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Fundamental quantum limit in precision phase measurement
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We show through a series of arguments that, given a total average photon ixpjre fundamental limit

in the precision phase measurement is set by quantum mechanics to be the so-called Heisenberg limit, i.e.,
1KN). Some specific types of phase measurement are considered in the discussion. However, the proof based
on the general principle of complementarity of quantum mechanics applies to any scheme of phase measure-
ment. From the general argument by the complementarity principle, we are able to find a necessary condition
for those states that can achieve the Heisenberg limit if they are employed for precision phase measurement. A
general guideline is given for the search of the measurement schemes in which the Heisenberg limit is
achieved. We demonstrate the procedure by applying it to a few specific exapg1650-2947)01804-0

PACS numbdps): 03.65.Bz, 42.50.Dv, 42.25.Hz

[. INTRODUCTION But can we still measure the phase to an arbitrary precision
with this constraint? In some sense, the failure to find an
It is well known that the quantum nature of electromag-eigenstate of phase with finite photon number also implies a
netic fields leads to limitations on how precisely a physicalnegative answer to the question. Therefore there exists a
guantity of an optical field can be measured. It is generalllimit on the sensitivity of the phase measurement in the case
believed that, given an arbitrary state of light, the Heisenbergf finite energy. The traditional argument for the limit comes
uncertainty relation sets the lower bound on the sensitivity ofrom the Heisenberg uncertainty principle for the phase and
the measurement. On the other hand, if we are allowed tphoton numbef1],
prepare the system in some specific states, according to the
guantum theory of measurement, a physical quantity can be APpAN=1, 2)
measured to arbitrary precision, provided that the states are
eigenstates of the operator representing the physical quantiwh

ir? quanturtT;] mechanicg. Fotr the tph'asrﬁf of andoptic.all ﬂEIdphoton number, respectively. Therefore, shot noideN (
owever, the answer 1S not so straightiorward, mainly e—:_ (A’N)~\(N)) due to the particle nature of light will

f;u?; of rggiefaicr;[ tgr?t iﬁ‘iel:ﬁquieg e?losﬁoer:(jt ;al_tieer?lgig ?cgrer%lace the so-called shot-noise limit or coherent state [ifjit
P P n the sensitivity of the phase measurement,

quantized optical modé¢l,2]. Recent theoretical progress
[3,4] in identifying a guantum-mechanical operator for phase
in a finite-dimensional state space leads to the following lim-

iting state as the eigenstate of a phase opefatiich is also Ag= (\/:I\D )
defined by a limiting process

ere A¢ and AN are the fluctuations for the phase and

s On the other hand, quantum mechanics does not set any re-
_ —1/2 imo striction on the fluctuatiod N of the photon number. Intu-
16) I|m‘(s+ D mE:o e |m), @ itively, one would argue that because of energy constraint,
AN should be bounded by the mean number of photons, that
is, (A°N)~O((N)?). Thus given a total mean number of

g:;%hﬂ:?;?mb;eﬁr;ﬁi;he ?é%?a;zltr?;%gé pao‘:‘g'aosr;no;;;m%b_ photons, the limit in precision phase measurement should be
g gp ' P the so-called Heisenberg limit

ability distribution density of the phase for a given state can
be derived by projecting the state onto this phase $ate-

lar to the wave function of the statand, when the system is Ap= i @)
prepared in the phase state in Ef), a measurement of the T(N)’

phase will yield a precise value, as we will show below. One

caveat, however, is that the average photon number of thigote that the Heisenberg limit should be understood as an
phySical State, reﬂecting the d|ff|CU|ty encountered in thephase uncertainty approaches the orde(mjfl for |arge
search for a physical phase operator. It becomes a commQR). We treat it the same way throughout this paper.

consensus that, with unlimited resources of energy, it is pos- Shapiro and co-workeff$] recently proposed the state
sible to measure a phase shift to arbitrary precision.

In the meantime, we have only a finite amount of energy 1

M
in a realistic physical world. Thus we will limit our discus- ® —A — Im M>1  A=.6/72) (5
sion under the finite energy constraint throughout the paper. [®)sw E:o mr1 ™ ’ ™ ©
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as the optimum state in precision phase measurement, and
they claimed that a {N)? performance in sensitivity can be I
achieved. Although some difficultigg—9] associated with
the phase distribution of this state prevent it from achieving
the promised precision, it is interesting to note that, for this ¢
state, the photon number fluctuati(:xklzN) is on the order of
exp((N)/A?) for large M. Hence, from Eq(2) we have the Lous
limit A¢=exp(—(N)/A?), which is much better than the
Heisenberg limit of Eq(4) for large(N).
As a matter of fact, the validity of Eq2) is not general FIG. 1. Mach-Zehnder interferometer for the measurement of
[2]. For example, for the vacuum state, the left-hand side ofye phase difference.
Eq. (2) is obviously zero, thus violating the inequality.
Therefore, arguments based on the Heisenberg uncertainfife output intensity of the interferometer will indicate a
relation in Eq.(2) cannot hold in general, and the question phase shift experienced in the other path, thus making a mea-
remains: What is the limit in precision phase measuremer{yrement of the phase shift. To be more specific, as shown in
given the available total mean number of photon? Fig. 1, a coherent optical field is split by a beam splitter into
In the literature there have already been quite a number Gfyo fields which later recombine to form interference

papers on precision phase measurenjérB,10-14 Most  fringes. If the interferometer is properly balanced, the output
of them concentrated on a specific scheme or data analysjgtensity has the form of

strategy for phase measurement, and therefore cannot apply

to general cases. Even so, all the analyses up to[A®y10— | ou=lin(1—cosp)/2, (6)

14] have shown that the performance in precision phase mea-

surement does not exceed the Heisenberg limit, except fokhere I, is the intensity of the input field, ang is the

the questionable schenfié] with the state in Eq(5). Thus  relative phase shift between the two interfering paths. If we

we have reason to speculate that the fundamental limit set byave a well-defined amplitude in the input field, any change

quantum mechanics in precision phase measurement is tid o, in the output intensity must come from the changg

Heisenberg limit. in the relative phase. The sensitivity is highest when we set
In this paper, we will prove through a series of argumentsp=7/2:

that the ultimate limit in precision phase measurement is the

Heisenberg limit. We first start our discussion on some spe-

cific types of schemes of phase measurement. Then, by A assi . -
- : . : . Classically, there is no limit on how small the cha
plying the complementarity principle to a single-photon In-in intensiti// can be. Therefore, in principle, there isn?l%ultimit

terferometer, we provide the most general proof of the ;
P 9 b n how small a phase shift¢ can be measured. In quantum

fundamental limit, which is independent of measuremen h h i ticl i f light d ¢ all
schemes. In Sec. lll, we will derive a necessary condition fo eory, nowever, the particie nature ot light does not aflow
an infinite division of energy, thus setting a lower limit on

those states that can achieve the Heisenberg limit in preciSl . )

sion phase measurement. Based on the results of Secs. I aﬁ(ljom' We can rewrite Eq(7) in terms of the photon number
[ll, in Sec. IV we will outline a general guideline in the as

search for the schemes that can achieve the Heisenberg limit. ANgy= Ny A /2 ®)
We then apply the guideline in Sec. V to specific examples out "7 '

including some unconventional interferometers that are nojnereN. is the total input photon number adN,,,, is the
based on beam splitters. Section VI is devoted to discussioghange N the output photon number. The minimAm

Alou=linA $12. (7)

out

and summary. that is allowed by quantum theory is simply one correspond-
ing to the change of one quanta. Therefore, the quantum
II. FUNDAMENTAL QUANTUM LIMIT IN PRECISION limit for phase measurement is

PHASE MEASUREMENT

In this section, we will run through a number of proofs to Ap= i (with N=N;,/2), (99
show that the fundamental quantum limit in precision phase N

m rement is the Heisenberg limit. S : - .
easurement is the Heisenberg t which is the Heisenberg limitN=N,,/2 is the total number

of photons in the arm of the interferometer that experiences
the phase shift.

Classically, the phase is just the argument of the complex The above semiclassical argument runs equally well if we
field amplitude used to describe an optical field. Many fac-describe the optical field quantum mechanically. However, it
tors may change the value of phase. In fact, its measuremeist limited to the specific scheme of interferometry for phase
plays an essential rule in precision measurement, and h&omparison, and to the detection scheme of intensity mea-
been widely used in practical applications as well as in fun-surement.
damental studies. The traditional method of measuring phase Furthermore, if classical states of light are used as the
shift is interferometry. This method relies on the optical in-input to the interferometer, photon statistics is at best the
terference effect for the comparison of phases in two pathd?oisson distribution, i.e.ANy,= VN, But for optimum
If we fix the phase delay of one path, any detected change isensitivity at$==/2, N,,=N;,/2=N. Hence from Eq(8) we

A. Semiclassical argument
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o) @ where P,,=|c,,|? is the photon number distribution for the

. . input field. By using the inequalitiefsinx|<1 and |sinx]|
Field A Us MeiTase <|x|, we can easily rewrite Eq14) as
easuremen
Phase Shift §
[|AD)|P<4>, Pylsinmsl2)|<4>, P,ms/2=2(N)s,
FIG. 2. Quantum description of a phase shift and its measure- " " (15)
ment.

. . e _ .. where(N) is the total mean number of photon in the input
arrive at the classical limit or the coherent state limit in afie|d. From Eq(15), we see that iB=0(1KN)), |||A<I>>||2 will

conventional interferometgs], be infinitesimally smaller than one whefN)—, which
means that it is impossible to detect any changébin or the
Agp=1IN. (9b)  phase shifts~0(1/(N)). We can therefore conclude that the

minimum detectable phase shift is at least of the order of
Thus nonclassical states of light must be employed in orde1/<N> for large(N).

to surpass the coherent state limit to reach the Heisenberg However, the above argument only holds for a pure input

limit. state. Very often the input field is correlated to other fields,
and when we look at the state of the input field alone, it is in
B. Argument by the change in quantum state produced a mixed state described by a density operator in the general
by the phase shift form of

Quantum mechanically, a phase shifinduced by a lin-
ear optical element on a single-mode optical field is de- p=2> pmrmy(n|. (16)
scribed by the unitary operator, mn

Us=exp(ind), (20 For this case, the phase-shifted state can be described by
another density operator related to the original density opera-
wheren=2a'"a is the number operator, with the annihila-  tor by
tion operator for the optical mode. If the optical field is in the
state|®), the state after the phase shift is tHdr)=i/]®), N ey (s
as shown in Fig. 2. p' =Usplly= 2, pme€' ™ ™ Im)(n. (17)
Next let us write the statib) in the general form e

As before, we are only interested in the change in the density
|®)=2 cym) (11)  operator,
m

in the basis of photon number Fock state representation. Ap=p'—p=2 pmd €™ V2=1]m)n|, (18
Then the phase-shifted stdfe’) can be written as mn

. and the quantity that characterizes the size of the change is
| Y=exp(ind) Y, cum=> cne™|m). (12) the sum of the absolute square of all the elements of the
m m matrix Ap:

Since our goal is to detect any change in the state due to the
phase shift, we are more interested in the difference |ADI2=42 |pmnl2SiB(m—n) /2. (19
|A®)=|®")—|P). From Egs.(11) and (12), we can write m.n
|A®) as
By using the same trick that leads to Ef5), we rewrite Eq.
_ (19 as
|A<I>)E|<I>’>—|fb)=% cm(€M—1)m). (13

. . |4pIP<22 |pmd?m—n]s. (20
If the change in the state is small, so that we are unable to mn

detect it no matter what method we use, it will be impossible
to resolve the phase shift The quantity that characterizes It can be easily shown thép,,.|*< pmmPnn=PmPn for any

the size of the change in the state is the norntAdb): density matrix. Equatiori20) then becomes
l|AD)[[P=(AD|AD) =42 |cy|?sirP(ms/2) 1Ap]2<2>, PpPy/m—n|s
m m,n

=4, P, si(mdsl2), (14) <22, PpPn(m+n)s=4(N)s, (22)
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which is similar to Eq.(15). Thus we have proved for any By using the inequalities in Eq$23) and (25), we find the
input field that, in order to have a significant change in theupper bound foR? as
state, the phase shift must be at least of the orderdf)Ifbr
large (N). 1 4)|Ad)|?
R’°< = 4[|Ad)||?<1).
o a1 1-afaey AP
C. Argument by the signal-to-noise ratio (27

in quantum measurement . aa )n A
_ _ _ (i) [ If (®'|A°O|®')<(D|A*O|®P) or (P'|O%D")
The argument in Sec. Il B relies on the assumption tha‘s(<b|o|2<1>>+|s|2 we have, by using Eq23)
we are unable to detect an infinitesimal change in the state no ’ ' '

matter what method we use. We will prove this assumption

Ald 7\ [[2< | 2 Ald '\ 2L || 2 2
in the following by considering the signal-to-noise ratio in a [olen*<lo|®)l|*+2(|o[")*+ Ol ®)] )|||A¢ggga
general quantum measurement on the phase-shifted state for
the detection of the phase shift. We will base our proof oror, equivalently,
the pure state in Eq11) for the input field.

Consider a general measurement process. Assume that we . 1+2[[|[AD)|?
make a quantum measurement on the output field to find the [O|®")[?><|O|®)|? 1= 2][a0)]| (2|ad)|><1).
change due to phase shift Let O be the operator corre- (28b
sponding to the measurement. Thus the signal of the mea-
surement is Combining Egs.(23), (24), and (28b). we find the upper
bound forR? in the case
S=(®'|0|®")=(D|O|D)+(AD|O|®)+(D|O|AD) 52
- 2_
+(AD|O|AD), (22 = 0670)
where EQ.(13) is used. Since the measurement is for the <2(1+ Hélq),>||2||6|¢>||2)|||A¢>||2
detection oflA®), it is preferable to havéd|Q|P)=0, Oth-
erwise we can always redefine the operatoDas(®|O|P). )
We rewrite Eq.(22) as < Allad)| 5. (29)
1-2|[Ad)]
S?=KAD|O|P)+(P'|O|AD)|? Therefore, the upper bound for the signal-to-noise ratio
A - ) both cases is
<2(KA®[O|D")[*+ [{AP[O] D)%)
Ol . 4lla®)|?
<2([[o]@")*+[O]®)[H) | A®)|? (23 2 — 0 (4]|Ad)[2<1). 30
1—4|||A(I>>||2 ( ||| )H ) ( )

where we used the Schwartz inequality in the last inequality. , ’ ) .

Next, let us find the noiséS in the measurement as the SO the size||A®D)| of the change in the state is a good
variance ofO. Since we are trying to detect the change in themeasure for the sensitivity in precision phase measurement.
phase, we need to consider the variances for the states befdrerthermore, from Eq(15), we have

and after the phase shift, that is,

,_ 8(N)s
. . Res ————— (8(N)s<1l). (3D
(AS)?=Max((D|A20]d) (D'|A%0|d)). (24 1-8(N)s
o ) Hence,R can be larger than 1 only whe#=O(1/AN)) and
There are two possibilities in the above expression. we have proven that given the total mean number of photon
(i) If (@|A%0[@)=<(®'|A°0[®"), we have (N), the minimum detectable phase shift is the Heisenberg
limit.
[6]@)]= (|07 ) -
. D. Argument by the complementarity principle
=(®|A%0|D) of quantum mechanics
=/ I A2A All the previous proofs relied on some specific kind of
<(®'|A“O|D")
measurement schemes even though they were general. For
<<q>/|62|q)'> example, in the proof in Sec. Il C, we made the assumption
. that there exists a Hermitian operatorfor the correspond-
=[|o|®")|>. (250  ing quantum measurement process of the phase. As will be
seen below in some cases the noise of the measurement is
Then the signal-to-noise ratik=S/A S has the form not simply the variances given in E4), and the criterion

for detecting a phase shift is not the size of the signal-to-

<<I>’|6|<I>’>2 1 noise ratio. Therefore, all of them have some kind of limita-

= a = — . (26)  tions. In the following, we will run through another proof
(®'|A%0|D")  |O|d")||HS?*—1 which is based on the complementarity principle of quantum

2
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system provides a platform for a discussion of the precision
of the phase measurement in connection with the comple-
observation mentarity principle.
a of In the QND measurement of the photon number by the
Interference optical Kerr interaction, two fielda andA (one is called the
D signal while the other the propare coupled through a Kerr
medium, and the state evolution is determined by the unitary
operator[ 18]

1y

qnd

Phase
Measurement

Field A

~ N
Z/{QND: gixa aA A, (32)
FIG. 3. Single-photon interferometer with a QND device in one

of the arms for the which-path information. where k is a parameter that depends on the strength of the

interaction and is adjustable. To examine the physical mean-
. . ing of x further, let the input state to the QND device be a
mechanics. It is independent of the measurement scheme ag gle-photon state for the signal fietdand a general state

thus is the most gener_al prqof SO far. .__|®) given in Eq.(11) for the probe fieldA. Then the output
The complementarity principle of quantum mechaniCSgiaia for the two fields is

[15] concerns the particle and wave duality of light. Al-

though light exhibits both wavelike and particlelike behav- " _ ikATA _ ,

iors, it is impossible to observe both of them simultaneously. Uonol 1)al P)a=[1)a8 ™ HP)a=[1)al®)a- (33
When we apply the complementarity principle to the phe-Thus, according to Eq12), the probe fieldA is subject to a
nomena of interference, we find that it is impossible to obtairbhase shiftc imposed by the input of a single photon in the
the complete which-path information for the two possiblesjgnal fielda. Although this statement comes from the as-
interfering paths of a photon, and to observe in the meantimgumption that the probe fiell is in a pure state of Eq11),

the interference effect in a single experiment. In other wordsit can easily be proved to be correct even for the mixed state
the interference effect will disappear if we know exactly described by Eq(16) for the probe field.

from which one of the two pOSSible interfering pathS the Next, we perform some measurement of the probe field
photon approaches the detector, whereas the appearancet®kstimate the phase shiffig. 2). If we can detect the phase
interference is always a manifestation of the intrinsic indis-shift in field A with precision better thark by whatever
tlngUIShablllty of the path of the photon. In more quantitative means, we will be able to tell whether a photon isin Fmth
language, the mutual coherence and indistinguishability opr not. Hence, if we use this device in one arm of the single-
the photon path are related in such a way that the degree ghoton interferometer, we will know the which-path infor-
the interference effeC(E.g., the V|S|b|||ty of the interference mation, and’ according to the Comp|ementarity princip|e, the
pattern depends on the precision of our knowledge aboufnterference effect will disappear. On the other hand, if we
which path the photon goes throuft6]. The visibility will  can observe a 100% visibility in the single-photon interfer-
be zero if we know exactly which path the photon goespmeter, it will be impossible to detect the phase skifin
through, whereas no knowledge of the which-path informafie|d A no matter what kind of method or strategy we use for
tion at all will give rise to 100% visibility in the interference the extraction of the phase shift. Therefore, the visibility of
pattern. If we have some partial information about whichthe interferometer is directly related to our ability to resolve
path the photon goes through, the visibility of interferencethe phase shifk due to a single photon.

will lie between 0 and 1. Furthermore, if, without disturbing | et us now examine the visibility of the single-photon
the interference system, there exists a possibility, even ifhterferometer with the QND device in path For the sys-
principle, for the distinction of two interfering paths, all in- tem of Fig. 3, the visibility of the interferometer has already
terference is wiped out. Notice that it is not necessary teen derived by Sanders and Milbufh9]. To make the
actually carry out an experiment for the distinction in orderpresentation self-contained, in the following we will derive
for the interference to disappear. The mere possibility that ithe visibility along the lines of Ref[19]. Assume that a
can be performed is sufficient to suppress the interferencgingle-photon state is fed into one of the input ports of the
effect. This supplement of the complementarity principle isinterferometer. To be more general, we assign a mixed state
the key in our next argument for the fundamental quantunyescribed by the density operafex in the form of Eq.(16)

limit in precision phase measurement. to the probe fieldA. Thus the input state for the total system
Consider the single-photon interferometer shown in Figjs described by the density operator

3. In one of the interfering paths, we add in a device that

makes a quantum nondemolition measurenf@ND) of the Pror=|1){1|® pa . (343

photon number. Therefore, it is possible to obtain which-path

information for the single photon without destroying(ito  After the first beam splitter, the state for the system becomes

disturbance to the interference sysjemt is known[17,1§ -, A

that the optical Kerr effect can be used to implement a QND Pro= )Y@ pa, (34D

measurement of the photon number. In this case, the mea-.

sured photon imposes a phase shift on another beam calléd

the probe beam. Measurement of the phase shift on the probe 1

beam provides the information about the photon number, and [)=— (|1)4]0)p+]0)al1)p).

will influence the interference pattern. Thus this interference v2



55 FUNDAMENTAL QUANTUM LIMIT IN PRECISION . .. 2603

After passing the QND device, the state of the system has thghoton number required in field in order to resolve a phase

form of shift . On the other hand, E4383 can also be written as
~n - ~ 'KATAATA’W —'KATAATA —
PtotzUQNDPthBNDZ gk A A, e KA A K>1 v (38h)
(N)

1 {ATA ATA
== (]1,,00)(1,,05| €A Ap e~ TKAA . . -
2 (112,0)(1a,0 Pa which sets a lower limit on the minimum detectable phase

shift, given the total mean number of photons available in the

A _ At
+]02,15)(04,1p| +104,1p)( 12,0 pa ™A A field A. If a phase shiftc can be resolved by whatever
CATA~ means, as the previous argument shows, this will result in the
+112,00)(04,1p|€"" ). (340  disappearance of the interference patterny e0. From Eq.

. . . (38b, we have k=1/(N). Thus the minimum detectable
From this state, we can calculate the probability of detectlnq)hase shift in fieldA is of the order of ¥N) or the Heisen-

a photon at one of the output ports of the interferome®er: berg limit.
=(ala.) with a.=(a*e'’b)/v2. It has the form of The above argument is for the case when there is only a
single mode in fieldA. With a multimode field probing the
P=3[1*v cod¢—e)], (35 phase shift, the problem is equivalent to the multiple-phase
measurement schemes that have attracted much attention
lately [6—8,14. The multiple measurement schemes divide
v=|Tr(e"‘ATAf) )| (363 the available energy into multiple parts, each sensing the
AL same phase shift. Optimization of the measurement strategy
can be performed based on quantum information theory for
the estimation of the phase shift. A modification of the uni-
tary operator for QND measurement can be made to include

with the visibility

and e the phase of T# KATAﬁA). Therefore the visibility of
the interference pattern is

' the multimode coupling. The modified unitary operator has
v=|2 Pne™, (36  the form
m
where Eq.(16) is used forp, . For the purpose of compari- Uonp= EX[{iKéTéZ AJ-TAJ}, (39
son with the unit visibility, let us calculate the quantity-i !
as follows: . i _ .
where a multimode fielé\ with modes characterized by the
) annihilation operator$A;} is coupled to a single mode af
1-v=1- % Prne'™* that is one arm of a single-photon interferometer. It can be

easily checked that a single photon in figdwill induce a
phase shiftc in all the modegA;}. Joint measurements on
all the modes can be performed to estimate the phase shift.
By following the same line of argument as in the single-

. mode case above, we can easily show that the precision in
% Pme'™“sinmx/2 the joint phase measurement cannot be better (tfgph ™,

with (Ntot)zzj<AjTAj) the total mean photon number in all the

modes. Therefore, we have generalized the proof for the fun-
damental limit to the multimode case. Furthermore, we did
not specify here how the energy is distributed among differ-
By using the inequality sik<x in expression37), we end ent modes. Thus the argument applies to the case of an un-

s‘l—E P e~
m

=2

<2, P,|sinm«/2). (37
m

up with the following inequality: even distribution of energy as well as to the case of equal
partition of energy as in most recent investigations of
1-v multiple-phase measurement scherffs8,14.
1—v<(N)x or (N)>——, (383 Although the unitary operator in E¢39) is not practical

in reality because the optical Kerr effect will produce differ-
with {(N) the average photon number in figdd This inequal-  ent coupling constants for different modes due to disper-
ity sets a lower limit on the total mean number of photonssion, and will involve coupling between modes, Eg9) is
required in fieldA in order to resolve the phase shift ofin used here purely for the sake of argument. It is allowed in
the phase measurement of field The argument runs as quantum mechanics: in principle, with a proper arrangement
follows: When it is possible, by whatever means, to resolveof modes and a precise control of the coupling, it is possible
the phase shifk in field A, we can tell whether the photon to eliminate the cross terms and to have equal coupling
entering the interferometer passes through pathb. Since  strengths for all modes. In essence, the existence of3y.
we know the which-path information, according to comple-does not violate any law of quantum mechanics.
mentarity principle the interference effect in the interferom-  Notice that although the loss of interferenze~-0) relies
eter will disappear or, equivalently,~0. Thus from Eg. on the ability to resolve the phase shitit does not require
(389 we find that the total mean photon number in fidld actually performing the measurement of the phase shift. The
must satisf{ N)=1/«, which provides a lower bound on the passing of the probe field is sufficient to wipe out the
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single-photon interference effect, provided that the probeddress this question in Sec. IV when we discuss the general
field A is in such a state that in principle there exists a meascheme of phase measurement.

surement scheme on the fiekd by which we are able to

resolve the phase shiit Ill. ANECESSARY CONDITION

Before we go to Sec. llI, let us find the explicit form of FOR THE HEISENBERG LIMIT
visibility for some known states. It is straightforward to cal- |1 is known that squeezed state interferometry can achieve
culate the visibility for various states from E(B6h): the Heisenberg limif10]. Recently, some other schemes

(i) For a coherent state), v =e~1*"(1-c0s9~e~ N2 for  [11_13 were discovered that have the same sensitivity.
k<1[19]. v~0 when(N)>1/«? which is consistent with the However, it is not common for a phase measurement scheme
shot-noise limit of 14(N) in phase measurement sensitivity to achieve the fundamental limit. For example, coherent state

for coherent state interferometry. interferometry only reaches (N) sensitivity. As we
(if) For the thermal state described by the density matrixoroved in Sec. Il A, if classical sources are used in the con-
pin=2nPnIn)(n|, with P,=(N)"/((N)+1)"*1, ventional interferometer shown in Fig. 1, the sensitivity is
always limited by 1{(N), or the coherent state limit. To
1 achieve the Heisenberg limit, nonclassical sources must be
v= [1+4(N)Y((N)+1)sirP«/2]? used. What are the general requirements for the optical fields

which can achieve the Heisenberg limit when they are em-
ployed in a phase measurement scheme?

= [1+<N>2K2]172 for (N)>1 and x<1. Let us now consider those states which have relatively
small photon number fluctuations, so that
Notice thatv is significantly different from unity only when A2NY<<(N)2  for large (N 40
«=1KN), which is consistent with the Heisenberg limit. < y<(N) ge (N). (409
(iii) For the phase state in E({), We will use these states in the probe fidldin the single-
photon interferometer with a QND measurement device hav-
_ 1 |sin(s+ 1);</2| ing a coupling constant
v=lim - =0 for any x#0,
e ST1| sink/2 | 1
K~ ——, (40b)
(N)

which reflects the fact that it is possible to make a precise S )
measurement of phase in this state no matter how small th&fhich is also the phase shift in fiel induced by a single
phase shift is. With a f|n|t6’ on the other hand’ we have phOtOI’] in fielda. Assume further that phOton dIStl’IbutIGﬂn
v =|sinc[(s+1)«/2)/sinc(x/2)|, andv is different from 1 only ~ for these states is smooth, so thgf~0 for thosem with
when k=2/s=1/(N),. |m—(N)|> (A?N). Then the contribution to the sum in the
(iv) For a number statgM), v =1, and it is impossible to visibility formula in Eq. (36b) only comes from those terms
resolve a phase shift no matter how laxgé)=M is. This  with [m—(N)|=<+{A?N), and we can approximate E@6b)
reflects the random phase property in the photon numbeas
state.
(v) For the phase state of E@5), v=1—6«/7 when DA~ > Pem .
(N)>1 and x<1. Therefore, fork<1, v=1, which means Im—(N)| = V(A2N)
that the state in Eq’5) is not suitable for the probe field
for sensing a small phase shift. For [m—(N)|=(A?N), becausex\(A?N)<1 as derived
Superficially, we notice from examplé) above that, for from Eq.(40), we can approximate'™ with €', and Eq.
the thermal state, the disappearance of the interference pd#l) becomes
tern (v~0) is not necessarily related to the existence of a
scheme of measurement on the state to resolve the phasey~ > Pe (N«
shift «, for from example(ii) we havev ~0 when(N)«>1, Im—(N)|= V(AZN)
but the phase-shifted thermal state=UpU"=p does not ) o o
contain any information about the phase shift. This factl herefore, with states satisfying E¢t0g in field A and a
seems to contradict the complementary principle, whictPhase shift of size~1/N), we can observe an interference
states that interference should always occur whenever theRattern with 100% visibility, indicating that it is impossible
does not exist in principle a method to find the which-patht© resolve the phase shift of sizeno matter what we do on
information. On the other hand, we know that mixed statedield A. Thus in order to obtain the sensitivity set by the
are a result of our lack of interest or ability to know other Heisenberg limit in the phase measurement, we must utilize
correlated fields(e.g., the reservoir fields for the thermal States satisfying
statg. Once we enlarge the state space to bring in these (A2N)=(N)2 (43)
correlated fields to make a pure state, the whole system will
carry information about the phase shift. The question is thenfor sensing the phase shift. Notice that the condition in Eq.
Does there always exist a phase measurement scheme tli48) is only a necessary condition. It can be easily checked
can resolve the phase shiftwhenever this modified state is that the phase measurement schemes that have been discov-
utilized in field A for sensing the phase shift, and which ered so far to achieve Heisenberg limit utilize states satisfy-
causesv =0 in the single-photon interferometer? We will ing the condition in Eq(43).

(41)

ei<N>KE Pm

m

=1. (42
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IV. GENERAL CONSIDERATION IN THE SEARCH on two modes, and comparison is made between the two
FOR SCHEMES REACHING modes for the extraction of the phase shift.
THE FUNDAMENTAL LIMIT If the state|¥) is easily available, as in the case of

From the necessary condition derived in Sec. Ill, we fing" acuum state, we can generate the special y@jtes the

that, in a search for phase measurement schemes that havghase-sensing state by the inverse process.oThen we
o 107 P I : oftn a general type of interferometer, as shown in Fig. 4.
sensitivity reaching the fundamental limit, we must first look 9

: " . Notice thatU is a general type of unitary operator that sat-
for those states that satisfy the necessary conditions in Ecﬂsfies our requiremgent for p)r/cF))ducing a uxine stait from

(43). Then we nged to construct a scheme Wh!Ch employ?@' Thus we have generalized our discussion to a broad
these states in field for sensing the phase shift. So far,dclass of unconventional interferometers
cle .

tmhgﬁa??i\r/ﬁitbi?\egh‘;sneumzzrsuoresrﬁg[ﬁfiéhifnze(})?l;htmemfun Before examining specific examples, let us answer the

. . . . ’ guestion raised at the end of Sec. Il in connection with the
e e oo 1Complementary prncipe. We wi ook o 2 cher for
terferometers Whicﬁ do not use beam splitters as their wav hase measurement. Consider first the case with a pure state

- X . .y . in the general form of Eq.11) for the fieldA. For any state
d|V|d¢rs[11,1:§_|. ".1 the foIIowmg, we will not limit our dis- |®) with a nonzero norm in a Hilbert space, it is possible to
cussion to a particular type of interferometer. ~

In order to detect the phase shift, we will make measureIInOI a unitary transformatiot), so that

ment on fieldA. However, direct photodetection does not 0 |)=|0) (46)
reveal any information about the phase of the field. There- ¢ '

fore, we first need to transform the state of the fiéldnto  \yhere|0) is the vacuum state and contains no photon. So it
some other state for which photodetection is sensitive to thgs serve as the sta¥) with a special feature for distinc-
phasee.g., homodynke Let the state of fieldh be|®) or |')  {ion Thus the interferometer has the form shown in Fig. 5.

with or without the phase shift. Consider a unitary operatorotice that only single-mode field is used in the interferom-
U which operates on the sta®) or |®'), and results in the gy

state Obviously, from Egs(11) and (46) we have
[W)=Ul®) or [¥r)=Ule’), 44 C=(m|U}[0)= (0] Ug|m)*. (47)
which will be phase sensitive; that is, detection|d) will With a phase shift on the stai®), we find that the output

result in a significantly different outcome fropir). Our goal

now is to detect the difference betweph) and [¥'). This

can be easily achieved if we select those states#drsuch [Py = 0¢|¢/>: 0¢eiﬁ§0:rp|o>, (48)

that detection on it will yield null result, whereas detection

on|¥’) gives a nonzero result. One such state that can servghere Eq.(46) is used. With no phase shift, the output field

as|V) is simply the vacuum state. Thus any detection of &g simply in|0) and has no photon, but, with a nonzero phase

photon in staté¥’) will be an indication of a phase shift.  shift, the output state is no longer the vacuum state and will
Furthermore, phase is a relative quantity. We often need gontain photons. Thus detection of any photon in the output

reference in order to find the change in phase. Therefore, Wgeld is an indication of a nonzero phase shift. A better mea-

will bring in another field called as the referencee.g., the  syre for this will be the probabilit_of detecting any photon

field in the other arm of the conventional optical interferom-in the output. Obviously, we have=1— P, with P, being

eters with beam splitters or the local oscillator in homodynethe probability of no photon. With the output state in Eq.

detection. After we find the statéor mixed statg|®) satis- (48), we find

fying the condition in Eq.(43), it is useful to enlarge the

state space to include the fie] so that fieldsA andB are 2 N 5 ims 2

correlated. Therefore, the state for the total system has the Po=|(0]¥")[*=[(0[Uge™ U g|0)[*= Em: |Cml €™

state becomes

general form (493
D). — 4 where we used the closure relatial|m)(m|=1, and Eq.
[ % CrunlMalMe “9 (47) in the last equality. Therefore, for the probability of

. detecting any photon we have
in the Fock state basis. The unitary operdtbiacts on the

enlarged state space of two modes. Normally, the output will - _ ims 2_ 2
also consists of two modes. Detection can then be performed P=1-Po=1- % Pme =1-v% (49D
Field A (/J\
s g1 i 0 '
~ S , ¥y —1 U U Up — 1)
0 ) Tis | @) )| Uap [ e e
Field B

FIG. 5. General scheme of the phase measurement with a single-
FIG. 4. General scheme of the phase measurement. mode field.
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where we used Eq36b) with x= & for the visibility v of the  a matter of fact, the first interferometer that beats the coher-
single-photon interferometer. Therefore, if we use thisent state limit for sensitivity in precision phase measurement
scheme for detecting a phase shift in the single-photon interemploys a squeezed vacuum state in the unused input port of
ferometer discussed in Sec. II D, we find that, whenevea conventional interferometg20]. It has been proved further
v=0, P=1, indicating that we are able to detect the phasehat by utilizing coherent squeezed states, one can achieve
shift of 8. Thus we have shown that whenever the interferthe sensitivity set by the Heisenberg lifilt0]. On the other
ence disappear® =0), we will have at least in principle a hand, a squeezed vacuum state is known to be phase sensi-
method of knowing whether the single photon passes théve; thus we can form an interferometer directly with
patha or not with 100% probability. A good example for the squeezed vacuum states without the need for a nonzero co-
pure state is the phase state in Ef). with finite s. As a  herent component.

matter of fact, such a scheme achieves the Heisenberg limit. It is known[21] that two single-mode fields in squeezed
From Eq.(49b), we see that the quantity as expressed in vacuum states with the same squeezing parameter, when
Eq. (36) is a good measure in the search of optimum phaseombined with a beam splitter, can produce the so-called

measurement schemes.

twin-photon state with a zero-photon-number difference in

Next let us consider a more general case with a mixedhe two output fields. The zero-photon-number difference is

state of

b= S pmlmi(nl. (503

a special feature that can be used to distingigh from
|W). Therefore, the system for the evolution frgd) to | V)
will be a normal lossless beam splittd) will be the
squeezed state for both fieldsand B, and [¥) will be the
twin photon state. The actual interferometer is the same one

As we discussed at the end of Sec. II, let us assume thaghown in Fig. 4 where the unitary operatdris simply that
when we enlarge the state space, we are able to obtain a pu a lossless beam splitter, and the two input pagtandb,

state of the form

|DYas= > Cr(N)|MYalN)g,

m,\

(50b)

which, after tracing over fieldB, will reproduce the mixed
state in Eq.(508. The stateg|\)g} characterize the other
states in field8 that are correlated with field. It is always
possible to make the statfa)g} a set of orthonormal states
with (\'|]\")= 6, ,,». Therefore, after tracing over fiell and
comparing with Eq(503, we have

pmn=§ Cm(M)CE(N).

Consider now the vacuum stajt),|0)g for all the rel-
evant modes in field& andB. As before, it is possible to
find a unitary operatot) g SO thatU ,g|®)a5=|0)4|0)g -

We can then run through the same argument as the case of a

pure state for field\. The only thing different here is that the

criterion for finding the phase shift is the detection of anylt

are in a twin-photon state described by
|W)=S(u,v)|vac) (50
with
S(u,v)=exdik(aghg—H.c)] (= coshe,v=sinhk).
It is easy to find that (a3, biby)™ =0 for any nonzero

integerm. The input-output relation for the interferometer
with a phase shift of is given as

A S ~ 6 - . 0 A )
a= aoco% + bosm§, b=- aosmi + boco%, (52

and the photon number difference at the outalN=2a'a
—b'b has the form

AN= (a}8,—bbg)coss+ (alb,+biag)sins.  (53)

is easily found that (AN),,=0 and (AZN),

photon in any mode of field& andB. Therefore, we have ~=4u?/*sints=4(N)?sirf(N)>1), where (N)=|v* is the
proved that if we can write the state of the system in the fornfotal mean number of photons in one arm of the interferom-
of a pure state after enlarging the state space, it is alwayster. In this case, sinc@AN),,=0 for any value ofs, we
possible to find a measurement scheme to resolve the phagannot use it as the signal for the detection of the phase shift
shift due to a single photon whenever the visibility of the 8. However,(A®N),,#0 for nonzeros, so it can be used as

single-photon interferometer is zero.

V. SOME EXAMPLES OF PHASE MEASUREMENT
SCHEMES WITH THE HEISENBERG LIMIT

the signal. But the noise is not simplﬁ(AzNF). In fact,
when 5=0, we have((AN)™) =0 for any nonzero integen,
so that any detection of nonzeAN is an indication of6+0.
HoweverAN is quantized and only takes91,*2,... .Thus
the noise of AN is simply 1. Therefore, SNR(A2N)

Among the states that are available in laboratories, only=4(N)2s? for (N)>1 and 5<1, and the minimum detect-
thermal and squeezed states have a variance of photon nughle phase shift is,,~1/2N), which is the Heisenberg
ber on the order of the square of the mean, thus satisfying thgmit. To further demonstrate this, let us_examine the prob-
condition in Eg. (43). More specifically, the variance is ability P of detectingAN+0. Obviously,P=1—P,, with
(APN)=2(N)(1+(N)) for the squeezed states of the total p the probability of detectingA N=0. We find P, by first

mean photon number @N) and(A2N)=(N)(1+(N)) for
the thermal states.

calculating the characteristic function fam,

Let us first consider squeezed states. There are a numbeB(r)=(e"*Ny=1/(1+4(N)25%sir’r)¥2  (N>1,6<1),

of ways to utilize squeezed states to form interferometers. As

(54)
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L0 Ronr=4(N)(1+(N))sirP6~4(N)25%> ((N)>1,6<1).
(59

Therefore, the signal-to-noise ratiSNR) is significant only
when 6~1/N). Since the output of the interferometer is
vacuum when there is no phase shift, and detection of a

P single photon will indicate a nonzero phase shift, a better
quantity to characterize the sensitivity of the interferometer
is the probabilityP of finding any photon in the output.
ObviouslyP=1- Py, with P, being the probability of find-
ing no photon in the outpu®, can be calculated as

. *ATA. !
N8 P0=<\P |-e aa_|q, >out
_ _ 1
FIG. 6. ProbabilityP of detecting any nonzerAN as a function - \/1+4<N)(1+<N))sin2 S
of (N) ¢ for a twin-photon interferometer.

and then making a finite Fourier transformation ~——o—, for (N)>1, 6<1. (60

? 1+4(N)*s° )
- f”lzd cosant 55  Thi i Iso be derived f b through
=, r (17 4(Ny25%SiPr) T2 (55 is expression can also be derived from Etb) throug

the quantityv for the squeezed staf&9]. ThusP is signifi-
cantly different from zero whe#=1/N), and the interfer-
ometer is operated at the Heisenberg limit. This scheme was
also discussed by Yurke, McCall, and KlaJd4], who used

the signal-to-noise ratio for the sensitivity.

As for the thermal state, it is impossible to implement an
interferometer based on such a state alone due to its lack of
hase coherence. However, as we discussed above, we can
Iways enlarge the state space to include the fetd form
pure statéd),g, So that we may find coherence between
elds A andB. It is known[23] that a nondegenerate para-
metric down-conversion process produces two correlated
fRids each having thermal statistics, or, in other words,
(A?N)p g=(N)({N)+1). Such a state is actually the twin-
general scheme discussed at the end of Sec. IV, and to for h:StoProsr:]at\jth(i)éht\stemf(i):de tsh(;liei(tazssns';)a(;teg(;izc;g?eedd fkr)ngq'
a single-mode interferometer. It is known that a squeeze acﬁum by applying the operaté(,u,v). Now let Us reverse
vacm:lm state can be generated from vacuum by applying ﬂ}‘ﬁe process by assigning the two down-converted fields as
so-called squeezing operator fields A andB, and set®),g=S(u,v)|lvac and¥)=|vag,g -

Then _the unitary operator required in Eq44) is
. (56) Uag=S Y(u,v) which can also be realized in a parametric
down-conversion process. The interferometer for the whole

N ol . system then has the same form as the two-mode interferom-
Then, from Eq(46), we haveU ,=S"*(£). Thus the single- eter shown in Fig. 4. In this case |¥)ag

mode squeezed vacuum state interferometer has the samei- _ o
form shown in Fig. 5. Without the phase shift, the output S (,v)| ®) n5=|vadg when the phase shift is zero. But

state of the system is siMp|W)o, =S 'Svad=|vad. With when we have a nonzero phase skiifthe output state be-

a phase shifts on the statdd)=SJvag), the output state be- comes
comes

ThusPy= 2K (—4(N)?6)/r, with K(x) the_complete ellip-
tic function of the first kind. Figure 6 show? as a function
of (N)é&. It is obvious thatP=0 when(N) §<1, and starts to
rise when{N)5~1, which is an indication of a nonzero phase
shift 8. Thus we find in this figure that the minimum detect-
able phase shift is of the order of ), and the interferom-
eter is operated at the Heisenberg limit. This scheme is ver
similar to the twin Fock state interferometry proposed bya
Holland and Burnetf12] except that we used the twin- fi
photon state in Eq(51) as the input to the interferometer.
The same scheme was also treated by Sanders and Milbu
[22] along the line of phase estimation for interferometry.
Another way to utilize the squeezed state is to follow the,

AS(g)zex;{Eg (32—H.c)

|W’>AB:é_1(M,V)ei'SATAé(M,VHVaC)AB- (62)
’ _ a-1,iafase
[W")ou=S""€* *’Svag, (57) Obviously, the staté¥’),z has a nonzero average photon
umber. By measuring the photon number in one of the out-
uts of the interferometer, we can detect the phase 8hift
To find the average photon number in the output of the
(W' |aT8|T ") ou= 4N (L+(N))sir?s, (59  interferometer, we find it easier to consider the evolution of
o the operators than that of the states. Referring to Fig. 4, the
where(N)=sint?¢ is the average photon number in the statefields A andB are related to the input vacuum fieldg and
|®). As before, the noise in the output is simply one photonPo as

Thus we have the signal-to-noise ratiBsyg) as (SNR, ~ ~oa - At
RSNR) A:Mao+ Vbo, B:Mb0+ Vao. (626)

and the average photon at the output of the interferometer %
then
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Assume that field\ experiences a phase shift &fThen the
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clues on how to construct an effective beam splitter ofithe

output fieldsa and b of the interferometer are related to photon as one entity. Consider the evolution operator

fields A andB as

éZ,uAei‘s— véT, E):,u,é_VATeiiﬁ, (62b)
Hence
a_ i i 2 2P i 82 ; 5"r
a=|1+2ie'"u smi ap+2ie ,uvsmzbo
=Gay+ghy, (63)

with G=1+2ie'"?u%sing2 and g=2ie'"?uv sind2. The
photon number operator at output fiegds then

Na=|G|%afa,+ |g|2606$+Gg* éoE’oJr G*gégf)g. 64
64

It is easily found that (n,)=]|g|>=4(N)?sir82 for

((N)>1), with (N)=|+|? being the average photon number in
field A. Similar to the squeezed state interferometers dis-
cussed above, the noisAn, is one photon so that

Rsnr=4(N)?sir?8/2. Therefore,Rgyg~1 only when 6~1/

(N). Furthermore, similar to the squeezed state interferom-
eters, we find the probability of detecting any photon in the

output fielda as
P=1-P,= 1—(:e M)
_ AN)N)+1)sinP5/2
~ 1+4(N)Y((N)+1)sir?s/2
N <N>252
~1+(N)?6?

for (N)>1, é&<1. (65)

Therefore, the probability of detecting a phase shift of gize

is significantly different from zero only i6=1/N). Thus the
minimum detectable phase shift is/llj, or the Heisenberg
limit. Such a scheme was also discussed in IREf] along

the line of the SU1,1) interferometer. Notice that the crite-
rion here for detecting a phase shift is simply the detection of’

any photon in fielda alone without considering field. This

is quite different from the criterion discussed in Sec. Il for
the general case of mixed states. The general criterion is t
detection of any photon in any relevant modes which will
include both modea andb. The reason for the difference is

that the output fielda andb are actually in a twin-photon

state as Eq(63) indicates, and the photon numbers of mode
a andb are perfectly correlated in such a way that the tw

Thus detection of a photon in mo@ealone is equivalent to
the detection of a photon in any of the two fields.
As another example, let us consider the state

1
|®)y=— (IM)a|0)g+|M)g|0),). (66)

V2

Obviously, (A2N),=M?/4=(N)3, thus it also satisfies the
necessary condition in E¢43). However, it is not so easy to

find an evolution process to produce a distinctive stétpeas
discussed in Sec. IV. Fortunately, RgL3] provides some

0 ) . i .
é\/l), this scheme is not likely to be practical as compared to

Uy =exp —— [(ABHM—H 67)
which comes from the Hamiltonian given by
H =i (ABHM—H.c]. (68)
It is easy to check that
O[O}l M) =— (10%a M)~ [M}2]0)e)
M A B ‘/? A B A B/
(693
- 1
UnIMYAlO)g=— (|0)a|M)g+|M)A|0)g),
mIM)al0)g ﬁ(l )alM)g+[M)a|0)s)
so that
Uni| @) =]0)g/M)s=|¥)y . (69D

With a phase shift of in field A, the statg®’) becomes

g 1 )
|¢'>=e'5A*A|¢>=5<|o>A|M>B+e'M5|M>A|o>B>

(703
and the output state then has the form of
- ) Mo
=04~ o35 [0} M)
. Mo
+i sin—- IM)Al0)g |- (70b)

Thus if we measure the photon number at the output Aprt
any detection of the photon will indicate a phase shift. The
probability of detecting any photon in the output pértis
P=sir’M &/2, which is significantly different from zero only
hen 6~1/(M/2)=1KN),. Therefore, such a scheme
reaches the Heisenberg limit.

The criterion here for the detection of a phase shift is once

ain different from the general one in Sec. lll, because of
the form of the unitary operator in Eq67). It does not
annihilate all the photons to produce a vacuum state, as re-
quired for the general scheme, but rather preserves the total

Jhoton number. Because of the unusual form of the unitary

operator(which depends on the total input photon number

the other schemes discussed earlier with single-mode or two-
mode squeezed states. It is used here as another example of
unconventional interferometers which can achieve the
Heisenberg limit.

VI. SUMMARY AND DISCUSSION

In this paper we proved, through a number of arguments,
that, with a finite numbe¢N) of photons for probing a phase
shift, the minimum detectable phase is of the order N}/
or the Heisenberg limit. In particular, the argument based on
the complementarity principle is independent of the schemes
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of phase measurement, and thus provides true proof of th®ec. lll, we made an assumption that any mixed state can be
fundamental quantum limit on the sensitivity of phase meawritten as a pure state of light if the state space is enlarged.
surement. Furthermore, since we do not involve a phase ofdowever, we find very often that a mixed state is the result
erator in the argument, we manage to avoid some of thef correlation not only with other optical fields but also with
difficulties associated with the phase operator. We have alsother degrees of freedom of a larger system that do not cor-
derived, through the argument of the complementarity printespond to the modes of optical fields. For example, sponta-
ciple, a necessary condition for those states that, when utheous emission produces an optical field in a thermal state
lized for sensing a phase shift, can achieve the sensitivity ofvhich, when the system is enlarged to include atoms, can be
the Heisenberg limit. With the states satisfying the necessarhought of as an optical field correlated with atomic states.
condition, we have outlined a general guideline for theFor a more general case like this one, our analysis fails. On
search for a specific measurement scheme of phase with thiee other hand, if one believes the principle of complemen-
sensitivity at the Heisenberg limit. tarity, the answer to the question should be “yes.” Other-
There is still one question unanswered in this paper. Thisvise, the interference effect would occur and the visibility
guestion is actually the one raised at the end of Sec. II: Doewould not be zero.
there always exist, even in principle, a measurement scheme
that is _able to_resolve the phase shift mdu_ced by a single ACKNOWLEDGMENT
photon in the single-photon interferometer with a QND mea-
surement device whenever the visibility of the interferometer This work was supported by the Office of Naval Re-
is zero? Although we answered this question at the end o$earch.
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