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Isospectral deformation of quantum potentials and the Liouville equation

V. M. Eleonsky and V. G. Korolev
Lukin Research Institute of Physical Problems, Zelenograd, Moscow 103460, Russia

~Received 18 October 1996!

A quantum problem on an isospectral deformation of one-dimensional potentials~and of corresponding
wave functions! is considered. The isospectral deformation defined in the form of a phase flow is shown to
obey a system of coupled Liouville equations. In a simple case of an individual flow the well-known integrable
Liouville equation arises; its solution provides known families of isospectral potentials. Operators performing
this deformation are studied; their unitary property is proved. An evolution of spectral shift operators is
determined using those unitary operators. An asymptotical behavior of both a potential and wave functions
under this isospectral deformation is studied. It is shown, in particular, that the deformation of the Rosen-
Morse potential and that of the harmonic oscillator’s potential have common analytical properties. The ap-
proach used in the paper can be extended to the case of a deformation leading to a shift of one selected energy
level. In the case of the simplest individual flow we get a generalization of the integrable Liouville equation.
@S1050-2947~97!03303-9#
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I. INTRODUCTION

Various approaches have been used to investigate d
mation of one-dimensional potential and spectra of the c
responding Schro¨dinger problem. Among them are the tec
nique based on integral equations of Gelfand-Levitan
Marchenko’s type@1–4#, the factorization~supersymmetry!
method@5,6# ~involving, in particular, a generalization of th
creation and/or annihilation operators for the harmonic os
lator @7#!, and various extensions of the Darboux transform
tion @8,9#.

Nevertheless,evolutional equations~PDEs! governing the
isospectral deformation and, in particular cases, provid
known families of potentials have not yet been derived. T
problem is resolved in the present paper.

For this purpose we associate the isospectral deforma
with a phase flow@10,8,11# defined by a certain energy func
tional. As a result, we reveal that the isospectral deforma
obeysa system of coupled Liouville equations. In a simple
case of an individual flow the classical Liouville equatio
@12# arises; its integration immediately leads to familiar r
sults@5–9#. On the other hand, the Liouville equation itself
found to be an integral of a much more complicated evo
tional equation obtained in@12# for a description of isospec
tral potentials. However, if we do not restrict ourselves to
individual flow, we obtain a system of equations whose
lutions may givenewfamilies of isospectral one-dimension
potentials.

Furthermore, we show that the same isospectral defor
tion can be described as aunitary transformationperformed
by linear integral operators. Those operators allow us to
termine an evolution of spectrum shift operators.

It is also shown in the present paper that for a wide cl
of isospectral potentials the evolution ends with a local m
mum splitting off and moving off to infinity; this local wel
is asymptotically close to a simple soliton potential conta
ing a unique bound state.

As examples, in this paper we consider the isospec
deformation of the Rosen-Morse~‘‘soliton’’ ! potential and of
551050-2947/97/55~4!/2580~14!/$10.00
or-
r-

d

l-
-

g
s

on

n

-

-

e
-

a-

e-

s
-

-

al

the harmonic oscillator’s potential. Previously, soliton pote
tials related to the Liouville equation were studied by A
dreev@13# using a version of the inverse scattering metho
Finally, we demonstrate that the presented approach ca
easily extended to a description of potential deformatio
accompanied by a shift of a selected energy level.

The paper is arranged as follows. The general descrip
of the isospectral deformation using phase flows is prese
in Sec. II together with a complete analysis of the individu
flow; an interpretation of the obtained results in terms of
double Darboux transformation is discussed. In Sec. III
study unitary operators performing an isospectral deform
tion; an evolution of spectrum shift operators is investigat
In Sec. IV asymptotical properties of the isospectral def
mation of both a potential and of wave functions are studi
the results are illustrated by examples of the Rosen-Mo
potential and of the harmonic oscillator. In the last sect
we derive evolution equations governing a deformation
companied by a shift of a selected energy level.

II. ISOSPECTRAL FLOW AND EVOLUTIONAL
EQUATIONS FOR POTENTIAL AND WAVE FUNCTIONS

A. General case

Consider the Schro¨dinger problem with the point spec
trum

2
1

2
cxx1U~x,t !c5Ec, lim

x→6`

c50, xPR1,

~2.1!

where the potentialU(x,t) depends on the parametert. Fol-
lowing @10,11,8#, introduce a phase flow as follows:

Ut5
]

]x(k tk
dEk

dU
5

]

]x(k tkck
2 . ~2.2!
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55 2581ISOSPECTRAL DEFORMATION OF QUANTUM . . .
Here „ck(x,t),Ek(t),k>0… are eigenelements of the Schr¨-
dinger problem~2.1!, dEk /dU is a variational derivative of
the functional

Ek5E
2`

1`

dxH 12 @~ck!x#
21Uck

2J , ~2.3!

tk , k50,1, . . . , is either a finite number set or a rapid
decreasing~as k→`) number sequence. Finally, it is sup
posed that*2`

1`ck
251.

Let us derive evolutional equations for both the poten
U(x,t) and the wave functionscm(x,t), m50,1 . . . @and
simultaneously verify that the deformation obeying the ph
flow ~2.2! is really isospectral, i.e., (Em) t50#.

By virtue of Eqs. ~2.1! and ~2.2!, the evolution of the
eigenelements of the Schro¨dinger problem induced by th
above phase flow satisfies the following relations:

~Em! tcm
2 1

1

2
@cm~cm!xt2~cm!x~cm! t#x

5(
k

tkcm
2 ~ck

2!x , k,m50,1, . . . . ~2.4!

Using the identities~see, for example,@10#!

cm
2 ~ck

2!x5
1

2
~cm

2ck
2!x1

1

2
@cm

2 ~ck
2!x2ck

2~cm
2 !x#

5
1

2
~cm

2cn
2!x1~cmck!@cm~ck!x2ck~cm!x#,

~2.5!

~Em2Ek!ckcm5
1

2
@cm~ck!x2ck~cm!x#x ~2.6!

transform relations~2.4! to the form

2~Em! tcm
2 5H 2@cm~cm!xt2~cm!x~cm! t#1(

k
tkcm

2ck
2

1 (
kÞm

tk
@cm~ck!x2ck~cm!x#

2

2~Em2Ek!
J
x

,

k,m50,1, . . . . ~2.7!

Integrating these expressions inx and taking into accoun
that limx→6`cm50, we find that (Em) t50, whereas the
evolution of the eigenfunctions is determined by the follo
ing system of equations:

F ~cm!x
cm

G
t

2tmcm
2 5 (

kÞm
tkH ck

21
@cm~ck!x2ck~cm!x#

2

2~Em2Ek!cm
2 J .

~2.8!

The substitutioncm5expSm allows us to write Eq.~2.8! in
the form of the system of coupled Liouville equations:
l

e

-

~Sm!xt2tmexp~2Sm!5 (
kÞm

tkexp~2Sk!

3H 11
@~Sm!x2~Sk!x#

2

2~Em2Ek!
J .

~2.9!

Thus, the solutions of system~2.8! @or ~2.9!# together with
relation ~2.2!, when compatible with the Schro¨dinger prob-
lem ~2.1!, determine isospectral deformations both of the p
tentialU(x,t) and of the wave functionscm .

B. Individual flow

Let all tm50 except for sometn51 corresponding to the
eigenelement (cn ,En). In this case the flow is defined by th
expression

Ut5~cn
2!x . ~2.10!

System~2.8! takes the form

F ~cn!x
cn

G
t

5cn
2 , ~2.11!

F ~cm!x
cm

G
t

5cn
21

Jmn
2

2~Em2En!cm
2 , mÞn, ~2.12!

where Jmn[cm(cn)x2cn(cm)x . As in the general case
~2.8!, the substitutioncn5expSn transforms system~2.11!
and ~2.12! to the form

~Sn!xt5exp2Sn , ~2.13!

~Sm!xt5exp2SnH 11
@~Sm!x2~Sn!x#

2

2~Em2En!
J , mÞn.

~2.14!

Equation ~2.13! for cn is completely integrable: it is the
hyperbolic Liouville equation. Its general solution is@12#

Sn~x,t !5 f n~x!2gn~ t !2 lnHCnEx

dx8e2 f n~x8!

1Cn
21E t

dt8e22gn~ t8!J . ~2.15!

Here f n(x), gn(t) are arbitrary functions andCn is an arbi-
trary parameter. For the initial problemcn(x,0)5cn

0 we find
that for t.0 expression~2.15! yields

cn~x,t !5
cn
0~x!e2gn~ t !

11E
0

t

dt8e22gn~ t8! E
x

1`

dx8@cn
0~x8!#2

,

~2.16!

wheregn(t50)50. The condition for the norming integra
to be independent oft can be satisfied if we take
gn(t)52t/2. Under such a choice the above result~without
relation to the Liouville equation! was obtained by McKean
and Trubowitz@8#.
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To integrate evolutional equations~2.12! for cm , mÞn,
we introduce auxiliary functions

Anm~x,t !5E
x

1`

dx8cn~x8,t !cm~x8,t !, mÞn.

~2.17!

Subtracting Eq.~2.11! from Eq. ~2.12!, we get

H Jmn

cmcn
J
t

52
Jmn
2

2~Em2En!cm
2 , ~2.18!

whence, using identity~2.6! for excludingJmn , we get after
simple transformations that system~2.11! and ~2.12! can be
written in the form

F ~cn!x
cn

G
t

5cn
2 , ~2.19!

F ~Anm!x
Anm

G
t

5cn
2 , mÞn, ~2.20!

so that

S ln Anm

cn
D
xt

50. ~2.21!

Thus, once a solution of Eq.~2.11! for cn is known, solu-
tions for all the functionsAnm can be obtained directly from
the relation

Anm5Anm
0 cn

cn
0 ez~ t !, ~2.22!

whereAnm
0 [Anm(x,0), cn

0[cn(x,0), andz(t) is an arbi-
trary function such thatz(0)50.

Under the choicegn(t)52t/2, z[0 formula ~2.16!
takes the form

cn5cn
0 et/2

un
, un[11~et21!E

x

1`

dx8@cn
0~x8!#2.

~2.23!

Then from Eq.~2.22! we get

E
x

1`

dx8cn~x8,t !cm~x8,t !

5E
x

1`

dx8cn
0~x8!cm

0 ~x8!
et/2

un~x,t !
, mÞn. ~2.24!

Integrating this, we arrive at the expression for the evolut
of the eigenfunctionscm(x,t), mÞn,

cm~x,t !5cm
0 2~et21!

cn
0

un
E
x

1`

dx8cn
0~x8!cm

0 ~x8!,

mÞn, ~2.25!

presented in@8#.
n

C. Evolution of potential

Now let us find an equation for the evolution of the p
tentialU(x,t) induced by thenth individual flow. Introduce
the function W(x,t): U5Wx @by virtue of Eq. ~2.2!
Wt5(cn)

2#. From Eq. ~2.11! it follows that @ lncn#xt5Wt ,
hence the equation forWt takes the form

@ ln~Wt!#xt52Wt , ~2.26!

which can also be written in the form of the Liouville equ
tion

Pxt5expP ~2.27!

for the function P(x,t) defined by the expressio
2Wt5expP. The solution of the equation determines the p
tential:

U~x,t !5U02
d2

dx2
lnH 11E

0

t

dt8e22gn~ t !E
x

1`

dx8

3Ex8
dx9Ut

0~x9!J , ~2.28!

whereU0[U(x,t50), Ut
0[Ut(x,t50). @This expression

for gn(t)52t/2 also coincides with the result of@8#.# It
should be stressed that within the framework of our probl
the ‘‘initial’’ functions U0(x) and Ut

0(x) cannot be given
independently, since flow~2.10! is defined using the eigen
function cn of the Schro¨dinger operator for the potentia
U(x). However, from a more general viewpoint, potentia
U related to solutions of Eq.~2.27! as

U5
1

2

d

dxE0
t

dt8expP~x,t8! ~2.29!

can have unexpected physical importance, not being ne
sarily isospectral.

Note that integration of the relation@ lncn#xt5Wt leads to
the expression

U~x,t !5U01
d2

dx2
ln

cn

cn
0 ~2.30!

whence solution~2.28! for U can be obtained at once,
solution ~2.16! of the Liouville equation for the function
cn is given.

Now return again to the evolutional equation for the p
tential in the form~2.26!. As a consequence of both this an
the Schro¨dinger equations we obtain the following equatio

1

2
WxxtWt2

1

4
~Wxt!

252~Wt!
2~Wt2En!. ~2.31!

Its differentiation int leads to the relation

FWxt

Wt
G
xt

1FWxt

Wt
GFWxt

Wt
G
t

54Wxt , ~2.32!

which, clearly, turns into an identity ifWt satisfies Eq.
~2.26!. On the other hand, differentiating Eq.~2.31! in x
yields
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1

8
Wxxxt5Wxt~Wx2En!1

1

2
WxxWt . ~2.33!

This equation was presented~up to a change of variables! in
the book@12# in the context of another approach to the pro
lem on isospectral deformation of potentials. Thus E
~2.26!, representable also in the form of the Liouville equ
tion, is an integral of Eq.~2.33!.

D. Solution of the Liouville equation
as a double Darboux transformation

Interpret a sense of the expressions for the evolution
U(x,t) andcn(x,t) in terms of the Darboux transformation
Recall that the ‘‘kernel’’ of the Darboux approach is th
following simple algebraic observation:

If some functionw is an arbitrary solution~not necessarily
eigenfunction! of the Schro¨dinger equation with the potentia
V for some value of the parameterE, then the function 1/w
~defined in the pointswÞ0) is a solution of the Schro¨dinger
equation with the potentialṼ5V2(d2/dx2) lnw for the
same valueE.

Show now that expressions~2.16! and~2.30! for the isos-
pectral deformation ofcn andU in the case of individual
flow ~2.10! can also be interpreted as a result of the ab
transformation applied twice. Let the pair (cn

0 ,En
0) be an

eigenelement of the Schro¨dinger problem with the potentia
U0 ~i.e., cn

0 is a normalized function!. Then the function
f051/cn

0 is a solution ~now unnormalized! of the
Schrödinger problem with the new potentialŨ5U0

2(d2/dx2) lncn
0 , but for the sameEn

0 .
The general solution of the Schro¨dinger equation with the

potentialŨ and the parameterEn
0 is given by the expression

fa5f0S 11aE
x

1` dx8

~fn
0!2D , ~2.34!

where the parametera arises~which is an analog of the
deformation parametert).

Applying the above transformation a second time, we fi
that the functionca51/fa is a solution of the Schro¨dinger
equation with the potentialUa5Ũ2(d2/dx2) lnfa and with
the same value ofEn

0 . Combining these two transformation
we get the final expression for the functionca:

ca51/fa5
1

f0S 11aE
x

1` dx8

~f0!2D
5

cn
0

11aE
x

1`

dx8~cn
0!2

~2.35!

which corresponds toUa,

Ua5Ũ2
d2

dx2
lnfa5U02

d2

dx2
lncn

02
d2

dx2
lnfa

5U01
d2

dx2
ln

ca

cn
0 ~2.36!

with En
0 .
-
.
-

f

e

d

Analyzing the asymptotics of the expression forca, we
see that the double Darboux transformation restores
normability of the function. Thusca is an eigenfunction for
the Schro¨dinger problem with the potentialUa and with the
initial eigenvalueEn

0 .
Considering the parametera as a function oft, one can

easily show that the functionAda/dt ca is a solution of the
Liouville equation. This function would have norm 1
a(t) obeys the equationda/dt5a11; such a choice ofa
leads to the exponential flow considered in@8#. Expression
~2.36! obtained by means of the double Darboux transform
tion coincides with Eq.~2.30! as well.

III. OPERATORS OF ISOSPECTRAL EVOLUTION

A. Unitary transformation of functions cm , mÞn

We now turn our attention to the evolution of the wa
functions cm , mÞn @hereafter we assumegn(t)52t/2#.
The expression

cm5cm
0 2~et21!

cn
0

un
E
x

1`

dx8cn
0~x8!cm

0 ~x8!, mÞn

~3.1!

obtained previously as a solution of the Liouville equation
counterpart~2.12! can also be interpreted as a result of acti
of a linear integral operatorŜn ~depending on the function
cn
0) ontocm

0 :

cm5Ŝncm
0 , ~3.2!

Ŝn f ~x![ f ~x!2~et21!
cn
0

un
E
x

1`

dx8cn
0~x8! f ~x8!.

~3.3!

This operator isunitary in a subspace of the function
cm , mÞn. Indeed, as is shown in the Appendix, the line
operatorŜn

† that is Hermitian-conjugate toŜn has the form

Ŝn
† f ~x![ f ~x!2~et21!cn

0E
2`

x

dx8
cn
0~x8!

un~x8,t !
f ~x8!.

~3.4!

On the other hand, it can also be shown~see the Appendix!
that the inverse operatorŜn

21 : cm
0 5Ŝn

21 cm can be deter-
mined in such a way that

Ŝn
215Ŝn

† . ~3.5!

Hence, the evolution of the wave functionscm , mÞn,
obeying Eqs.~2.12! or ~2.20! is determined by the unitary
operatorŜn . Note that the conservation of the eigenvalu
Em , mÞn, is one of the evident consequences of the tra
formation’s unitary property.

It can be checked by direct calculations that the opera
Ŝn transforms the HamiltonianH0 of the original quantum
system with the potentialU0 into the HamiltonianHt of the
quantum system with the new potentialU:

Ht5Ŝn H
0 Ŝn

21 , ~3.6!
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H052
1

2

d2

dx2
1U0~x!, Ht52

1

2

d2

dx2
1U~x!,

U5U02
d2

dx2
lnun . ~3.7!

Let us dwell on the evolution of the wave functioncn ,
which is described by the expression

cn~x,t !5
et/2cn

0

11~et21!E
x

1`

dx8@cn
0~x8!#2

[N̂~x,t !cn
0~x!.

~3.8!

Thus, contrary to the evolution ofcm , mÞn, determined by
a linear operator, the evolution of the eigenfunctioncn
~which defines the flow itself! is determined by thenonlinear
operatorN̂. The inverse operator in that case has the follo
ing form:

cn
0~x!5

et/2cn~x,t !

11~et21!E
x

1`

dx8@cn~x8,t !#
2

[N̂21~x,t !cn~x,t !. ~3.9!

The conditionN̂21N̂51 can be checked easily by dire
calculations. One can also show that the eigenfuncti
cn(x,t) andcm(x,t), mÞn, being orthogonal att50, re-
tain the orthogonality at anyt.0:

„cm~x,t !,cn~x,t !…5„cm
0 ~x!,cn

0~x!…50. ~3.10!

B. Evolution of shift operators

Suppose that att50 there exists a spectrum shift operat
L (0) that translates one eigenfunctioncm

0[cm(x,0) corre-
sponding to the eigenvalueEm into another eigenfunction
cm8
0 corresponding toEm8:

cm8
0

5L ~0!cm
0 . ~3.11!

Let m,m8Þn. Applying the operatorŜn to both sides of Eq.
~3.11! and taking into account thatcm8(t)5Ŝncm8

0 and

cm
0 5Ŝn

21cm8(t), we get

cm8~ t !5ŜnL ~0!Ŝn
21cm~ t !. ~3.12!

Hence, given the shift operatorL (0) at t50 and the unitary
operator Ŝn , one can obtain for anyt a shift operator
Ln(t),

Ln~ t ![ŜnL ~0!Ŝn
21 , ~3.13!

which acts in the subspace of all the eigenfunctions exc
for cn . Note that the shift operatorLn(t) is defined for the
‘‘new’’ quantum system with the HamiltonianHt specified
by expression~3.6!.

Consider now shift operators for the statecn . Let
-

s

pt

cn11
0 5L ~0!cn

0 . ~3.14!

Applying Ŝn to both sides, we get

cn11~ t !5Ŝncn11
0 5ŜnL ~0!N̂21N̂cn

05ŜnL ~0!N̂21cn~ t !.
~3.15!

Then the operatorLn
↑(t) can be introduced:

cn11~ t !5Ln
↑~ t !cn~ t !, Ln

↑~ t ![ŜnL ~0!N̂21. ~3.16!

The operatorsLn11
↓ (t), Ln

↓(t), andLn21
↑ (t) are introduced

analogously:

cn~ t !5Ln11
↓ ~ t !cn11~ t !, Ln11

↓ ~ t ![N̂ L†~0!Ŝn
21 ,

cn21~ t !5Ln
↓~ t !cn~ t !, Ln

↓~ t ![ŜnL
†~0!N̂21,

cn~ t !5Ln21
↑ ~ t !cn21~ t !, Ln21

↑ ~ t ![N̂ L ~0!Ŝn
21 .

Thus, the evolution of the shift operators can be determi
for any pair of eigenelements of the Schro¨dinger operator.

Note that in this case the evolution of analogs of the nu
ber operators, which we define, following@14,15#,
as N(t)[Ln21

↑ (t)Ln
↓(t) @N05L (0)L†(0)# and Ñ(t)

[Ln11
↓ (t)Ln

↑(t) @Ñ05L†(0)L (0)# is specified by the op-

eratorsN̂ andN̂21:

N~ t !5N̂ N0N̂21, Ñ~ t !5N̂ Ñ0N̂21. ~3.17!

For the other statesmÞn the operatorN̂ in these expres-
sions should be replaced withŜn .

IV. ASYMPTOTICAL ANALYSIS AND EXAMPLES

A. General scenario of isospectral deformation ast˜`

Investigate the evolution both of an arbitrary potent
U(x) and of a wave function of thenth corresponding bound
state for large values oft. At t50 for an asymptotics of the
functioncn asx→1` we use the first term of the quasicla
sical approximation@16#,

cn
0;exp„2I ~x!…, I ~x![Ex

A2@U0~x8!2En# dx8.

~4.1!

This approximation is valid ifUx
0!(U02En)

3/2 at largex.
In particular, this is true both for scattering potentials@with
U0(x→1`)→0, Ux

0(x→1`)→0# as well as for infinitely
growing potentials~for example, for anharmonic oscillator
of any kind!.

The asymptotics of the integral appearing in the solut
for cn(t), t.0 is determined by the expression

E
x

`

dx8@c0~x8!#2;
1

2A2@U0~x!2En#
exp@22I ~x!#.

~4.2!

Letting then thatt→`, we obtain the following approximate
expressions forcn andDU[U(t)2U0:
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55 2585ISOSPECTRAL DEFORMATION OF QUANTUM . . .
cn~x→`,t→`!;
exp@ t/22I ~x!#

11
1

2A2@U0~x!2En#
exp@ t22I ~x!#

,

~4.3!

DU~x→`,t→`!;2
2A2@U0~x!2En#exp@ t22I ~x!#

11
1

2A2@U0~x!2En#
exp@ t22I ~x!#

.

~4.4!

In the neighborhood of the curvex5x0(t) specified implic-
itly by the equation 2I (x0)5t, we set x5x0(t)1y,
uyu!ux0(t)u. Then we have I (x)2t/25I (x)2I (x0)
;A2@U0(x0)2En#y. As a result we get

cn'AA2@U0~x0!2En#

2
cosh21@A2@U0~x0!2En#

3@x2x0~ t !#1d~x0!#, ~4.5!

DU'22A2@U0~x0!2En#cosh
22@A2@U0~x0!2En#

3@x2x0~ t !#1d~x0!#, ~4.6!

x0~ t !: Ex0A2@U0~x8!2En# dx85
t

2
,

where d(x0)5
1
2ln2A2@U0(x0)2En# is an additional shift,

whose value may be refined using the following terms of
quasiclassical approximation.

Note that asymptotical expression~4.5! proves to be nor-
malized to 1~as with the exact expression forcn), which
means that the wave function vanishes rapidly outside
neighborhood of the curve 2I (x0)5t.

The normalized wave function~4.5! corresponds to a
unique eigenstate with energyE5En2U0(x0) in the ‘‘po-
tential’’ DU ~4.6!. Since the total potentialU is U01DU,
we see that the asymptotical analysis of the potential de
mation does not violate the isospectrality:En(t)'En

0 .
Hence, in the general case the evolution of the wave fu

tion defining the flow is described asymptotically~at large
t) as its transformation into the sech profile, moving w
changing~generally! structure parameters and velocity; th
wave function becomes strongly localized in a poten
minimum of the form2sech2j moving along with it; the
‘‘law’’ of this movement is given by the condition
2I (x)5t.

Now consider how this scenario is realized for potenti
of different structure.

B. The Rosen-Morse potential deformation

Let us study the isospectral evolution of the family
reflectionless ‘‘soliton’’ potentials~traditionally called the
Rosen-Morse potentials@17#!:
e

e

r-

c-

l

s

UN
0 ~x!52

N~N11!

2

1

cosh2x
, N51,2, . . . . ~4.7!

Recall that the spectrum of the Schro¨dinger problem with
this potential has exactlyN bound states with eigenvalue
En52(N2n)2/2, n50,1, . . . ,N21. Each of the corre-
sponding eigenfunctions defines its own phase flow and, c
sequently, its own isospectral evolution of the original pote
tial. Thus, for fixedN there existN different scenarios of
isospectral deformation of this potential.

The main properties of this deformation can be form
lated as follows.

~i! The isospectral deformation of potentials~4.7! de-
scribes a state that splits up~as t→`) into a single-soliton
potential of the form sech2j that moves off to1` and a
claster moving in the opposite direction and~at t5`) com-
ing to rest at some pointx52x0,0 ~a usage of the term
‘‘soliton’’ will be justified below!.

~ii ! The soliton potential that moves off contains a uniq
bound state with energy corresponding to thenth eigenstate
~defining the flow! of the original potential.

~iii ! The spectrum of the Schro¨dinger problem with the
potential that is left over in the limitt5` coincides with that
for the original potential with the exception of thenth state,
which is removed.

~iv! At any 0,t,` the spectrum of the Schro¨dinger
problem coincides with the original one. Ast→`, the dif-
ference between the wave functionscm , mÞn, and the
wave functions of the limit caset5` becomes infinitely
small.

Consider a transformation of the wave functioncn and
perform the same analysis as in the preceding subsection
t50, asymptotics of cn , as x→1`, has the form
c0(x);C(k)exp(2kx), k5N2n. As t→`, we have

cn~x→`,t→`!'
C~k!exp~2kx1t/2!

11
C2~k!

2k
exp~22kx1t !

. ~4.8!

As with the above-described general case, in the vicinity
the line2kx1t/250 we setx52t/2k1y, uyu!t/2k. Then
we obtain

cn~x→`,t→`!'
C~k!exp~2ky!

11
C2~k!

2k
exp~22ky!

5Ak

2

1

coshkFx2
1

2k
t2dG ,

d[
1

k
ln
C~k!

A2k
. ~4.9!

Thus, as x→1`, the wave function of the ‘‘flow-
generating’’nth state forms an asymptotical ‘‘bump’’~4.9!
traveling to the right with the constant velocity 1/2k without
any ~up to the approximation! changes in shape. This ap
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proximate wave function corresponds to the unique eig
state with energyE052k2/2 in the potential

U ~n!
→ 52

k2

cosh2kFx2
1

2k
t2dG , ~4.10!

which is an asymptotics of the isospectrally deformed pot
tial ~4.7! at largex and t→`.

The same formulas can be obtained using the genera
ymptotical expressions~4.5! and ~4.6!.

Consider particular cases of the deformation for potent
~4.7! in detail.

~i! Let N51 ~the original potential has the only boun
stateE0521/2, c0

05@A2 coshx#21). Using Eq. ~2.28! we
find that in this case the evolution of the potential is reduc
to a simple movement of the potential to the right along
x axis with no change in shape and, obviously, with t
bound state energy unaltered.

~ii ! First nontrivial examples arise in the caseN52
(U0523/cosh2x). The spectrum consists of two states:

E0522, c0
05

A3
2

1

cosh2x

and

E1521/2, c1
05A3

2

sinhx

cosh2x
. ~4.11!

For both the flows built on these states an evolution can
treated as a splitting up into two potential wells. One of th
moves off to infinity, whereas the other comes to rest
some point2x0,0. In the first case@Fig. 1~a!# the well
moving to the right is described asymptotically by the e
pressionU→;24sech22j1 and carries away a bound sta
with energyE522. The left part of the potential forms~at
t5`) the potentialU←;2sech2j2 containing the other
state with energyE521/2.

In the second case@Fig. 1~b!# these two asymptotical soli
ton wells interchange: the wellU→;2sech2j1 moves off to
1` carrying away the state withE521/2, whereas the wel
U←;24 sech22j2 moves to the left and comes to rest~at
x052 1

4ln3, to be exact! ~Fig. 2!.
Note that in this case the ‘‘two-soliton state’’ has a qu

simple form:

U~x,t !523
cosh4x22Tcoshx sinhx2T2sinh4x

~cosh3x2Tsinh3x!2
,

T[tanh~ t/2! ~4.12!

thereby the ‘‘flow-generating’’ wave function correspondin
to E521/2 behaves as follows:

c1~x,t !5A3~12T2!

2

coshx sinhx

cosh3x2T sinh3x
. ~4.13!

~iii ! Finally, consider the caseN53 (U0526/cosh2x).
The spectrum consists of three bound states:
-

-

s-

ls

d
e

e

t

-

E0529/2, c0
05

A15
4

1

cosh3x
,

E1522, c1
05

A15
2

sinhx

cosh3x
,

E2521/2, c2
05A3F 1

coshx
2

5

4cosh3xG
~this case includes all three qualitatively different kinds o
individual flows, namely, a flow built on a ground state, a
flow built on an uppermost excited state, and a flow built o
an intermediate state!.

Under the flow built on the ground state~Fig. 3! the origi-
nal potential splits up into two wells:U→;29sech23j1 and
U←;23 sech2j2. The first of them~which contains the
unique bound state with energyE529/2) moves off to in-
finity as t→`, whereas the second well comes to rest:

FIG. 1. Evolution of the Rosen-Morse potential containing two
bound states:~a! under the flow built on the ground state and~b!
under the flow built on the excited state.
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contains two bound states corresponding to the other lev
(E522 andE521/2) and coincides with the original po-
tential of the previous case.

Under the flow built on the first excited state with energ
E522 ~Fig. 4! a well that splits off from the original po-
tential has the asymptotical formU→;24 sech22j and
carries away to infinity its only bound state with the abov
energy. The left complicated nonsymmetric well~quite
loosely call it ‘‘soliton cluster’’! contains two other states
with energiesE0529/2 andE2521/2. In this case the cre-
ation of a soliton cluster instead of a simple soliton well i
‘‘due’’ to a gap in the quadratic spectrum, which arises in th
limit t51`.

An analogous situation takes place for a deformation
the original potential under the flow built on the upper sta
~Fig. 5!: in this case the potentialU→;2sech2j moves
away, whereas the left nonsymmetric cluster contains tw
bound states with energiesE529/2 andE522 ~in Fig. 6 a
stage of well-distinguishable splitting of the original poten
tial into a cluster and a single-soliton potential is presente
an asymptotics of the latter is depicted!.

As is seen in Figs. 3 and 4, eigenfunctions associated w
those states that lie above the ‘‘flow-generating’’ state tran
form in such a way that at larget their form becomes asymp-
totically close to the form of the eigenfunctions for the po
tential that is left after the soliton bump moves off. In
particular, when passing to the limitt51` each of these
eigenfunctions loses one zero. Note that the results obtain
above are also in agreement with qualitative description
the paper@18#.

To prove a soliton character of the potential well movin
off to 1`, we have followed numerically an evolution of a
disturbed potential~not related to the original Schro¨dinger
problem!. It was revealed that a final stage of the evolution
the same for quite arbitrary perturbations; a detailed study
this item is beyond the scope of our paper.

Note also that the existence of the Liouville equation
solutions splitting up into a single soliton and a cluster wa

FIG. 2. Splitting up of the Rosen-Morse potential at larget into
two sech2 wells ~in the case of the flow built on the excited state!.
The exact solution is depicted by a solid line; the asymptotic
solutions for both the sech2 wells are marked with rectangles and
circles.
ls

e

f
e

o

;

th
-

ed
f

s
of

s

previously revealed by Andreev in@13#; he treated those so
lutions asN solitons. In that paper a preservation of th
eigenvalues for the Schro¨dinger problem with such potential
was also mentioned.

C. Isospectral deformation of harmonic oscillator

For the harmonic oscillator’s potential an isospectral d
formation defined by the expression~2.28! was presented
~without any relation to the Liouville equation! as an illus-
tration in a number of papers@8,7,6,18,19#. Let us show that,
in accordance with the general asymptotical results prese
above, the transformation of the harmonic oscillator’s pot
tial also results in a local potential well’s moving off t
infinity; this well is also described asymptotically as
sech2 potential withvarying structure parameters and velo
ity.

As in the preceding subsection, in order to verify gene
asymptotical results, let us prove that the asymptotical p
cedure performedab initio in this case leads to the sam
formulas as can be obtained directly from the general
proximate expressions~4.5! and ~4.6!.

Consider a deformation of the harmonic oscillator’s p
tentialU0(x)5x2/2 under a flow defined by the wave func
tion of thenth state. Its asymptotics fort50, x→1` has
the form

cn
0;xnexp~2x2/2!. ~4.14!

The exact expression for the deformed potential is

U~x,t !5
x2

2
1

d

dxS ~et21!Wt
0

11~et21!E
x

1`

dx8Wt
0~x8!D

~4.15!

@where, as we remember, the functionW(x,t) is defined by
the relationWx5U#. For largex we have

Wt
05~c0

0!2;x2nexp~2x2!, ~4.16!

E
x

1`

dx8 Wt
0~x8!;

1

2Ap

exp~2x2!

x
1b~n!x2n21

3exp~2x2!, b~0!50. ~4.17!

As t→`, for DU5U2U0 we get

DU'2
exp~ t2x2!@24Apx312n1x4nexp~ t2x2!#

@2Apx1x2nexp~ t2x2!#2
.

~4.18!

In the vicinity of the curve t5x2 we set x5At1y,
uyu!At. Then

l
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FIG. 3. Evolution of the Rosen-Morse potential containing three bound states, under the flow built on the ground state. For four e
stages the potential~dotted line!, the wave functions~solid lines!, and the energy levels are depicted.
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DU'2
exp~22Aty!@24tn11Apt#

@2Apt1tnexp~22Apy!#2

52
t

cosh2FAtS x2At1
1

2At
ln
2Apt

tn D G . ~4.19!

A corresponding expression for the wave functioncn is

cn'AAt
2

1

coshFAtS x2At1
1

2At
ln
2Apt

tn D G .
~4.20!

Hence, the local potential wellDU has the form of a sech2

potential moving to the right, so that its minimum is locat
at x0;At; its depth increases directly witht, whereas its
width decreases as 1/At. The spectrum of the Schro¨dinger
problem with that potential consists of the only eigenst
with energyE052t/2 ~note that this potential is reflection
less for anyt). Taking into account that the well~4.19!
moves up along the ‘‘slope’’ of the harmonic oscillator
potential, so that its ‘‘zero’’ is located at a heigh
h;(At)2/25t/2, we see that this is in accordance with t
isospectrality of the deformation. The numerical investig
tions have confirmed this result completely~Fig. 7!.

Thus, as is shown in Figs. 2, 6, and 7, the general asy
totical analysis of the behavior both of a potential and o
wave functioncn at larget allows us to describe with good
accuracy both the splitting up of the soliton potentials a
the evolution of the harmonic oscillator’s potential.

Concluding this section, we would like to remark that
analogous transformation scenario, where one meets w
sech2j potential well behaving in the same way, was pre
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FIG. 4. Same as in Fig. 3, but for the flow built on the first excited state.
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ously studied in the problem on anharmonic oscillators
mitting shift operators that are polynomials of third degree
the momentum@14#.

The potentialU(x) was specified there as a solution of t
following nonlinear differential equation:

1

4
Vxxxx2

3

2
~V2!xx2x2Vxx23xVx50,

~4.21!
V~x!5U~x!2x2/2,

related to the fourth Painleve´ equation. Equation~4.21! has
two integrals:

I 15xH 2
1

2
Vxxx13~V2!x12x2VxJ 1

1

2
Vxx23V2,

~4.22!

I 252
1

4x2 H 2
1

2
Vxx13V21I 1J 21 ~Vx!

2

4
2V32I 1V.

~4.23!
-The creation~or annihilation! of a pair of neighboring energy
levels ~in the middle of a spectral gap! is accompanied by a
pairwise ‘‘arrival’’ ~or moving off! of symmetric sech2 wells
from left and right infinities. Those additional potential wel
are described asymptotically by the expression

V↔~x!'2
L2

cosh2@L~x6L !#
. ~4.24!

Obviously, the dependence of the asymptotical potential
the parameterL completely coincides with that dependen
in the case of isospectral deformation, if the parameterL is
identified withAt.

It is worth mentioning that the expression~4.24! is an
exact solution of the equation

H 2
1

2
Vxx13V21I 1J 22I 1

254L2H 14 ~Vx!
22V32I 1VJ ,

~4.25!
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FIG. 5. Same as in Figs. 3 and 4, but for the flow built on the uppermost excited state.
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which differs from Eq.~4.23! by the replacement ofx2 with
L2 @a constant term (2I 1

224L2I 2) should also be added t
the right side#.

V. GENERALIZATIONS

Hence, we have shown that in 1D the description of
isospectral deformation using a phase flow leads to a sys
of coupled Liouville equations. In the particular case of t
‘‘individual flow’’ the well-known integrable Liouville equa-
tion arises; its solution specifies a deformation both of
potential and of the eigenfunctioncn ~which defines the
flow!. The formulas we have derived in that case are
agreement with the known results obtained by means of b
the integral equations formalism and the Darboux trans
mation.

Using the individual flow as an example, we now sho
that a direct extension of the approach presented abov
lows us to derive an evolution equation that is a general
n
m

e

n
th
r-

al-
a-

tion of the Liouville equation and describe a deformation th
leads to a shift of a selected energy level.

Consider a flow defined by the relation

Ut5~cnc̃n!x , ~5.1!

wherecn , c̃n is a pair of solutions of the Schro¨dinger equa-
tion

2
1

2
yxx1U~x,t !y5Eny, ~5.2!

of which only cn is supposed to be normalized~i.e., an
eigenfunction!: *2`

` cn
2(x,t) dx,1` ;t. Introduce a

Wronskianwn(t) of the functionscn ,c̃n :

wn~ t !5cn~ c̃n!x2~cn!xc̃n . ~5.3!

Using a procedure analogous to that presented in Sec. II
obtain the following equations:
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~En! t5
1

2
wn~ t !, ~5.4!

F ~cn!x
cn

G
t

5cnc̃n . ~5.5!

The first specifies an evolution of thenth eigenvalue. In par-
ticular, if we choosec̃n in such a way thatwn(t)51, then
the nth eigenvalue moves with velocity12 either upward or
downward. It can easily be shown that all other eigenval
are not changed by the flow: (Em) t50.

It follows from Eq. ~5.5! that

F ~cn!x
cn

G
xt

5~cnc̃n!x5Ut , ~5.6!

whence, after integration int, we get, as before,

U2U05
d2

dx2
ln

cn

cn
0 . ~5.7!

Expressingc̃n from relation~5.3! and substituting it in Eq.
~5.5!, we obtain a generalization of Eq.~2.11!:

F ~cn!x
cn

G
t

5cn
2S 11wn~ t !Ex dx8

cn
2~x8! D . ~5.8!

On the other hand, expressingc̃n from Eq. ~5.5! and substi-
tuting it in Eq. ~5.3!, we get the following equation for the
functionwn[1/cn :

F ~wn!xx
wn

G
t

52wn~ t ! ~5.9!

which if of higher degree than Eq.~5.8!, but admits an inte-
gration in t. As a result we obtain the equation

FIG. 6. Splitting up of the Rosen-Morse potential into a solit
well, which moves off, and a complicated cluster, which moves
the left and, finally, comes to rest~for the case presented in Fig. 5!.
For the well traveling to the right a corresponding asymptotics
depicted by small circles.
s

~wn!xx
wn

2
~wn

0!xx

wn
0 522~En2En

0!. ~5.10!

At a given functioncn
0 ~and, consequently,wn

0) this is a
Schrödinger equation for the functionwn . Taking into ac-
count that (cn

0)xx /cn
052(U02En

0), this equation can be
written in the form

2
1

2
~wn!xx1HU02

d2

dx2
lncn

0J wn5Enwn . ~5.11!

Thus, the normal solutioncn51/wn for the Schro¨dinger
problem with the potentialU ~not yet determined! is speci-
fied by a suitable non-normalizable solution
wn@wn(x→6`)
→6`# of the Schro¨dinger equation with the poten-
tial U02d2@ lncn

0#/dx2 and the parameter En5En
0

o

s

FIG. 7. ~a! Evolution of the harmonic oscillator’s potential un-
der the individual flow built on the ground state.~b! Function
V(x,t)[U(x,t)2U0, U0[x2/2, for somet@1; the asymptotics
of this function is depicted by circles.
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11
2*0

t wn(t8)dt8. Having found the eigenfunctioncn , we fi-
nally obtain the potentialU(x,t) using formula~5.7!.

In some cases it is convenient to expresscn using the
solutions of the Schro¨dinger equation for the original poten
tial U0, especially when these solutions are known in expl
form. It can be shown that such a formula can easily
obtained from Eq.~5.10!:

wn5
cn
0~x0!x2~cn

0!xx
0

cn
0 , EnÞEm , ~5.12!

wherex0 is a solution of the Schro¨dinger equation with the
‘‘old’’ potential U0 and the ‘‘new’’ parameterEn . The same
formula was previously obtained in@9# using the Darboux
transformation.

An equation specifying the evolution of the potent
U(x,t) ~more exactly, as before, of the functionWt , where
Wx5U) can be derived from Eq.~5.8! for the functioncn ,
if we take into account expression~5.1! for the flow:

FWxt

Wt
G
t

52Wt1Swn~ t !

Wt
D
t

. ~5.13!

@It can easily be shown that this expression is an integra
Eq. ~2.33!, where nowE is a function of the deformation
parameter t.# Clearly, the equation for the functio
r5cnc̃n has the same form:

Frxr G
t

52r1Swn~ t !

r D
t

. ~5.14!

Introducing again the functionP: expP52Wt , we can re-
write the equation for the potential in the form ofa general-
ized Liouville equation:

Pxt5expP1S 12wn~ t !exp~2P! D
t

. ~5.15!

We stress that if we choosec̃n[cn @i.e.,wn(t)50#, then all
the results obtained in the present section for the exten
individual flow ~5.1! are reduced to the results obtained
Sec. II for the simple individual flow~2.10! @except for ex-
pression~5.12!, which was derived under the essential co
dition En2En

0Þ0#.
Sequentially building the individual flows of type~5.1! on

different eigenstates one can obtain families of potent
with a prescribed set ofEn . Note that a structure of an origi
nal potential may be quite arbitrary. Moreover, after eve
use of individual flow~5.1! shifting a selected state, one ca
insert flow ~2.10!, which does not change the spectrum. A
order of using flows~5.1! seems to be essential~a question
on commutativity of such flows was discussed in@8#!.

A further extension of a class of exactly~or almost ex-
actly! solvable potentials can be related with flows involvi
more than one state simultaneously~not sequentially!; call
them ‘‘multiflows.’’ For example, it is of interest to study ‘‘a
double flow’’ (tm50, mÞn1 ,n2), which leads, as has bee
shown in the paper, to the system of two coupled Liouv
equations. If it turns out that this system allows one to c
it
e

l

f

ed

-

ls

y

-

struct families of explicit solutions, this would also extend
list of completely~or partially! integrable evolutional equa
tions.

APPENDIX

Let us find an operator that is Hermitian-conjugate
Ŝn . For this purpose we write Eq.~3.1! in the form

cm5cm
0 2~et21!

cn
0

un
E

2`

1`

dx8h~x82x!cn
0~x8!cm

0 ~x8!,

~A1!

h~j!5H 1, j.0

0, j,0.
~A2!

Then we have

E
2`

1`

dx c~x!Ŝncm
0 ~x!5E

2`

1`

dx c~x!cm
0 ~x!2~et21!

3E
2`

1`

dx
cn
0~x!

un~x,t !
c~x!

3E
2`

1`

dx8h~x2x8!

3cn
0~x8!cm

0 ~x8!. ~A3!

Transforming the last term

E
2`

1`

dx
cn
0~x!

un~x,t !
c~x!E

2`

1`

dx8h~x2x8!cn
0~x8!cm

0 ~x8!

5E
2`

1`

dx8cn
0~x8!cm

0 ~x8!

3E
2`

1`

dx
cn
0~x!

un~x,t !
h~x2x8!c~x!

5E
2`

1`

dx8cn
0~x8!cm

0 ~x8!E
2`

x8
dx

cn
0~x!

un~x,t !
c~x!,

~A4!

we get

E
2`

1`

dx c~x!Ŝncm
0 ~x!

5E
2`

1`

dx cm
0 ~x!c~x!2~et21!

3E
2`

1`

dx cm
0 ~x!cn

0~x!E
2`

x

dx8
cn
0~x8!

un~x8,t !
c~x8!

[E
2`

1`

dx cm
0 ~x!Ŝn

†c~x!. ~A5!

Thus, the linear operatorŜn
† is defined as follows:
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Ŝn
† f ~x![ f ~x!2~et21!cn

0 E
2`

x

dx8
cn
0~x8!

un~x8,t !
f ~x8!.

~A6!

Now let us construct an inverse operator forŜn . Introduce a
function Z(x,t): Zx52cn

0(x)cm(x,t), Z05Z(x,0) and
rewrite Eq.~3.1! as follows:

Zx5Zx
01~et21!

~cn
0!2

un
Z0 ~A7!

or, using the definition of the symbolun , in the form

Zx
02

~un!x
un

Z05Zx . ~A8!

AssumingZ05C(x,t)un(x,t), we find

C~x,t !52E
x

1`

dx8
Zx8

un~x8,t !
1k~ t !. ~A9!
.

Substituting this expression in the previous equation, we

Zx
05k~ t !~un!x2~un!xE

x

1`

dx8
Zx8

un~x8,t !
. ~A10!

Instead of the functionZ we use now its original definition
letting

k~ t ![2E
2`

1`

dx8
cn
0

un
cm , ~A11!

we obtain

cm
0 ~x!5cm~x,t !2~et21!cn

0~x!

3E
2`

x

dx8
cn
0

un~x8,t !
cm~x8,t !. ~A12!

Thus, under the above choice ofk(t) we find that
Ŝn

215Ŝn
† .
od

-

-
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