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Orthogonality criteria for singular states and the nonexistence of stationary states with even
parity for the one-dimensional hydrogen atom
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With the aid of two linearly independent Whittaker functions, Loudon obtained the solutions with even and
odd parity for the one-dimensional hydrogen atom. Applying the Schwarz inequality, Andrews made an
objection to Loudon’s ‘‘ground state.’’ Either solving the problem in the momentum representation or basing
our work on the theory of singular integral equations, we have proved that these solutions with even parity do
not exist. Due to its importance related to the nondegeneracy theorem and to the study of the exciton and
Wigner crystal~by electron gas above the helium surface!, we have reexamined this problem in the coordinate
representation by means of the orthogonality criterion for singular states and the natural connection condition
of the wave function’s derivatives. We have proved again that all these eigenstates with even parity do not
exist. This result is consistent with that of exact solutions in the momentum representation and in the integral
equation method canceling divergence. This study not only emphasized the importance of the orthogonality
criterion but also generalized its application, including the singular states with poles, essential singular points,
phase angle uncertainty, and the logarithmic singularity of derivatives.@S1050-2947~97!03004-7#

PACS number~s!: 03.65.Ge, 71.35.2y, 02.90.1p
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I. INTRODUCTION

For the stationary state problem of the one-dimensio
hydrogen atom~1D H atom!, the Schro¨dinger equation is

2
\2

2m

]2

]x2
c~x!2

Ze2

uxu
c~x!5Ec~x! ~2`,x,`!,

~1!

which has attracted a great deal of interest@1–5#. This inter-
est occurs because there are some obvious discrepancie
tween theory and the conclusions, which may involve sev
criteria determining singular state solutions in quantum m
chanics. Also, the study of the exciton model~including one
dimensional! is related to the theory of high temperature s
perconductivity @6#, semiconductors@7,8#, and polymers
@9–12#. On the other hand, in experiments, scientists are
terested in the Wigner crystal@13,14#. These experiments
have been carried out on the one-dimensional electron g
the helium surface. Essentially it can be identified as the
H atom problem, due to the existence of an image force.
theoretical discrepancies could be distinguished by exp
ments. The criterion determining the solution of singu
states also can be tested.

*Corresponding author.
†Present address.
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It is well known that the wave functions of the 1D H ato
and thes states of 3D H atom satisfy the same Schro¨dinger
equation. The only difference between them is the varia
x, which can be negative in the 1D H atom.

Introducing the Bohr radius and the following variab
transformations,

a05
\2

me2
, j5

2 x

aa0
, E52

\2

2ma0
2a2 , ~2!

Eq. ~1! is transformed into the Whittaker equatio
@16,17,28#,

d2

dj2
c2

1

4
c1

a

uju
c50. ~3!

With the aid of the function transformationc(j)
5e2(1/2)j f (j), we have

j f 9~j!2j f 8~j!1a f ~j!50. ~4!

This is a special case of the Kummer equation:

z
d2y

dz2
1~g2z!

dy

dz
2ay50. ~5!

Usually its general solution can be written in the followin
form:
2617 © 1997 The American Physical Society
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y~z!5AF@2a,g,z#1Bz12gF@2a2g11,22g,z#,
~6!

whereF is the confluent hypergeometric function or Kum
mer function. It is necessary to study the 1D H atom and
s state of the 3D H atom in detail. This is because~it is
different from the non-s-state problem in the 3D H atom! the
two special solutions in the equation above are equivale

lim
c→0

1

G~c!
F~a,c;j!5ajF~a11,2,j!. ~7!

The important contribution by Loudon to solving this pro
lem was his use of the Whittaker function as the two spe
solutions of the Whittaker equation, because they are line
independent under general parameters.

The conclusion of Flugge and Marschall@1# was that
there exists a solution set with only odd parity. The conc
sions of Loudon were the following:~a! there also exists a
set of solutions with even parity simultaneously.~b! They are
degenerate with that of odd parity. The binding energy of
ground state is infinite.~c! Then he suggested some improv
ment on the nondegeneracy theorem for the 1D bound s
in quantum mechanics@18#. But using Schwarz’s inequality
Andrews@3# proved that Loudon’s ground statec0 would be
orthogonal with all quadratic integrable wave functions a
would make no contribution to the completeness, and co
not be observable. Furthermore, Andrews questioned the
istence of Loudon’s ground state but he did not make
comment on the other states with even parity.

Recently Zhao@4# discussed the nondegeneracy theor
and suggested the condition of nondegeneracy theo
breaking. He also cited Loudon’s even solutions as the
ample of nondegeneracy breaking.

Fortunately, we are interested in the potentials that
singular in the momentum space. Taking the electron ab
the helium surface as an example, we exactly solved the
H atom problem in the momentum space and investigated
momentum representation of the image potential~with diver-
gence in momentum space! @15#. We suggested the criterio
eliminating divergence~in momentum space!. We proved
that the even states cannot satisfy the criterion elimina
the divergence and must be rejected. From the study in
mentum space, our conclusion is that only the odd states
exist.

These discrepancies and arguments involve the fun
mental theories and theorem in the quantum mechanics.
Wigner crystal problem is also very interesting in both e
periments and theory and could check the validity of
theories as well as test the criterion determining the solu
of singular states. We return to the coordinate space to
cuss the 1D H atom problem in detail.

II. QUESTION AND GOAL

Not only Flugge and Marschall@1#, but also Loudon@2#,
quantized the energy of the 1D H atom by discussing o
the right-half space. Their results are inclusive and open
discussion. From a theoretical point of view, this kind
procedure would appear to be unacceptable, because i
lead to incorrect results. For example, if we change the
e
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tential in left-half space to minus linear potential, it is obv
ous that in the physics and mathematics the particle will fl
into left space, and there are no bound states. But, if peo
quantized the energy in advance according to the stud
right-half space, the conclusion must be wrong.

It is very interesting that up to now, to our knowledge,
one has given the energy quantization of the 1D H atom
whole standard conditions in the coordinate space natura
One of the goals of this paper is to give a natural descript
in coordinate space and reach a correct conclusion to cla
the arguments and to discuss a general criterion determi
the solution with singular states in quantum mechanics.

III. BOUNDARY CONDITION OF SINGULAR POTENTIAL

In quantum mechanics, it is generally believed that wh
the potential is discontinuous with a finite jump, then t
‘‘smooth connection of the wave function’’~the continuation
of the wave function and its derivative! is required. When the
potential is divergent, the continuation of the wave functi
is still required, but the continuation of its derivative is no
The basis of these propositions and the quantitative form
tion of the discontinuity of its derivatives must be clarifie
This is a key issue.

From a physical point of view, the boundary condition
the manifestation of the field equation at the boundary. U
ally that condition is obtained by taking the limit of the in
tegral field equation. The boundary conditions of the Ma
well equation in an electromagnetic field are typic
examples. Along this line, we develop the discussion on
boundary condition at the singularity.

If x5a is a singularity of the potentialV(x), thenx5a
can be considered as a boundary~point! of the field equation
~such as the Schro¨dinger equation!. The corresponding varia
tion of the derivatives of the wave function can be obtain
by the field equation itself:

c8~a1e!2c8~a2e!5
2m

\2 E
a2e

a1e

@V~x!2E#c~x!dx,

~e→ 01!. ~8!

The following is clear:~1! When the jump of the potential is
finite, the derivative of the wave function is continuous
x5a. ~2! In the famous 1D many-body problem with
d-function potential@20#, the connection condition of the
wave function also satisfies this condition.~3! When the
wave function is finite, and the potentialV(x) is divergent at
x5a but not ad-function potential, for example, in the 1D H
atom case, the condition of Eq.~8! naturally becomes

c8~01!2c8~02!5
2m

\2 E
02

01

V~x!c~x!dx. ~9!

This can be considered as an application of the above bo
ary condition.

IV. THE ORTHOGONALITY CRITERION OF THE
SINGULAR STATE OF THE 1D CASE

From our point of view, the even states in the 1D H ato
belong to a new kind of singular state, because the deriva
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of the wave function is discontinuous.
In physics, singular states do exist. Sometimes they

very important and the eigen-function set will sometimes
incomplete without them. The famous ground state of
Dirac equation of a hydrogen atom is also a singular st
which is divergent at the origin.

Due to the importance of singular states in physics, m
detailed investigations on singular states and their appl
tions have appeared in the literature@21–25#.

In a singular potential problem, usually there are no s
gular states. It is interesting that some singular states sa
the equation and are quadratic integrable, but the ene
spectrum is continuous. Sometimes they have complex
genvalues. After detailed investigation, it was found that
character of these states is not orthogonal@21–25#.

In traditional quantum mechanics, the orthogonality of t
eigenfunction set is a necessary result of the Hermitian
erator and is guaranteed by mathematical theorem. But
singular potentials, it is necessary to make suitable adj
ments. In order to set up a generalized quantum mecha
framework, including the singular states simultaneous
starting from the requirement of reality of measured pro
abilities, one needs the orthogonality of the eigenfunction
@22#. According to the criterion of orthogonality, one ca
judge which singular state can exist and which cannot.

The exact definition of the orthogonality of two states
the following:

E c1*c2dt50, ~10!

But in the usual cases the calculations are not easy. Ifc1 and
c2 satisfy the equation of motion, the best way to judge
orthogonality is according to the asymptotic behavior at
singularity of the wave functions. We call these criteria t
‘‘orthogonality criteria.’’

For the Dirac equation, the orthogonality criterion is o
tained as@21,23#

lim
r→0;R→`

q~r !ur
R5

1

\c
d~E12E2!, ~11!

where

q~r !5
r 2

E22E1
@ f 1* ~r !g2~r !2 f 2~r !g1* ~r !#. ~12!

Making use of this criterion, the authors discussed the hyd
genlike atom withz.137 @21,25#, the singular states with
essential singularity in the monopole-monopole system@23#,
also rejected all the singular states~with pole singularity!
with complex eigenvalues@25#.

In Ref. @24#, using the monopole harmonics@26#, we ob-
tained the orthogonality criterion for electron-monopole s
tem, especially for so-called ‘‘type III states’’:

lim
r→0;R→`

2
i ~q/uqu!\cr2

E22E1
$ f 1* ~r !g2~r !1g1* ~r ! f 2~r !%ur

R

5d~E12E2!. ~13!
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According to this criterion, the phase-angle uncertainty in
relativistic quantum mechanics can be locked in and
same result can be obtained as that obtained by Kaza
Yang, and Goldharber@27# by another method. In Ref.@25#,
we have discussed the orthogonality criteria in detail a
have given some numerical results of the energy level eq
tion, ~obtained from the orthogonality criteria! of the hydro-
genlike atom~with z.137).

The orthogonality criterion for the 3D Schro¨dinger equa-
tion is @22#

lim
r→ 0;R→`

2
\2r 2

2m~E22E1!
@R1* ~r !R28~r !2R18* ~r !R2~r !#ur

R

5d~E12E2!. ~14!

The singular state problem for the following potential is d
cussed@22#:

U~r !52
a

r
2

b

r 2
. ~15!

Now, extend the orthogonality criterion to the 1D situ
tion,

lim
r→ 0;R→`

Q~x!ur
R5d~E22E1!, ~16!

where

Q~x!52
\2

2m~E22E1!
@c1* ~x!c28~x!2c18* ~x!c2~x!#.

~17!

This situation is different from that discussed previously~the
pole, essential singularity, and phase angle uncertain!.
Here, there is a singularity of the derivative of the functio
And the singularity is of logarithmic~branch point! singular-
ity.

V. THE EXACT SOLUTION OF THE 1D H ATOM

It is obvious that Eq.~3! is a special case of the Whittake
equation:

W91F2
1

4
1
k

z
1

1
42m2

z2
GW50. ~18!

Its two special solutions could be Whittaker function
Wk,m(z) andW2k,m(z). The merit of choosing these Whit
taker functions is that they are linearly independent under
general parameters. They have the following asymptotic
havior:

W6k,m~6z!5e6z/2~6z!6k$11O~z21!%. ~19!

They can be obtained by the Barnes integral representa
@28#. When 2m is an integer,
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Wk,m~z!5
~21!2m11

~2m!!G~ 1
22k2m!

Fe2z/2z1/21mF@ 1
21m2k,112m,z# ln~z!

1 (
n50

` ~ 1
22k1m!n

n! ~112m!n
zn1m11/2e2z/2$c~ 1

22k1m1n!2c~112m1n!2c~11n!%

1~21!2m11e2z/2z1/21m
~2m21!! ~2m!!G~ 1

22k2m!

G~ 1
22k1m!

(
n50

2m21 ~ 1
22k2m!n

n! ~122m!n
zn22mG , ~20!
th
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where (B)n[G(B1n)/G(B) and 2m50,1,2,. . . .
Now for the 1D H atom:

k5a,z5j,m5 1
2 ,g5112m. ~21!

Then the solution is

Wa,1/2~j!5
e2j/2

G~2a! H jF@12a,2,j#@ ln~j!1c~12a!

2c~2!2c~1!#2
1

a
1 (

n51

`
~12a!n
n! ~n11!!

jn11AnJ ,
~22!

where

An5 (
l50

n21 F 1

12a1 l
2

1

21 l
2

1

11 l G . ~23!

This is the same result as that found by Loudon, using
Frobenius method.

In the positive half-space, considering the asymptotic
havior of Eq.~19!, the quadratic integrable condition of th
bound state rejects another special solution. Due to the
version symmetry of the Hamiltonian, we can search fo
common eigenfunction set of energy and parity. We hav

co~x!5HWa,1/2~j! ~x.0!

2Wa,1/2~2j! ~x,0!,
~24!

ce~x!5HWa,1/2~j! ~x.0!

Wa,1/2~2j! ~x,0!.
~25!

ConsideringWa,1/2(j) has derivative logarithmic singularit
at x50, Loudon generally rejects this kind of function, e
cepta equal to an integer@2#. Then even if one consider
only the right half-space, the energy is quantized alrea
This conclusion is similar to that of Ref.@1#.

We have a different opinion:~1! This procedure of energy
quantization is not acceptable in the theory, because the
e

-

n-
a

y.

o-

tential on the left-half space surely can have an effect on
energy levels.~2! Generally rejecting the solutions in whic
the derivatives having logarithmic singularity is not corre
since the Dirac ground state of the H atom, the order
singularity ~pole! is higher. According to the quadratic inte
grability, Dirac accepted this ground state. Physicists ev
tually accepted this important~singular! state. If based on the
same standard~quadratic integrability!, these Whittaker
functions also should be accepted as a possible wave f
tion. But as time has passed, it has been found that m
singular states, having complex eigenvalues, are quad
integrable. Besides, there are some singular states, ha
continuous~real! eigenvalues, that are also quadratic in
grable. So up to now, in the theoretical study of the 1D
atom, the energy quantization problem still has not be
solved.

Our point of view is that the orthogonality of the eige
function set is the requirement of the reality of measu
probability @22#. This is a physical and natural requireme
and must be satisfied by all the eigenfunction sets, for b
regular and singular states. The regular states naturally
isfy the orthogonality criterion. For singular states, the si
ation is totally different. The criterion is especially signifi
cant for singular states. The orthogonality criterion lets
sieve the function class, which satisfies the~wave! Schrö-
dinger equation: the physical states are accepted and al
singular states not satisfying the orthogonality criterion
rejected. So, just as in other standard conditions, the ortho
nality criterion is a physical requirement. It is this requir
ment that can lead to the energy quantization for many
gular states.

Considering that the wave function of the bound st
turns to zero at infinity, the orthogonality criterion of 1D
atom can be simplified as

@c1* ~x!c28~x!2c18* ~x!c2~x!#u02
01

50. ~26!

Because even and odd functions are orthogonal to e
other, we only need considerc1 andc2; both are even or
both are odd. ThenQ(x) are always odd functions.

We need not take the limit value ofa in advance. Starting
from the general solution~22!, we keep all nonzero terms
Especially notice the logarithmic term, which could lead
the derivative singularity
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Wa,1/2~0
1!5

1

G~12a!
; ~27!

d

dx
Wa,1/2~j!uj→015

2

aa0G~2a! H ln~j!1c~12a!2c~2!2c~1!111
1

2a J . ~28!

1. When bothc1 andc2 are odd functions:

E
2`

`

c1*c2dx5
2\2

ma0@E22E1#G~12a1!G~12a2!
H lnS a1

a2
D1c~12a2!2c~12a1!1

1

2a2
2

1

2a1
J . ~29!

Note especially that the logarithmic derivative and logarithmic uncertainty at the coordinate origin have already disap
Then from the orthogonality criterion we obtain the equation for determining the energy levels:

I 125
1

G~12a1!G~12a2!
H lnS a1

a2
D1c~12a2!2c~12a1!1

1

2a2
2

1

2a1
J 50. ~30!
ha
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It is not easy to solve this kind of equation, because it
pairwise orthogonal relations. Generally speaking, for a
fixed a1, to obtain the totality ofa2: $a2%, we need to solve
N(N21)/2 equations. Notice that, because the orthogo
criterion must be satisfied by every two eigenstates, the
tained totality $a1% must be the same as the totality
$a2%. In other words, we cannot obtain such a result, giv
a1, to solve the equations and get a set$a2%, buta1 does not
belong to$a2%. In mathematics, this causes many difficu
ties. Sometimes these serious limitations provide a sign
cant advantage. For our case, it is obvious that satisfying
the pairwise orthogonal relations, the exact solution only
be the totality of natural numbers:

a51,2,3, . . . . ~31!

Then we obtain a branch of the discrete energy spectrum

En52
\2

2ma0
2n2

~n51,2,3, . . . ! ~32!

When a5n is an integer, the Whittaker functions becom
associate Laguerre polynomials:

lim
a→n

Wa,1/2~j!5
~21!n

n
je2j/2Ln

1~j!. ~33!

At the same time, these functions satisfy all the connec
conditions of the wave function and its derivatives:

c~01!5c~02!. ~34!

c8~01!2c8~02!5
2m

\2 E
02

01

V~x!c~x!dx50. ~35!

Then we obtain the exact eigenfunction with odd parity:

c~x!5HNnje
2j/2Ln

1~j! ~x>0!

Nnje
j/2Ln

1~2j! ~x<0!
~36!

2. When bothc1 andc2 are even functions:
s
y

al
b-

n

-
ll
n

n

Notice that in this case,Q(x) is still an odd function. We
obtain the same orthogonality expression and the equa
determining energy level~30!. And it gives exactly the same
a and energy level~32!. But the wave function has the fol
lowing form:

c~x!5HNnje
2j/2Ln

1~j! ~x>0!

2Nnje
j/2Ln

1~2j! ~x<0!.
~37!

All these functions satisfy the continuity condition of th
wave function:

c~01!5c~02!, ~38!

but their derivatives do not satisfy the connection condit
~9! because

c8~01!2c8~02!54
~21!n~n21!!

a0
~39!

and

2m

\2 E
02

01

V~x!c~x!dxÞc8~01!2c8~02!. ~40!

Then we can definitely reject all these states with even p
ity. It also eliminates the counterexample of the nondeg
eracy theorem, which has been proposed by Loudon@2# and
cited by Zhao@4#.

VI. ON THE ARGUMENT BETWEEN ANDREWS AND
LOUDON ON THE GROUND STATE

One of the most interesting states is the state w
a→0. This is suggested by Loudon as the ground state
has infinite binding energy andE→2`. The logarithmic
singularity of its derivative has already disappeared. Acco
ing to Eq.~22!,

c05Wa,1/2~j!5e2j/2 ~a→0!. ~41!

This solution can be derived also from Eq.~3! directly. The
odd state, consisting of this expression, satisfies the der
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tive connection condition~35! obviously. But the wave func-
tion has discontinuity at the origin. For the even state, c
sisting of the expression~41!, the wave function is
continuous. It is understandable that some people think
this state will possibly be a physical state. But this even s
does not satisfy the derivative connection condition~35!, be-
cause

c8~01!2c8~02!52
2

aa0
.

2m

\2 E
2e

e

V~x!c~x!dx5 lim
e0 /e→01

4m

\2 E
e0

e

V~x!c~x!dx

52
4me2

\2 lnS e

e0
D . ~42!

The latter integral is divergent anda independent. There is
no definite reason to think that these two expressions
equal. But one can argue that whena→0, both expressions
turn to 2`. So the connection condition is not stron
enough to reject Loudon’s ‘‘ground state.’’ And for th
s-state problem of the 3D H atom, there also exists a Lou
ground-state problem.

According to the Schwarz inequality, Andrews@3# proved
that the scalar product betweenc0 and quadratic integrable
statesc vanishes. We can further prove thatc(x) also can
be any finite wave function:

U E
0

`

c0~x!c~x!dxU,ucumaxE
0

`

c0~x!dx5ucumaxAaa0→0.

~43!

Andrews claimed that~a! c0 is not required for complete
ness in the expansion of quadratic integrable functions;~b!
c0 is not observable.

However, we do not think that the conclusions are co
pletely true, because the binding energy ofc0 is infinite. As
long asc0 does exist, all the 1D hydrogen atoms will stay
this ‘‘ground state’’ and could never be excited. All the oth
~excited! states will be not observable. But, in fact, oth
states surely have been observed. This requires that the
damental theory of quantum mechanics must propose s
significant reasons to reject Loudon’s ‘‘ground state.’’

According to our studies, we found the following:~1!
Andrews has not proved whetherc0(x) is orthogonal with
other eigenstates in the meaning of quantum mechanics
cause the scalar product in Eq.~43! vanishes only due to the
infinite binding energy, but not because the sign of the pr
uctc0c changes alternatively.~2! The orthogonal relation in
quantum mechanics,

E
2`

`

c1* ~x!c2~x!dx5d~E12E2!, ~44!

not only specifies the zero scaler product forE1ÞE2, but
also completely fixes the energy dependence. For examp
we time it by any integer functionI (E12E2), the result must
be zero:
-

at
te

re

n

-

r

n-
e

e-

-

, if

I ~E12E2!E
2`

`

c1* ~x!c2~x!dx50 ~E1ÞE2!. ~45!

It is obvious that Eq.~45! cannot be guaranteed by Eq
~43!. @For instance,I (E12E2)5E12E2.#

Now let us check the orthogonality criterion. Accordin
to Eqs.~41! and ~33!,

Q~01!;c0* ~01!cn8~0
1!2c08* ~01!cn~0

1!5cn8~0
1!

5
2

n2a0
~21!nLn

1~0!Þ0. ~46!

This means that neither even nor odd states witha→0
could exist. The conclusion is that the essential reason for
nonexistence of these states is their nonorthogonality w
other eigenstates. This conclusion is consistent with that
tained by Andrews by Schwarz’s inequality, but the found
tion is totally different.

VII. s STATE OF 3D HYDROGEN ATOM AND OTHERS

In order to explain the correctness of the orthogona
criteria and its application, we consider the following pote
tial:

V~x!52
a0

r
2

b

r 2
. ~47!

The radial wave functions of the 3D Schro¨dinger equation
u(r )[rR(r ) satisfy the following equation:

u9~r !1F2mE

\2 1
2ma0

\2r
1
2mb/\22 l ~ l11!

r 2 Gu~r !50.

~48!

One can transform it into a confluent hypergeometric eq
tion by a suitable transformation. Denote

G5
2mb

\2 2 l ~ l11!Þ0. ~49!

It is easy to express the general solution by a linear com
nation of two linear independent special solutions. The g
eral solution with G50 is often obtained by the sam
method. But in fact, in this case, these two special soluti
are the same. So we meet the same problem as previo
mentioned. As described before, we can express the gen
solutions~with G50) by two Whittaker functions~as Lou-
don has done!. Repeating the previous discussion, denot
a05ze2, the main difference is the limitation on the variab
(r>0). We can also judge which solutions are physical
the almost the same orthogonality criterion:

E
0

`E
0

pE
0

2p

c1*c2r
2dr sin~u!dudf52Q~01!50,

~50!

where
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Q~r !52
\2r 2

2m@E22E1#
@R1* ~r !R28~r !2R2~r !R18* ~r !#.

~51!

Whenu(r ) are the Whittaker functions as expressed in E
~22!, the orthogonality criterion becomes an equation de
mining the energy levels:

1

G~12a1!G~12a2!
H lnS a1

a2
D1c~12a2!2c~12a1!

1
1

2a2
2

1

2a1
J 50. ~52!

Thena must be the natural number and the energy levels
s states are

En52
\2

2ma0
2n2

~n51,2,3, . . . ! ~53!

It is worth noting that before the energy quantization
the orthogonality criterion, the Whittaker function~22! is not
divergent and turns to zero at the origin. The functions
quadratic integrable and thea are continuous. The usua
standard conditions cannot quantize the energy. It is the
thogonality criterion, rejecting all the continuous bou
states and selecting all thes states, which are experimental
observable.

Unlike the 1D case, all thes states in 3D have even pa
ity. The continuity of the wave functions is not a problem
The derivative connection can be proved as

]c

]r
52

1

a0A4p
lim
r0→0

E
0

r0
u~r !dr50. ~54!

It can be proved that whena5n, this condition is definitely
satisfied.

It is very interesting to study the existence problem of
stateu05Ce2j/2. In Loudon’s theory, this state will be ac
cepted. But Andrews thought that this state would not
observable due to the vanishing scalar products with o
states. But in our theory, only in the generalized quant
mechanics framework, including singular states, the ortho
nality criterion can definitely reject this kind of singula
state.

The examples in this section can provide a reliable ba
for testing the correctness of the two theories, because
3D H atom is the special example and in the experiment
3D H atom is very clear. In the experiments, these sta
have not been observed. This means that the orthogon
criterion has stood the fact test.

ForG, 1
4 in Eq. ~49!, the orthogonality criterion can rejec

the states with higher-order singularity and accept those w
lower-order singularity among these two kinds of singu
states.

VIII. CONCLUDING REMARKS AND DISCUSSION

In order to fit the study of the singular state problem, it
necessary to generalize the quantum mechanics frame
to include the singular states@21,22,25#. In this framework,
.
r-

r

e

r-

e

e
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o-
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r

rk

due to the reality of the measured probability of dynami
quantities, the orthogonality criterion of the eigenfunctions
the same as the physical natural requirements@22#. These
orthogonalities are usually satisfied automatically for regu
states@22#, but for singular states, the situations are differe
sometimes they are very important and can reject many n
physical states. Sometimes the energy levels are essen
determined by these orthogonality criteria. The energy lev
of the 1D and thes states of the 3D hydrogen atoms di
cussed here are the exact soluble examples of the orth
nality criteria and consistent with the experiments. Mo
over, these criteria are necessary to determine the en
quantization and reject the unphysical states.

For the 1D hydrogen atom problem there is a long histo
This is also related to the study of the Wigner crystal@13,14#
and the 1D exciton@7–12#. Loudon@2# pointed out the prob-
lems in the usual solutions. Then he expressed the gen
solutions by two linear-independent Whittaker function
This is important progress. But a series of interesting pr
lems are still waiting to be solved, which are closely relat
to the fundamental theory of singular states in quantum m
chanics.~1! the energy quantization;~2! the Loudon even
states and the nondegeneracy theorem breaking. In Loud
paper@2#, besides the odd states there exist degenerate
states simultaneously. They are considered as counte
amples of the nondegeneracy theorem@2,4#. In our paper,
from a physical point of view, boundary conditions are t
manifestation of the field equation. The natural connect
condition for the wave function and its derivatives can
derived from the Schro¨dinger equation. These connectio
conditions showed that Loudon’s even states do not sat
this physical requirement and must be rejected definitely.
there are no such even states serving as counterexample
the nondegeneracy theorem.~3! The question of the Loudon
ground state and Andrews’ question.

In Ref. @2#, c0(j)5Ce2j/2 is suggested as the groun
state, with infinite binding energy. With the aid of Schwarz
inequality, Andrews proved that the scalar products ofc0
with any quadratic integrable functions vanish. And he p
dicted thatc0 is not observable.

In this paper, we reconfirm that thec0 state has a vanish
ing scalar product with all other finite wave functions. B
we doubt the validity of Andrews’ question:~a! The proof in
Andrews’ paper does not mean thatc0 is orthogonal with
other states in the meaning of quantum mechanics.~b! If
c0 does exist, considering Andrews’ argument, the energy
c0 is 2`. The 1D hydrogen atom will stay in thec0 state.
And the other states will not be excited. The unobserva
state is notc0, but other states. In experiments, other sta
have surely been observed. This means that the quan
mechanics need to provide a definite reason to reject
Loudon ‘‘ground state.’’ This definite reason is the orthog
nality criterion for singular states.

For thes state of the 3D hydrogen atom, there is almo
the same problem. The orthogonality criterion can definit
reject Loudon’s ‘‘ground state’’ with infinite binding energy
The highly accurate experimental data of the hydrogen a
are the touchstone for the orthogonality. Since it is prov
that reason for rejectingc0 state is the orthogonality crite
rion.

~4! Up to now, all the applications of the orthogonali
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criteria have been successful, including a variety of singu
states~with pole, essential singularity, or phase angle unc
tainty!. Now we add a kind of singular state~the derivative
logarithmic singularity!. We think that the generalized quan
tum mechanics framework, including singular states,
theory is reliable and trustworthy.
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