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With the aid of two linearly independent Whittaker functions, Loudon obtained the solutions with even and
odd parity for the one-dimensional hydrogen atom. Applying the Schwarz inequality, Andrews made an
objection to Loudon’s “ground state.” Either solving the problem in the momentum representation or basing
our work on the theory of singular integral equations, we have proved that these solutions with even parity do
not exist. Due to its importance related to the nondegeneracy theorem and to the study of the exciton and
Wigner crystal(by electron gas above the helium surfaaee have reexamined this problem in the coordinate
representation by means of the orthogonality criterion for singular states and the natural connection condition
of the wave function’s derivatives. We have proved again that all these eigenstates with even parity do not
exist. This result is consistent with that of exact solutions in the momentum representation and in the integral
equation method canceling divergence. This study not only emphasized the importance of the orthogonality
criterion but also generalized its application, including the singular states with poles, essential singular points,
phase angle uncertainty, and the logarithmic singularity of derivatf&i€950-294{®7)03004-7

PACS numbegp): 03.65.Ge, 71.35:y, 02.90+p

I. INTRODUCTION It is well known that the wave functions of the 1D H atom
and thes states of 3D H atom satisfy the same Sclimger

For the stationary state problem of the one-dimensionaéquation. The only difference between them is the variable

hydrogen atom(1D H atom), the Schrdinger equation is X, which can be negative in the 1D H atom.
Introducing the Bohr radius and the following variable
h? 9 z¢e? transformations,
BT it WIII(X)Z Eg(x) (—oo<x<x),
2 2
(1) a :ﬁ_ = 2_X E=— ﬁ— 2)
O mée”’ ad’ 2maga’’

which has attracted a great deal of inteffdst5]. This inter-
est occurs because there are some obvious discrepancies Bgr. (1) is transformed into the Whittaker equation
tween theory and the conclusions, which may involve severdl16,17,28,
criteria determining singular state solutions in quantum me-
chanics. Also, the study of the exciton modigicluding one d? 1 a
dimensiongl is related to the theory of high temperature su- d_gzw_ Z‘/’JFE $=0. ©)
perconductivity [6], semiconductorg7,8], and polymers
[9-12. On the other hand, in experiments, scientists are inyith the aid of the function transformationy(&)
terested in the Wigner cryst#ll3,14. These experiments =e W (&) we have
have been carried out on the one-dimensional electron gas at
the helium surface. Essentially it can be identified as the 1D EF"(E)— EF' (&) + af(£)=0. (4)
H atom problem, due to the existence of an image force. The
theoretical discrepancies could be distinguished by experithis is a special case of the Kummer equation:
ments. The criterion determining the solution of singular

states also can be tested. d?y dy
Z+(y=2) g, —ay=0 (5
*Corresponding author. Usually its general solution can be written in the following
"Present address. form:
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y(2)=AF[—a,y,2]+ Bz "F[—a— y+1,2— y,Z], tential in left-half space to minus linear potential, it is obvi-
(6)  ous that in the physics and mathematics the particle will flow
into left space, and there are no bound states. But, if people
whereF is the confluent hypergeometric function or Kum- quantized the energy in advance according to the study in
mer function. It is necessary to study the 1D H atom and theight-half space, the conclusion must be wrong.
s state of the 3D H atom in detail. This is becaugeis It is very interesting that up to now, to our knowledge, no
different from the nors-state problem in the 3D H atgrthe  one has given the energy quantization of the 1D H atom by
two special solutions in the equation above are equivalent:whole standard conditions in the coordinate space naturally.
One of the goals of this paper is to give a natural description
in coordinate space and reach a correct conclusion to clarify
the arguments and to discuss a general criterion determining
the solution with singular states in quantum mechanics.

H 1 . —
CI|Ln0mF(a,c,§)—a§F(a+ 1,2,6). (7)

The important contribution by Loudon to solving this prob-

lem was his use of the Whittaker function as the two specialll- BOUNDARY CONDITION OF SINGULAR POTENTIAL

solutions of the Whittaker equation, because they are linearly |, quantum mechanics, it is generally believed that when

independent under general parameters. the potential is discontinuous with a finite jump, then the
The conclusion of Flugge and Marschill] was that  «gmaqth connection of the wave functionithe continuation

there exists a solution set with only odd parity. The conclu-of the wave function and its derivativs required. When the

sions of Loudon were the followinda) there also exists a potential is divergent, the continuation of the wave function
set of solutions with even parity simultaneously. They are s ;il| required, but the continuation of its derivative is not.

degenerate with that of odd parity. The binding energy of therng pasis of these propositions and the quantitative formula-
ground state is infinite(c) Then he suggested some improve-jon of the discontinuity of its derivatives must be clarified.
ment on the nondegeneracy theorem for the 1D bound statgg,is is a key issue.
in quantum mechanids.8]. But using Schwarz’s inequality,  Erom a physical point of view, the boundary condition is
Andrews|3] proved that Loudon’s ground stagg would be  {he manifestation of the field equation at the boundary. Usu-
orthogonal with all qL_ladr_atlc integrable wave functions anda”y that condition is obtained by taking the limit of the in-
would make no contribution to the completeness, and coulgegrg) field equation. The boundary conditions of the Max-
not be observable. Furthermore, Andrews q_uestloned the exgell equation in an electromagnetic field are typical
istence of Loudon’s ground state but he did not make anyyamples. Along this line, we develop the discussion on the
comment on the other states with even parity. boundary condition at the singularity.

Recently Zhad4] discussed the nondegeneracy theorem |t v 3 is a singularity of the potentiaV(x), thenx=a

and suggested the condition of nondegeneracy theoregh, pe considered as a boundépgint of the field equation
breaking. He also cited Loudon’s even solutions as the ©X(such as the Schdinger equation The corresponding varia-

ample of nondegeneracy breaking. , tion of the derivatives of the wave function can be obtained
Fortunately, we are interested in the potentials that argy the field equation itself:

singular in the momentum space. Taking the electron above
the helium surface as an example, we exactly solved the 1D 2m €
H atom problem in the momentum space and investigated the ¥'(a+e)—¢'(a— €)=?J [V(x)—E]J¥(x)dx,
momentum representation of the image poterttigth diver- ae
gence in momentum spadel5]. We suggested the criterion (e— OM). )
eliminating divergencgin momentum spage We proved
that the even states cannot satisfy the criterion eliminatind he following is clear(1) When the jump of the potential is
the divergence and must be rejected. From the study in mdinite, the derivative of the wave function is continuous at
mentum space, our conclusion is that only the odd states cat=a. (2) In the famous 1D many-body problem with a
exist. S-function potential[20], the connection condition of the
These discrepancies and arguments involve the fundawave function also satisfies this conditiof8) When the
mental theories and theorem in the quantum mechanics. Thegave function is finite, and the potentid(x) is divergent at
Wigner crystal problem is also very interesting in both ex-x=a but not as-function potential, for example, in the 1D H
periments and theory and could check the validity of theatom case, the condition of E¢8) naturally becomes
theories as well as test the criterion determining the solution

at+

of singular states. We return to the coordinate space to dis- Lo , . 2m(o*
cuss the 1D H atom problem in detail. YO =y (07)= 57|  V)h(x)dx. ©
Il. QUESTION AND GOAL This can be considered as an application of the above bound-

ary condition.
Not only Flugge and Marschalll], but also Loudor2],

quan.tlzed the energy of 'the 1D H atom by @scussmg only |/ THE ORTHOGONALITY CRITERION OF THE

the ngh_t-half space. Their r_esults are mcll_JSlve a_nd open to SINGULAR STATE OF THE 1D CASE

discussion. From a theoretical point of view, this kind of

procedure would appear to be unacceptable, because it can From our point of view, the even states in the 1D H atom
lead to incorrect results. For example, if we change the pobelong to a new kind of singular state, because the derivative
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of the wave function is discontinuous. According to this criterion, the phase-angle uncertainty in the
In physics, singular states do exist. Sometimes they areelativistic quantum mechanics can be locked in and the
very important and the eigen-function set will sometimes besame result can be obtained as that obtained by Kazama,
incomplete without them. The famous ground state of thevang, and Goldharbd27] by another method. In Ref25],
Dirac equation of a hydrogen atom is also a singular statewe have discussed the orthogonality criteria in detail and
which is divergent at the origin. have given some numerical results of the energy level equa-
Due to the importance of singular states in physics, manyion, (obtained from the orthogonality critejiaf the hydro-
detailed investigations on singular states and their applicagenlike atom(with z>137).
tions have appeared in the literaty@l—25. The orthogonality criterion for the 3D Schtimger equa-
In a singular potential problem, usually there are no sin+ion is[22]
gular states. It is interesting that some singular states satisfy

the equation and are quadratic integrable, but the energy h2r? R
spectrum is continuous. Sometimes they have complex ei- lim — m[RI(URé(T)—Ri*(f)Rz(f)]h
genvalues. After detailed investigation, it was found that the "~ %R—= z -l

character of these states is not orthogd24l25. = S(E;—E,). (14)

In traditional quantum mechanics, the orthogonality of the
glrg?g:u;ncél?g ;S;rleslnatler(]a?jcgf/srirgtriiﬂtigfalﬂjcﬁ e';gm!tlgzto]%lr'he singulfelr state problem for the following potential is dis-
singular potentials, it is necessary to make suitable adjusfzussedzz]'
ments. In order to set up a generalized quantum mechanics
framework, including the singular states simultaneously, u(r)= a B (15)
starting from the requirement of reality of measured prob- rr
abilities, one needs the orthogonality of the eigenfunction set
[22]. According to the criterion of orthogonality, one can  Now, extend the orthogonality criterion to the 1D situa-
judge which singular state can exist and which cannot. tion,

The exact definition of the orthogonality of two states is
the following: lim Q(X)lfz 8(E,—E), (16)

r— O;R—o»

J W Yrpd7=0, (10 where

But in the usual cases the calculations are not easy; &€nd _ h? * PN Tk

W, satisfy the equation of motion, the best way to judge the Q)= 2m(E,—E,) [42 () 200 = 41™ (X) $2(0)].

orthogonality is according to the asymptotic behavior at the 17)

singularity of the wave functions. We call these criteria the

“orthogonality criteria.” This situation is different from that discussed previoughe
For the Dirac equation, the orthogonality criterion is ob-pole, essential singularity, and phase angle uncerbainty

tained aq§21,23 Here, there is a singularity of the derivative of the function.

1 And the singularity is of logarithmiébranch poink singular-
fimq(r)|f= 7 61~ E), ay W

r—0;R—x

V. THE EXACT SOLUTION OF THE 1D H ATOM
where

It is obvious that Eq(3) is a special case of the Whittaker
2 equation:

r
AN =g g (N8N fNgl(N]. (2

k 3—-m?

Making use of this criterion, the authors discussed the hydro- Wit) =2+ +——|W=0. (18)
genlike atom withz>137 [21,25, the singular states with
essential singularity in the monopole-monopole sysi28i,
also rejected all the singular statésith pole singularity
with complex eigenvalue25].

In Ref.[24], using the monopole harmonif26], we ob-
tained the orthogonality criterion for electron-monopole sy

tem, especially for so-called “type Il states”:

i(g/|g)kcr?
B %{q(r)gzm+g;(r)fz(r)}|5

Its two special solutions could be Whittaker functions:
Wy m(2z) andW_y (z). The merit of choosing these Whit-
taker functions is that they are linearly independent under the

S_general parameters. They have the following asymptotic be-
havior:

i W m(£2)=e?(=2)"X1+0(z"h}. (19
m
r—-0;R—w

They can be obtained by the Barnes integral representation
=8(E;—E,). (13)  [28]. When 2m is an integer,
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(_ 1)2m+1
W, m(2)= e 72zV2*ME[ L+ m—k,1+2m,z]In(z)
’ 2m)IT(3—k—m)

“ (3—-k+m),
+ 2

2 n'(1+2m) Zn+m+1/29_2/2{(/,(%—k+ m-+n)—¢(1+2m+n)— ¢ (1+n)}

em-1)1Cm!T (i —k-—m)2™ ! (1 —k—m),

+(—1 2m+1e—z/221/2+m Zn—2m , 20
(=4 L'(3—k+m) n=o N!'(1-2m), (29
|
where B8),=I'(B+n)/T'(B) and 2n=0,1,2,.. .. tential on the left-half space surely can have an effect on the
Now for the 1D H atom: energy levels(2) Generally rejecting the solutions in which

the derivatives having logarithmic singularity is not correct,
since the Dirac ground state of the H atom, the order of
k=a,z=¢m=3,y=1+2m. (21)  singularity (pole) is higher. According to the quadratic inte-
grability, Dirac accepted this ground state. Physicists even-
tually accepted this importagsingulay state. If based on the
same standardquadratic integrability these Whittaker
functions also should be accepted as a possible wave func-
o &2 tion. But as time has passed, it has been found that many
E] EF[1—a,2,€][In(&)+ (1— @) singular states, having complex eigenvalues, are quadratic
integrable. Besides, there are some singular states, having
continuous(rea) eigenvalues, that are also quadratic inte-
grable. So up to now, in the theoretical study of the 1D H
atom, the energy quantization problem still has not been
solved.
(22) Our point of view is that the orthogonality of the eigen-
where function set is the requirement of the reality of measured
probability [22]. This is a physical and natural requirement
and must be satisfied by all the eigenfunction sets, for both
regular and singular states. The regular states naturally sat-
(23)  isfy the orthogonality criterion. For singular states, the situ-
ation is totally different. The criterion is especially signifi-
cant for singular states. The orthogonality criterion lets us
. . sieve the function class, which satisfies ttweave) Schro
This is _the same result as that found by Loudon, using th‘i‘iinger equation: the physical states are accepted and all the
Frobenius method. singular states not satisfying the orthogonality criterion are

In the positive half-space, considering the asymptotic be:; : . "
rejected. So, just as in other standard conditions, the orthogo-
havior of Eq.(19), the quadratic integrable condition of the nality criterion is a physical requirement. It is this require-

bound state rejects another special solution. Due to the i INment that can lead to the energy quantization for many sin-
version symmetry of the Hamiltonian, we can search for agular states

common eigenfunction set of energy and parity. We have Considering that the wave function of the bound state
turns to zero at infinity, the orthogonality criterion of 1D H
m can implifi
a1 §) (x>0) o atom can be simplified as

Then the solution is

a 1/2(5)

©

1 1—a),
—W) -] o+ 2 n(!(n—fi)!f”“An

1 1
1— a+| 241 1+

A

p— W !
Yo(X) _{ —Wy 1 —§) (x<0),

* ’ % 0+:
Wk (0 . [0t (0 UA) — > (0010 =0, (28)
VO W, —8) (x<0), @9

ConsideringW,, 1,,(£) has derivative logarithmic singularity Because even and odd functions are orthogonal to each

at x=0, Loudon generally rejects this kind of function, ex- other, we only need conside¥,; and ¢,; both are even or

cept @ equal to an integef2]. Then even if one considers both are odd. The®(x) are always odd functions.

only the right half-space, the energy is quantized already. We need not take the limit value ef in advance. Starting

This conclusion is similar to that of Reff1]. from the general solutioi22), we keep all nonzero terms.
We have a different opinion1) This procedure of energy Especially notice the logarithmic term, which could lead to

guantization is not acceptable in the theory, because the pdhe derivative singularity
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+\ — 1 .
W, 140" = i oy (27
d 2 1
d—xwa,m@)lgﬁm:m{In(§)+w<1—a>—¢(2>—w<1>+1+5 : (28)
1. When bothy, and ¢, are odd functions:
= 2h? | (al 1 1
J e e M e e @

Note especially that the logarithmic derivative and logarithmic uncertainty at the coordinate origin have already disappeared.
Then from the orthogonality criterion we obtain the equation for determining the energy levels:

1

1
+¢(1—a2)—¢(1—a1)+7%—ﬂ]=0. (30)

_ 1 (CY]_
e I apT(1=ap) | M @,

It is not easy to solve this kind of equation, because it has Notice that in this cas€(x) is still an odd function. We
pairwise orthogonal relations. Generally speaking, for anyobtain the same orthogonality expression and the equation
fixed a4, to obtain the totality ofx,: {@,}, we need to solve determining energy levéB0). And it gives exactly the same
N(N—1)/2 equations. Notice that, because the orthogona and energy leve(32). But the wave function has the fol-
criterion must be satisfied by every two eigenstates, the odewing form:
tained totality {a;} must be the same as the totality of

. . —&r2 1
{a,}. In other words, we cannot obtain such a result, given Npée™“Ly(6) (x=0)
ay, to solve the equations and get a &et}, but a; does not =) _ N cef?Li(—&)  (x<0).
belong to{a,}. In mathematics, this causes many difficul- "
ties. Sometimes these serious limitations provide a signifiAll these functions satisfy the continuity condition of the
cant advantage. For our case, it is obvious that satisfying alvave function:
the pairwise orthogonal relations, the exact solution only can

(37)

be the totality of natural numbers: $(07)=y(07), (38
a=123.... (31) but their derivatives do not satisfy the connection condition
(9) because
Then we obtain a branch of the discrete energy spectrum: (—1)"(n—1)!
52 YO)=g(0)=4——— (39
En=—7—">5 (n=123...) (32
2magn and
When a=n is an integer, the Whittaker functions become 2m o+
associate Laguerre polynomials: ?JW V(X)(x)dx# ' (07)— ' (07). (40
_ n
lim W, 1/2(5):( 1) §e*§’2Lr11(§). (33 Then we can definitely reject all these states with even par-
a—n n ity. It also eliminates the counterexample of the nondegen-

eracy theorem, which has been proposed by Loy@dmand
At the same time, these functions satisfy all the connectiortited by Zhad4].
conditions of the wave function and its derivatives:
L _ VI. ON THE ARGUMENT BETWEEN ANDREWS AND
$(07)=4(07). (34 LOUDON ON THE GROUND STATE

. - m (o* One of the most interesting states is the state with
Y'(07)—¢'(07)= ?Lf V(X)¢(x)dx=0. (35  4—0. This is suggested by Loudon as the ground state. It
has infinite binding energy anB— —«. The logarithmic

Then we obtain the exact eigenfunction with odd parity: singularity(of)its derivative has already disappeared. Accord-
ing to Eq.(22),

(36) Yo=W, 1d)=e" ¥ (a—0). (41)

This solution can be derived also from E®) directly. The
2. When bothy; and ¢, are even functions: odd state, consisting of this expression, satisfies the deriva-

Noée 92LL(E)  (x=0)

‘”X):[anes"%%(—a (x=0)
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tive connection conditiof35) obviously. But the wave func- 3
tion has discontinuity at the origin. For the even state, con- I(El_EZ)f YT (X)Pa(X)dx=0 (E1#Ez). (45
sisting of the expression(4l), the wave function is o
continuous. It is understandable that some people think that
this state will possibly be a physical state. But this even stat?4
does not satisfy the derivative connection conditid®), be-

It is obvious that Eq(45) cannot be guaranteed by Eq.
3). [For instance] (E;—E,)=E;—E,.]
Now let us check the orthogonality criterion. According

cause to Egs.(41) and(33),
2
' (07)—¢'(07)=— aag’ Q(O™)~ 45 (07)hn(0™) = hp* (07) hn(0T) =y (0T)
2
¢ =52?O(—1)“L§(0)¢o_ (46)

2m . 4m (e
7z 7€V(X)¢(x)dx= lim ?f V(X) (x)dx

EO/EHO'*' €0

This means that neither even nor odd states with 0

amée? € could exist. The conclusion is that the essential reason for the

7'”( ) (42) nonexistence of these states is their nonorthogonality with
other eigenstates. This conclusion is consistent with that ob-

. o . . tained by Andrews by Schwarz's inequality, but the founda-
The latter integral is divergent and independent. There is tion is totally different.

no definite reason to think that these two expressions are

equal. But one can argue that whenr-0, both expressions
turn to —. So the connection condition is not strong VIl. s STATE OF 3D HYDROGEN ATOM AND OTHERS

enough toblrejectf Ihoudon’s “grou?]d stalte.” And for th: In order to explain the correctness of the orthogonality
s-state problem of the 3D H atom, there also exists a LoudoRjieria and its application, we consider the following poten-
ground-state problem. ial

According to the Schwarz inequality, Andrey& proved
that the scalar product between and quadratic integrable a B
statesys vanishes. We can further prove thafx) also can V(x)=— o . (47)
be any finite wave function: rr

The radial wave functions of the 3D Schiinger equation

U Wo(X) (X)dx <|l/f|maxf Yo(X)dX=| ] maxy @@p— 0. u(r)=rR(r) satisfy the following equation:
0 0
(43 [2mE 2may, 2mplhZ—I(1+1)
. : _ u(N+| 72 72 > u(r)=0.
Andrews claimed thata) ¢ is not required for complete- r r
ness in the expansion of quadratic integrable functidb)s; (48)

o IS not observable.

However, we do not think that the conclusions are com
pletely true, because the binding energyygfis infinite. As
long asy, does exist, all the 1D hydrogen atoms will stay in
this “ground state” and could never be excited. All the other = 2m_,8 —1(1+1)#0 (49)
(excited states will be not observable. But, in fact, other h? '
states surely have been observed. This requires that the fun-
damental theory of quantum mechanics must propose someis easy to express the general solution by a linear combi-
significant reasons to reject Loudon’s “ground state.” nation of two linear independent special solutions. The gen-

According to our studies, we found the followingl)  eral solution with'=0 is often obtained by the same
Andrews has not proved whethég(x) is orthogonal with  method. But in fact, in this case, these two special solutions
other eigenstates in the meaning of quantum mechanics, bare the same. So we meet the same problem as previously
cause the scalar product in E¢-3) vanishes only due to the mentioned. As described before, we can express the general
infinite binding energy, but not because the sign of the prodsolutions(with I'=0) by two Whittaker functiongas Lou-
uct 4o changes alternatively2) The orthogonal relation in  don has done Repeating the previous discussion, denoting
guantum mechanics, ay=2€, the main difference is the limitation on the variable
(r=0). We can also judge which solutions are physical by
the almost the same orthogonality criterion:

One can transform it into a confluent hypergeometric equa-
tion by a suitable transformation. Denote

| - sE-E), @a

o (7 (27
¥ or?dr sin(9)dodp=—Q(0")=0,
not only specifies the zero scaler product #y#E,, but fo jo fo vide ) ¢ Q0%

also completely fixes the energy dependence. For example, if (50
we time it by any integer functioh(E; — E,), the result must
be zero: where
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h2r2 due to the reality of the measured probability of dynamical
Q(r)=- m[R’f (NR3(r) —Ra(r)R* (r)]. quantities, the orthogonality criterion of the eigenfunctions is
2 (51) the same as the physical natural requirem¢gf. These
orthogonalities are usually satisfied automatically for regular
Whenu(r) are the Whittaker functions as expressed in Eqstateg22], but for singular states, the situations are different:
(22), the orthogonality criterion becomes an equation detersometimes they are very important and can reject many non-
mining the energy levels: physical states. Sometimes the energy levels are essentially
determined by these orthogonality criteria. The energy levels
_ _ _ of the 1D and thes states of the 3D hydrogen atoms dis-
T¥(lma)—y(l-ay) cussed here are the exact soluble examples of the orthogo-
nality criteria and consistent with the experiments. More-
i_ i} =0. (52) over, these criteria are necessary to determine the energy
2a; 2ay quantization and reject the unphysical states.
For the 1D hydrogen atom problem there is a long history.
Thena must be the natural number and the energy levels fofrhis is also related to the study of the Wigner cry$td, 14

l (0[1
F(l_a1)r(1_a2)[ln a_z

S states are and the 1D excitofi7—12. Loudon[2] pointed out the prob-
5 lems in the usual solutions. Then he expressed the general
En=—z—>> (N=123...) (53  Solutions by two linear-independent Whittaker functions.

2magn This is important progress. But a series of interesting prob-
lems are still waiting to be solved, which are closely related

It is worth noting that before the energy quantization byto the fundamental theory of singular states in quantum me-
the orthogonality criterion, the Whittaker functié®2) is not chanics.(1) the energy quantizatior2) the Loudon even
divergent and turns to zero at the origin. The functions aretates and the nondegeneracy theorem breaking. In Loudon’s
quadratic integrable and the are continuous. The usual paper[2], besides the odd states there exist degenerate even
standard conditions cannot quantize the energy. It is the Olstates simultaneously. They are considered as counterex-
thogonality criterion, rejecting all the continuous boundamples of the nondegeneracy theorf¥]. In our paper,
states and SeIeCting all tlsestates, which are experimentally from a physica| point of view, boundary conditions are the
observable. manifestation of the field equation. The natural connection

Unlike the 1D case, all the states in 3D have even par- condition for the wave function and its derivatives can be
ity. The continuity of the wave functions is not a problem. derived from the Schiinger equation. These connection
The derivative connection can be proved as conditions showed that Loudon’s even states do not satisfy
this physical requirement and must be rejected definitely. So
. 0 B there are no such even states serving as counterexamples for
ET ag\ 4 rl(:TO 0 u(r)dr=0. 54 the nondegeneracy theore(B8) The question of the Loudon

ground state and Andrews’ question.

It can be proved that whem=n, this condition is definitely N Ref. [2], yo(§)=Ce ¥ is suggested as the ground
satisfied. state, with infinite binding energy. With the aid of Schwarz’s

It is very interesting to study the existence problem of theln€quality, Andrews proved that the scalar productsygf
stateup=Ce 2. In Loudon’s theory, this state will be ac- vv_|th any quadraﬂc integrable functions vanish. And he pre-
cepted. But Andrews thought that this state would not belicted thatys, is not observable. .
observable due to the vanishing scalar products with other In this paper, we reconfirm that th, state has a vanish-
states. But in our theory, only in the generalized quantunind scalar product with all other finite wave functions. But
mechanics framework, including singular states, the orthogowe doubt the validity of Andrews’ questiofe) The proof in
nality criterion can definitely reject this kind of singular Andrews’ paper does not mean thag is orthogonal with
state. other states in the meaning of quantum mechar(os.If

The examples in this section can provide a reliable basigo does exist, considering Andrews’ argument, the energy of
for testing the correctness of the two theories, because théo is —. The 1D hydrogen atom will stay in the, state.
3D H atom is the Specia' examp|e and in the experiment thénd the other states will not be excited. The unobservable
3D H atom is very clear. In the experiments, these state§tate is not,, but other states. In experiments, other states
have not been observed. This means that the orthogonalifjave surely been observed. This means that the quantum
criterion has stood the fact test. mechanics need to provide a definite reason to reject this

ForI'<1in Eq.(49), the orthogonality criterion can reject Loudon “ground state.” This definite reason is the orthogo-
the states with higher-order singularity and accept those witRality criterion for singular states.

lower-order singularity among these two kinds of singular For thes state of the 3D hydrogen atom, there is almost
states. the same problem. The orthogonality criterion can definitely

reject Loudon’s “ground state” with infinite binding energy.

The highly accurate experimental data of the hydrogen atom

are the touchstone for the orthogonality. Since it is proved
In order to fit the study of the singular state problem, it isthat reason for rejectingsy state is the orthogonality crite-

necessary to generalize the quantum mechanics framewaorlon.

to include the singular stat¢21,22,25. In this framework, (4) Up to now, all the applications of the orthogonality

w1 '
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criteria have been successful, including a variety of singulathe CEEC, NSF Grant No. DMR 91-22043, DARPA Grant
states(with pole, essential singularity, or phase angle uncerNo. MDA 972-88-G-002, the State of Texas, NASA Grant
tainty). Now we add a kind of singular staféhe derivative ~No. NAGW-977, Texas Center for Superconductivity at the
logarithmic singularity. We think that the generalized quan- University of Houston, and the T.L.L. Temple Foundation.

tum mechanics framework, including singular states, inHe would also like to acknowledge Professor C. N. Yang,
theory is reliable and trustworthy. Professor W. E. Evenson, Professor P. H. Hor, Professor

J. Qiu, Professor H. Chen, and Professor W. P. Su for their
significant discussions and the ITP and the Department of
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