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Fundamental quantum limit in precision phase measurement

Z. Y. Ou
Department of Physics, Indiana University–Purdue University at Indianapolis, Indianapolis, Indiana 46202

~Received 13 June 1996!

We show through a series of arguments that, given a total average photon number^N&, the fundamental limit
in the precision phase measurement is set by quantum mechanics to be the so-called Heisenberg limit, i.e.,
1/̂ N&. Some specific types of phase measurement are considered in the discussion. However, the proof based
on the general principle of complementarity of quantum mechanics applies to any scheme of phase measure-
ment. From the general argument by the complementarity principle, we are able to find a necessary condition
for those states that can achieve the Heisenberg limit if they are employed for precision phase measurement. A
general guideline is given for the search of the measurement schemes in which the Heisenberg limit is
achieved. We demonstrate the procedure by applying it to a few specific examples.@S1050-2947~97!01804-0#

PACS number~s!: 03.65.Bz, 42.50.Dv, 42.25.Hz
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I. INTRODUCTION

It is well known that the quantum nature of electroma
netic fields leads to limitations on how precisely a physi
quantity of an optical field can be measured. It is genera
believed that, given an arbitrary state of light, the Heisenb
uncertainty relation sets the lower bound on the sensitivity
the measurement. On the other hand, if we are allowed
prepare the system in some specific states, according to
quantum theory of measurement, a physical quantity can
measured to arbitrary precision, provided that the states
eigenstates of the operator representing the physical qua
in quantum mechanics. For the phase of an optical fi
however, the answer is not so straightforward, mainly
cause of the fact that there does not exist a Hermitian op
tor for phase in an infinite-dimensional state space fo
quantized optical mode@1,2#. Recent theoretical progres
@3,4# in identifying a quantum-mechanical operator for pha
in a finite-dimensional state space leads to the following l
iting state as the eigenstate of a phase operator~which is also
defined by a limiting process!:

uu&5 lim
s→`

~s11!21/2(
m50

s

eimuum&, ~1!

which resembles to the eigenstate of position operator~de-
fined through a limiting process!. Indeed, a reasonable prob
ability distribution density of the phase for a given state c
be derived by projecting the state onto this phase state~simi-
lar to the wave function of the state! and, when the system i
prepared in the phase state in Eq.~1!, a measurement of th
phase will yield a precise value, as we will show below. O
caveat, however, is that the average photon number of
phase state is infinite in the limiting process. Thus it is no
physical state, reflecting the difficulty encountered in t
search for a physical phase operator. It becomes a com
consensus that, with unlimited resources of energy, it is p
sible to measure a phase shift to arbitrary precision.

In the meantime, we have only a finite amount of ene
in a realistic physical world. Thus we will limit our discus
sion under the finite energy constraint throughout the pa
551050-2947/97/55~4!/2598~12!/$10.00
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But can we still measure the phase to an arbitrary precis
with this constraint? In some sense, the failure to find
eigenstate of phase with finite photon number also implie
negative answer to the question. Therefore there exis
limit on the sensitivity of the phase measurement in the c
of finite energy. The traditional argument for the limit com
from the Heisenberg uncertainty principle for the phase a
photon number@1#,

DfDN>1, ~2!

whereDf and DN are the fluctuations for the phase an
photon number, respectively. Therefore, shot noise (DN
5A^D2N&;A^N&) due to the particle nature of light wil
place the so-called shot-noise limit or coherent state limit@5#
on the sensitivity of the phase measurement,

Df*
1

A^N&
. ~3!

On the other hand, quantum mechanics does not set an
striction on the fluctuationDN of the photon number. Intu-
itively, one would argue that because of energy constra
DN should be bounded by the mean number of photons,
is, ^D2N&;O(^N&2!. Thus given a total mean number o
photons, the limit in precision phase measurement should
the so-called Heisenberg limit

Df*
1

^N&
. ~4!

Note that the Heisenberg limit should be understood as
approximate limit at a large mean photon number, that is,
phase uncertainty approaches the order of^N&21 for large
^N&. We treat it the same way throughout this paper.

Shapiro and co-workers@6# recently proposed the state

uF&ssw5A(
m50

M
1

m11
um& ~M@1, A.A6/p2! ~5!
2598 © 1997 The American Physical Society
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55 2599FUNDAMENTAL QUANTUM LIMIT IN PRECISION . . .
as the optimum state in precision phase measurement,
they claimed that a 1/^N&2 performance in sensitivity can b
achieved. Although some difficulties@7–9# associated with
the phase distribution of this state prevent it from achiev
the promised precision, it is interesting to note that, for t
state, the photon number fluctuation^D2N& is on the order of
exp~^N&/A2! for largeM . Hence, from Eq.~2! we have the
limit Df*exp~2^N&/A2!, which is much better than th
Heisenberg limit of Eq.~4! for large ^N&.

As a matter of fact, the validity of Eq.~2! is not general
@2#. For example, for the vacuum state, the left-hand side
Eq. ~2! is obviously zero, thus violating the inequalit
Therefore, arguments based on the Heisenberg uncert
relation in Eq.~2! cannot hold in general, and the questi
remains: What is the limit in precision phase measurem
given the available total mean number of photon?

In the literature there have already been quite a numbe
papers on precision phase measurement@6–8,10–14#. Most
of them concentrated on a specific scheme or data ana
strategy for phase measurement, and therefore cannot a
to general cases. Even so, all the analyses up to now@7,8,10–
14# have shown that the performance in precision phase m
surement does not exceed the Heisenberg limit, excep
the questionable scheme@6# with the state in Eq.~5!. Thus
we have reason to speculate that the fundamental limit se
quantum mechanics in precision phase measurement is
Heisenberg limit.

In this paper, we will prove through a series of argume
that the ultimate limit in precision phase measurement is
Heisenberg limit. We first start our discussion on some s
cific types of schemes of phase measurement. Then, by
plying the complementarity principle to a single-photon
terferometer, we provide the most general proof of
fundamental limit, which is independent of measurem
schemes. In Sec. III, we will derive a necessary condition
those states that can achieve the Heisenberg limit in pr
sion phase measurement. Based on the results of Secs. I
III, in Sec. IV we will outline a general guideline in th
search for the schemes that can achieve the Heisenberg
We then apply the guideline in Sec. V to specific examp
including some unconventional interferometers that are
based on beam splitters. Section VI is devoted to discus
and summary.

II. FUNDAMENTAL QUANTUM LIMIT IN PRECISION
PHASE MEASUREMENT

In this section, we will run through a number of proofs
show that the fundamental quantum limit in precision ph
measurement is the Heisenberg limit.

A. Semiclassical argument

Classically, the phase is just the argument of the comp
field amplitude used to describe an optical field. Many fa
tors may change the value of phase. In fact, its measurem
plays an essential rule in precision measurement, and
been widely used in practical applications as well as in f
damental studies. The traditional method of measuring ph
shift is interferometry. This method relies on the optical
terference effect for the comparison of phases in two pa
If we fix the phase delay of one path, any detected chang
nd
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the output intensity of the interferometer will indicate
phase shift experienced in the other path, thus making a m
surement of the phase shift. To be more specific, as show
Fig. 1, a coherent optical field is split by a beam splitter in
two fields which later recombine to form interferenc
fringes. If the interferometer is properly balanced, the out
intensity has the form of

I out5I in~12cosf!/2, ~6!

where I in is the intensity of the input field, andf is the
relative phase shift between the two interfering paths. If
have a well-defined amplitude in the input field, any chan
DI out in the output intensity must come from the changeDf
in the relative phase. The sensitivity is highest when we
f5p/2:

DI out5I inDf/2. ~7!

Classically, there is no limit on how small the changeDI out
in intensity can be. Therefore, in principle, there is no lim
on how small a phase shiftDf can be measured. In quantu
theory, however, the particle nature of light does not all
an infinite division of energy, thus setting a lower limit o
DI out. We can rewrite Eq.~7! in terms of the photon numbe
as

DNout5NinDf/2, ~8!

whereNin is the total input photon number andDNout is the
change in the output photon number. The minimumDNout
that is allowed by quantum theory is simply one correspo
ing to the change of one quanta. Therefore, the quan
limit for phase measurement is

Df>
1

N
~with N5Nin/2!, ~9a!

which is the Heisenberg limit.N5Nin/2 is the total number
of photons in the arm of the interferometer that experien
the phase shift.

The above semiclassical argument runs equally well if
describe the optical field quantum mechanically. Howeve
is limited to the specific scheme of interferometry for pha
comparison, and to the detection scheme of intensity m
surement.

Furthermore, if classical states of light are used as
input to the interferometer, photon statistics is at best
Poisson distribution, i.e.,DNout>ANout. But for optimum
sensitivity atf5p/2,Nout5Nin/25N. Hence from Eq.~8! we

FIG. 1. Mach-Zehnder interferometer for the measuremen
the phase difference.
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2600 55Z. Y. OU
arrive at the classical limit or the coherent state limit in
conventional interferometer@5#,

Dfc>1/AN. ~9b!

Thus nonclassical states of light must be employed in or
to surpass the coherent state limit to reach the Heisen
limit.

B. Argument by the change in quantum state produced
by the phase shift

Quantum mechanically, a phase shiftd induced by a lin-
ear optical element on a single-mode optical field is
scribed by the unitary operator,

Ûd5exp~ i n̂d!, ~10!

where n̂5â†â is the number operator, withâ the annihila-
tion operator for the optical mode. If the optical field is in th
stateuF&, the state after the phase shift is thenuF8&5ÛduF&,
as shown in Fig. 2.

Next let us write the stateuF& in the general form

uF&5(
m

cmum& ~11!

in the basis of photon number Fock state representat
Then the phase-shifted stateuF8& can be written as

uF8&5exp~ i n̂d!(
m

cmum&5(
m

cme
imdum&. ~12!

Since our goal is to detect any change in the state due to
phase shift, we are more interested in the differen
uDF&[uF8&2uF&. From Eqs.~11! and ~12!, we can write
uDF& as

uDF&[uF8&2uF&5(
m

cm~eimd21!um&. ~13!

If the change in the state is small, so that we are unabl
detect it no matter what method we use, it will be impossi
to resolve the phase shiftd. The quantity that characterize
the size of the change in the state is the norm ofuDF&:

iuDF&i2[^DFuDF&54(
m

ucmu2sin2~md/2!

54(
m

Pm sin2~md/2!, ~14!

FIG. 2. Quantum description of a phase shift and its meas
ment.
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wherePm[ucmu2 is the photon number distribution for th
input field. By using the inequalitiesusinxu<1 and usinxu
,uxu, we can easily rewrite Eq.~14! as

iuDF&i2<4(
m

Pmusin~md/2!u<4(
m

Pmmd/252^N&d,

~15!

where^N& is the total mean number of photon in the inp
field. From Eq.~15!, we see that ifd5o(1/̂ N&), iuDF&i2 will
be infinitesimally smaller than one when̂N&→`, which
means that it is impossible to detect any change inuF8& or the
phase shiftd;o(1/̂ N&). We can therefore conclude that th
minimum detectable phase shift is at least of the order
1/̂ N& for large ^N&.

However, the above argument only holds for a pure in
state. Very often the input field is correlated to other fiel
and when we look at the state of the input field alone, it is
a mixed state described by a density operator in the gen
form of

r̂5(
m,n

rmnum&^nu. ~16!

For this case, the phase-shifted state can be describe
another density operator related to the original density op
tor by

r̂85Ûdr̂Ûd
†5(

m,n
rmne

i ~m2n!dum&^nu. ~17!

As before, we are only interested in the change in the den
operator,

Dr̂5 r̂82 r̂5(
m,n

rmn@e
i ~m2n!d21#um&^nu, ~18!

and the quantity that characterizes the size of the chang
the sum of the absolute square of all the elements of
matrix Dr̂:

iDr̂i254(
m,n

urmnu2sin2~m2n!d/2. ~19!

By using the same trick that leads to Eq.~15!, we rewrite Eq.
~19! as

iDr̂i2,2(
m,n

urmnu2um2nud. ~20!

It can be easily shown thaturmnu
2<rmmrnn5PmPn for any

density matrix. Equation~20! then becomes

iDr̂i2,2(
m,n

PmPnum2nud

,2(
m,n

PmPn~m1n!d54^N&d, ~21!

e-
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55 2601FUNDAMENTAL QUANTUM LIMIT IN PRECISION . . .
which is similar to Eq.~15!. Thus we have proved for an
input field that, in order to have a significant change in
state, the phase shift must be at least of the order of 1/^N& for
large ^N&.

C. Argument by the signal-to-noise ratio
in quantum measurement

The argument in Sec. II B relies on the assumption t
we are unable to detect an infinitesimal change in the stat
matter what method we use. We will prove this assumpt
in the following by considering the signal-to-noise ratio in
general quantum measurement on the phase-shifted sta
the detection of the phase shift. We will base our proof
the pure state in Eq.~11! for the input field.

Consider a general measurement process. Assume tha
make a quantum measurement on the output field to find
change due to phase shiftd. Let Ô be the operator corre
sponding to the measurement. Thus the signal of the m
surement is

S5^F8uÔuF8&5^FuÔuF&1^DFuÔuF&1^FuÔuDF&

1^DFuÔuDF&, ~22!

where Eq.~13! is used. Since the measurement is for t
detection ofuDF&, it is preferable to havêFuÔuF&50. Oth-
erwise we can always redefine the operator asÔ2^FuÔuF&.
We rewrite Eq.~22! as

uSu25 z^DFuÔuF&1^F8uÔuDF& z2

<2~ z^DFuÔuF8& z21 z^DFuÔuF& z2!

<2~ iÔuF8&i21iÔuF&i2)iuDF&i2 ~23!

where we used the Schwartz inequality in the last inequa
Next, let us find the noiseDS in the measurement as th
variance ofÔ. Since we are trying to detect the change in t
phase, we need to consider the variances for the states b
and after the phase shift, that is,

~DS!25Max~^FuD2ÔuF&,^F8uD2ÔuF8&!. ~24!

There are two possibilities in the above expression.
~i! If ^FuD2ÔuF&<^F8uD2ÔuF8&, we have

iÔuF&i25^FuÔ2uF&

5^FuD2ÔuF&

<^F8uD2ÔuF8&

,^F8uÔ2uF8&

5iÔuF8&i2. ~25!

Then the signal-to-noise ratioR[S/DS has the form

R25
^F8uÔuF8&2

^F8uD2ÔuF8&
5

1

iÔuF8&i2/S221
. ~26!
e
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By using the inequalities in Eqs.~23! and ~25!, we find the
upper bound forR2 as

R2<
1

1/4iuDF&i221
5

4iuDF&i2

124iuDF&i2 ~4iuDF&i2,1).

~27!

~ii ! If ^F8uD2ÔuF8&<^FuD2ÔuF& or ^F8uÔ2uF8&
<^FuÔu2F&1uSu2, we have, by using Eq.~23!,

iÔuF8&i2<iÔuF&i212~ iÔuF8&i21iÔuF&i2)iuDF&i2
~28a!

or, equivalently,

iÔuF8&i2<iÔuF&i2
112iuDF&i2

122iuDF&i2 ~2iuDF&i2,1).

~28b!

Combining Eqs.~23!, ~24!, and ~28b!. we find the upper
bound forR2 in the case

R25
uSu2

^FuÔ2uF&

<2~11 iÔuF8&i2iÔuF&i2)iuDF&i2

<
4iuDF&i2

122iuDF&i2 . ~29!

Therefore, the upper bound for the signal-to-noise ratioR in
both cases is

R2<
4iuDF&i2

124iuDF&i2 ~4iuDF&i2,1). ~30!

So the sizeiuDF&i2 of the change in the state is a goo
measure for the sensitivity in precision phase measurem
Furthermore, from Eq.~15!, we have

R2<
8^N&d

128^N&d
~8^N&d,1!. ~31!

Hence,R can be larger than 1 only whend*O(1/̂ N&) and
we have proven that given the total mean number of pho
^N&, the minimum detectable phase shift is the Heisenb
limit.

D. Argument by the complementarity principle
of quantum mechanics

All the previous proofs relied on some specific kind
measurement schemes even though they were general
example, in the proof in Sec. II C, we made the assumpt
that there exists a Hermitian operatorÔ for the correspond-
ing quantum measurement process of the phase. As wil
seen below in some cases the noise of the measureme
not simply the variances given in Eq.~24!, and the criterion
for detecting a phase shift is not the size of the signal-
noise ratio. Therefore, all of them have some kind of limi
tions. In the following, we will run through another proo
which is based on the complementarity principle of quant
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2602 55Z. Y. OU
mechanics. It is independent of the measurement scheme
thus is the most general proof so far.

The complementarity principle of quantum mechan
@15# concerns the particle and wave duality of light. A
though light exhibits both wavelike and particlelike beha
iors, it is impossible to observe both of them simultaneou
When we apply the complementarity principle to the ph
nomena of interference, we find that it is impossible to obt
the complete which-path information for the two possib
interfering paths of a photon, and to observe in the meant
the interference effect in a single experiment. In other wor
the interference effect will disappear if we know exac
from which one of the two possible interfering paths t
photon approaches the detector, whereas the appearan
interference is always a manifestation of the intrinsic ind
tinguishability of the path of the photon. In more quantitati
language, the mutual coherence and indistinguishability
the photon path are related in such a way that the degre
the interference effect~e.g., the visibility of the interference
pattern! depends on the precision of our knowledge ab
which path the photon goes through@16#. The visibility will
be zero if we know exactly which path the photon go
through, whereas no knowledge of the which-path inform
tion at all will give rise to 100% visibility in the interferenc
pattern. If we have some partial information about whi
path the photon goes through, the visibility of interferen
will lie between 0 and 1. Furthermore, if, without disturbin
the interference system, there exists a possibility, even
principle, for the distinction of two interfering paths, all in
terference is wiped out. Notice that it is not necessary
actually carry out an experiment for the distinction in ord
for the interference to disappear. The mere possibility tha
can be performed is sufficient to suppress the interfere
effect. This supplement of the complementarity principle
the key in our next argument for the fundamental quant
limit in precision phase measurement.

Consider the single-photon interferometer shown in F
3. In one of the interfering paths, we add in a device t
makes a quantum nondemolition measurement~QND! of the
photon number. Therefore, it is possible to obtain which-p
information for the single photon without destroying it~no
disturbance to the interference system!. It is known @17,18#
that the optical Kerr effect can be used to implement a Q
measurement of the photon number. In this case, the m
sured photon imposes a phase shift on another beam c
the probe beam. Measurement of the phase shift on the p
beam provides the information about the photon number,
will influence the interference pattern. Thus this interferen

FIG. 3. Single-photon interferometer with a QND device in o
of the arms for the which-path information.
nd
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system provides a platform for a discussion of the precis
of the phase measurement in connection with the com
mentarity principle.

In the QND measurement of the photon number by
optical Kerr interaction, two fieldsa andA ~one is called the
signal while the other the probe! are coupled through a Ker
medium, and the state evolution is determined by the unit
operator@18#

ÛQND5eikâ
†âÂ†Â, ~32!

wherek is a parameter that depends on the strength of
interaction and is adjustable. To examine the physical me
ing of k further, let the input state to the QND device be
single-photon state for the signal fielda and a general state
uF& given in Eq.~11! for the probe fieldA. Then the output
state for the two fields is

ÛQNDu1&auF&A5u1&ae
ikÂ†ÂuF&A5u1&auF8&A . ~33!

Thus, according to Eq.~12!, the probe fieldA is subject to a
phase shiftk imposed by the input of a single photon in th
signal fielda. Although this statement comes from the a
sumption that the probe fieldA is in a pure state of Eq.~11!,
it can easily be proved to be correct even for the mixed s
described by Eq.~16! for the probe field.

Next, we perform some measurement of the probe fielA
to estimate the phase shift~Fig. 2!. If we can detect the phas
shift in field A with precision better thank by whatever
means, we will be able to tell whether a photon is in patha
or not. Hence, if we use this device in one arm of the sing
photon interferometer, we will know the which-path info
mation, and, according to the complementarity principle,
interference effect will disappear. On the other hand, if
can observe a 100% visibility in the single-photon interfe
ometer, it will be impossible to detect the phase shiftk in
field A no matter what kind of method or strategy we use
the extraction of the phase shift. Therefore, the visibility
the interferometer is directly related to our ability to resol
the phase shiftk due to a single photon.

Let us now examine the visibility of the single-photo
interferometer with the QND device in patha. For the sys-
tem of Fig. 3, the visibility of the interferometer has alrea
been derived by Sanders and Milburn@19#. To make the
presentation self-contained, in the following we will deriv
the visibility along the lines of Ref.@19#. Assume that a
single-photon state is fed into one of the input ports of
interferometer. To be more general, we assign a mixed s
described by the density operatorr̂A in the form of Eq.~16!
to the probe fieldA. Thus the input state for the total syste
is described by the density operator

r̂ tot5u1&^1u ^ r̂A . ~34a!

After the first beam splitter, the state for the system becom

r̂ tot8 5uc&^cu ^ r̂A , ~34b!

with

uc&5
1

&
~ u1&au0&b1u0&au1&b).
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55 2603FUNDAMENTAL QUANTUM LIMIT IN PRECISION . . .
After passing the QND device, the state of the system has
form of

r̂ tot9 5ÛQNDr̂ tot8 UQND† 5eikâ
†âÂ†Âr̂ tot8 e2 ikâ†âÂ†Â

5
1

2
~ u1a,0b&^1a,0bueikÂ

†Âr̂Ae
2 ikÂ†Â

1u0a,1b&^0a,1bu1u0a,1b&^1a,0bur̂Ae2 ikÂ†Â

1u1a,0b&^0a,1bueikÂ
†Âr̂A!. ~34c!

From this state, we can calculate the probability of detect
a photon at one of the output ports of the interferometerP
5^â6

† â6& with â65(â6eifb̂)/&. It has the form of

P5 1
2 @16v cos~f2e!#, ~35!

with the visibility

v5uTr~eikÂ
†Âr̂A!u, ~36a!

ande the phase of Tr(eikÂ
†Âr̂A). Therefore the visibility of

the interference pattern is

v5U(
m

Pme
imkU, ~36b!

where Eq.~16! is used forr̂A . For the purpose of compari
son with the unit visibility, let us calculate the quantity 12v
as follows:

12v512U(
m

Pme
imkU

<U12(
m

Pme
imkU

52U(
m

Pme
imk/2sinmk/2U

<2(
m

Pmusinmk/2u. ~37!

By using the inequality sinx,x in expression~37!, we end
up with the following inequality:

12v,^N&k or ^N&.
12v

k
, ~38a!

with ^N& the average photon number in fieldA. This inequal-
ity sets a lower limit on the total mean number of photo
required in fieldA in order to resolve the phase shift ofk in
the phase measurement of fieldA. The argument runs a
follows: When it is possible, by whatever means, to reso
the phase shiftk in field A, we can tell whether the photo
entering the interferometer passes through patha or b. Since
we know the which-path information, according to comp
mentarity principle the interference effect in the interfero
eter will disappear or, equivalently,v;0. Thus from Eq.
~38a! we find that the total mean photon number in fieldA
must satisfŷ N&*1/k, which provides a lower bound on th
he

g

s

e

-
-

photon number required in fieldA in order to resolve a phas
shift k. On the other hand, Eq.~38a! can also be written as

k.
12v

^N&
, ~38b!

which sets a lower limit on the minimum detectable pha
shift, given the total mean number of photons available in
field A. If a phase shiftk can be resolved by whateve
means, as the previous argument shows, this will result in
disappearance of the interference pattern, orv;0. From Eq.
~38b!, we havek*1/̂ N&. Thus the minimum detectabl
phase shift in fieldA is of the order of 1/̂N& or the Heisen-
berg limit.

The above argument is for the case when there is on
single mode in fieldA. With a multimode field probing the
phase shift, the problem is equivalent to the multiple-ph
measurement schemes that have attracted much atte
lately @6–8,14#. The multiple measurement schemes divi
the available energy into multiple parts, each sensing
same phase shift. Optimization of the measurement stra
can be performed based on quantum information theory
the estimation of the phase shift. A modification of the u
tary operator for QND measurement can be made to incl
the multimode coupling. The modified unitary operator h
the form

ÛQND5expF ikâ†â(
j
Â j
†Âj G , ~39!

where a multimode fieldA with modes characterized by th
annihilation operators$Âj% is coupled to a single mode ofâ
that is one arm of a single-photon interferometer. It can
easily checked that a single photon in fielda will induce a
phase shiftk in all the modes$Âj%. Joint measurements o
all the modes can be performed to estimate the phase s
By following the same line of argument as in the sing
mode case above, we can easily show that the precisio
the joint phase measurement cannot be better that^Ntot&

21,
with ^Ntot&5(j^Âj

†Âj& the total mean photon number in all th
modes. Therefore, we have generalized the proof for the
damental limit to the multimode case. Furthermore, we
not specify here how the energy is distributed among diff
ent modes. Thus the argument applies to the case of an
even distribution of energy as well as to the case of eq
partition of energy as in most recent investigations
multiple-phase measurement schemes@6–8,14#.

Although the unitary operator in Eq.~39! is not practical
in reality because the optical Kerr effect will produce diffe
ent coupling constantsk for different modes due to disper
sion, and will involve coupling between modes, Eq.~39! is
used here purely for the sake of argument. It is allowed
quantum mechanics: in principle, with a proper arrangem
of modes and a precise control of the coupling, it is possi
to eliminate the cross terms and to have equal coup
strengths for all modes. In essence, the existence of Eq.~39!
does not violate any law of quantum mechanics.

Notice that although the loss of interference~v;0! relies
on the ability to resolve the phase shiftk, it does not require
actually performing the measurement of the phase shift.
passing of the probe fieldA is sufficient to wipe out the
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single-photon interference effect, provided that the pro
field A is in such a state that in principle there exists a m
surement scheme on the fieldA, by which we are able to
resolve the phase shiftk.

Before we go to Sec. III, let us find the explicit form o
visibility for some known states. It is straightforward to ca
culate the visibility for various states from Eq.~36b!:

~i! For a coherent stateua&, v5e2uau2(12cosk)'e2^N&k2/2 for
k!1 @19#. v;0 when^N&@1/k2, which is consistent with the
shot-noise limit of 1/A^N& in phase measurement sensitivi
for coherent state interferometry.

~ii ! For the thermal state described by the density ma
r̂ th5(nPnun&^nu, with Pn5^N&n/(^N&11)n11,

v5
1

@114^N&~^N&11!sin2k/2#1/2

.
1

@11^N&2k2#1/2
for ^N&@1 and k!1.

Notice thatv is significantly different from unity only when
k*1/̂ N&, which is consistent with the Heisenberg limit.

~iii ! For the phase state in Eq.~1!,

v5 lim
s→`

1

s11 Usin~s11!k/2

sink/2 U50 for any kÞ0,

which reflects the fact that it is possible to make a prec
measurement of phase in this state no matter how smal
phase shift is. With a finites, on the other hand, we hav
v5usinc@~s11!k/2#/sinc~k/2!u, andv is different from 1 only
whenk*2/s51/̂ N&u .

~iv! For a number stateuM &, v51, and it is impossible to
resolve a phase shift no matter how large^N&5M is. This
reflects the random phase property in the photon num
state.

~v! For the phase state of Eq.~5!, v.126k/p when
^N&@1 andk!1. Therefore, fork!1, v.1, which means
that the state in Eq.~5! is not suitable for the probe fieldA
for sensing a small phase shift.

Superficially, we notice from example~ii ! above that, for
the thermal state, the disappearance of the interference
tern ~v;0! is not necessarily related to the existence o
scheme of measurement on the state to resolve the p
shift k, for from example~ii ! we havev;0 when^N&k@1,
but the phase-shifted thermal stater85Û r̂Û†5r does not
contain any information about the phase shift. This f
seems to contradict the complementary principle, wh
states that interference should always occur whenever t
does not exist in principle a method to find the which-pa
information. On the other hand, we know that mixed sta
are a result of our lack of interest or ability to know oth
correlated fields~e.g., the reservoir fields for the therm
state!. Once we enlarge the state space to bring in th
correlated fields to make a pure state, the whole system
carry information about the phase shift. The question is th
Does there always exist a phase measurement scheme
can resolve the phase shiftk whenever this modified state i
utilized in field A for sensing the phase shift, and whic
causesv50 in the single-photon interferometer? We w
e
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address this question in Sec. IV when we discuss the gen
scheme of phase measurement.

III. A NECESSARY CONDITION
FOR THE HEISENBERG LIMIT

It is known that squeezed state interferometry can achi
the Heisenberg limit@10#. Recently, some other scheme
@11–13# were discovered that have the same sensitiv
However, it is not common for a phase measurement sch
to achieve the fundamental limit. For example, coherent s
interferometry only reaches 1/A^N& sensitivity. As we
proved in Sec. II A, if classical sources are used in the c
ventional interferometer shown in Fig. 1, the sensitivity
always limited by 1/A^N&, or the coherent state limit. To
achieve the Heisenberg limit, nonclassical sources mus
used. What are the general requirements for the optical fi
which can achieve the Heisenberg limit when they are e
ployed in a phase measurement scheme?

Let us now consider those states which have relativ
small photon number fluctuations, so that

^D2N&!^N&2 for large ^N&. ~40a!

We will use these states in the probe fieldA in the single-
photon interferometer with a QND measurement device h
ing a coupling constant

k;
1

^N&
, ~40b!

which is also the phase shift in fieldA induced by a single
photon in fielda. Assume further that photon distributionPm
for these states is smooth, so thatPm;0 for thosem with
um2^N&u.A^D2N&. Then the contribution to the sum in th
visibility formula in Eq. ~36b! only comes from those term
with um2^N&u&A^D2N&, and we can approximate Eq.~36b!
as

v'U (
um2^N&u&A^D2N&

Pme
imkU . ~41!

For um2^N&u&A^D2N&, becausekA^D2N&!1 as derived
from Eq.~40!, we can approximateeimk with ei ^N&k, and Eq.
~41! becomes

v'U (
um2^N&u&A^D2N&

Pme
i ^N&kU'Uei ^N&k(

m
PmU51. ~42!

Therefore, with states satisfying Eq.~40a! in field A and a
phase shift of sizek;1/̂ N&, we can observe an interferenc
pattern with 100% visibility, indicating that it is impossibl
to resolve the phase shift of sizek no matter what we do on
field A. Thus in order to obtain the sensitivity set by th
Heisenberg limit in the phase measurement, we must uti
states satisfying

^D2N&*^N&2 ~43!

for sensing the phase shift. Notice that the condition in E
~43! is only a necessary condition. It can be easily check
that the phase measurement schemes that have been d
ered so far to achieve Heisenberg limit utilize states satis
ing the condition in Eq.~43!.
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IV. GENERAL CONSIDERATION IN THE SEARCH
FOR SCHEMES REACHING
THE FUNDAMENTAL LIMIT

From the necessary condition derived in Sec. III, we fi
that, in a search for phase measurement schemes that h
sensitivity reaching the fundamental limit, we must first lo
for those states that satisfy the necessary conditions in
~43!. Then we need to construct a scheme which empl
these states in fieldA for sensing the phase shift. So fa
there have been a number of schemes that reach the fu
mental limit in phase measurement@10–13#. Among them,
some are conventional interferometers with different det
tion methods@10,12#, while other utilize unconventional in
terferometers which do not use beam splitters as their w
dividers @11,13#. In the following, we will not limit our dis-
cussion to a particular type of interferometer.

In order to detect the phase shift, we will make measu
ment on fieldA. However, direct photodetection does n
reveal any information about the phase of the field. The
fore, we first need to transform the state of the fieldA into
some other state for which photodetection is sensitive to
phase~e.g., homodyne!. Let the state of fieldA be uF& or uF8&
with or without the phase shift. Consider a unitary opera
Û which operates on the stateuF& or uF8&, and results in the
state

uC&5ÛuF& or uC8&5ÛuF8&, ~44!

which will be phase sensitive; that is, detection onuC8& will
result in a significantly different outcome fromuC&. Our goal
now is to detect the difference betweenuC& and uC8&. This
can be easily achieved if we select those states foruC& such
that detection on it will yield null result, whereas detecti
on uC8& gives a nonzero result. One such state that can s
as uC& is simply the vacuum state. Thus any detection o
photon in stateuC8& will be an indication of a phase shift.

Furthermore, phase is a relative quantity. We often nee
reference in order to find the change in phase. Therefore
will bring in another field calledB as the reference~e.g., the
field in the other arm of the conventional optical interfero
eters with beam splitters or the local oscillator in homody
detection!. After we find the state~or mixed state! uF& satis-
fying the condition in Eq.~43!, it is useful to enlarge the
state space to include the fieldB, so that fieldsA andB are
correlated. Therefore, the state for the total system has
general form

uF& tot5(
m,n

cmnum&Aun&B ~45!

in the Fock state basis. The unitary operatorÛ acts on the
enlarged state space of two modes. Normally, the output
also consists of two modes. Detection can then be perfor

FIG. 4. General scheme of the phase measurement.
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on two modes, and comparison is made between the
modes for the extraction of the phase shift.

If the state uC& is easily available, as in the case
vacuum state, we can generate the special stateuF& as the
phase-sensing state by the inverse process ofÛ. Then we
form a general type of interferometer, as shown in Fig.
Notice thatÛ is a general type of unitary operator that sa
isfies our requirement for producing a unique stateuC& from
uF&. Thus we have generalized our discussion to a br
class of unconventional interferometers.

Before examining specific examples, let us answer
question raised at the end of Sec. II in connection with
complementarity principle. We will look for a scheme fo
phase measurement. Consider first the case with a pure
in the general form of Eq.~11! for the fieldA. For any state
uF& with a nonzero norm in a Hilbert space, it is possible
find a unitary transformationÛF so that

ÛFuF&5u0&, ~46!

whereu0& is the vacuum state and contains no photon. S
can serve as the stateuC& with a special feature for distinc
tion. Thus the interferometer has the form shown in Fig.
Notice that only single-mode field is used in the interfero
eter.

Obviously, from Eqs.~11! and ~46! we have

cm5^muÛF
† u0&5^0uÛFum&* . ~47!

With a phase shift on the stateuF&, we find that the output
state becomes

uC8&5ÛFuF8&5ÛFe
in̂dÛF

† u0&, ~48!

where Eq.~46! is used. With no phase shift, the output fie
is simply in u0& and has no photon, but, with a nonzero pha
shift, the output state is no longer the vacuum state and
contain photons. Thus detection of any photon in the out
field is an indication of a nonzero phase shift. A better m
sure for this will be the probabilityP̄ of detecting any photon
in the output. Obviously, we haveP̄512P0 , with P0 being
the probability of no photon. With the output state in E
~48!, we find

P05 z^0uC8& z25 z^0uÛFe
in̂dÛF

† u0& z25U(
m

ucmu2eimdU2,
~49a!

where we used the closure relation(mum&^mu51, and Eq.
~47! in the last equality. Therefore, for the probability o
detecting any photon we have

P̄512P0512U(
m

Pme
imdU2512v2, ~49b!

FIG. 5. General scheme of the phase measurement with a sin
mode field.
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where we used Eq.~36b! with k5d for the visibility v of the
single-photon interferometer. Therefore, if we use t
scheme for detecting a phase shift in the single-photon in
ferometer discussed in Sec. II D, we find that, whene
v50, P̄51, indicating that we are able to detect the pha
shift of d. Thus we have shown that whenever the interf
ence disappears~v50!, we will have at least in principle a
method of knowing whether the single photon passes
patha or not with 100% probability. A good example for th
pure state is the phase state in Eq.~1! with finite s. As a
matter of fact, such a scheme achieves the Heisenberg l
From Eq.~49b!, we see that the quantityv as expressed in
Eq. ~36! is a good measure in the search of optimum ph
measurement schemes.

Next let us consider a more general case with a mi
state of

r̂A5(
m,n

rmnum&^nu. ~50a!

As we discussed at the end of Sec. II, let us assume
when we enlarge the state space, we are able to obtain a
state of the form

uF&AB5(
m,l

cm~l!um&Aul&B , ~50b!

which, after tracing over fieldsB, will reproduce the mixed
state in Eq.~50a!. The states$ul&B% characterize the othe
states in fieldsB that are correlated with fieldA. It is always
possible to make the states$ul&B% a set of orthonormal state
with ^l8ul9&5dl8l9. Therefore, after tracing over fieldB and
comparing with Eq.~50a!, we have

rmn5(
l

cm~l!cn* ~l!.

Consider now the vacuum stateu0&Au0&B for all the rel-
evant modes in fieldsA andB. As before, it is possible to
find a unitary operatorÛAB so that ÛABuF&AB5u0&Au0&B .
We can then run through the same argument as the case
pure state for fieldA. The only thing different here is that th
criterion for finding the phase shift is the detection of a
photon in any mode of fieldsA andB. Therefore, we have
proved that if we can write the state of the system in the fo
of a pure state after enlarging the state space, it is alw
possible to find a measurement scheme to resolve the p
shift due to a single photon whenever the visibility of t
single-photon interferometer is zero.

V. SOME EXAMPLES OF PHASE MEASUREMENT
SCHEMES WITH THE HEISENBERG LIMIT

Among the states that are available in laboratories, o
thermal and squeezed states have a variance of photon
ber on the order of the square of the mean, thus satisfying
condition in Eq. ~43!. More specifically, the variance i
^D2N&52^N&(11^N&) for the squeezed states of the to
mean photon number of^N& and ^D2N&5^N&(11^N&) for
the thermal states.

Let us first consider squeezed states. There are a num
of ways to utilize squeezed states to form interferometers
s
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a matter of fact, the first interferometer that beats the coh
ent state limit for sensitivity in precision phase measurem
employs a squeezed vacuum state in the unused input po
a conventional interferometer@20#. It has been proved furthe
that by utilizing coherent squeezed states, one can ach
the sensitivity set by the Heisenberg limit@10#. On the other
hand, a squeezed vacuum state is known to be phase s
tive; thus we can form an interferometer directly wi
squeezed vacuum states without the need for a nonzero
herent component.

It is known @21# that two single-mode fields in squeeze
vacuum states with the same squeezing parameter, w
combined with a beam splitter, can produce the so-ca
twin-photon state with a zero-photon-number difference
the two output fields. The zero-photon-number difference
a special feature that can be used to distinguishuC8& from
uC&. Therefore, the system for the evolution fromuF& to uC&
will be a normal lossless beam splitter.uF& will be the
squeezed state for both fieldsA andB, and uC& will be the
twin photon state. The actual interferometer is the same
shown in Fig. 4 where the unitary operatorÛ is simply that
for a lossless beam splitter, and the two input portsâ0 andb̂0
are in a twin-photon state described by

uC&5Ŝ~m,n!uvac& ~51!

with

Ŝ~m,n!5exp@ ik~ â0b̂02H.c.!# ~m5coshk,n5sinhk!.

It is easy to find that̂ (â0
†â02b̂0

†b̂0)
m&50 for any nonzero

integerm. The input-output relation for the interferomete
with a phase shift ofd is given as

â5â0cos
d

2
1b̂0sin

d

2
, b̂52â0sin

d

2
1b̂0cos

d

2
, ~52!

and the photon number difference at the outputDN[â†â
2b̂†b̂ has the form

DN5~ â0
†â02b̂0

†b̂0!cosd1~ â0
†b̂01b̂0

†â0!sind. ~53!

It is easily found that ^DN&out50 and ^D2N&out
54m2n2sin2d.4^N&2sin2d~^N&@1!, where ^N&5unu2 is the
total mean number of photons in one arm of the interfero
eter. In this case, sincêDN&out50 for any value ofd, we
cannot use it as the signal for the detection of the phase
d. However,^D2N&outÞ0 for nonzerod, so it can be used a
the signal. But the noise is not simplyA^(D2N)2&. In fact,
whend50, we havê (DN)m&50 for any nonzero integerm,
so that any detection of nonzeroDN is an indication ofdÞ0.
HoweverDN is quantized and only takes 0,61,62,. . . .Thus
the noise of DN is simply 1. Therefore, SNR5^D2N&
.4^N&2d2 for ^N&@1 andd!1, and the minimum detect
able phase shift isdmin;1/2̂ N&, which is the Heisenberg
limit. To further demonstrate this, let us examine the pro
ability P̄ of detectingDNÞ0. Obviously, P̄512P0 , with
P0 the probability of detectingDN50. We findP0 by first
calculating the characteristic function forDN,

C~r ![^eirDN&.1/~114^N&2d2sin2r !1/2 ~Ntot@1,d!1!,
~54!
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and then making a finite Fourier transformation

Pm5
2

p E
0

p/2

dr
cos2mr

~114^N&2d2sin2r !1/2
~55!

ThusP052K(24^N&2d2)/p, with K(x) the complete ellip-
tic function of the first kind. Figure 6 showsP̄ as a function
of ^N&d. It is obvious thatP̄.0 when^N&d!1, and starts to
rise when̂ N&d;1, which is an indication of a nonzero pha
shift d. Thus we find in this figure that the minimum detec
able phase shift is of the order of 1/^N&, and the interferom-
eter is operated at the Heisenberg limit. This scheme is v
similar to the twin Fock state interferometry proposed
Holland and Burnett@12# except that we used the twin
photon state in Eq.~51! as the input to the interferomete
The same scheme was also treated by Sanders and Mi
@22# along the line of phase estimation for interferometry

Another way to utilize the squeezed state is to follow t
general scheme discussed at the end of Sec. IV, and to
a single-mode interferometer. It is known that a squee
vacuum state can be generated from vacuum by applying
so-called squeezing operator

Ŝ~j!5expF i j2 ~ â22H.c.!G . ~56!

Then, from Eq.~46!, we haveÛF5Ŝ21(j). Thus the single-
mode squeezed vacuum state interferometer has the
form shown in Fig. 5. Without the phase shift, the outp
state of the system is simplyuC&out5Ŝ21Ŝuvac&5uvac&. With
a phase shiftd on the stateuF&5Ŝuvac&, the output state be
comes

uC8&out5Ŝ21eiâ
†âdŜuvac&, ~57!

and the average photon at the output of the interferomete
then

^C8uâ†âuC8&out54^N&~11^N&!sin2d, ~58!

where^N&5sinh2j is the average photon number in the sta
uF&. As before, the noise in the output is simply one phot
Thus we have the signal-to-noise ratio~RSNR! as ~SNR,
RSNR!

FIG. 6. ProbabilityP̄ of detecting any nonzeroDN as a function
of ^N&d for a twin-photon interferometer.
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RSNR54^N&~11^N&!sin2d'4^N&2d2 ~^N&@1,d!1!.
~59!

Therefore, the signal-to-noise ratio~SNR! is significant only
when d;1/̂ N&. Since the output of the interferometer
vacuum when there is no phase shift, and detection o
single photon will indicate a nonzero phase shift, a be
quantity to characterize the sensitivity of the interferome
is the probability P̄ of finding any photon in the output
Obviously P̄512P0 , with P0 being the probability of find-
ing no photon in the output.P0 can be calculated as

P05^C8u:e2â†â:uC8&out

5
1

A114^N&~11^N&!sin2 d

'
1

A114^N&2d2
, for ^N&@1, d!1. ~60!

This expression can also be derived from Eq.~49b! through
the quantityv for the squeezed state@19#. ThusP̄ is signifi-
cantly different from zero whend*1/̂ N&, and the interfer-
ometer is operated at the Heisenberg limit. This scheme
also discussed by Yurke, McCall, and Klaude@11#, who used
the signal-to-noise ratio for the sensitivity.

As for the thermal state, it is impossible to implement
interferometer based on such a state alone due to its lac
phase coherence. However, as we discussed above, we
always enlarge the state space to include the fieldB to form
a pure stateuF&AB , so that we may find coherence betwe
fieldsA andB. It is known @23# that a nondegenerate par
metric down-conversion process produces two correla
fields each having thermal statistics, or, in other wor
^D2N&A,B5^N&(^N&11). Such a state is actually the twin
photon state or two-mode squeezed state described by
~51!, from which we find that it can be generated fro
vacuum by applying the operatorŜ~m,n!. Now let us reverse
the process by assigning the two down-converted fields
fieldsA andB, and setuF&AB5Ŝ~m,n!uvac anduC&5uvac&AB .
Then the unitary operator required in Eq.~44! is
ÛAB5Ŝ21(m,n) which can also be realized in a paramet
down-conversion process. The interferometer for the wh
system then has the same form as the two-mode interfer
eter shown in Fig. 4. In this case, uC&AB
5Ŝ21(m,n)uF&AB5uvac&AB when the phase shift is zero. Bu
when we have a nonzero phase shiftd, the output state be
comes

uC8&AB5Ŝ21~m,n!eidÂ
†ÂŜ~m,n!uvac&AB . ~61!

Obviously, the stateuC8&AB has a nonzero average photo
number. By measuring the photon number in one of the o
puts of the interferometer, we can detect the phase shiftd.

To find the average photon number in the output of
interferometer, we find it easier to consider the evolution
the operators than that of the states. Referring to Fig. 4,
fieldsA andB are related to the input vacuum fieldsa0 and
b0 as

Â5mâ01nb̂0
† , B̂5mb̂01nâ0

† . ~62a!
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Assume that fieldA experiences a phase shift ofd. Then the
output fieldsa and b of the interferometer are related t
fieldsA andB as

â5mÂeid2nB̂†, b̂5mB̂2nÂ†e2 id, ~62b!

Hence

â5S 112ieid/2m2sin
d

2D â012ieid/2mnsin
d

2
b̂0
†

[Gâ01gb̂0
† , ~63!

with G[112ieid/2m2sind/2 and g[2ieid/2mn sind/2. The
photon number operator at output fielda is then

n̂a5uGu2â0
†â01ugu2b̂0b̂0

†1Gg* â0b̂01G* gâ0
†b̂0

† .
~64!

It is easily found that ^n̂a&5ugu2.4^N&2sin2d/2 for
~^N&@1!, with ^N&[unu2 being the average photon number
field A. Similar to the squeezed state interferometers d
cussed above, the noiseDna is one photon so tha
RSNR54^N&2sin2d/2. Therefore,RSNR;1 only when d;1/
^N&. Furthermore, similar to the squeezed state interfero
eters, we find the probability of detecting any photon in t
output fielda as

P̄512P0512^:e2n̂a:&

5
4^N&~^N&11!sin2d/2

114^N&~^N&11!sin2d/2

.
^N&2d2

11^N&2d2
for ^N&@1, d!1. ~65!

Therefore, the probability of detecting a phase shift of sizd
is significantly different from zero only ifd*1/̂ N&. Thus the
minimum detectable phase shift is 1/^N&, or the Heisenberg
limit. Such a scheme was also discussed in Ref.@11# along
the line of the SU~1,1! interferometer. Notice that the crite
rion here for detecting a phase shift is simply the detection
any photon in fielda alone without considering fieldb. This
is quite different from the criterion discussed in Sec. III f
the general case of mixed states. The general criterion is
detection of any photon in any relevant modes which w
include both modesa andb. The reason for the difference i
that the output fieldsa andb are actually in a twin-photon
state as Eq.~63! indicates, and the photon numbers of mod
a andb are perfectly correlated in such a way that the t
modes have exactly the same photon number all the ti
Thus detection of a photon in modea alone is equivalent to
the detection of a photon in any of the two fields.

As another example, let us consider the state

uF&M5
1

&
~ uM &Au0&B1uM &Bu0&A). ~66!

Obviously, ^D2N&A5M2/45^N& A
2, thus it also satisfies the

necessary condition in Eq.~43!. However, it is not so easy to
find an evolution process to produce a distinctive stateuC& as
discussed in Sec. IV. Fortunately, Ref.@13# provides some
-

-
e

f

he
l

s

e.

clues on how to construct an effective beam splitter of theM
photon as one entity. Consider the evolution operator

ÛM5expS p

4M !
@~ÂB̂†!M2H.c.# D , ~67!

which comes from the Hamiltonian given by

ĤI5 i\j@~ÂB̂†!M2H.c.#. ~68!

It is easy to check that

ÛMu0&AuM &B5
1

&
~ u0&AuM &B2uM &Au0&B),

~69a!

ÛMuM &Au0&B5
1

&
~ u0&AuM &B1uM &Au0&B),

so that

ÛMuF&M5u0&BuM &B[uC&M . ~69b!

With a phase shift ofd in field A, the stateuF8& becomes

uF8&5eidÂ
†ÂuF&5

1

&
~ u0&AuM &B1eiM duM &Au0&B)

~70a!

and the output state then has the form of

uC8&M5ÛMuF8&5eiM d/2S cosMd

2
u0&AuM &B

1 i sin
Md

2
uM &Au0&BD . ~70b!

Thus if we measure the photon number at the output porA,
any detection of the photon will indicate a phase shift. T
probability of detecting any photon in the output portA is
P̄5sin2Md/2, which is significantly different from zero only
when d;1/(M /2)51/̂ N&A . Therefore, such a schem
reaches the Heisenberg limit.

The criterion here for the detection of a phase shift is on
again different from the general one in Sec. III, because
the form of the unitary operator in Eq.~67!. It does not
annihilate all the photons to produce a vacuum state, as
quired for the general scheme, but rather preserves the
photon number. Because of the unusual form of the unit
operator~which depends on the total input photon numb
M !, this scheme is not likely to be practical as compared
the other schemes discussed earlier with single-mode or
mode squeezed states. It is used here as another examp
unconventional interferometers which can achieve
Heisenberg limit.

VI. SUMMARY AND DISCUSSION

In this paper we proved, through a number of argume
that, with a finite number̂N& of photons for probing a phas
shift, the minimum detectable phase is of the order of 1/^N&,
or the Heisenberg limit. In particular, the argument based
the complementarity principle is independent of the schem



t
ea
o
th
al
rin
u
y
a
he

h
o
em
g
a
te

n be
ed.
ult
th
cor-
nta-
tate
be

es.
On
en-
r-
ity

e-

55 2609FUNDAMENTAL QUANTUM LIMIT IN PRECISION . . .
of phase measurement, and thus provides true proof of
fundamental quantum limit on the sensitivity of phase m
surement. Furthermore, since we do not involve a phase
erator in the argument, we manage to avoid some of
difficulties associated with the phase operator. We have
derived, through the argument of the complementarity p
ciple, a necessary condition for those states that, when
lized for sensing a phase shift, can achieve the sensitivit
the Heisenberg limit. With the states satisfying the necess
condition, we have outlined a general guideline for t
search for a specific measurement scheme of phase with
sensitivity at the Heisenberg limit.

There is still one question unanswered in this paper. T
question is actually the one raised at the end of Sec. II: D
there always exist, even in principle, a measurement sch
that is able to resolve the phase shift induced by a sin
photon in the single-photon interferometer with a QND me
surement device whenever the visibility of the interferome
is zero? Although we answered this question at the end
s.
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Sec. III, we made an assumption that any mixed state ca
written as a pure state of light if the state space is enlarg
However, we find very often that a mixed state is the res
of correlation not only with other optical fields but also wi
other degrees of freedom of a larger system that do not
respond to the modes of optical fields. For example, spo
neous emission produces an optical field in a thermal s
which, when the system is enlarged to include atoms, can
thought of as an optical field correlated with atomic stat
For a more general case like this one, our analysis fails.
the other hand, if one believes the principle of complem
tarity, the answer to the question should be ‘‘yes.’’ Othe
wise, the interference effect would occur and the visibil
would not be zero.
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