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Time-dependent-harmonic plus inverse-harmonic potential in quantum mechanics
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For a time-dependent system characterized by the potafiat) =a,(t)x?>+a, /x?, we first demonstrate
the construction of classical and quantum invariants and then obtain an exact solution of theirgenro
equation for this potential. The role of the invariant so constructed is further discussed in the context of studies
of the coherent statefS1050-2947@7)02704-2

PACS numbd(s): 03.65.Ge, 03.65.Ca, 03.260.

[. INTRODUCTION In the next section, we discuss the construction of classi-
cal and quantum invariants for the systé In Sec. I, the
The study of harmonic plus inverse harmof#tPIH) po-  exact solution of the TD SE for E@2) is obtained. The role

tential of the type of the quantum invariant obtained in Sec. Il is discussed in
the context of coherent state formalism in Sec. IV. Finally,
V(X) =byex?+ by /%2 (1)  the concluding remarks are made in Sec. V.
in quantum mechanics has been a subject of great interest in II. CONSTRUCTION OF CLASSICAL
a variety of context§1-5,7 and with different meanings AND QUANTUM INVARIANTS
assigned tx. Hereb,y and b, are constants. For example, i ) ) ,
the reduced Schdinger equation(SE) for a central har- For the construction of exact invariants for TD classical

monic potential involves an effective potential of the typp ~ dynamical systems several methods have been suggested in
with x replaced by the radial coordinateand withb, attain-  the literaturg[9]. We use here the Lie algebraic approggh

ing some discrete values. Calogdid considered a model O construct the invariant for the systd®) described by the
three-body quantum problem in one spatial dimension irfiamiltonian
terms of the potentia(l) with x replaced by the relative

coordinate and thereby reducing the system to a two-
dimensional one. The integrabilit}s] of such a system, . . .

which has wide applications in solid state physics and mo!\IOte that this approach, which hqs proym[éi] the results
lecular chemistry has also been investigated. The fdis for a varlety of classical systems,. is easily gxtendable to the
also explored4,5] in the context of coherent state formal- corresponding quantum case. First, we bne_fly present the
ism. Several other mathematical aspects of pote(tt)diave _resulf[s for the classical case "?md then obtaln_ the quantum
also been studied by various auth¢r3. Even for the one- invariant for the systen(3) using the extension of this
dimensional case several distinct features of this potentia'?“athOd by Monteolivaet al. [11].

(like that of attaining some discrete values by for the

H=3[p*+ w?(t)x*+k/X?]. ©)

square integrability of the eigenfunctipare highlighted2]. A. Classical invariant
Khare and Bhaduii3] have discussed the exact solution of  Recall that for the systent3), the dynamical algebra
the SE for the Calogero form of potentidl). closes[8] for the following choice of the phase space func-

On the other hand, the time-depend€rD) version of the  tions:
HPIH potential of the form
[1=3(p*+kIx?), Tr=px, Ta=3x% 4
V(x,t)=ay(t)x>+a, /x? 2)
and the classical invariant is fourl] to be

also appears to be interesting in the context of classical me- 1
X
q_
p

2 2

chanicq 8] and coherent state formaligi]. No doubt, from == +(pX— px)?
the point of view of constructing the invariant for a TD har- 2

monic oscillator(since the corresponding Hamiltonian in this

case is not the constant of motjote problem has been of wherep(t) is a solution of the auxiliary equation

interest for more than two decades or(see Refs[2] and _

[8], and the references thergitthe study of the potentigR) p+w?(t)p=kip3. (6)

has not been carried out to the same extent. Particularly, the

role of the availablg8] invariant for the systeni2) in the Interestingly, the Hamiltonian structure corresponding to Eq.
quantum context will require investigation. This will conse- (6) again turns out to be

quently enlarge the scope of applications of this system to _ _

various physical problems. H=3[p?+ w?(t)p?+kip?] (p=p), (7

, ®

X

+k(p
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which is analogous to the forrt8). This fact is found to
suggest8] a physical meaning to the invariafh) in the
sense that it generates a mapping betwideand H. Also
note that the equation of motion corresponding to &J.is
analogous to that corresponding to Ed) [i.e., Eq. (6)].
Further, for the case whek=0 (or k=0) one can as well

recover[8] the well-known results for the TD harmonic os-

cillator.

B. Quantum invariant

Note that in the quantum context not omyp, p, andp
but also the corresponding phase space functiobbgecome
operators. We put a cap on thes@umber quantities just to
differentiate them from the correspondingnumber quanti-
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1(t)=2[K(p/X)2+K(X/p)2+ (pP— P2,

which is of the same form as E(p).
Next, we use the knowledge of the invaridh} to obtain
an exact analytic solution of the TD SE for the potentil

(12

IIl. EXACT SOLUTION OF THE SCHRO DINGER
EQUATION FOR THE POTENTIAL (2)

A search for exactly solvable TD potentials in the SE
(i=p=1),
[—3(%10x?)+V(x,1)]¥(x,t)=i[a¥(x,t)/dt] (13)

is made by TruaX12] and consequently a classification of

ties. Within the framework of the dynamical algebraic these potentials is suggested on the basis of their space-time

method now one expresses the Hamiltonian operator as

n
H(t)=i:21 hi(H)T, (8)
where the set of operato{ﬁ1 yeen ,fn} generates a dynamical
algebra that is closed and thereby implies

n
[Fivrj]zlzl Ciil, €)
where [, ] is the commutator and:!jis are the structure

constants. Since the invariant operatois also a member
of this algebra, the same can also be expressed as

imighmﬁ. (10

. . o . . t
Further, the invariant condition expressed in this case ag

(fi=1)

di ol 1. .o
G- TAnI=0

Jat | (1)

or kinematical algebras. Here we employ the method of Ray
[13] (which is also conveniently extendédl4] to the study

of a class of two-dimensional system® obtain an exact
solution of TD SE(13) for the potential(2). This method,
based essentially on the generalization of the group-
transformation method of Burgaet al., [15] can be carried

out in two stages. In the first stage, one performs a scale and
a phase transformation of the dependent variable and a scale
transformation of the independent space and time variables
as

(143

(14b)

W(x,t)=B(t)exdid(x,t)](x,t),
X' =xIC(t)+A(t), t'=D(1),

where various symbols have been defined in RES]. This
converts the TD SE into a more complicated form. The ar-
bitrary functions appearing in E¢l4) are then fixed by set-
ing some of the additional terms in the new equation to zero
nd subsequently by demanding the form of the TD SE to be
invariant under the above transformation. This is done by
modifying the potential term in Eq13) to the form

V' =VC2+1CCx2— (AC3+2ACC?)x+ S C4A2. (15)

leads to a System of linear first-order differential equations in In the second stage, another phase transformation of the
Aj’s, which can be solved in the same way as one proceeds iflependent variable converts this new TD SE into a time-
the classical cadé,10]. However, here one has to keep track jndependentTID) SE in one of the standard forms whose
Of the Operator Character Of VariOUS quantities at differenbxact So'utions are norma”y known in advance_ |nterest_
stages of the solution of these coupled differential equationsngly, the Hamiltonian corresponding to this final TID SE
For the system(3), the phase space operators now take theyrns out to be a constant of motion, which, in fact, has a

form connection with the corresponding classical invariant. With-
1 1 2 K out going into further detail we rather demonstrate here the
Ty=2 (P2+K/5%) == ( ot — use of this method for the potentie).
2 2 dx= x4/’ Use of Eq.(2) and the transformatiofil4b) reduces Eq.

(15) to the form

.1 i[d d .1
— — _ 52 .- . ..
Fz—g(pxﬂp)———(—xﬂ—), =5 X V'=(a,C+3C)C3x'?~[AC?+2ACC+2Aa,C?

2 \dx dx
@) ) a,
+A 2+ —————+F(t 1
and the algebra now closes in the same manner as for the CCICx (x"=A) (), (163

classical case with

o R o R o R where

(I ]==2ily, [T1,I3]==iTy, [I[,,Is]=—2iT;. .. . - .
F(t)=(a,C+3C)C3A%+A(AC+2AC)C3+ 1C*A?.

Finally, the quantum invariant for E@3) turns out to be (16b
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For the arbitrary functioné(t) andC(t) in Eqg.(14) one can [whereP,(x") is a polynomia] and obtain the solution of the
set TID SE corresponding to the potentid) in the same way as
. done [16] for the other singular potentials. Noting that
iC+a,C=k,/C3 A=0, (17  x'=x/C(t), the exact solution of Eq.13) for the potential
(2) can be written as
wherek; is a TID constant. Note that the first equation in
(17) conforms to Eq(6). Sincea, is TID, V' of (168 now

assumes the form of a TID potential, viz., W(x,t)= \/ﬂ_ exp(iCx2/2C)>, C,,
C n
V'=kx'?+a, /Ix'?,
i 2
with F(t) =0. The SE(13) now becomes separableh and Xex;{ 'E"f dUCT|un(x/C). (19)

t’ variables and can be expressed as

As a final remark about using the method of Rag] it may

be mentioned that the time independence of the pararagter
in Eq. (2) is an asset: otherwise it would have been difficult
to obtain a TIDI' in Eq. (18).

[—2(%1ax"?)+kox 2+ ay IX"2]p=i(dplat’). (18)

Also note that sincé-(t)=0 in the present case, no further
phase-change transformatipef. Eq. (3.8) of Ref. [13]] on
Y(x',t") is required. Fok,>0, Eq.(18) can be realized as a

TID SE for TID HPIH potential(1). Further, fork;=0 one IV. ROLE OF THE INVARIANT
can investigate the special case for an inverse harmonic po- IN COHERENT STATE STUDIES
tential [7].

About four decades ago. Husiri7] studied the quantal
treatment of the forced TD harmonic oscillator with refer-
ence to a variety of phenomena. While some of his results
pertain to the exact treatment of the explicit time dependence

l=¢e'%l'e 19, of the system, many of them are obtained for the adiabatic or
. perturbative cases. In fact, some of his results are now well
with ¢=(Cx2/2C), gives rise to the same form ofas Eq. taken care of through the coherent state formali$inand
(5) except for an imaginary TD term in it. Note that while also by introducind18] a linear(but complex invariant in
this latter term will not affect the physical content of the the formalism. Somehow this lineén momentum or veloc-
problem, it can, however, be made to disappear by resettinigy) invariant has not become so popular as the quadgiatic

With regard to the connection between the invariggt
and the Hamiltoniarinow rechristened ak') of Eq. (18), it
can be verified that the transformation,

the TD transformations involved in the method. momentum or velocity one. In a recent study, Gerry and
Corresponding to the Hamiltonidn, the general solution Kiefer [19] have investigated radial coherent states for the
of Eq. (18) can immediately be written as isotropic harmonic oscillator within the framework of the

unitary irreducible representation associated with the radial

Vo et , spectrum-generating group @p which is locally isomor-

P(xX't )_zn: Cre " Un(X') phic to sy1,1) and s2,1). They study the time evolution of
a coherent state wave packet, which, however, corresponds

with t’ given, as before, by13] t'=D(t)=[dt/C?. Also, to a potential of the typél). Here, we first briefly review the
the expansion coefficients, can be obtained from the con- status of linear invariant and then discuss the role of the

dition quadratic one in the context of coherent state studies.
Cr=(Un(X"), (X",0)). A. Use of linear invariant

For the determination af,(x') one has to use the following A TID complex linear invariant has been found useful not
prescription. Note that the ground state solution of the SEnly in the studies of coherent and squeezed sfa&g0,2]

corresponding to the TID potentiél) is obtained 2] as but also of coherent correlated staf@g]. Man’ko [20] has
emphasized that such studies of the TD SE with reference to
Uo(X")=Nx'™ exp( — ybix'2/2), the coherent states can be better carried out using the knowl-

edge of this simple integral of motion. In this case one looks
with the eigenvalu€,= 3(2m+1)b,o, and the normaliza- for the solution of Eq(13) with V(x,t)=2w?(t)x? or with

tion constant V(x,t) =2 w?(t)x?+ f(t)x in terms of a TD invariant, which
is now an operator. For the first case it turns out to be of the
Zmbétl)/2(m+ 1/2) 112 form
| Jm(2m=1)1! i
A(t)=— [e(t)p—e(t)x], (20)
Here, the integem takes the valuesn=2 and b;=2b, V2

=m(m—1), by,=2b,,. For the excited states, however, one
can start with the ansatz wheree(t) satisfies the equation

Un(X") = NP (x")exp — Vb 2/2) “t)+02(te()=0 [e(0)=1, &0)=i] (21
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and the operatord conforms to[.A,A"]=1. It is found that  which is linear in momentum resulting in a quadratic form
the packet solutions of the SE of Husifdi7], which now  (12).
involve the functione(t) in the form In the approach of Perelomd@%] the Hamiltonian(3) in

the context of the SKE13) is written as
- v la]? a?e*(t) V2Zax
a/(X!t)_ O(Xlt)ex 2 Zf(t) + E(t) 1 HEQK:Q()KO_QlKl_QzKZ

(22) =i(BK, —BK_—iyKy),

where
where

Wo(x,t) =7 Y e(t)]” Y2expi e(t)x?/2¢(1)}

Qp1= g

o(t))?
may be introduced and interpreted as coherent states since ( wo ) il}’ 2,=0, wo=w(0)=1.
they are eigenstates of the operatfit) given by Eq.(20).

Herea is a complex number, which appears in the definitionHere the standard generatdfg,K;,K, of su1,1) algebra

of the coherent stati) of Glauber[23]. are defined as
Note that the importance of the linear invarid@0) has
also been recognizd@0] in the study ofg-deformed Husimi Ko=3H, K,=K;+iK,=—3B],
packet solutions of the SE. Interestingly, a special solution of
Eqg. (21 as K_=K;—iK,=—1B,, (26)
t with
e(t)=|e(t)|eX;{ if d7'/|e(t)|2) (23

Bl=(a")?—k/(2x?), B,=a?—k/(2x?),

converts this equation into the form ) o
and the usual creation and annihilation operatdenda are

d?|e(t given by[5]
O]+ 2wlev] = 1ecw)P, (24)
.1 d 1 d
ioh i i o o al=—|(x—=—|, a=—|x+-=].
which, in fact, is the same as satisfied by the auxiliary func- Vi dx ) dx
tion p(t) in Eq. (6). Recently, the quantum and quadratic
analogue of the invariari®0) of the form While B}, B,, andH close the s(i,1) algebra, the solution
. . . of the SE(13) is written as
I=AT()A(t) = H{|e()|*p*+| ()| °X*— €* epx— e€* xp} (1915w
(25 v =exg —ie(]LD), [l¢v|<1], @D
has been studied by Man’@0] and its role in the context where(t) and o(t) satisfy
of coherent and squeezed states is investigated. It is not dif-
ficult to verify that if one substituteke(t)|=p(t) and uses ZI,B—EZ—WL
|€|?=p2+ (1/p?) from Eq.(23), then the form(25) immedi-
ately reduces to a form similar to E@L.2) and is well known i¢=C(B§_—B_§+ iy).

[8] for the TD harmonic oscillator.

Here various symbols have their us(if] meanings. Using
B. Use of quadratic invariant such a prescription for the solution of HG.3) coherent state

While the roles of lineafcf. Eq.(20)] and possibly that of studies are carried out in terms of transition probability and

guadratid[cf. Eq. (25)] invariant for the TD harmonic oscil- quasienergy spectrum. -
lator are discussed in the context of coherent state studies, NOt€ that in this approach not only the bilinear forrps of
the role of the invarianL2) corresponding to the TD HPIH the creation and annihilation operatdtiroughB, andB;)
potential(2) has not been discussed in spite of the [Eeof close the _algebra but the Hamiltonian as a Who!e is aIS(_) a
the latter in such studies. What we shall demonstrate here Rarty to this closure process. On the other hand, if we define
that for the potentia(2) the set of generatore., the phase th? creation and annihilation operators in term§'a$ of Eq.
space functions(4), which are required to close the dynami- (4) as
cal algebra at the classical level and thereby provide a qua-
dratic invariant also conform to the algebra of(kd) as J.=—i(i12)x2, J_=i\/(i/_2)(—
discussed by Perelomi®] at the quantum level. Interest-
ingly, in this way the role of at least quadratic invariab®)
can be highlighted in the studies of coherent states. .

Now the question arises whether we can have a linear J3=7 (|/2)<& X+x &)
invariant like Eq.(20) for the system(3), which can, on the
one hand, conform to the quadratic fo2), while on the  then the algebra closes through the commutation relations
other, provide the packet solutions such as €§) of Hu-
simi [17]. In this regard, one can also try a complex form, [J3,d+-]=%1d,, [J.,)_1=23;.

d> Kk
a2t

3
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Thus, the generator@’) not only give rise to the invariant describing various physical phenomena as the TD harmonic
(12) but also to the same algebra a¢lsl), which is used in  oscillator. From this point of view a detailed study of the
the studies of the coherent states. This can clearly bring icoherent and squeezed states is in progress.

the role of the invariant in such studies.
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