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Isospectral deformation of quantum potentials and the Liouville equation
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A quantum problem on an isospectral deformation of one-dimensional potef#iasof corresponding
wave functiony is considered. The isospectral deformation defined in the form of a phase flow is shown to
obey a system of coupled Liouville equations. In a simple case of an individual flow the well-known integrable
Liouville equation arises; its solution provides known families of isospectral potentials. Operators performing
this deformation are studied; their unitary property is proved. An evolution of spectral shift operators is
determined using those unitary operators. An asymptotical behavior of both a potential and wave functions
under this isospectral deformation is studied. It is shown, in particular, that the deformation of the Rosen-
Morse potential and that of the harmonic oscillator’'s potential have common analytical properties. The ap-
proach used in the paper can be extended to the case of a deformation leading to a shift of one selected energy
level. In the case of the simplest individual flow we get a generalization of the integrable Liouville equation.
[S1050-294{@7)03303-9

PACS numbdp): 03.65.Ge

[. INTRODUCTION the harmonic oscillator’s potential. Previously, soliton poten-
tials related to the Liouville equation were studied by An-

Various approaches have been used to investigate defofireev[13] using a version of the inverse scattering method.
mation of one-dimensional potential and spectra of the corFinally, we demonstrate that the presented approach can be
responding Schidinger problem. Among them are the tech- €asily extended to a description of potential deformations
nique based on integral equations of Gelfand-Levitan andccompanied by a shift of a selected energy level.
Marchenko’s typeg[1-4], the factorization(supersymmetiy The paper is arranged as follows. The general description
method[5,6] (involving, in particular, a generalization of the ©Of the isospectral deformation using phase flows is presented
creation and/or annihilation operators for the harmonic oscilin Sec. Il together with a complete analysis of the individual
lator[7]), and various extensions of the Darboux transformaflow; an interpretation of the obtained results in terms of the
tion [8,9]. double Darboux transformation is discussed. In Sec. Il we

Neverthelessevolutional equation§PDES governing the  Study unitary operators performing an isospectral deforma-
isospectral deformation and, in particular cases, providinjioni an evolution of spectrum shift operators is investigated.
known families of potentials have not yet been derived. Thidn Sec. IV asymptotical properties of the isospectral defor-
problem is resolved in the present paper. mation of both a potential and of wave functions are studied;

For this purpose we associate the isospectral deformatiotfe results are illustrated by examples of the Rosen-Morse
with a phase flow10,8,11 defined by a certain energy func- potential and of the harmonic oscillator. In the last section
tional. As a result, we reveal that the isospectral deformatiofve derive evolution equations governing a deformation ac-
obeysa system of coupled Liouville equatioris a simple ~ companied by a shift of a selected energy level.
case of an individual flow the classical Liouville equation
[12] arises; its integration immediately leads to familiar re-

sults[5—9]. On the other hand, the Liouville equation itself is Il. ISOSPECTRAL FLOW AND EVOLUTIONAL
found to be an integral of a much more complicated evolu-EQUATIONS FOR POTENTIAL AND WAVE FUNCTIONS
tional equation obtained ifil2] for a description of isospec- A. General case

tral potentials. However, if we do not restrict ourselves to the ] o ] )
individual flow, we obtain a system of equations whose so- Consider the Schabnger problem with the point spec-

lutions may givenewfamilies of isospectral one-dimensional trum

potentials. 1
Furthermore, we show that the same isospectral deforma-  — Zy, +U(x,t)y=Ey, lim ¢=0, xeR%
tion can be described asumitary transformatiorperformed 2 X— o0
by linear integral operators. Those operators allow us to de- (2.1

termine an evolution of spectrum shift operators.

It is also shown in the present paper that for a wide class )
of isospectral potentials the evolution ends with a local mini-where the potentidl(x,t) depends on the parameter~ol-
mum splitting off and moving off to infinity; this local well lowing [10,11,§, introduce a phase flow as follows:
is asymptotically close to a simple soliton potential contain-
ing a unique bound state.

As examples, in this paper we consider the isospectral :i @:i 2

. . ; U=—-2 7 > k. 22

deformation of the Rosen-Morgésoliton” ) potential and of IXK oU  ox%
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Here (¢4 (X,1),E(t),k=0) are eigenelements of the Schro

dinger problem(2.1), SE,/SU is a variational derivative of (Sm)xt— TmeXF(ZSm):k;&m TEXP(2S,)

the functional

[(Sm)x_(sk)x]z
2(Em—EyW

X

+ o0 1 l+
Ek:f dx(z[(‘pk)x]2+uwi]v 2.3
- (2.9

7, k=0,1,..., is either a finite number set or a rapidly Thus, the solutions of systel2.8) [or (2.9)] together with
decreasingas k—=) number sequence. Finally, it is sup- relation (2.2, when compatible with the Schdimger prob-
posed thatffﬁ:/;ﬁz 1. lem (2.1), determine isospectral deformations both of the po-
Let us derive evolutional equations for both the potentialtential U(x,t) and of the wave functiong,.
U(x,t) and the wave functiong,(x,t), m=0,1... [and
simultaneously verify that the deformation obeying the phase B. Individual flow
flow (2.2) is really isospectral, i.e. H,);=0].
By virtue of Egs.(2.1) and (2.2), the evolution of the
eigenelements of the Scliimger problem induced by the

Let all 7,,=0 except for some,,=1 corresponding to the
eigenelementy, ,E,). In this case the flow is defined by the

above phase flow satisfies the following relations: expression
. Ue=(p)x- (2.10
(Em)tl/fﬁq"'z[wm( U xt— (Pm)x(Pm)edx System(2.8) takes the form
=Zk ndA (WD), km=0.1,.... (2.4 (ﬁﬂ} =5, (211
noJt
Using the identitiegsee, for exampld,10]) (Idx| 5 NE
[ I L“”“+2<Em—En>wﬁq’ mrn. (212
2,00 L5 0 1o 2012
Y Y= 5 (miid st 5 [P Yid(dm)] where Jmn= ¥m(¥n)x— ¥n(¥m)x. As in the general case

(2.8), the substitutiony,=expS, transforms systenf2.11)

1
= S (Pt () (s i), 2912 tothe form

25 (Sn)xt=exp2s,, (2.13
(Em—E 1 _ (Sm)xt=€xp2S, 1+%}, m#n.
= B U= [Um(0x— s (26 mEn 214
transform relationg2.4) to the form Equation (2.13 for ¢, is completely integrable: it is the

hyperbolic Liouville equation. Its general solution[E2]
2(Em)i /= _[¢m(¢m)xt_(¢m)x(¢m)t]+2k Tl Sn(x,t)=fn(x)—gn(t)—|n:Cnfxdx’ern(X’)

m( )x_ ( m)x2 '
+ 2 Tkw lr/zjlem—wEg ] , +c,;1Jto|t’e*29n<t >]. (2.15

k#m

Heref,(x), gn(t) are arbitrary functions an@, is an arbi-
trary parameter. For the initial proble,(x,0)= 1//2 we find
that fort>0 expression2.15 yields

km=0,1,.... (2.7

Integrating these expressions xnand taking into account

that lim,_ .,¢,=0, we find that E,);=0, whereas the wﬂ(x)efgn“)
evolution of the eigenfunctions is determined by the follow- Pn(X,t)= : — ,
ing system of equations: 1+J dt’e29n(t") J dxlwg(x,)]z
0 X
W] oo ‘ J2.s L0 ) I 219
Y |, T & “ 7k 2(Em—EQ) ¥ ' whereg,(t=0)=0. The condition for the norming integral

(2.899 to be independent oft can be satisfied if we take
gn(t)=—1/2. Under such a choice the above regulithout
The substitutiony,,= expS,, allows us to write Eq(2.8) in relation to the Liouville equationwas obtained by McKean
the form ofthe system of coupled Liouville equations and Trubowitz[8].
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To integrate evolutional equatiort®.12 for ¢,,, m#n,
we introduce auxiliary functions

Anm(X,t)= fwdx’ Ua(X" D hp(X' 1), m#n.

(2.17
Subtracting Eq(2.11) from Eq.(2.12, we get
[ ﬂ} - _ L, (2.19
wmwn t 2(Em_ En)wm

whence, using identity2.6) for excludingJ,,,, we get after
simple transformations that systei&111) and(2.12 can be
written in the form

(zﬂn)x} o,
[_l/fn t—(,//n, (2.19
(Anm)x 2
[Anm L—l/ln, m#n, (2.20
so that
(I A”'“) =0 (2.2
n o Xt— . .21

Thus, once a solution of Eq2.11) for ¢, is known, solu-
tions for all the functiong\,,,, can be obtained directly from
the relation

b
Anm= Agm_g eZ(t)!
n

where A® =A,.(x,0), 2=y, (x,0), andz(t) is an arbi-
trary function such that(0)=0.

Under the choiceg,(t)=-t/2, z=0 formula (2.16
takes the form

(2.22

t/2

=i S =1 [ Ao
(2.23
Then from Eq.(2.22 we get
| g om0
too t/2
= L dx’ wg(x’)wom(x’)en(x’t), m#n. (2.24

V. M. ELEONSKY AND V. G. KOROLEV

C. Evolution of potential

Now let us find an equation for the evolution of the po-
tential U (x,t) induced by thenth individual flow. Introduce
the function W(x,t): U=W, [by virtue of Eq. (2.2
W,=(,,)%]. From Eq.(2.11) it follows that [Ing],=W,
hence the equation fal; takes the form

[IN(W) Jxi=2W,, (2.206

which can also be written in the form of the Liouville equa-
tion

[T =expl (2.27

for the function II(x,t) defined by the expression
2W,=exdl. The solution of the equation determines the po-
tential:

d2 t + oo
U(X,t)=U°——2In[1+f dt'efzg“(t)f dx’
dx 0

X

o«
xf dx"u?(x")}, (2.28
where U%=U(x,t=0), U?EUt(x,t=O). [This expression
for g,(t)=—1t/2 also coincides with the result ¢8].] It
should be stressed that within the framework of our problem
the “initial” functions U°(x) and U?(x) cannot be given
independently, since flo2.10 is defined using the eigen-
function ¢, of the Schrdinger operator for the potential
U(x). However, from a more general viewpoint, potentials
U related to solutions of Eq2.27) as

U_ldJ'td' ! 2.2
= 5 dx . t'explI(x,t") (2.29

can have unexpected physical importance, not being neces-
sarily isospectral.

Note that integration of the relatiginy,],,=W, leads to
the expression

d® iy

= 0 —_—
U(x,t)=U +dX2|nt//2

(2.30

whence solution(2.28 for U can be obtained at once, if
solution (2.16 of the Liouville equation for the function
¥, IS given.

Now return again to the evolutional equation for the po-
tential in the form(2.26). As a consequence of both this and
the Schrdinger equations we obtain the following equation:

1 1
EWxxtWt_ Z(Wxt)zzz(wt)z(wt_En)- (2-31)

Integrating this, we arrive at the expression for the evolution

of the eigenfunctiong,(x,t), m#n,
Un [+
(0= 08— (e=1) 5 | ey,

m#n, (2.29

presented iri8].

Its differentiation int leads to the relation

Wxt
W,

Wxt
Wi

Wxt
Wi

= 4WX[ y
t

(2.32

Xt

which, clearly, turns into an identity iV, satisfies Eqg.
(2.26. On the other hand, differentiating E.31) in x
yields
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1 1
7 Wioxt= Wy( Wy —Ej) + EWxth . (2.33

8

This equation was presentédp to a change of variablem
the book{12] in the context of another approach to the pro

lem on isospectral deformation of potentials. Thus Eq.
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Analyzing the asymptotics of the expression i@, we
see that the double Darboux transformation restores the
normability of the function. Thug/® is an eigenfunction for
the Schrdinger problem with the potential* and with the

p-initial eigenvalueEy .

Considering the parameter as a function oft, one can

(2.26), representable also in the form of the Liouville equa-€asily show that the functiogda/dt ¢ is a solution of the

tion, is an integral of Eq(2.33.

D. Solution of the Liouville equation
as a double Darboux transformation

Liouville equation. This function would have norm 1 if
a(t) obeys the equatioda/dt=a+1; such a choice ofr
leads to the exponential flow considered[8]. Expression
(2.36) obtained by means of the double Darboux transforma-
tion coincides with Eq(2.30 as well.

Interpret a sense of the expressions for the evolution of

U(x,t) and ¢,(x,t) in terms of the Darboux transformation.
Recall that the “kernel” of the Darboux approach is the

following simple algebraic observation:
If some functione is an arbitrary solutiofinot necessarily

Ill. OPERATORS OF ISOSPECTRAL EVOLUTION
A. Unitary transformation of functions #,,,, m#n

We now turn our attention to the evolution of the wave

eigenfunction of the Schrainger equation with the potential functions i,,, m#n [hereafter we assumg,(t)=—t/2].

V for some value of the parametEr then the function 14
(defined in the pointg #0) is a solution of the Schdinger
equation with the potentiaV=V—(d?/dx?) Ine for the
same valueE.

Show now that expressiori2.16) and(2.30 for the isos-
pectral deformation ofy,, and U in the case of individual

The expression

— g0 _at_ w_g A 1,007,710yt
= (@D | g, men
(3.0

flow (2.10 can also be interpreted as a result of the abovebtained previously as a solution of the Liouville equation’s

transformation applied twice. Let the paiwﬂ,Eﬂ) be an

eigenelement of the Schiimger problem with the potential

U, (i.e., 42 is a normalized function Then the function
¢°=1/¢2 is a solution (now unnormalizeg of the
Schralinger problem with the new potentiaU=U,
—(d?/dx?) Ing, but for the samé?.

The general solution of the Schtiager equation with the

potentialU and the parameteEﬂ is given by the expression

= ¢° (2.39

1+ f+°° dx’ )
a ; L

x  (ép)
where the parametew arises(which is an analog of the
deformation parametdj.

Applying the above transformation a second time, we find

that the functiony“=1/¢“ is a solution of the Schdinger
equation with the potentidl “=U — (d?/dx?) In¢* and with

counterparf2.12) can also be interpreted as a result of action
of a linear integral operatorS, (depending on the function

4°) onto ¢S,
Ym= St (3.2
0 o0
8, 100=100-(e- 13" [ Taxugoe) 100
(3.3

This operator isunitary in a subspace of the functions
Ym, M#n. Indeed, as is shown in the Appendix, the linear

operatorSI that is Hermitian-conjugate 8, has the form

i X lﬂg(X,)
& f(x)zf(x)—(e‘—lwﬁf_mdx' (X ,1)

f(x").
(3.9

the same value dE°. Combining these two transformations, On the other hand, it can also be shoee the Appendjx

we get the final expression for the functigi:

Pr=1/p"= ! = o
I +odx +o0
¢° 1+aJX 7 ) 1+aJX dx' (42)?

(2.39

which corresponds ttJ ¢,

- d2 d2 2
O] — —_ a_1)0_ — o__~ @
u«=u 2 Inp*=U 02 Inyy v Ing

d2 wa
=U% — In—
2

ax (2.39

with E2.

that the inverse operat®,*: 4=, y,, can be deter-
mined in such a way that

(3.5

Hence, the evolution of the wave functiong,, m#n,
obeying Eqgs.(2.12 or (2.20 is determined by the unitary
operatorén. Note that the conservation of the eigenvalues
E.n, m#n, is one of the evident consequences of the trans-
formation’s unitary property.

It can be checked by direct calculations that the operator
S, transforms the Hamiltoniabi® of the original quantum
system with the potentidll® into the HamiltoniarH® of the
quantum system with the new potential

H'=§ H°§ !, (3.6)
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2 2
OZ—EW-I—UO(X), HtZ—EW'FU(X),
0 d2
U=u"- W |n9n. (37)

Let us dwell on the evolution of the wave functiaf,,
which is described by the expression

12,0
e Yy

— = Mx,t) 3(x).
1+(et—1>f dx'[yo(x")]?

Yn(X,1)=

(3.9

Thus, contrary to the evolution af,,, m+n, determined by
a linear operator, the evolution of the eigenfunctiaf,
(which defines the flow itselfis determined by thaonlinear

operatorf\/. The inverse operator in that case has the follow-

ing form;

e (x,1)
+ o

1+(el—1) dx'[ (X', 1)]?

PA(x) =

=N"1(x, 1) (X, 1). (3.9

The conditionV"*A/=1 can be checked easily by direct

calculations. One can also show that the eigenfunctions

Un(x,t) and ¢,(x,t), m#n, being orthogonal at=0, re-
tain the orthogonality at ant>0:

(P X, 1), (X, 0)= (5(x),¥2(x))=0.  (3.10

B. Evolution of shift operators

Suppose that d@t=0 there exists a spectrum shift operator

L(0) that translates one eigenfunctighl = y/,,(x,0) corre-
sponding to the eigenvalug,, into another eigenfunction
zpron, corresponding tde,,,:

$2, =L(0)¢L,. (3.10)

Let m,m’#n. Applying the operatofi1 to both sides of Eq.
(3.11) and taking into account that, (t)= SW%, and

$2=S, " (1), we get

Y () =GL(0)S;, *ehm(1). (3.12

Hence, given the shift operatb(0) att=0 and the unitary

operator S,, one can obtain for any a shift operator
Ln(t),

La(h=5L(0)5*, (3.13

V. M. ELEONSKY AND V. G. KOROLEV

Y2 1=L(0)y0. (3.14

Applying S, to both sides, we get

Uns1(0=502, 1 =S LO)N NYS=§ L(O)N Ly (t).
(3.15

Then the operatoI:L(t) can be introduced:

Unia(O=LLO (), LIO=SLON ! (3.16
The operatord. !, ,(t), L(t), andL/|_,(t) are introduced
analogously:

Ua(D=LL (Ddni1(D), Li(H=NLT(0)§,?,

Yo 1(D=LAO (1), Lik)=8LTON

Un(O=L\ 1D 1(D), Ly i(0=NL(O)5

Thus, the evolution of the shift operators can be determined

for any pair of eigenelements of the Sctimger operator.
Note that in this case the evolution of analogs of the num-

ber operators, which we define, followind14,19,

as N(t)=L}_y(t)Li(t) [N°=L(0)LT(0)] and N(t)

=L!. ()L (1) [N°=LT(0)L(0)] is specified by the op-

erators\" and V"~ ;

N(t)=A" NOA 1.

N(t)=/A NOA L, (3.17)

For the other statem#n the operatot\ in these expres-
sions should be replaced wigq.

IV. ASYMPTOTICAL ANALYSIS AND EXAMPLES
A. General scenario of isospectral deformation ag— oo

Investigate the evolution both of an arbitrary potential
U(x) and of a wave function of theth corresponding bound
state for large values df At t=0 for an asymptotics of the
function ¢, asx— + o we use the first term of the quasiclas-
sical approximatiori16],

W exr-100), 100= | VZU—Eq] ax'

4.9

This approximation is valid ilU%<(U°—E,)%? at largex.
In particular, this is true both for scattering potentipisth
U9%(x— +2)—0, Ug(x—>+oo)—>0] as well as for infinitely
growing potentialgfor example, for anharmonic oscillators
of any kind.

The asymptotics of the integral appearing in the solution
for ,(t), t>0 is determined by the expression

* ’ Oryv/\12 —
which acts in the subspace of all the eigenfunctions except J, dx'Ly7(x)] 2\2[U%(x)— E,] ex =211

for ¢, . Note that the shift operatdr,(t) is defined for the
“new” quantum system with the Hamiltoniaki' specified
by expression(3.6).

Consider now shift operators for the statg. Let

4.2

Letting then that—, we obtain the following approximate
expressions fory,, andAU=U(t)—U°:
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2_
(X s 00 ts0) ~ exdt/2—1(x)] ,

+ 2 V200 —E] exgt—21(x)]

4.3

2\2[U%(x)— E, Jexdt—21(X)]

1

" 22[U°%(x)—E,]

AU(X—o,t—00w)~—

exgt—21(x)]
(4.4
In the neighborhood of the curve=x,(t) specified implic-
ity by the equation 2(xy)=t, we set x=Xxy(t)+y,
ly|<|xo(t)]. Then we have I(x)—t/2=1(x)—1(Xq)

~2[U°%xo) — E,]y. As a result we get

2[U%xq) —E,
i/fn*\/ [ (:O) ]cosh’l[ 2[U%x0) —En]

X[X=Xo(t) ]+ 8(X0) 1, (4.5

AU~ —2/2[U%x,) — E,Jcosh [ V2[U%(xq) — E, ]

X[x=Xo(t) ]+ 6(Xo) ], (4.6

Xo(1): fx°¢2[u°<x'>—En] dx'=;,

where 8(xo) = 3In2/2[U%(x,) —E,] is an additional shift,

whose value may be refined using the following terms of the

guasiclassical approximation.

Note that asymptotical expressioh.5 proves to be nor-

malized to 1(as with the exact expression far,), which

2585

N(N+1) 1

0 - _
Un(x)= 2 cosHx’

N=12,.... (4.7

Recall that the spectrum of the Schinger problem with
this potential has exactlil bound states with eigenvalues
E,=—(N—-n)%2, n=0,1,... N—1. Each of the corre-
sponding eigenfunctions defines its own phase flow and, con-
sequently, its own isospectral evolution of the original poten-
tial. Thus, for fixedN there existN different scenarios of
isospectral deformation of this potential.

The main properties of this deformation can be formu-
lated as follows.

(i) The isospectral deformation of potential4.7) de-
scribes a state that splits ypst— ) into a single-soliton
potential of the form seck that moves off to+% and a
claster moving in the opposite direction atatt=) com-
ing to rest at some point=—xy,<0 (a usage of the term
“soliton” will be justified below).

(i) The soliton potential that moves off contains a unique
bound state with energy corresponding to tib eigenstate
(defining the flow of the original potential.

(iii) The spectrum of the Schidmger problem with the
potential that is left over in the limit=< coincides with that
for the original potential with the exception of timh state,
which is removed.

(iv) At any 0<t<e the spectrum of the Schdimger
problem coincides with the original one. As»«, the dif-
ference between the wave functiogs,, m#n, and the
wave functions of the limit casé=o becomes infinitely
small.

Consider a transformation of the wave functign and
perform the same analysis as in the preceding subsection. At
t=0, asymptotics of ¢,, as x— -+, has the form
O(x)~C(k)exp(—kx), k=N—n. As t—o, we have

C(k)exp(—kx+t/2)

C2(k)
1+ ——exp —2kx+t)

4.8

Yn(X— 0, t—00)~

means that the wave function vanishes rapidly outside the 2k

neighborhood of the curvel 2xy) =t.

The normalized wave functiori4.5 corresponds to a As with the above-described general case, in the vicinity of

unique eigenstate with enerdy=E,,—U%x,) in the “po-
tential” AU (4.6). Since the total potentidl is U+ AU,

the line —kx+t/2=0 we setx=—t/2k+y, |y|<t/2k. Then
we obtain

we see that the asymptotical analysis of the potential defor-

mation does not violate the isospectraIiS/r;(t)~E2.

Hence, in the general case the evolution of the wave func-

tion defining the flow is described asymptoticallgt large

t) as its transformation into the sech profile, moving with
changing(generally structure parameters and velocity; this
wave function becomes strongly localized in a potential

minimum of the form—sect¢ moving along with it; the

“law” of this movement is given by the condition

21 (x)=t.

Now consider how this scenario is realized for potentials

of different structure.

B. The Rosen-Morse potential deformation

C(k)exp(—ky)

¢n(X—>oo,t—>OO)% CZ
1+ oK exp(—2ky)

_\ﬁ 1
N2 1 :

coskk| x— ﬂt—é}
) 1I ck) (4.9
=—|n—. .
k \/ﬁ
Thus, as x— +«, the wave function of the “flow-

Let us study the isospectral evolution of the family of generating”nth state forms an asymptotical “bump(4.9)

reflectionless “soliton” potentialqtraditionally called the
Rosen-Morse potentiald.7]):

traveling to the right with the constant velocity k/@&ithout
any (up to the approximationchanges in shape. This ap-
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proximate wave function corresponds to the unique eigen- N=0
state with energf,= —k>?/2 in the potential U 95 3
k2 5
Upn=— 1 , (4.10 097
costtk| x— =—t— & ]

2k ]
-1.5 7
which is an asymptotics of the isospectrally deformed poten- ]
tial (4.7) at largex andt— oo,
The same formulas can be obtained using the general as-
ymptotical expressiong&t.5) and(4.6). 3
Consider particular cases of the deformation for potentials ~ _5 3
(4.7) in detall. ]
(i) Let N=1 (the original potential has the only bound .
stateEq=—1/2, #9=[/2 cosk]™%). Using Eq.(2.29 we =45 drre e e
find that in this case the evolution of the potential is reduced
to a simple movement of the potential to the right along the ) : X
X axis with no change in shape and, obviously, with the
bound state energy unaltered.
(ii) First nontrivial examples arise in the cadé=2
(U°= —3/coskx). The spectrum consists of two states: 05 5

Eo=—2, wozﬁ ! —055
0" 2 costx ]

and -1517

-2.54

0 3 sinhx ]
E1:_1/2, lpl: Em. (4.1]) _Z'Sé

For both the flows built on these states an evolution can be
treated as a splitting up into two potential wells. One of them
moves off to infinity, whereas the other comes to rest at 3
some point—xy<<0. In the first casdFig. 1(a)] the well RN S— e e
moving to the right is described asymptotically by the ex-
pressionU~~ —4seclk2¢; and carries away a bound state X
with energyE= —2. The left part of the potential formst b)
t=o) the potentialU~~—sech¢, containing the other
state with energfe=—1/2.

In the second cadé&ig. 1(b)] these two asymptotical soli-
ton wells interchange: the well ~ ~ — secif ¢, moves off to

-3.5

FIG. 1. Evolution of the Rosen-Morse potential containing two
bound states(a) under the flow built on the ground state afiil
under the flow built on the excited state.

+ o carrying away the state with= —1/2, whereas the well \/—
U~ ~—4 secB2¢, moves to the left and comes to reat E.——9/2 l/,o:_5 1
Xo=— 3In3, to be exaot(Fig. 2). 0 * 0 4 coshx’
Note that in this case the “two-soliton state” has a quite
simple form: E__» 0_\/1—5 sinhx
. 5 . 1772 175 oshx
Uix b= 3 costx— 2Tcosh sinkx— T2sin'x
x,0= (coshx— Tsintfx)? ’ 1 5

E,=—1/2, 5=13

costx  4coshx
T=tanht/2) (4.12
(this case includes all three qualitatively different kinds of
thereby the “flow-generating” wave function corresponding individual flows, namely, a flow built on a ground state, a
to E=—1/2 behaves as follows: flow built on an uppermost excited state, and a flow built on
an intermediate state
_[3(1-T%  coskx sintx Under the flow built on the ground staeig. 3) the origi-
Pa(x,t)= 2  coskx—T sinkx’ (413 nal potential splits up into two wellsJ ~~ —9sech3¢,; and
U~~—3 secRé&,. The first of them(which contains the
(iii) Finally, consider the cashl=3 (U%=—6/cosRx). unique bound state with enerdy= —9/2) moves off to in-
The spectrum consists of three bound states: finity as t—o°, whereas the second well comes to rest: it
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05 7 previously revealed by Andreev [13]; he treated those so-
U ] lutions asN solitons. In that paper a preservation of the
3 eigenvalues for the Schdimger problem with such potentials
7053 ‘ was also mentioned.
=159 C. Isospectral deformation of harmonic oscillator

For the harmonic oscillator’'s potential an isospectral de-
-2.5 ] formation defined by the expressid@.28) was presented
] (without any relation to the Liouville equatipras an illus-
3 tration in a number of papef8,7,6,18,19. Let us show that,
=35 ] in accordance with the general asymptotical results presented
3 above, the transformation of the harmonic oscillator’s poten-
tial also results in a local potential well’'s moving off to

B85 T oo O e e e O L A A A e 2 e e e T

-10 -5 0 5 10 infinity; this well is also described asymptotically as a
N sech potential withvarying structure parameters and veloc-
ity.

As in the preceding subsection, in order to verify general

two seclt wells (in the case of the flow built on the excited spate as)émptouc?l resﬂ:;’ _Igt_ usf prﬁye that tre gsympthotlcal pro-
The exact solution is depicted by a solid line; the asymptoticalCe ureé pertorme Initio In this case leads to the same

solutions for both the seéhwells are marked with rectangles and form_ulas as can b_e obtained directly from the general ap-
circles. proximate expressiong.5) and(4.6).

Consider a deformation of the harmonic oscillator's po-
contains two bound states corresponding to the other levekential U°(x) =x%/2 under a flow defined by the wave func-
(E: —2 andE= _1/2) and coincides with the Origina| po- tion of the nth state. Its asymptotics far= O, X— +o has
tential of the previous case. the form

Under the flow built on the first excited state with energy
E=—2 (Fig. 4 a well that splits off from the original po-
tential has the asymptotical fortd~~ —4 secR2¢ and
carries away to infinity itg only bound state v_vith the gbove—l—he exact expression for the deformed potential is
energy. The left complicated nonsymmetric wetuite
loosely call it “soliton cluster’) contains two other states

FIG. 2. Splitting up of the Rosen-Morse potential at latgeto

2~ x"exp( — x%/2). (4.14

with energieEy= —9/2 andE,= —1/2. In this case the cre- x? d (e'— 1)\/\/?
ation of a soliton cluster instead of a simple soliton well is U(x,t)= ?er_x oo
“due” to a gap in the quadratic spectrum, which arises in the 1+ (et— 1)f dx’W?(x’)
limit t= +oo, X
An analogous situation takes place for a deformation of (4.19

the original potential under the flow built on the upper state
(Fig. 5): in this case the potentidl "~ —secf¢é moves [where, as we remember, the functidi(x,t) is defined by
away, whereas the left nonsymmetric cluster contains tW@ne relationw, = U]. For largex we have
bound states with energié&s= —9/2 andE=—2 (in Fig. 6 a
stage of well-distinguishable splitting of the original poten-
tial into a cluster and a single-soliton potential is presented; W= (93)%~x2"exp — x?), (4.16
an asymptotics of the latter is depicjed

As is seen in Figs. 3 and 4, eigenfunctions associated with
those states that lie above the “flow-generating” state trans- +oo
form in such a way that at largetheir form becomes asymp- f dx’ WO(x")~ o X +B(n)x*" 1
totically close to the form of the eigenfunctions for the po- X &
tential that is left after the soliton bump moves off. In xexp(—x?), B(0)=0. (4.1
particular, when passing to the limit= +o each of these
eigenfunctions loses one zero. Note that the results obtained
above are also in agreement with qualitative description ofAs t—o, for AU=U— U° we get
the papef18].

To prove a soliton character of the potential well moving

1 exp—x?)

off to +, we have followed numerically an evolution of a U~2 exp(t—x)[ —4\/mx3 2N+ xMexp(t—x?) |
disturbed potentialnot related to the original Schdinger [2mx+ x2exp(t— x2) ]2 '
problem. It was revealed that a final stage of the evolution is (4.18

the same for quite arbitrary perturbations; a detailed study of
this item is beyond the scope of our paper.

Note also that the existence of the Liouville equation’sIn the vicinity of the curvet=x? we set x=\/t+y,
solutions splitting up into a single soliton and a cluster wagy|</t. Then
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FIG. 3. Evolution of the Rosen-Morse potential containing three bound states, under the flow built on the ground state. For four evolution
stages the potentidtiotted ling, the wave functiongsolid lineg, and the energy levels are depicted.

exp(—2\/fy)[—4t"*1\/ﬁ] at xo~t; its depth increases directly with whereas its
AU~2 ey 2 ) 2 width decreases as i, The spectrum of the Schimger
[2Vm exp(—2Vmy)] problem with that potential consists of the only eigenstate
t with energyE = —1/2 (note that this potential is reflection-
(4.19 less for anyt). Taking into account that the well.19
1 2mt moves up along the “slope” of the harmonic oscillator's
cosh| Vt| x— t+——In—— > up g the "siop . :
2t t° potential, so that its ‘“zero” is located at a height

h~ (\t)%/2=t/2, we see that this is in accordance with the
isospectrality of the deformation. The numerical investiga-
tions have confirmed this result completéig. 7).

A corresponding expression for the wave functignis

\ﬁ 1 Thus, as is shown in Figs. 2, 6, and 7, the general asymp-

n~ \ 5 . totical analysis of the behavior both of a potential and of a
P \/— ical analysis of the behavior both of ial and of
oS \ﬁ . \E " i In2 wt wave functiony, at larget allows us to describe with good

2\/{ tn accuracy both the splitting up of the soliton potentials and

(4.20 the evolution of the harmonic oscillator’s potential.
Concluding this section, we would like to remark that an
Hence, the local potential welU has the form of a se¢h  analogous transformation scenario, where one meets with a
potential moving to the right, so that its minimum is locatedsecl?¢ potential well behaving in the same way, was previ-
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FIG. 4. Same as in Fig. 3, but for the flow built on the first excited state.

ously studied in the problem on anharmonic oscillators adThe creatior{or annihilation of a pair of neighboring energy
mitting shift operators that are polynomials of third degree inlevels (in the middle of a spectral gajis accompanied by a

the momentunj14]. pairwise “arrival” (or moving off of symmetric sechwells
The potentiald (x) was specified there as a solution of the from left and right infinities. Those additional potential wells
following nonlinear differential equation: are described asymptotically by the expression
Ev — §(v2) — X2V, —3xV, =0 L2
4 XXXX 2 XX XX X 1 VH(X)m_ H L +L ) (424)
(4.21) cosH[L(x=L)]

V(x)=U(x)—x?/2

Obviously, the dependence of the asymptotical potential on

the parametet completely coincides with that dependence

in the case of isospectral deformation, if the parametés

1 identified with .

+§VXX— 3v2, It is worth mentioning that the expressi@a.24) is an
(4.22 exact solution of the equation

related to the fourth Painlévequation. Equatiori4.21) has
two integrals:

1 2 2
l1=Xj — EVXXX+3(V )t 2x°V,

2 2 )
v n .
+ ‘:) VY. ~ Va3V —'5:4"2{Z(VX)2—V3—I1V :

(4.23 (4.25

X

1 1 )
l,=— 47 _EVXX_I'SV +1q
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FIG. 5. Same as in Figs. 3 and 4, but for the flow built on the uppermost excited state.

which differs from Eq.(4.23 by the replacement of?> with  tion of the Liouville equation and describe a deformation that
L2 [a constant term+15—4L?l,) should also be added to leads to a shift of a selected energy level.
the right side. Consider a flow defined by the relation

Ut:(‘pnln)xa (5.0

V. GENERALIZATIONS ~ . . . -
wherey,,, ¥, is a pair of solutions of the Schdmger equa-

Hence, we have shown that in 1D the description of artion
isospectral deformation using a phase flow leads to a system L
of coupled Liouville equations. In the particular case of the _
“individual flow” the well-known integrable Liouville equa- T Yo VOGDYy=Eny, 5.2
tion arises; its solution specifies a deformation both of the
potential and of the eigenfunctior, (which defines the of which only i, is supposed to be normalizeie., an
flow). The formulas we have derived in that case are ireigenfunction: ffooz//ﬁ(x,t) dx<+o Vt. Introduce a
agreement with the known results obtained by means of botvronskianw,,(t) of the functionsy, @n;
the integral equations formalism and the Darboux transfor- _ _
matlo!']. o Wn(t): ‘pn( ¢n)x_(¢n)x¢n- (5.9
Using the individual flow as an example, we now show
that a direct extension of the approach presented above dlsing a procedure analogous to that presented in Sec. I, we
lows us to derive an evolution equation that is a generalizaebtain the following equations:
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FIG. 6. Splitting up of the Rosen-Morse potential into a soliton
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well, which moves off, and a complicated cluster, which moves to

the left and, finally, comes to redfor the case presented in Fig. 5

For the well traveling to the right a corresponding asymptotics is

depicted by small circles.

1
(En)i=3 Wa(), (5.4
(| _ ~
G| = - 59

The first specifies an evolution of timh eigenvalue. In par-
ticular, if we choosey, in such a way thatv,(t)=1, then
the nth eigenvalue moves with velocity either upward or

downward. It can easily be shown that all other eigenvalues

are not changed by the flowE(,);=0.
It follows from Eq. (5.5 that

(¥n) ~
| = (i) =V, (5.6
n 1y
whence, after integration ih we get, as before,
d> o,
U-U%=—In—;. (5.7
oy

Expressing}n from relation(5.3) and substituting it in Eq.
(5.5, we obtain a generalization of E(.11):

n’x X d '
(¥n) 1+Wn(t)f —l/fz();'))'

¥n
On the other hand, expressiﬁg from Eq. (5.5 and substi-
tuting it in Eq. (5.3, we get the following equation for the
function ¢, =1/,

=5 (5.9

t

(QDn)xx

(5.9
®n

} = —Wy(1)
t

which if of higher degree than E¢5.8), but admits an inte-
gration int. As a result we obtain the equation
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FIG. 7. (a) Evolution of the harmonic oscillator's potential un-
der the individual flow built on the ground statéh) Function
V(x,t)=U(x,t)—U% U°=x?/2, for somet>1; the asymptotics
of this function is depicted by circles.

(op)
(QDn)xx_ n XXZ—Z(EH—Eg).
®n ®n

(5.10

At a given functiony® (and, consequentlye?) this is a

Schralinger equation for the functiop,. Taking into ac-

count that ¢2),./42=2(U°—E?), this equation can be
written in the form

1 o @
_E(‘Pn)xx"— u _Wlndln en=Enen. (5.11

Thus, the normal solutiony,,=1/¢, for the Schrdinger
problem with the potential (not yet determinedis speci-
fied by a suitable non-normalizable  solution
@nl @n(X— =) .

— o] of the Schrdinger equation with the poten-
tial U°—d¥Ing)idx® and the parameter E,=E?



2592 V. M. ELEONSKY AND V. G. KOROLEV 55

+3[bw,(t")dt’. Having found the eigenfunctiog,, we fi-  struct families of explicit solutions, this would also extend a

nally obtain the potential (x,t) using formula(5.7). Iist of completely(or partially) integrable evolutional equa-
In some cases it is convenient to expregsusing the tions.

solutions of the Schidinger equation for the original poten-

tial U°, especially when these solutions are known in explicit APPENDIX
form. It can be shown that such a formula can easily be i . . .
obtained from Eq(5.10): Let us find an operator that is Hermitian-conjugate to

S,. For this purpose we write E¢3.1) in the form
'zbn(XO)x (wn)xX
(Pn ’
¥

E,#E., 5.1 0 e
o lﬁm:l/fﬁr(et—l)lz—fde'h(X’—X)lﬁg(X’)l//%(X’),

where x? is a solution of the Schidinger equation with the (A1)

“old” potential U° and the “new” parameteE,,. The same

formula was previously obtained 9] using the Darboux he)— 1, £>0 .

transformation. (&)= 0, &<0. (A2)
An equation specifying the evolution of the potential

U(x,t) (more exactly, as before, of the functid¥,, where  Then we have

W,=U) can be derived from E(5.8) for the functiony,,

if we take into account expressidb.1) for the flow: fj:dx w(X)éntp%(x)z fjwdx w(x)w‘r’n(x)—(e‘— b
Wl _ o, +(W”(t)) (5.13 0
= t . . —+
Wi, We X f dx a‘l’gixt)) P(x)

[It can easily be shown that this expression is an integral of
Eqg. (2.33, where nowE is a function of the deformation % fﬂodx’h(x—x’)
parameter t.] Clearly, the equation for the function

= has the same form:
P=¥n¥n X g2 PX). (A3)
t
&} :2p+(W”( )) , (5.14  Transforming the last term
P 1 Py
. . . oo lﬂn( )
Introducing again the functiofil: explI=2W,, we can re- dx )¢( )| dX h(X—=X") (X" ) hm(X")

write the equation for the potential in the form @fgeneral-
ized Liouville equation

| _:cdx’ PRI
=exdl+

wn(t)exp( H)) (5.19 b
t <[ ax ‘”””h(x X )g(x)

- —w - On(X,1)

We stress that if we choosk,= ¢, [i.e.,w,(t) =0], then all
the results obtained in the present section for the extended :J dx’ g2(x") go(x’ )J (x) I x),
individual flow (5.1) are reduced to the results obtained in _ n m n(x t)
Sec. Il for the simple individual flowi2.10 [except for ex-
pression(5.12), which was derived under the essential con-
dition E,— ES+0].

Sequentially building the individual flows of ty&.1) on
different eigenstates one can obtain families of potentials; ;. A
with a prescribed set df,,. Note that a structure of an origi- dx l/l(X)S-,l//%(X)
nal potential may be quite arbitrary. Moreover, after every” ~
use of individual flow(5.1) shifting a selected state, one can Lo
insert flow (2.10, which does not change the spectrum. An =f dx w?n(x)w(x)—(et—l)
order of using flowg5.1) seems to be essenti@ question -
on commutativity of such flows was discussed &).

A further extension of a class of exactlgr almost ex- f dx l//m(x)l//n(x)f dx’
actly) solvable potentials can be related with flows involving
more than one state simultaneoushot sequentially, call "
them “multiflows.” For example, it is of interest to study “a Ef dx ‘/f(rjn(x)éxl//(x)- (A5)
double flow” (7,=0, m#n4,n,), which leads, as has been -
shown in the paper, to the system of two coupled Liouville
equations. If it turns out that this system allows one to con-Thus, the linear operatd is defined as follows:

(A4)

we get

Yn(x)
On(X",1)

$(x")



X Oy
& 100=100- 108 [ ax g

X' D) f(x").

(A6)
Now let us construct an inverse operatorfiqr. Introduce a

function Z(x,t): Z,=—2(X) ym(x,t), Z2°=2Z(x,0) and
rewrite Eq.(3.1) as follows:

2
Z,=20+(e'— 1)(%) Z° (A7)
or, using the definition of the symbal,, in the form
6
z2- (On)x 2°=z,. (A8)
On
AssumingZ®= C(x,t) 6,(x,t), we find
C(x,t)= f T 2 A9
(X,t)=— L dx m+K(t)- (A9)
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Substituting this expression in the previous equation, we get
Z0= k(1) (0,)5— (0 f+md - A10
x= K(1)(0n)x—(6n)x X (A10)

Instead of the functio we use now its original definition;

letting

O

K(t)——f dx—z,//m, (A11)
we obtain
Yo (X) = (X, 1) — (' = 1) y3(x)
x o, Un :
X J'ioodX ml//m(x ). (A12)

Thus, under the above choice of(t) we find that
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