border between the solvable and insolvable portions
of the spectrum of quasiexactly solvable quantum-mechanical potentials. The analysis reveals scaling and
factorization properties that are central to quasiexact solvability. These two properties define a new class of
semiclassically quasiexactly solvable potentig®1050-294{@7)07804-9

PACS numbsg(s): 03.65.Sq, 02.70.Hm, 02.96p, 03.65.Ge

Quantum-mechanical potentials are said tocumsiex- P;(E) are all real and are th& quasiexact energy eigenval-
actly solvableg(QES if it is possible to find a finite portion of ues of the potential in Eq1). We have computed the first 40
the energy spectrum and associated eigenfunctions exactbolynomials; we list the first seven of these below:
and in closed fornj1]. QES potentials depend on a param-

eterJ; for positive integer values af one can find exactly P.(E)=E,
the first J eigenvalues and eigenfunctions, typically of a
given parity. QES systems have been classified using an al- P,(E)=—-8+E?,
gebraic approach in which the Hamiltonian is expressed in
terms of the generators of a Lie algep?a-4]. This approach P3(E)=—64E+E®,
generalizes the dynamical symmetry analysisxdctly solv-
able quantum-mechanical systems, whomatire spectrum P,(E)=2880- 240E2+E*,
may be found in closed form by algebraic me&Bk

In this paper we use higher-order semiclassical methods Ps(E)=4710& —640E3+E>,

to examine the boundary between the exactly solvable part of
the spectrum and the remaining energy levels in QES sys- Pe(E)=—5 184 000+ 331 45&2— 140E*+ ES,
tems. We find that the larggé-asymptotic behavior of the
largest exactly known energy eigenvalue is particularly P-(E)=—130 940 92&+ 1 529 856&>—268&E°"+E’.
simple for QES potentials. This study leads to a natural gen-
eralization of QES potentials. We discover an infinite tower The roots ofP;(E) occur in positive and negative pairs,
of potentials; the first is exactly solvable, the second is QESand successive sets of roots interlace:
and the rest share some semiclassical features of QES poten-
tials but are not QES. roots of P,(E), O;
The simplest QES potentigf] is
roots of P,(E), =22;
V(x)=x8—(4J—1)x2. (1)
The Schrdinger equation,— ¢”"(x)+[V(x)—E]¥(x)=0, roots of P3(E), 0, =8;

hasJ even-parity solutions of the form roots of P,(E), +3.559 32, +15.077 51;

J-1
p(x)=e XM e x3. ) roots of P(E), 0, +9.211 35, +23.561 64;
k=0

The coefficient, satisfy the recursion relation roots of Pg(E), *+4.10132, £16.707 78, £33.226 93;

4(J—Kk)c_1+Ec+2(k+1)(2k+1)c,1=0, (3 roots of P;(E): 0, =10.187 50, +25.562 58,
where Osk=J-1 and we define_,=c;=0. +43.940 52.
The simultaneous linear equatiof3 have a nontrivial
solution forcg,cq, . .. ,Cy_4 if the determinant of the coef- Let E.(J) represent the largest root and thus tniical

ficients vanishes. For each integé&rthis determinant is a energy that marks the upper edge of the quasiexact spectrum.
polynomialP;(E) of degree] in the variableE. The roots of A numerical fit to the large} asymptotic behavior oE.(J)
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for 1<J<40 using Richardson extrapolatiof8] gives Two aspects of the above calculation of the WKB integral
E.(J)~3.079 201 435 5°? asJ— . We recognize the nu- are crucial. First, the QES potential is such that in the limit
merical constant: J—oo, the parameted scales out of the integrand. Second,

the factorization in Eq(7) enables us to evaluate the scaled
integral and to obtain the factor af, which then cancels
from the leading-order WKB quantization condition. In fact,
merely demanding that —y®+ 4y? factor into the product
One may verify this result analytically by finding the of a linear term iny? times a square of a linear term yif
minimum of the potentialV(x)=x°~(4J—1)x*. Minima  uniquely specifieshe value ofe, which in turn determines
occur at x=*=[(4J—1)/3]"% at these valuesV~—%  the larged asymptotic behavior of the critical energy
V33%2 (J—). Since the quasiexact energy eigenvalues ocg (J).
cur in = pairs and the zero-point energy is negligible for  The factorization property extends to general QE$o-
large J, the asymptotic result in Eq4) is confirmed[7].  tentials. Consider the scaled factored form
However, this approach is not useful for all QES systemsy—V(y)=(a—y?)(b+cy?)?2 (The conditions a>0,
because in general the spectrum is not symmetric undeas, c=0 ensure that there is just one pair of turning points
E——-E. and that the WKB integrals give rise to Beta functions of
WKB theory provides a more general derivation of Eq. half-integer argumentsThe leading-order WKB condition
(4) and gives higher-order corrections. Furthermore, semiis
classical analysis reveals featuresvgk) that are generic to

t?OEnSiSpotentlals. The leading-order WKB quantization condi- 277J~f dx E—V(x)=Jf dy\a—y2(b+cy?)

E(J)~ 19—% 32 (3. (4)

(n+%)w~f ® dx VE—x8%+(43-1)x? (5) =2m]
%

which determine$ in terms ofa andc: b=4/a—ac/4. This

for largen, where=*x, are turning point$xg is the positive : ;
y gives the potential

zero ofE—V(x)] andn is the quantum number of the energ
level. We seek thdth evenparity energy leveE=E_(J) for V(V)=c2v6+2B8cVA+ ( B2— 4c)v2
which ne 23, (y)=c?y®+2Bcy*+(B*—4c)y?,

To evaluate the integral on the right side of Ef) for  \where g=4/a—3ac/4. This is exactly the largé-scaled
large J, we begin by scaling the variablds; and x. The  form of the generalnonsingular QE® potential(class VI

scaling E.=J¥% andx=J"y extracts a factor o from i Ref.[2]). Wheng=0 andc=1, we obtain the case treated
the integral and reduces E@) to an exact expression for the iy Eq. (1).

numerical constant: This factorization is a universal feature of quasiexact
solvability. In general, at the upper end of the quasiexact

2= fyo dy Va—y5+4y2, (6) spec'trum,E—V(x) factors into.one term, whic.h fixes the

Yo location of the two WKB turning points, multiplied by a

second term, which is a perfect square. As another example,
whereyj is the positive root olx—y®+4y?=0. consider the QES potenti®(x) = sint?x—(2J—1)coskx. For
In general, the integral in E(6) is not an elementary thjs potential there ard even-parity QES states, all of the
function of . However, for the special value=%¥\3 the  form Y(x)=e" *™pP(coslx), whereP is a polynomial. To
polynomial a—y®+4y? factors into a product of a linear find the critical energyE. at the upper boundary of the

term times a perfect square quasiexact spectrum, we apply the WKB quantization condi-
) tion
163 6+42<4 2><2+2> )
9 3 V3 f ® dx VE.—sint?(x) + (23— 1)coshx)
—%o

Using this factorization, we express the integral in Ej.in

terms of beta functions: ~(23+12)7  (J—). 9

vo 81 1427 'I;]he'substitu(;iqmzz(tg)re\_/rehals the fac.torriizzatit\n/? ;))r?perty of
[ b1 av2— — I the integrand in Eq(9). The expressiorE,—V(x) factors
fyody a=y tdy 3J’o dz \/E 1~z into one term 4— 2— 4cosht (this term determines the turn-
ing pointg multiplied by another term in the form of a per-
8 (E E) n 1—68<§ E) -2 fect square, sirfl. This factorization fixes the dependence of
2'2) 3712’2 ’ E. onJ: E.=1-2J. With this factorization, the right side of
(8) Eq. (9) simplifies to 4fg°dt sinht\/4J— 2 — 4cosit~2J, for
largeJ. Once againgr divides out of the leading-order WKB
Thus, the WKB quantization conditiof6) is satisfied with  quantization condition.
a= % /3, which confirms the leading asymptotic form of the = The remarkable connection between WKB and quasiexact
critical energyE.(J) given in Eq.(4). solvability persists to higher order in WKB theory. The fac-
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tor of 7w cancels from the WKB quantization conditiom all

2627

The factorizability property of QES potentials has the

ordersleaving a purely algebraic series. To illustrate this, weconsequence that semiclassical analysis can be performed to

do a fifth-order WKB calculation oE(J) for the x® poten-

tial in Eq. (1). We begin by scaling the energy in the Schro

dinger equation using.(J)=2[(4J—1)/3]*?y. After scal-
ing the independent variable, we obtain the Sdhmger
equation

2y ()= (4u®=3u’=y)y(u),

where the small parameter &s=3[2(4J—1)]. The series
representation for the scaled energys

(10

y= go ane”, (11)

whereay=1 as a result of the factorization in E().
The WKB quantization condition to orde? is [9]

1 1 € Q”
= 2
(2J+27T 2€§dUQ1 96§dUQW§
63 d 2Ql///Q_7(Q//)2
_3072§; u QT
(12

whereQ(u) = y+ 3u?—4u® and where the contours encircle

the two turning pointgit is crucial that there be only two
and the branch cut joining them.
Next, we expand Eq12) in powers ofe and perform the

resulting contour integrals. Each of these integrals can be
evaluated in closed form because of the leading-order factor-

ization f(u)=—4u®+3u?+1=(1—u?)(2u?+1)2. Indeed,
all integrals of the formpdu w”™[f(u)]¥?>"", wherem and

n are non-negative integers, can be expressed as simple ml&l

tiples of 7. For example,

2
—12_ _
: édu[f(u)] N

3

fﬁdu[f(u)]lfz: >

fﬁdu [f(u)]_3/2:_;ng, §du UA[f(U)]_SIZZL_

18\3

all orders. All integrals give simple multiples ef and no
transcendental functions ever appear. This is in stark contrast
with x2N anharmonic oscillator potentials for which WKB
analysis leads to elliptic functiorj4.0].

Although factorizability is a property of QES potentials, it
extends to a larger class of potentials that are not QES. We
call such potentialssemiclassically quasiexactly solvable
(SQES. Consider the potential

V(x)=x0—4Jx*— 53*3¢2. (14)
For fixed 6 this potential isnot QES in the conventional
group-theoretic seng@—4]; one cannot find more than one
exact algebraically determined eigenstate and corresponding
eigenvalue. Nevertheless, for largeve can impose the scal-
ing and factorizability conditions. Generalizing from the fac-
torization of thex® potential in Eq.(7), we demand that the
quantity E—V(x) factors into a product of a linear term in
x? multiplied by a perfect square. This requirement fixes the
numerical value oB= 3(4/5)"® and the asymptotic behavior
of the critical energyE (J)~ 2(4J/5)%°® (J—x), and we
have

9 43°3 543\
E? —Xlo+4JX4+Z ?) x2
4 1/3 4 1/3 3/4 2/312
— 1539 | _v2|lvAal _ 24~ | —
JMS) Yy *is y+25”’
(15

wherex=J%y. Because the squared factor has no real zeros,
there areexactlytwo real turning points whose locations are
etermined by the linear factor i?.

This factorization enables us to evaluate the lafge-
leading-order WKB quantization integral exactly:

5522/ 75822

27TJ~LX° dx VE—V(x)=

X

20831 ]
T5 B33

32 (35

sz

We evaluate the appropriate contour integrals and then o _
use Eq(12) to determine the first five expansion coefficientsAs in the case of the QES potential in H@), the higher-

a, for the scaled energy in Eq. (11). The expansion for the
critical energyE.(J) is

43—1\%2
EC(J)~2(T) {1

. 53 . 23281
3(4J-1)% 34564J-1)%

88945,3 } |

TB184aI—1)5

33 35
431" 8(4J-1)?

13

Numerical results are excellent; whel=40 the exact
value of Ey(J) is 746.606 715 3B. . . ,while the fifth-order
WKB result in Eq.(13) gives 746.606 715 3B. .. .

order WKB quantization integrals can be done exactly.

The potential in Eq(14) belongs to an infinite hierarchy
of SQESx***2 potentials that exhibit factorization and scal-
ing properties but which are not QES fo+2,3,4, ... . The
kth such potential i$12]

1k+1

V) 16(k+1)%| T'(k+3/2)
X:
(2k+1)* | 27T (k+2)
1 1 1
2k+1/k+1 _ . _
xJ [1 2Fil 5. -5k 3
I'(k+3/2)

el

2Vl (k+2)J
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where ,F; is a hypergeometric functiofl1]. (1): V(x)=x5—4Jx%. Fork=2 we haveE ~ $(4J/5)%° and
To demonstrate the factorization property we substitutezF1 13 -27=(1+%z+%%J1-2z and we obtain the

y2={T(k+3/2)[ 27T (k+2)I}Y**Dx? and express Xx'° SQES potential in Eq.(15: V(x)=x—4Ix*

E—V(x) as a linear factor iry? multiplied by a square of a — ¥(4J/5)**. In the limit k— o> we obtain the square-well

polynomial of degred in y?: potent|al_ for WhI.ChE ~4J?. Thus, at the botto_m of _the
SQES hierarchy is the exactly solvable harmonic oscillator,

16k+1)2[ T(k+3/2) Tkl —— followed by the QE® potential, which is then followed by
KT 1)2 Jektktl_v(x) the range of new SQES potentials and, finally, in kheoe
(2k+1)% | 27T (k+2) limit, by the square-well potential.
okt 1/k+1 For QES potentials the critical enerdy.(J) lies at the
_ 237l (k+2) 1-y?) upper boundary of the quasiexact spectrum. For SQES po-
| T'(k+3/2) (1-y tentials, the critical energl.(J) is still a significant point in
the energy spectrum; at this point we observe a sharp change
K T'(n+ti 2 (a first-order phase transition for larg¢ in the density of
n+3 ., . nthe
X 2 —Y n states. If we use ordinary WKB analysis to find thetl2
A=0 nl\m ak’2

energy eigenvalue for & potential, wheren is not cor-

Note that there are two real turning pointsyat + 1. related withJ, we find that asi—c

This factorization fixes the larg&-asymptotic behavior of k+1 1 2k+1k+1
the critical energy: ~| 4\m(k+1)nr 2k+1) r 4k+2)
1k+1
16(k+ 1) [(k+3/2) |7 i1kl (1 ~ Observe that the numerical coefficient in this asymptotic re-
¢ (2k+1)? 27l (k+2) + (18 jation is a different function ok from that in Eq.(16). For
example, for k=1 we have E.~3.0792%2 but
Leading-order WKB verifies this asymptotic behavior: E,n~6.40661%2 Also, for k=2 we haveE ~3.1024°3
while E,,~7.423%1%3 As k—x we haveE,~4J? while
[ =g E,,~ m2n%. However, for the special exactly solvable case
2mJ f_xodx E=V(0 k=0, where the level spacing is constant, they are the same:
v E.~4J andE,,~4n.
B 2\/;(k+ 1)! 2 I'(n+ 1/2) Finally, we remark that SQES models are a generalization
=J T'(k+3/2) = \/— of the Ising limit in quantum mechanics or quantum field

theory. The Ising limit is an asymptotic balance between a
mass term and a self-interaction term: For the potential
gx*—m?x? we takeg~m? with g large and get a double
well; g scales out, and we obtain the Ising limit. For SQES
Let us examine the hierarchy of SQES potentials for in_models there is an asymptotic balance for laigamong all

teger[13] values ofk using the general formuld 1] the coefficients of the potential.

2Vm(k+ 1)1 & T(n+1/2)

k
I Tram NN

1
2

( Jk—n+ =

C.M.B. thanks the Physics Department at the Technion—

Israel Institute of Technology and the Theoretical Physics
(1—z)k+ 12 Group at Imperial College, London, for their hospitality, and

) —l 1 he thanks the Lady Davis Foundation, the Fulbright Founda-
dz Jz tion, the PPARC, and the U.S. Department of Energy for

financial support. G.V.D. thanks the Physics Department at

For k=0 we haveE.~4J and ,F(3,—%%2)=V1-2  the University of Wales, Swansea for their hospitality and
and we obtain theexactly solvablenarmonic oscillator po-  the U.S. Department of Energy for financial support. M.M.
tential, V(X) x2. For k=1 we haveE.~%\3J% and thanks the SLAC theory group for their hospitality and the

Fi(3,—3; 2,z) (1+22)y1-2z, and we obtain the large- BSF, the ISF, and the Technion-VPR Fund for financial sup-

J asymptotic approximation to th:e6 QES potential in Eq. port.

LF1(1/2,—k—1/2;—k+1/2:2)

_TARK)

I'(1/2)

[1] See A. G. UshveridzeQuasi-Exactly Solvable Models in [4] A. GonzZdez-Lopez, N. Kamran, and P. J. Olver, Commun.

Quantum Mechanicéinstitute of Physics, Bristol, 1993and Math. Phys.153 117 (1993; Contemp. Math.160 113
references therein. (1994.
[2] A. V. Turbiner, Zh. Kksp. Teor. Fiz.67, 230 (1988 [Sov. [5] F. lachello, Nucl. PhysA560, 23 (1993; Contemp. Math.
Phys. JETR67, 230(1988]; Commun. Math. Physl18 467 160 151 (1994.
(1988; Contemp. Math160, 263(1994; M. A. Shifman,ibid. [6] Wave functions for this potential are the generating functions
160 237(1994. of a set of orthogonal polynomials; see C. M. Bender and G.
[3] M. A. Shifman and A. V. Turbiner, Commun. Math. Phys. V. Dunne, J. Math. Phys37, 6 (1996. This property extends

126, 347 (1989. to other QES potentials; A. Krajewska, A. Ushveridze, and Z.



55 SEMICLASSICAL ANALYSIS OF QUASIEXACT SOLVABILITY 2629

Walczak(unpublishedt F. Finkel, A. Gonzkez-Lopez, and M. F. T. Hioe, D. MacMillen, and E. W. Montrolipid. 17, 1320
A. Rodrguez(unpublisheg (1976.
[7] For the polynomial potentials in this papéf(x)~E(J) [11] Handbook of Mathematical Functionsedited by M.
(J— o) at (complex points whereV’(x)=0. Abramowitz and I. A. SteguitNational Bureau of Standards,
[8] C. M. Bender and S. A. Orszaghdvanced Mathematical Washington, D.C., 1970 Chap. 15.
Methods for Scientists and Engineet®slcGraw-Hill, New [12] This is the simplest SQES hierarchy, just as the QES potential
York, 1978, Chap. 8. in Eq. (1) is the simplest of the® QES potentials.
[9] C. M. Bender and S. A. Orsza¢Ref. [8]), Chap. 10. [13] Noninteger values ok lead to other interesting classes of

[10] F. T. Hioe and E. W. Montroll, J. Math. Phys6, 1945(1975; SQES potentials.



