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Semiclassical analysis of quasiexact solvability
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Higher-order WKB methods are used to investigate the border between the solvable and insolvable portions
of the spectrum of quasiexactly solvable quantum-mechanical potentials. The analysis reveals scaling and
factorization properties that are central to quasiexact solvability. These two properties define a new class of
semiclassically quasiexactly solvable potentials.@S1050-2947~97!07804-9#
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Quantum-mechanical potentials are said to bequasiex-
actly solvable~QES! if it is possible to find a finite portion of
the energy spectrum and associated eigenfunctions ex
and in closed form@1#. QES potentials depend on a param
eterJ; for positive integer values ofJ one can find exactly
the first J eigenvalues and eigenfunctions, typically of
given parity. QES systems have been classified using an
gebraic approach in which the Hamiltonian is expressed
terms of the generators of a Lie algebra@2–4#. This approach
generalizes the dynamical symmetry analysis ofexactly solv-
able quantum-mechanical systems, whoseentire spectrum
may be found in closed form by algebraic means@5#.

In this paper we use higher-order semiclassical meth
to examine the boundary between the exactly solvable pa
the spectrum and the remaining energy levels in QES
tems. We find that the large-J asymptotic behavior of the
largest exactly known energy eigenvalue is particula
simple for QES potentials. This study leads to a natural g
eralization of QES potentials. We discover an infinite tow
of potentials; the first is exactly solvable, the second is Q
and the rest share some semiclassical features of QES p
tials but are not QES.

The simplest QES potential@6# is

V~x!5x62~4J21!x2. ~1!

The Schro¨dinger equation,2c9(x)1@V(x)2E#c(x)50,
hasJ even-parity solutions of the form

c~x!5e2x4/4(
k50

J21

ckx
2k. ~2!

The coefficientsck satisfy the recursion relation

4~J2k!ck211Eck12~k11!~2k11!ck1150, ~3!

where 0<k<J21 and we definec215cJ50.
The simultaneous linear equations~3! have a nontrivial

solution forc0 ,c1 , . . . ,cJ21 if the determinant of the coef
ficients vanishes. For each integerJ this determinant is a
polynomialPJ(E) of degreeJ in the variableE. The roots of
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PJ(E) are all real and are theJ quasiexact energy eigenva
ues of the potential in Eq.~1!. We have computed the first 4
polynomials; we list the first seven of these below:

P1~E!5E,

P2~E!5281E2,

P3~E!5264E1E3,

P4~E!528802240E21E4,

P5~E!547104E2640E31E5,

P6~E!525 184 0001331 456E221400E41E6,

P7~E!52130 940 928E11 529 856E322688E51E7.

The roots ofPJ(E) occur in positive and negative pairs
and successive sets of roots interlace:

roots of P1~E!, 0;

roots of P2~E!, 62A2;

roots of P3~E!, 0, 68;

roots of P4~E!, 63.559 32, 615.077 51;

roots of P5~E!, 0, 69.211 35, 623.561 64;

roots of P6~E!, 64.101 32, 616.707 78, 633.226 93;

roots of P7~E!: 0, 610.187 50, 625.562 58,

643.940 52.

Let Ec(J) represent the largest root and thus thecritical
energy that marks the upper edge of the quasiexact spect
A numerical fit to the large-J asymptotic behavior ofEc(J)
2625 © 1997 The American Physical Society
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for 1<J<40 using Richardson extrapolation@8# gives
Ec(J);3.079 201 435 5J3/2 asJ→`. We recognize the nu
merical constant:

Ec~J!;
16

9
A3 J3/2 ~J→`!. ~4!

One may verify this result analytically by finding th
minimum of the potentialV(x)5x62(4J21)x2. Minima
occur at x56@(4J21)/3#1/4; at these valuesV;2 16

9

A3J3/2 (J→`). Since the quasiexact energy eigenvalues
cur in 6 pairs and the zero-point energy is negligible f
large J, the asymptotic result in Eq.~4! is confirmed@7#.
However, this approach is not useful for all QES syste
because in general the spectrum is not symmetric un
E→2E.

WKB theory provides a more general derivation of E
~4! and gives higher-order corrections. Furthermore, se
classical analysis reveals features ofV(x) that are generic to
QES potentials. The leading-order WKB quantization con
tion is

~n1 1
2 !p;E

2x0

x0
dx AE2x61~4J21!x2 ~5!

for largen, where6x0 are turning points@x0 is the positive
zero ofE2V(x)# andn is the quantum number of the energ
level. We seek theJth even-parity energy levelE5Ec(J) for
which n52J.

To evaluate the integral on the right side of Eq.~5! for
large J, we begin by scaling the variablesEc and x. The
scalingEc5J3/2a and x5J1/4y extracts a factor ofJ from
the integral and reduces Eq.~5! to an exact expression for th
numerical constanta:

2p5E
2y0

y0
dy Aa2y614y2, ~6!

wherey0 is the positive root ofa2y614y250.
In general, the integral in Eq.~6! is not an elementary

function of a. However, for the special valuea5 16
9A3 the

polynomial a2y614y2 factors into a product of a linear
term times a perfect square:

16

9
A32y614y25S 4

A3
2y2D S 2

A3
1y2D 2. ~7!

Using this factorization, we express the integral in Eq.~6! in
terms of beta functions:

E
2y0

y0
dy Aa2y614y25

8

3E0
1

dz
112z

Az
A12z

5
8

3
BS 32 , 12D1

16

3
BS 32 , 32D52p.

~8!

Thus, the WKB quantization condition~6! is satisfied with
a5 16

9 A3, which confirms the leading asymptotic form of th
critical energyEc(J) given in Eq.~4!.
-

s
er

.
i-

i-

Two aspects of the above calculation of the WKB integ
are crucial. First, the QES potential is such that in the lim
J→`, the parameterJ scales out of the integrand. Secon
the factorization in Eq.~7! enables us to evaluate the scal
integral and to obtain the factor ofp, which then cancels
from the leading-order WKB quantization condition. In fac
merely demanding thata2y614y2 factor into the product
of a linear term iny2 times a square of a linear term iny2

uniquely specifiesthe value ofa, which in turn determines
the large-J asymptotic behavior of the critical energ
Ec(J).

The factorization property extends to general QESx6 po-
tentials. Consider the scaled factored for
a2V(y)5(a2y2)(b1cy2)2. ~The conditions a.0,
b, c>0 ensure that there is just one pair of turning poin
and that the WKB integrals give rise to Beta functions
half-integer arguments.! The leading-order WKB condition
is

2pJ;E dxAE2V~x!5JE dyAa2y2~b1cy2!

52pJS ab4 1
a2c

16 D ,
which determinesb in terms ofa andc: b54/a2ac/4. This
gives the potential

V~y!5c2y612bcy41~b224c!y2,

where b54/a23ac/4. This is exactly the large-J scaled
form of thegeneralnonsingular QESx6 potential~class VI
in Ref. @2#!. Whenb50 andc51, we obtain the case treate
in Eq. ~1!.

This factorization is a universal feature of quasiexa
solvability. In general, at the upper end of the quasiex
spectrum,E2V(x) factors into one term, which fixes th
location of the two WKB turning points, multiplied by a
second term, which is a perfect square. As another exam
consider the QES potentialV(x)5sinh2x2(2J21)coshx. For
this potential there areJ even-parity QES states, all of th
form c(x)5e2coshxP(coshx), whereP is a polynomial. To
find the critical energyEc at the upper boundary of th
quasiexact spectrum, we apply the WKB quantization con
tion

E
2x0

x0
dx AEc2sinh2~x!1~2J21!cosh~x!

;~2J11/2!p ~J→`!. ~9!

The substitutionx52t reveals the factorization property o
the integrand in Eq.~9!. The expressionEc2V(x) factors
into one term 4J2224cosh2t ~this term determines the turn
ing points! multiplied by another term in the form of a pe
fect square, sinh2t. This factorization fixes the dependence
Ec onJ: Ec5122J. With this factorization, the right side o
Eq. ~9! simplifies to 4*0

t0dt sinhtA4J2224cosh2t;2pJ, for
largeJ. Once again,p divides out of the leading-order WKB
quantization condition.

The remarkable connection between WKB and quasiex
solvability persists to higher order in WKB theory. The fa
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tor of p cancels from the WKB quantization conditionto all
ordersleaving a purely algebraic series. To illustrate this,
do a fifth-order WKB calculation ofEc(J) for the x

6 poten-
tial in Eq. ~1!. We begin by scaling the energy in the Schr¨-
dinger equation usingEc(J)52@(4J21)/3#3/2g. After scal-
ing the independent variable, we obtain the Schro¨dinger
equation

e2c9~u!5~4u623u22g!c~u!, ~10!

where the small parameter ise53/@2(4J21)#. The series
representation for the scaled energyg is

g5 (
n50

`

ane
n, ~11!

wherea051 as a result of the factorization in Eq.~7!.
The WKB quantization condition to ordere5 is @9#

S 2J1
1

2Dp5
1

2e R du Q1/22
e

96 R du
Q9

Q3/2

2
e3

3072R du
2Q99Q27~Q9!2

Q7/2 1•••,

~12!

whereQ(u)5g13u224u6 and where the contours encirc
the two turning points~it is crucial that there be only two!
and the branch cut joining them.

Next, we expand Eq.~12! in powers ofe and perform the
resulting contour integrals. Each of these integrals can
evaluated in closed form because of the leading-order fac
ization f (u)[24u613u2115(12u2)(2u211)2. Indeed,
all integrals of the formrdu u2m@ f (u)#1/22n, wherem and
n are non-negative integers, can be expressed as simple
tiples ofp. For example,

R du @ f ~u!#1/25
3p

2
, R du @ f ~u!#21/252

2p

A3
,

R du @ f ~u!#23/252
10p

9A3
, R du u4@ f ~u!#23/25

p

18A3
.

We evaluate the appropriate contour integrals and t
use Eq.~12! to determine the first five expansion coefficien
an for the scaled energyg in Eq. ~11!. The expansion for the
critical energyEc(J) is

Ec~J!;2S 4J21

3 D 3/2F12
3A3
4J21

1
35

8~4J21!2

1
5A3

3~4J21!3
1

23281

3456~4J21!4

1
88945A3

5184~4J21!5
1•••G . ~13!

Numerical results are excellent; whenJ540 the exact
value ofEc(J) is 746.606 715 392 . . . , while the fifth-order
WKB result in Eq.~13! gives 746.606 715 384 . . . .
e
r-

ul-

n

The factorizability property of QES potentials has t
consequence that semiclassical analysis can be perform
all orders. All integrals give simple multiples ofp and no
transcendental functions ever appear. This is in stark con
with x2N anharmonic oscillator potentials for which WKB
analysis leads to elliptic functions@10#.

Although factorizability is a property of QES potentials,
extends to a larger class of potentials that are not QES.
call such potentialssemiclassically quasiexactly solvab
~SQES!. Consider the potential

V~x!5x1024Jx42dJ4/3x2. ~14!

For fixed d this potential isnot QES in the conventiona
group-theoretic sense@2–4#; one cannot find more than on
exact algebraically determined eigenstate and correspon
eigenvalue. Nevertheless, for largeJ we can impose the scal
ing and factorizability conditions. Generalizing from the fa
torization of thex6 potential in Eq.~7!, we demand that the
quantityE2V(x) factors into a product of a linear term i
x2 multiplied by a perfect square. This requirement fixes
numerical value ofd53(4/5)1/3 and the asymptotic behavio
of the critical energyEc(J);

9
2(4J/5)

5/3 (J→`), and we
have

9

2

4J

5

5/3

2x1014Jx41
15

4 S 4J5 D 4/3x2
5J5/3F2S 45D

1/3

2y2GFy41S 45D
1/3

y21
3

2 S 45D
2/3G2,

~15!

wherex5J1/6y. Because the squared factor has no real ze
there areexactlytwo real turning points whose locations a
determined by the linear factor iny2.

This factorization enables us to evaluate the largJ
leading-order WKB quantization integral exactly:

2pJ;E
2x0

x0
dx AE2V~x!5F325 BS 32 , 52D1

16

5
BS 32 , 32D

1
20

5
BS 32 , 12D GJ.

As in the case of the QES potential in Eq.~1!, the higher-
order WKB quantization integrals can be done exactly.

The potential in Eq.~14! belongs to an infinite hierarchy
of SQESx4k12 potentials that exhibit factorization and sca
ing properties but which are not QES fork52,3,4, . . . . The
kth such potential is@12#

V~x!5
16~k11!2

~2k11!2 F G~k13/2!

2ApG~k12!
G 1/k11

3J2k11/k11H 12F 2F1F12 ,2 1

2
2k;

1

2

2k;S G~k13/2!

2ApG~k12!J
D 1/k11

x2G G 2J ,
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where 2F1 is a hypergeometric function@11#.
To demonstrate the factorization property we substit

y25$G(k13/2)/@2ApG(k12)J#%1/(k11)x2 and express
E2V(x) as a linear factor iny2 multiplied by a square of a
polynomial of degreek in y2:

16~k11!2

~2k11!2 F G~k13/2!

2ApG~k12!
G 1/k11

J2k11/k112V~x!

5F2JApG~k12!

G~k13/2! G 2k11/k11

~12y2!

3F (
n50

k G~n1 1
2 !

n!Ap
y2k22nG 2.

Note that there are two real turning points aty561.
This factorization fixes the large-J asymptotic behavior of

the critical energy:

Ec;
16~k11!2

~2k11!2 F G~k13/2!

2ApG~k12!
G 1/k11

J2k11/k11. ~16!

Leading-order WKB verifies this asymptotic behavior:

2pJ;E
2x0

x0
dx AE2V~x!

5J
2Ap~k11!!

G~k13/2! E
0

1

duA12u

Au (
n50

k
G~n11/2!

n!Ap
uk2n

5J
2Ap~k11!!

G~k13/2! (
n50

k
G~n11/2!

n!Ap
BS 32 ,k2n1

1

2D .
Let us examine the hierarchy of SQES potentials for

teger@13# values ofk using the general formula@11#

2F1~1/2,2k21/2;2k11/2;z!

5
G~1/22k!

G~1/2!
zk11/2S d

dzD kF ~12z!k11/2

Az G . ~17!

For k50 we haveEc;4J and 2F1(
1
2,2

1
2;

1
2;z)5A12z,

and we obtain theexactly solvableharmonic oscillator po-
tential, V(x)5x2. For k51 we haveEc;

16
9A3J3/2 and

2F1(
1
2,2

3
2;2

1
2;z)5(112z)A12z, and we obtain the large

J asymptotic approximation to thex6 QES potential in Eq.
n

s.
e

-

~1!: V(x)5x624Jx2. For k52 we haveEc;
9
2(4J/5)

5/3 and
2F1(

1
2,

5
2;2

3
2;z)5(11 4

3z1 8
3z

2)A12z, and we obtain the
x10 SQES potential in Eq. ~15!: V(x)5x1024Jx4

2 15
4 (4J/5)

4/3x2. In the limit k→` we obtain the square-wel
potential, for whichEc;4J2. Thus, at the bottom of the
SQES hierarchy is the exactly solvable harmonic oscilla
followed by the QESx6 potential, which is then followed by
the range of new SQES potentials and, finally, in thek→`
limit, by the square-well potential.

For QES potentials the critical energyEc(J) lies at the
upper boundary of the quasiexact spectrum. For SQES
tentials, the critical energyEc(J) is still a significant point in
the energy spectrum; at this point we observe a sharp cha
~a first-order phase transition for largeJ) in the density of
states. If we use ordinary WKB analysis to find the 2nth
energy eigenvalue for ax4k12 potential, wheren is not cor-
related withJ, we find that asn→`

E2n;F4Ap~k11!nGS k11

2k11D Y GS 1

4k12D G
2k11/k11

.

Observe that the numerical coefficient in this asymptotic
lation is a different function ofk from that in Eq.~16!. For
example, for k51 we have Ec;3.0792J3/2 but
E2n;6.4066n3/2. Also, for k52 we haveEc;3.1024J5/3

while E2n;7.4235n5/3. As k→` we haveEc;4J2 while
E2n;p2n2. However, for the special exactly solvable ca
k50, where the level spacing is constant, they are the sa
Ec;4J andE2n;4n.

Finally, we remark that SQES models are a generaliza
of the Ising limit in quantum mechanics or quantum fie
theory. The Ising limit is an asymptotic balance between
mass term and a self-interaction term: For the poten
gx42m2x2 we takeg;m2 with g large and get a double
well; g scales out, and we obtain the Ising limit. For SQE
models there is an asymptotic balance for largeJ among all
the coefficients of the potential.
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