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Time-dependent-harmonic plus inverse-harmonic potential in quantum mechanics

R. S. Kaushal and D. Parashar
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India

~Received 26 August 1996!

For a time-dependent system characterized by the potentialV(x,t)5a2(t)x
21a1 /x

2, we first demonstrate
the construction of classical and quantum invariants and then obtain an exact solution of the Schro¨dinger
equation for this potential. The role of the invariant so constructed is further discussed in the context of studies
of the coherent states.@S1050-2947~97!02704-2#

PACS number~s!: 03.65.Ge, 03.65.Ca, 03.20.1i
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I. INTRODUCTION

The study of harmonic plus inverse harmonic~HPIH! po-
tential of the type

V~x!5b20x
21b1 /x

2 ~1!

in quantum mechanics has been a subject of great intere
a variety of contexts@1–5,7# and with different meanings
assigned tox. Hereb20 andb1 are constants. For exampl
the reduced Schro¨dinger equation~SE! for a central har-
monic potential involves an effective potential of the type~1!
with x replaced by the radial coordinater and withb1 attain-
ing some discrete values. Calogero@1# considered a mode
three-body quantum problem in one spatial dimension
terms of the potential~1! with x replaced by the relative
coordinate and thereby reducing the system to a t
dimensional one. The integrability@6# of such a system
which has wide applications in solid state physics and m
lecular chemistry has also been investigated. The form~1! is
also explored@4,5# in the context of coherent state forma
ism. Several other mathematical aspects of potential~1! have
also been studied by various authors@7#. Even for the one-
dimensional case several distinct features of this poten
~like that of attaining some discrete values byb1 for the
square integrability of the eigenfunction! are highlighted@2#.
Khare and Bhaduri@3# have discussed the exact solution
the SE for the Calogero form of potential~1!.

On the other hand, the time-dependent~TD! version of the
HPIH potential of the form

V~x,t !5a2~ t !x
21a1 /x

2 ~2!

also appears to be interesting in the context of classical
chanics@8# and coherent state formalism@5#. No doubt, from
the point of view of constructing the invariant for a TD ha
monic oscillator~since the corresponding Hamiltonian in th
case is not the constant of motion! the problem has been o
interest for more than two decades or so~see Refs.@2# and
@8#, and the references therein!, the study of the potential~2!
has not been carried out to the same extent. Particularly
role of the available@8# invariant for the system~2! in the
quantum context will require investigation. This will cons
quently enlarge the scope of applications of this system
various physical problems.
551050-2947/97/55~4!/2610~5!/$10.00
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In the next section, we discuss the construction of cla
cal and quantum invariants for the system~2!. In Sec. III, the
exact solution of the TD SE for Eq.~2! is obtained. The role
of the quantum invariant obtained in Sec. II is discussed
the context of coherent state formalism in Sec. IV. Final
the concluding remarks are made in Sec. V.

II. CONSTRUCTION OF CLASSICAL
AND QUANTUM INVARIANTS

For the construction of exact invariants for TD classic
dynamical systems several methods have been suggest
the literature@9#. We use here the Lie algebraic approach@8#
to construct the invariant for the system~2! described by the
Hamiltonian

H5 1
2 @p21v2~ t !x21k/x2#. ~3!

Note that this approach, which has provided@8# the results
for a variety of classical systems, is easily extendable to
corresponding quantum case. First, we briefly present
results for the classical case and then obtain the quan
invariant for the system~3! using the extension of this
method by Monteolivaet al. @11#.

A. Classical invariant

Recall that for the system~3!, the dynamical algebra
closes@8# for the following choice of the phase space fun
tions:

G15
1
2 ~p21k/x2!, G25px, G35

1
2x

2, ~4!

and the classical invariant is found@8# to be

I5
1

2 F k̄S xr D 21kS r

xD
2

1~r ẋ2 ṙx!2G , ~5!

wherer(t) is a solution of the auxiliary equation

r̈1v2~ t !r5 k̄/r3. ~6!

Interestingly, the Hamiltonian structure corresponding to E
~6! again turns out to be

H̄5 1
2 @ p̄21v2~ t !r21 k̄/r2# ~ p̄5 ṙ !, ~7!
2610 © 1997 The American Physical Society
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55 2611TIME-DEPENDENT-HARMONIC PLUS INVERSE- . . .
which is analogous to the form~3!. This fact is found to
suggest@8# a physical meaning to the invariant~5! in the
sense that it generates a mapping betweenH and H̄. Also
note that the equation of motion corresponding to Eq.~3! is
analogous to that corresponding to Eq.~7! @i.e., Eq. ~6!#.
Further, for the case whenk50 ~or k̄50! one can as well
recover@8# the well-known results for the TD harmonic o
cillator.

B. Quantum invariant

Note that in the quantum context not onlyx, p, r, and p̄
but also the corresponding phase space functionsG become
operators. We put a cap on theseq-number quantities just to
differentiate them from the correspondingc-number quanti-
ties. Within the framework of the dynamical algebra
method now one expresses the Hamiltonian operator as

Ĥ~ t !5(
i51

n

hi~ t !Ĝi , ~8!

where the set of operators$Ĝ1 ,...,Ĝn% generates a dynamica
algebra that is closed and thereby implies

@Ĝi ,Ĝj #5(
l51

n

Ci j
l Ĝl , ~9!

where @ , # is the commutator andC i j
l ’s are the structure

constants. Since the invariant operatorÎ is also a member
of this algebra, the same can also be expressed as

Î ~ t !5(
i51

n

l i~ t !Ĝi . ~10!

Further, the invariant condition expressed in this case
~\51!

dÎ

dt
5

] Î

]t
1
1

i
@ Î ~ t !,Ĥ~ t !#50 ~11!

leads to a system of linear first-order differential equations
li ’s, which can be solved in the same way as one proceed
the classical case@8,10#. However, here one has to keep tra
of the operator character of various quantities at differ
stages of the solution of these coupled differential equatio
For the system~3!, the phase space operators now take
form

Ĝ15
1

2
~ p̂21k/ x̂2!5

1

2 S 2
d2

dx2
1

k

x2D ,
Ĝ25

1

2
~px1xp!52

i

2 S ddx x1x
d

dxD , Ĝ35
1

2
x̂2

~48!

and the algebra now closes in the same manner as for
classical case with

@Ĝ1 ,Ĝ2#522i Ĝ1 , @Ĝ1 ,Ĝ3#52 i Ĝ2 , @Ĝ2 ,Ĝ3#522i Ĝ3 .

Finally, the quantum invariant for Eq.~3! turns out to be
s

n
in

t
s.
e

he

Î ~ t !5 1
2 @k~ r̂/ x̂!21 k̄~ x̂/ r̂ !21~ r̂ p̂2pC x̂!2#, ~12!

which is of the same form as Eq.~5!.
Next, we use the knowledge of the invariant~5! to obtain

an exact analytic solution of the TD SE for the potential~2!.

III. EXACT SOLUTION OF THE SCHRO¨ DINGER
EQUATION FOR THE POTENTIAL „2…

A search for exactly solvable TD potentials in the S
~\5m51!,

@2 1
2 ~]2/]x2!1V~x,t !#C~x,t !5 i @]C~x,t !/]t# ~13!

is made by Truax@12# and consequently a classification
these potentials is suggested on the basis of their space
or kinematical algebras. Here we employ the method of R
@13# ~which is also conveniently extended@14# to the study
of a class of two-dimensional systems! to obtain an exact
solution of TD SE~13! for the potential~2!. This method,
based essentially on the generalization of the gro
transformation method of Burganet al., @15# can be carried
out in two stages. In the first stage, one performs a scale
a phase transformation of the dependent variable and a s
transformation of the independent space and time varia
as

C~x,t !5B~ t !exp@ if~x,t !#c~x,t !, ~14a!

x85x/C~ t !1A~ t !, t85D~ t !, ~14b!

where various symbols have been defined in Ref.@13#. This
converts the TD SE into a more complicated form. The
bitrary functions appearing in Eq.~14! are then fixed by set-
ting some of the additional terms in the new equation to z
and subsequently by demanding the form of the TD SE to
invariant under the above transformation. This is done
modifying the potential term in Eq.~13! to the form

V85VC21 1
2CC̈x

22~ÄC312ȦĊC2!x1 1
2C

4Ȧ2. ~15!

In the second stage, another phase transformation of
dependent variable converts this new TD SE into a tim
independent~TID! SE in one of the standard forms whos
exact solutions are normally known in advance. Intere
ingly, the Hamiltonian corresponding to this final TID S
turns out to be a constant of motion, which, in fact, has
connection with the corresponding classical invariant. Wi
out going into further detail we rather demonstrate here
use of this method for the potential~2!.

Use of Eq.~2! and the transformation~14b! reduces Eq.
~15! to the form

V85~a2C1 1
2 C̈!C3x822@ÄC212ȦĊC12Aa2C

2

1ACC̈#C2x81
a1

~x82A!2
1F~ t !, ~16a!

where

F~ t !5~a2C1 1
2 C̈!C3A21A~ÄC12ȦĊ!C31 1

4C
4Ȧ2.

~16b!
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For the arbitrary functionsA(t) andC(t) in Eq. ~14! one can
set

1
2 C̈1a2C5k1 /C

3, A50, ~17!

wherek1 is a TID constant. Note that the first equation
~17! conforms to Eq.~6!. Sincea1 is TID, V8 of ~16a! now
assumes the form of a TID potential, viz.,

V85k1x8
21a1 /x8

2,

with F(t)50. The SE~13! now becomes separable inx8 and
t8 variables and can be expressed as

@2 1
2 ~]2/]x82!1k1x8

21a1 /x8
2#c5 i ~]c/]t8!. ~18!

Also note that sinceF(t)50 in the present case, no furthe
phase-change transformation@cf. Eq. ~3.8! of Ref. @13## on
c(x8,t8) is required. Fork1.0, Eq.~18! can be realized as
TID SE for TID HPIH potential~1!. Further, fork150 one
can investigate the special case for an inverse harmonic
tential @7#.

With regard to the connection between the invariant~5!
and the Hamiltonian~now rechristened asI 8! of Eq. ~18!, it
can be verified that the transformation,

I5eifI 8e2 if,

with f5(Ċx2/2C), gives rise to the same form ofI as Eq.
~5! except for an imaginary TD term in it. Note that whi
this latter term will not affect the physical content of th
problem, it can, however, be made to disappear by rese
the TD transformations involved in the method.

Corresponding to the HamiltonianI 8, the general solution
of Eq. ~18! can immediately be written as

c~x8,t8!5(
n

cne
2 iEnt8un~x8!

with t8 given, as before, by@13# t85D(t)5*dt/C2. Also,
the expansion coefficientscn can be obtained from the con
dition

cn5^un~x8!,c~x8,0!&.

For the determination ofun(x8) one has to use the following
prescription. Note that the ground state solution of the
corresponding to the TID potential~1! is obtained@2# as

u0~x8!5Nx8m exp~2Ab208 x82/2!,

with the eigenvalueE05
1
2(2m11)Ab20, and the normaliza-

tion constant

N5F 2mb2081/2~m11/2!

Ap~2m21!!!
G 1/2.

Here, the integerm takes the valuesm>2 and b1852b1
5m(m21), b208 52b20. For the excited states, however, o
can start with the ansatz

un~x8!5NPn~x8!exp~2Ab208 x82/2!
o-

ng

E

@wherePn(x8) is a polynomial# and obtain the solution of the
TID SE corresponding to the potential~1! in the same way as
done @16# for the other singular potentials. Noting tha
x85x/C(t), the exact solution of Eq.~13! for the potential
~2! can be written as

C~x,t !5
N
AC

exp~ iĊx2/2C!(
n

Cn

3expS 2 iEnE dt/C2Dun~x/C!. ~19!

As a final remark about using the method of Ray@13# it may
be mentioned that the time independence of the parametea1
in Eq. ~2! is an asset: otherwise it would have been diffic
to obtain a TIDI 8 in Eq. ~18!.

IV. ROLE OF THE INVARIANT
IN COHERENT STATE STUDIES

About four decades ago. Husimi@17# studied the quanta
treatment of the forced TD harmonic oscillator with refe
ence to a variety of phenomena. While some of his res
pertain to the exact treatment of the explicit time depende
of the system, many of them are obtained for the adiabati
perturbative cases. In fact, some of his results are now w
taken care of through the coherent state formalism@5# and
also by introducing@18# a linear~but complex! invariant in
the formalism. Somehow this linear~in momentum or veloc-
ity! invariant has not become so popular as the quadratic~in
momentum or velocity! one. In a recent study, Gerry an
Kiefer @19# have investigated radial coherent states for
isotropic harmonic oscillator within the framework of th
unitary irreducible representation associated with the ra
spectrum-generating group Sp~2!, which is locally isomor-
phic to su~1,1! and so~2,1!. They study the time evolution o
a coherent state wave packet, which, however, correspo
to a potential of the type~1!. Here, we first briefly review the
status of linear invariant and then discuss the role of
quadratic one in the context of coherent state studies.

A. Use of linear invariant

A TID complex linear invariant has been found useful n
only in the studies of coherent and squeezed states@18,20,21#
but also of coherent correlated states@22#. Man’ko @20# has
emphasized that such studies of the TD SE with referenc
the coherent states can be better carried out using the kn
edge of this simple integral of motion. In this case one loo
for the solution of Eq.~13! with V(x,t)5 1

2v2(t)x2 or with
V(x,t)5 1

2v2(t)x21 f (t)x in terms of a TD invariant, which
is now an operator. For the first case it turns out to be of
form

A~ t !5
i

&
@e~ t !p2 ė~ t !x#, ~20!

wheree(t) satisfies the equation

ë~ t !1v2~ t !e~ t !50 @e~0!51, ė~0!5 i # ~21!
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and the operatorA conforms to@A,A†#51. It is found that
the packet solutions of the SE of Husimi@17#, which now
involve the functione(t) in the form

Ca~x,t !5C0~x,t !expH 2
uau2

2
2

a2e* ~ t !

2e~ t !
1
&ax

e~ t ! J ,
~22!

where

C0~x,t !5p21/4@e~ t !#21/2exp$ i ė~ t !x2/2e~ t !%

may be introduced and interpreted as coherent states s
they are eigenstates of the operatorA(t) given by Eq.~20!.
Herea is a complex number, which appears in the definiti
of the coherent stateua& of Glauber@23#.

Note that the importance of the linear invariant~20! has
also been recognized@20# in the study ofq-deformed Husimi
packet solutions of the SE. Interestingly, a special solution
Eq. ~21! as

e~ t !5ue~ t !uexpS i E t

dt/ue~ t !u2D ~23!

converts this equation into the form

d2ue~ t !u
dt2

1v2~ t !ue~ t !u51/ue~ t !u3, ~24!

which, in fact, is the same as satisfied by the auxiliary fu
tion r(t) in Eq. ~6!. Recently, the quantum and quadra
analogue of the invariant~20! of the form

I5A†~ t !A~ t !5 1
2 $ue~ t !u2p21u ė~ t !u2x22e* ėpx2eė* xp%

~25!

has been studied by Man’ko@20# and its role in the contex
of coherent and squeezed states is investigated. It is not
ficult to verify that if one substitutesue(t)u5r(t) and uses
u ėu25 ṙ21(1/r2) from Eq. ~23!, then the form~25! immedi-
ately reduces to a form similar to Eq.~12! and is well known
@8# for the TD harmonic oscillator.

B. Use of quadratic invariant

While the roles of linear@cf. Eq.~20!# and possibly that of
quadratic@cf. Eq. ~25!# invariant for the TD harmonic oscil
lator are discussed in the context of coherent state stud
the role of the invariant~12! corresponding to the TD HPIH
potential~2! has not been discussed in spite of the use@5# of
the latter in such studies. What we shall demonstrate he
that for the potential~2! the set of generators~i.e., the phase
space functions! ~4!, which are required to close the dynam
cal algebra at the classical level and thereby provide a q
dratic invariant also conform to the algebra of su~1,1! as
discussed by Perelomo@5# at the quantum level. Interes
ingly, in this way the role of at least quadratic invariant~12!
can be highlighted in the studies of coherent states.

Now the question arises whether we can have a lin
invariant like Eq.~20! for the system~3!, which can, on the
one hand, conform to the quadratic form~12!, while on the
other, provide the packet solutions such as Eq.~22! of Hu-
simi @17#. In this regard, one can also try a complex for
ce

f

-

if-

s,

is

a-

ar

,

which is linear in momentum resulting in a quadratic for
~12!.

In the approach of Perelomov@5# the Hamiltonian~3! in
the context of the SE~13! is written as

H[VK5V0K02V1K12V2K2

5 i ~bK12b̄K22 igK0!,

where

V0,15v0F S v~ t !

v0
D 261G , V250, v05v~0!51.

Here the standard generatorsK0 ,K1 ,K2 of su~1,1! algebra
are defined as

K05
1
2H, K15K11 iK 252 1

2B2
† ,

K25K12 iK 252 1
2B2 , ~26!

with

B2
†5~a†!22k/~2x2!, B25a22k/~2x2!,

and the usual creation and annihilation operatorsa†anda are
given by @5#

a†5
1

&
S x2

d

dxD , a5
1

&
S x1

d

dxD .
While B2

† , B2, andH close the su~1,1! algebra, the solution
of the SE~13! is written as

C~ t !5exp@2 iw~ t !#z~ t !, @ uz~ t !u,1#, ~27!

wherez(t) andw(t) satisfy

ż5b2b̄z22 igz,

i ẇ5c~bz̄2b̄z1 ig!.

Here various symbols have their usual@5# meanings. Using
such a prescription for the solution of Eq.~13! coherent state
studies are carried out in terms of transition probability a
quasienergy spectrum.

Note that in this approach not only the bilinear forms
the creation and annihilation operators~throughB2 andB2

†!
close the algebra but the Hamiltonian as a whole is als
party to this closure process. On the other hand, if we de
the creation and annihilation operators in terms ofGi ’s of Eq.
~48! as

J152 iA~ i /2!x2, J25 iA~ i /2!S 2
d2

dx2
1

k

k2D ,
J35

i

4
A~ i /2!S ddx x1x

d

dxD ,
then the algebra closes through the commutation relation

@J3 ,J6#56 iJ1 , @J1 ,J2#52J3 .
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Thus, the generators~48! not only give rise to the invarian
~12! but also to the same algebra as su~1,1!, which is used in
the studies of the coherent states. This can clearly brin
the role of the invariant in such studies.

V. CONCLUSIONS

With a view to demonstrating some further applications
the TD HPIH potential~2! in the quantum domain several o
its intriguing features are overviewed. In particular, the r
of the invariant that exists for this system is highlighted w
reference to Eq.~1! ~i! obtaining an exact solution of the TD
SE and~ii ! using it in the studies of the coherent states
appears that this potential can play as important a role
li-

.

de

A

in

f

t
in

describing various physical phenomena as the TD harmo
oscillator. From this point of view a detailed study of th
coherent and squeezed states is in progress.
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