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Realizable higher-dimensional two-particle entanglements via multiport beam splitters
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Multiport beam splitters are shown to be applicable in feasible optical realizations of higher-dimensional
EPR correlations, and of tests of local realism involving measurements of nondichotomic variables. These
multiports permit optical realizations of any unitary operator in Hilbert spaces of arbitrary finite dimension.
Thus it is shown that one is by no means constrained to entangled spin systems, and to Stern-Gerlach appa-
ratuses. In the analysis the concept of generalized Bell numbers is employed, which is more suitable than the
standard set of spin eigenvalues. The results presented here move the discussion on entangled hbher-than-
spin systems from the realm of gedanken experiments to real experif®b@s0-29477)07802-3

PACS numbdss): 03.65.Bz, 42.50.Dv, 89.78c

I. INTRODUCTION Einstein-Podolsky-RosetEPR Bell phenomena are not
limited solely to spin or polarization correlatiof$2]. Cur-

Two problems connected with the notion of quantum entently we are witnessing the emergence of interesting meth-
tanglementSchradinger, 19351]) and its consequences in 0ds of producing entangled states. Cascade soU&
the form of the Bell theorem are studied here. These(@re have already_be_en replaced be parametric down-con_\/ersmn
a search for additional tests against local realism, @nd [13,14. Atomic interferometry and micromaser techniques

attempts to extend the Bell theorem to nonstandard phenonl?-ave also been proposed for production of Greenberger-

. . . } orne-Zeilinger(GHZ) three-particle entanglemeft5,16].
ena and FO find fom?s for it. Both aspects are intertwined, agxciting applications have been found for EPR phenomena.
a theoretical analysis of the consequences of these other

. s oft res diff " . fBell'si i he most spectacular of these seem to be quantum cryptog-
tp;sgmenso en requires different versions of Bell's inequali-rynpy [17), "quantum teleportatiori18], and “four-way”

) . L coding on a single photdi9]. The techniques developed in
So far, no one can claim empirical falsification of the \he process can be applied for the study of other phenomena
most general premises of local realism. The widespreage “superluminal” tunneling[20] or nonclassical behavior
opinion that the delayed-choice polarization-correlation eXof |ight [21]. A branch of EPR phenomena involving inde-
periments of Aspect, Dalibard, and Rodé] constitute a pendent sources of particles is emergjgg,23.
once-and-for-all falsification of the local realistic position as-  The present work is devoted to some nonstandard meth-
sumes that the experiments were closer to ideal than wasds of obtaining entangled photons. The possibility of per-
actually the case. These experiments, as well as the multituderming a Bell-type experiment for nondichotomic observ-
of other ones, from the first one by Freedman and Clausesbles is discussed. Such experiments differ from the
(1972 [3] to the most recent onds.g., Tapster, Rarity, and conventional ones in many respects. First of all a Hilbert
Owens [4]), only refute various classes of local-realistic space of three or more dimensions describes the possible
theories which additionally incorporate a version of the fairstates of each of the subsystefhgre a photon Thus the
sampling assumption. They constitute a strong support fotheorem of Gleasof24], and the later ones of B€lR5] and
anyone also expecting violations of Bell's inequalitiegfimn Kochen and Speckdl6] on noncontextual hidden variable
ture) high collection efficiency experiments. Yet, even if one theories, can be applied. Any realistic theory that would at-
expects quantum mechanics to be finally definitively con-4ribute a definitive result for each individual member of the
firmed, as the present authors do, one has to admit that locehsemble described by a quantum-mechanical state, and
realistic explanations of existing experiments are still notwould reproduce the quantum predictions, must be inevitably
completely ruled ouf5]. The evidence is not fully compel- contextual. That is, the result of a single act of measurement
ling, and, as physics is an experimental science, there is aof a certain observable must be dependent on its coftteat
obvious need for actually performing further experiments. is, whether we measure the observable alone or together with
The new experiments could be reruns of the old ones wita different one, etg. The original Bell theorem is formulated
much better equipmerfespecially detectoysand more reli-  for two (entangled two-dimensional subsystems, for each of
able sources. However, widening the palette of phenomenayhich such problems do not arise. For an individual sub-
and ranges of parameters, configurations, etc. available faystem described in two-dimensional Hilbert space, one can
an experimenter deciding to seek the most efficient way t@lways construct a noncontextual “cryptodeterministic”
close some, if not all, loopholes seems to be an importarmnodel. The contradiction with local reality emerges only
task(see, e.g., the reviews by Clauser and Shimd@jyBal-  when one considers correlations between two or more par-
lentine[7], Greenbergeet al.[8], Home and Sellefi9], Be- ticles. In short, for higher dimensional cases, realistic de-
linskii and Klyshko[10], and Pere$l11)). scriptions already face conceptual problems at the level of a
It is important to show that experimentally accessiblesingle subsystem.
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This has an interesting consequence in the form of the argu- 'n Out

ment of Heywood and Redhed#l7]. By exploiting the per- 11— — >
fect EPR correlations, which are characteristic of the singlet 2 —>
(entangled state of two spins 1, they showed that eVecal 3—— U(N) >
and locally contextuatieterministic hidden variable theories N> » __°°*°

of such a system are incompatible with quantum mechanics.
Their condition of local contextuality was introduced to ) ) .
avoid the Kochen-Specker contradiction for a single spin, . F'C- 1. A general UN) beam splitter: an optical device capable
But the EPR correlations in effect introduetements of re- of reproducing allN-dimensional unitary transformations.

ality, and noncontextuality again arises. Thus the KOChenhere seem to be the first feasible proposal for nondichotomic

Spg(;lfserit:ae?ﬁggén?nltzrzzggca?(laztiginbf higher- dimensionzﬁe" tests. Six-port and eight-port beam splitters have already
P 9 9 een constructed and tested in the laboraf86j. Some sta-

systems, thgy are not in the ma|r]stream of the researf:h.o[&tical guantum effects that can be predicted for multiport
the foundations of quantum physics. Most probably this | eam splitters were tested. To this end a six-port and, in a

due to the complete lack of experimental results. The theo: : P .
retical research on “higher spin EPR-Bell correlations;” see separate experiment, an eight-port beam splitter were fed

. 'with the two-photon radiation of a parametric down-
e.g.,[11] and[28], focuses on the spin-correlated SUbSyStem%onverter. Highly nonclassical counting statistics were ob-

fnxéﬁcgégg tge ;%ni;?eﬁ{%gagflyvglr?fgir\:alTﬁz' \;g;'s ::S mr?wmlr?/ served. EPR-Bell experiments involving six-port beam split-
y 9 y Common o5 are underwa}32].

belief that classical properties emerge in the limit of large
qguantum numbergthe actual results of the investigations ) _
suggest a far more ambiguous situajiddowever, so far no Multiport beam splitters

experiment, even for unit spins, has been performed, to our Certain aggregates of simpler optical devices can be
knowledge. This is due mainly to the lack of easily control-treated as multiport beam splittdi30]. The idea of a multi-
lable sources emitting pairs of spintar highey entangled  port beam splitter was discussed in R@#3] for the specific
objects[29]. case of homodyne detection schemes. The application of
This situation can be changed in two ways. First of all, multiport beam splitters in the context of Bell's theorem was
optical experiments of the EPR-Bell type involving correla- suggested by KlyshkfB4]. He briefly discussed the specific
tions of nondichotomic variables can indeed be performedgzase of a six-port device, as a potential method of generaliz-
the phenomenon of spontaneous parametric downing earlier experiments, without giving any predictions of the
conversion can be used to obtain an optical analog of thgpR correlations, or other phenomena to be expected for
singlet state for two correlated spifwf arbitrary magnitude  such systems.
[30], this two-photon state can be fed into certain aggregates As it was shown if35], multiport devices can reproduce
of optical devicegwhich we shall call multiport beam split- all finite-dimensional unitary transformation@gor single-
ters. As a result, higher-dimensional EPR-Bell correlationsphoton states Such devices can be constructed using solely
should be observe[B0]. A version of the Bell theorem can the standardtwo-input—two-outpyt beam splitters, mirrors,
be formulated for the predicted two-photon interference pheand phase shifters. This opens the way to build optical ana-
nomena. logs of various measuring appard&ag., the Stern-Gerlach
One can design exact optical analogs of the Stern-Gerlachnes, to be discussed belpw
apparata. However, the imagination should not be restricted We are interested in reversible unitary processes. Thus
to finding some photonic equivalents of such devices onlyhere we shall study only lossless multiportshoinput ports
One can, e.g., try to generalize the optical nonpolarizatiomnd N output ports(some ports can work both as input and
test of the Bell inequalities to the case of nondichotomicoutput ports, viz. the Michelson interferomeétesee Fig. 1.
local measurements. In this context, here we discuss opticgihe operation of such a device is described by a unitary
devices[30] which we shall call symmetric Bell multiports. matrix Uy Which gives the probability amplitudes for a
These multiport beam splitters enable one to ob'gain an addkijngle particle(photon entering via inpui to leave the de-
tional class of possible EPR-Bell experimefits/olving cor-  vice by outputj (the subscript denotes the dimension of the
relations of systems effectively described by Hilbert spacegnatrix). If we assume monochromatic radiation in each of
of dimension higher than two the beams, then we can represent the input beams by simple

.Surprisingly, due to some historical peculiarity of the eVO0-kets|i) and the output ones Hy), and the elements af
lution of the theoretical research in the field almost the entirgyre given by

effort was so far limited to spin-correlated systems. As, in

our case, we no longer deal with spins, it clear that a non- Unji=(jlUnli). 1)

standard method of value assignment can be introddzgd

what we mean representation of a given result, i.e., a “click” Within such a description the multiport device is treated as a

at certain detector, by a numbelt is argued that the use of passive linear mode coupler. The assumption of strict mono-

suitably chosen complex numbers of unit modultsots of  chromaticity enables us to skip all considerations concerning

unity) is more convenient than the standard sets of spin eithe lengths of various optical paths within the studied de-

genvalues. This is one more departure from the standardces. However, it will be evidentsee the figurgsthat for

treatments. the multiports presented here this aspect essentially poses no
The experiments with multiport beam splitters presentedgroblems.
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Yp(D)e e
p(e 0 |, (4)
FIG. 2. A specific pyramidlike construction of a Nf beam .
splitter. p(N)e*hﬁ(N)

The specific construction used by Reatkal. [34] is based  and then enters the beam-splitter sequence via the ports
on an earlier propos4B0] to use a pyramidlike network of - \yhich were previously the output ports, but now work as the
standard beam splitterg.e., of two input and two output jnput ones. The unitary transformation, denotedTag 1),
port, mirrors and phase shifter$or details, see Fig.)2  performed now by the multiport, will, of course, result in the
Here we shall try to present a straightforwaplysicalrea-  photon leaving by thénow) output portN with probability
soning which may replace the mathematical proof 4. 1 That is, the device operating in the reverse mode trans-

Imagine(Fig. 3 a single photon entering, via the input port {5rms the initial state represented by E4) into
which we callN, a sequence dfii—1 standard X2 beam

splitters. The sequence is built in such a way that one output (0,0,...,0,D7. (5)
beam of thekth beam splitte(for k<N—1) is fed into the

input port of the next beam splitter. It is obvious that one canThus theNth row [Eqg. (2)] of the unitary matrixUy can be
always select the values of reflectivities and transmittivitiesransformed into Eq(5). In other words, one has

for each beam splitter in such a way that all the probabilities

p(i), i=1,... N for the photon to leave by the exit pdrt Tin-pUn=Un-1)®@ln, (6)
can be made arbitrargexcept for the obvious constraint of ) ) , o ,
adding up to 1). Further, one is always free to put a phasé&/heréU-1) is a unitary matrix acting in théi—1 dimen-
shifter behind every exit port, 1 t—1 (the Nth phase is sional subspace of the full Hilbert ;pa@:&e§crlb|_ng the, now
irrelevant—only relative phases are observablewe de-  OUtPut, modes 1 téN—1), andly is the identity operator
note the phase shifts a(i), then the quantum-mechanical acting in the last dimensiofi.e., theNth propagation mode

; : ; Thus the problem of reproducing the mattik, by the
amplitude for the photon to leave by tleh exit port must ) X
be Jp(i)e'*0). Of course, one can always select the prob_dewces described by E¢l) has been therefore reduced by
abilities and phases in snjch a way that one dimension. AfteN—1 steps like Eq(6) we reduce the

matrix to

(NJU\[i)=p(i)e' . 2 N

® 1. (7)
Note that in the above reasoning we have tacitly assumed i=
that action of all the X2 beam splitters upon the state of the

photon is described by a unitary matrix of real coefficients,Thus, in this way, we constructed a pyramidlike device
e.g., of the type which imparts on the photon the unitary transformation

U,]l. This ends our proof. For further details concerning this

sind  cos construction please consiyi5].

: 3

—sin
cosy sing II. SYMMETRIC MULTIPORT BEAM SPLITTERS

IN EPR-BELL-TYPE EXPERIMENTS

Now imagine a single photon prepared in the state, which

All experimental work concerning the EPR-Bell correla-
can be represented as

tions thus far was restricted to two-particle, mostly two-
photon, entangled states, for which each subsystem could be
1 2 4 N-1 effectively described by a two-dimensional Hilbert space

3
(the first exception from this rule is the experiment, based on
N N‘ the ideas of the present paper, reported3d]). The en-
3 4

tangled spin; states were introduced by Bohi86]. In the
’[ pioneering experiment by Freedman and ClafiS8&rphoton
1 ) N-1 p(_)larization en'ganglement was employed. While all work,
with the exception of the original EPR paper, was restricted
FIG. 3. A row of beam splitters which can produce any one-f0 €ntanglement of internal variables, in 1985 it Wag]
photon pure statéof the N-dimensional Hilbert spageThe photon ~ Proposed to use entanglement of external variables. Each of
enters the system via the inphit The moduli of the amplitudes of the photons could now be in one of the two distinctive
the output state are determined by the reflectivities of the bearR€ams; thus again one subsystem was effectively described
splitters. Suitable phase shifts behind the exits define the complelly a two-dimensional Hilbert space. Bell-type local yes-no
phase of the amplitude. dichotomic measuremenit87] could be now performed. The



55 REALIZABLE HIGHER-DIMENSIONAL TWO-PARTICLE ... 2567

local measuring apparata were proposed to consist of a 50-50 L
beam splitter, a phase shifter in front of it, and two photode- p '

tectors behind itexactly such an experiment was performed
by Rarity and Tapstefi38] in 1990.

A natural extension of the scheme presentefil®] is to
have two particles in an entangled state, with three or more,
generallyN possible beams for each particle. Having this,
one can apply locally phase shifts M—1 beams, and, far-

ther downstream, feed these beams into a |d¢ahput— FIG. 4. Tritter. The lowermost beam splitter has a reflectivity
N-output generalized beam splittéo be called a B multi- R=%; for the other twoR= 3, and at the top we have a mirror, i.e.,

port herg, and observe coincidences behind two spatiallyan R=1 device. If suitable internal phase shifts are applied, the
separated devices of this kind. probabilities for a single photon entering via any input port to exit

We shall consider here onymmetricmultiport devices via any output are equal.
[29], which are defined such that the squared moduli of all
their input-port—output-p(_)rt transition amplitudes are equal B. Tritter
to 1/N. Such a system will perform a local unitary transfor- ] . o
mation on each of the entangled photons, which would fi- The tritter [30] is a generalization of the 50-50 beam
na”y end up in one of th&l detectors behind an output port. Splitter to systems described in three-dimensional Hilbert
The 50-50 beam splitter is the simplest member of the famspaces. Unitarity, the requirement that all its elements are of
ily. All such objects have the following physical property: if the same modulus, and finally the real-bordered form of it,
one photon enters into any single input port its chances olimit the tritter transition matrix to the following:
exit are equally split between all output ports.

We treat the multiport beam splitters as devices which 11 1
perform a specified unitary transformation. Thus if we NAVEZ R 9
change any element of their construction in such a way that
we obtain as a result a different transformation matrix we
will treat this as a different device. However, if one excludes
from the set of possible modificatioris the trivial opera- ) , ) ) -
tions of supplying external phase shifters in front of the inputWith c=€xp(*i2m/3). Having at our disposal the possibility
ports and behind the output ones, and dlgomere relabel- of _relabellmg the output ports, WhICh is e_quwalent_ to permu-
ling of the output ports, one immediately obtains equivalencdation of the rows one can rewrite the tritter matrix as:
classes of multiports which can be transformed into each
other with these external operations. From now on, in this

1 ¢ ¢

section, we shall limit our study to only representative mem- 1 1 1

bers of such classes. In all applications it is enough just to V13l 1 ot a2 (10)
know the nontrivial properties of one member of such a 5> 4 '

class. 1 e a

If one has aNX N unitary matrix representing a symmet-
ric multiport beam splitter, it is always possible to absorb
any phase factors of the first row into phases of the inpu¥vhere
beams, and to absorb the phase factors of the first column
into phases of the output beams. After such manipulations
the matrix representing the multiport, if one extracts the a=expi2w/3). (11)
common modulus/1/N, contains only 1's in both the first
column and the first row. Such a matrix is called real bor-
dered[39]. Multiports endowed with such transformation That is, all matrix elements are powers ®@f and are given
matrices will be taken as the representatives of the equivady
lence classes defined earlier. Only such devices will be dis-
cussed in this section.

Ul=al" 1P =exd (i2n/3)(i-1)(j—1)]. (12
A. Standard beam splitter

The simplest symmetric multiport is a 50-50 beam split- ) ) )
ter. It is very easy to show that all such devices form oneAgain we notice that all elements of a tritter are powers of

equivalence class represented by the beam splitter of the folbe same root of unity ex{#n/3). Further, just like in the
lowing transformation matrix: case of the 50-50 beam splitter, there is only one triiter,

one class of equivalengeThis will not be so for devices of
1 1 still higher dimensions. A specific optical design of a tritter
Vl/z( 1 _1>- ®) is given in Fig. 4.
One can easily check that the device of Fig. 4 has the
Thus if it operates in a two-dimensional Hilbert space, all therequired properties. Assume that action of the 2 beam
elements of the matrix are powers ofl=exp(27/2). splitters of the configuration is described by the product:
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N

FIG. 5. Symmetric eight-port beam splitter. The phésef Eq.

(12) can be fixed by a single-phase shifter PS inserted into one of
the internal paths within the device. Each value of the phase defines

equivalence class of symmetric eight-port beam splitters.

11 0 \F 0 1
V2. 2 3 V3
1 1 0 1 0
i— — O
2 2 ERN
i— O =
0 0 1 V3 3
1 0 0
1 1
0 — i—
X 2 2 (13)
11
I_ —
V2 2
The three matrices upon multiplication give
1 [ [
1 i27/3 —iml6
=| e e i, (14)
\/§ ei571'/6 ei271'/3 1

i.e., the device is indeed a tritter. Please note that this specif
construction does not require internal phase shifts.

C. Symmetric eight-port beam splitters

Turning to higher-multiport devices, one of the most in-

teresting results is the existence of distinct equivalence

classes. That is, théreal-borderej transition matrices of
symmetric eight-port beam splitters are given[Bg]

1 1 1 1

o-1 1 €e¢ -1 —¢* s
1 -1 1 -1
1 —€e? -1 ¢

Thus we have infinitely many nonequivalent eight-port de-
vices, one for each choice ¢f . The equivalence classes are
(continuously parametrized by the phage of the range be-
tween 0 andr. This phase is very transparent in the specific
construction, tested if80], of a symmetric eight-port device
given in Fig. 5. However, different realizations are also pos-
sible; see Fig. 2. Please note that, if one sgtsw/2, the
resulting multiport beam splitter has matrix elements which
are again powers of a root of unity, this time
i=exp(2m/4).
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The device of Fig. 5 does not have a pyramidlike struc-
ture. This construction requires fewer optical elements. To
check that the device of Fig. 5 has the required properties,
assume that action of thex2 beam splitters and the phase
shifter of the configuration is described by the product

1 0 ! 0
V2 V2
1 1 i¢
e Lo e 0 0 0
N J2 0 1 00
1 1 0O 0 10
0 — 0 —
V2 2 0 0 0 1
0 1 0 !
V2 2
1 1 0 0
V2 2
! ! 0 0
V2 2
X (16)
0 0 1 1
2 2
1 1
0 -
2 2
The resulting unitary transformation reads
ee e 1 1
1| —€¢ —e? 1 1
ic 2l -1 1 -1 1) a7
1 -1 -1 1

i.e. the device is indeed a quarter.

D. Higher symmetric multiport beam splitters:
Bell multiports

Higher-dimensional multiport beam splitters can be con-
structed using the procedure shown in Fig. 2. Here we shall
discuss only the case of the higher symmetric multiports of
certain specific properties. One can always build Ahpdrt

with the distinguishing trait that the elements of its transition

matrix, UN, are builtsolelyout of powers of theNth root of
unity

yn=exp(i2m/N), (18
mely,
N_ /([N 1 -ni-u
Ui=(j'lu ||>:\/_N7N : (19

Unitarity of UN can be checked with the use of the following

property of the roots of unity:
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3A There is no other restriction on the frequency of the PDC
>/{A photons. The emission is extremely broadband. However, the
< W M geometry of the process leads to constructive interference of
LASER = \\\\Ni\\ R the spontaneous emissions into the so catleadse-matched
. ‘\\\\5 S~ directions only. The photonic wave vectors satigfyithin

>\fB the crystal

FIG. 6. The type-l spontaneous parametric down conversion
processPDC). Very strong monochromatic laser light shines upon The emissions are therefore strongly correlated directionally.
a crystal endowed with a quadratic nonlinearity. Some pump phoThe sharpness of ER22) grows with the size of the crystal,
tons spontaneously decay into pairs of lower-energy photons. Thgnd of the laser beam waist. If the crystal is cut in such a way
emissions are strongly correlated in direction. The pinhole arrangethgt the so called type-l phase-matching condition is satis-
ment presented.here is suitable for a two-tritter Bell-type experified hoth PDC photons are of the same polarizatioote
ment(see next figures that crystals with quadratic nonlinearities are always noncen-
trosymmetric, and thus birefringentDue to the phase
N matching condition(22) (single photons of the same fre-
> D=L, S kDD Ng, L (200 quency are emitted into cones centered at the pump beam.
=1 By picking photons from a specially chosen cone one can
have PDC radiation with both photons of equal frequency

Of course, foN=2, 3, and 4, exactly such devices were 3@ The selection can be done by a suitable pinhole ar-
discussed above. We propose to call devices endowed witidngement in a diaphragm behind the crystich an ar-
the property(19) as Bell multiports beam splitters. As we rangement is shown in Fig.)6N pairs of pinholes can be
shall see below such devices possess very interesting propierced at points on a circle, drawn on the diaphragm, and
erties which lead to straightforward generalizations of Bell-centered about the pump beam. The pinholes of each pair
EPR experiments to the realm of nondichotomic observableghould be bored at points symmetric with respect to the cen-

An extensive study of the properties of such devices cafer of the circle. If the down-conversion photon passes
be found in[40]. The symmetric multiport devices are an through one of the pinholes, then the other photon will pass
operational realization of the concept wiutually unbiased through the diametrically opposite pinhole. Since there are
bases see, e.g.[41]. Such bases are “as different as pos-N pairs of diametrically opposite pinholes, the state of the
sible” [11]. A photon which is in the basis stdié has equal Photon pair will be a superposition of passage through the
chances to leave the symmetric multiport by any exit port. [tN pairs of pinholeg13]. _ _
is also worth noting that the matricé#y perform a discrete Such a source arrangement for the cilse3 is shown in

Fourier transform on sequencesNfcomplex numbers. Fig. 6. The state describing the coherent superposition for the
pair of photons to leave the aperture system with equal prob-

ability by either the pinholes Jland 1z or 2, and Z or

kp~Ks+K . (22)

Ill. EPR-BELL CORRELATIONS finally 34 and 3 can be written down as
WITH MULTIPORT BEAM SPLITTERS 3
A. Preparation of the initial states |¥(3))=11/32 |m,A)|m,B), (23)
m=1

After having now introduced multiport beam splitters as
physical devices which can perform a unitary transformationwhere, e.g.|m,A) describes a particle going through the
we now turn to the question of the appropriate source thapinholem,. This state is formally equivalent to the one of
would enable us to feed two multiport devices with a certaintwo spin-1 particles in a singlet stateshich, theoretically,
entangled state leading to EPR-Bell correlations. We shallvill produce interesting three way correlations in two Stern-
show below that such a source exists: it is the spontaneouSerlach apparatuses
parametric down-conversion proces®DC). We shall Generalizing this method to arbitral, one can produce
present the appropriate source for a two-tritter experimengntangled states of the form
[30], and later give its generalization to higher dimensions.

One can find in the literature very detailed theoretical de- N
scriptions of the PDC processee, e.g.[42,43). Thus, we |(N))= \/mle |m,A)|m,B). (24
shall only give its essential trait$~ig. 6). If one shines a -
strong monochromatic laser beam on a suitably cut and orithe scheme for realization of such a state is a straightfor-
ented crystal endowed with a quadratic nonlinearity, somgvard development of the idea shown in Fig(réore pin-

pump photons spontaneously fission into pairs of photons dfioles at phase-matched directipns
lower frequency(for historical reasons called signal and

idler). The crystal acts as an elastic scatterer, and thus the

energy of the photon field is conserved in the process. There- ] ] ] .
fore, the frequencies of pump photas,, signal s, and Let us now imagine two spatially separated experimenters
idler w; , satisfy who perform the following measurements. Each of their

measuring apparata consist of a set of three phase shifters
0p= 0st 0;. (21)  justin front of a tritter, and three photon detect@perfect,

B. Two-tritter EPR-Bell experiment
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phase shifiers A B A B A B
— 1 oe—po 1
<= < D
—C —— o o
o? :><: ot————P0 a
TRITTER B TRITTER A 1 o a2

FIG. 7. A two-tritter Bell-type experiment. The two down-  F|G. 8. EPR correlations for the two-tritter experiment. The first
converted photons are fed into twi@entica) spatially separated graph shows that for the specific settings of the local phf&qs
tr?tters. The phase shifters are placed close to the input ports of th&)] firing of the uppermost detector behind the tritferimplies
tritters. that the uppermost detector fires behind trigeWhen the midde-

tector of A fires, one can predict with certainty the lowermost
in the gedanken situation described hewkich register pho-  counter ofB to fire, etc. The other two graphs are valid for settings
tons in the output ports of the tritteFig. 7). The phase (31) and(32), respectively. The value assignment procedure, which
shifters serve the role of the devices which set the free macssociates with each detector on one side a power of
roscopic, classical parameters which can be controlled by the=exp(27/3), gives unique values for the products of such values
experimentergjust like the orientations of the Stern-Gerlach for EPR-correlated detectofas listed across the bottom
apparataa andb, for the original Bell's gedanken experi-
men). Please note that only two phase shifters on each side
suffice (the phase is relative Nevertheless, we shall retain
three phase shifts for a while, as in this case the formulagg implies thatPqy(1n)=0, for all n#1. That is, all

have a very symmetric form, and their generalization togther joint probabilities vanish, except for the counts which
higher-dimensional case becomes obvious. The initial state igisfyk+n=1+1 (modulo 3). Thus when the phase shifts

transformed by the phase shifters into

3
|w<3>’>=¢ﬁ21 exdi(pa+ og)1Im,A)m,B), (25

m=

are set to the right values, a certain detector count at one
spatially separated detector station implies with probability 1
firing of a specific detector on the other side. Thus we have a
typical situation for which the Einstein-Podolsky-Rosen idea
of elements of reality may be introduced. In the studied sys-

where ¢\ and ¢f describe the action of the phase shifters.tem such correlations arise for

The quantum prediction for the joint probabili&yqm(k,n)

to detect a photon at theth output of tritterA and another

one at thenth output ofB is given by:

3

mE:l exli(pa+ o) U U3

2

1
PQM(kyn): 3

2

3
=(1/3)° 2_1 exli (T + p) M= Dkt

(26)

with, again, a=exp2x/3. If one introduces ®K"'=
£m(k+n—2), this can be put into the following form:

Pom(k,n)=(1/3)%{3+2[coq dx+ dg— da— pz— P*")
+cog i+ dp— pa— pa— ")
+Cog R+ PR pat dp— O ML (27)
Please note that
Pom(1,)=Pou(2,3=Pqu(3,2,
Pom(1,2=Pgom(2,)=Pgom(3.3), (28

Pom(1,3=Pgom(2,9=Pgom(3.1).

C. Two-tritter perfect EPR correlations

bat ds= dat di= da+ dp (30)

[k+1=2 (modulo 3 correlatior] detection of a photon in
1, implies that another one will be detected if;1detection

at 2, implies a similar event at &3, and, finally, photon
registration at 3 has to be accompanied by another one at
2¢ . Similar situations occur for phase settings

dat pi=Ppa+ Ppi+2mI3= 3+ p3+4mI3 (31

(k+1=3 perfect correlations of Land 2%, 2, and 15, 3,
and %), and finally also for

bat+ bp=da+ pi+AmI3= 3+ p3+2m/3 (32

(k+1=1 correlation: } with 35, 2, with 25, 3, with

1g). Thus, while it is maximally uncertain which detector
will register either of the particles, it is possible to predict
with certainty which detector will register the second patrticle
once the first particle is observed, as long as the phases are
set according to one of the above three conditions. Figure 8
shows the three types of perfect correlations that arise from
Egs. (30), (31), and (32). [Note that there are actually six
possible one-to-one combinations between three detectors on
each side. The types of perfect correlations shown in Fig. 8
arise when we use the same tritter on each side. If we use a
pair of tritters which differ by interchanging two outpuia

The perfect EPR correlations occur in the two tritter ex-one of them, EPR correlations occur shown in Fig. 9, with

periment when one of the probabilities has the value

the original three now being excluded.
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FIG. 9. The types of perfect correlations shown in Fig. 8 arise
when we use the same tritter on each side. If we use a pair of tritters

which differ by interchanging two output$n one of them, EPR A B A B A B A B

correlations occur as shown above, with the original three now _11 o T _11

being excluded. i el % >< i
D. EPR correlations with two Bell multiport beam splitters 1 -1 i -1

Here we shall discuss only the case of the EPR correla- _ ) ) _
tions in higher Bell multiport devices. The two spatially FIG. 10. EPR correlations for the experiment with two eight-

separated sets of phase shiftéome phase shifter in each port beam splitters. Compare the caption of the previous figure. The
beam transform the initial state into top row shows EPR correlations for two eight-port beam splitters,

both with the internal phase setting at=0 (thus they are not Bell
N multiports, whereas the bottom row is for phase settinfgs /2
|(N) Y= 1IN D, exdi(pT+ ¢T)]/m,A)|m,B), (that is, for two identical Bell quartexslt is interesting that for the
m=1 upper case the value assignment procedure, which associates with
(33 each detector on one side a powei sfexp(27/4), cannevergive

m m ... unique values for the products of such values for EPR-correlated
where ¢, and ¢g, as before, denote the local phase Shlfts'detectors. However, forp= /2, the perfect EPR correlations

~ Each set of local phase shifts constitutes the interferometsyqyn in the bottom row have the property that the products of the

server controlling the local measuring apparatus which incor-

porates also the Bell multiport device ahdddetectors. The are allowed. Each detector on one side is allowed to fire only
quantum prediction for the joint probabili§*" to detect a  provided its unique partner fires on the other side. It is inter-
photon at thekth output of the multiporA and another one  esting to note that th&l classes of allowed perfect correla-
at thelth output of the multiporB is given by tions form a small subset of all the! members of the full
2 set of one-to-one relations linking the detectors of side
with those of sideB.
To illustrate further these features of the two Bell multi-
port device correlations, we present the full set of possible
perfect EPR-correlations for an experiment with two eight-
’ port beam splittergFig. 10. A four-member subset of all

possible 4! graphs is realizable with a given pair of identical
(34 eight-port devices. One can trivially move to another set of
graphs by a relabeling of the output ports.

N

21 exli(pa+ o) U,

m=

P& = (1/N)

2
=(1/N®)

N
mE:1 exdi(ph+ pm) ]y k=2

with vy given by Eq.(18). One can expand the square of the

modulus, and this leads to
IV. CORRELATION FUNCTIONS. NONCONVENTIONAL

N VALUE ASSIGNMENT: BELL NUMBERS

1
Pe=| 2| | N+2 3 cos@ﬂ“.—dﬁo), (35
m>n

In his pioneering work, Bel[37] discussed the results of
local measurements of dichotomic observables. The studied
where®y|= ¢\ + g +[m(k+1—2)](27/N). The counts at  observables were the projections of spien certain direc-

a single detector, of course, do not depend upon the localons(specified by the vector describing the orientation of the

phase settings, Stern-Gerlach apparafudviotivated by simplicity, he renor-
malized the eigenvalues of the sgireperators to+1 and
pk) _p() :i (36) - 1_. The tyvo numbers of Bell have the following properties:
QM= T QM N - their sum is equal to 0, and they are the two square roots of

unity. The correlation function of Be[l37] is defined as the

The most important features of the quantum prediction ar@verage of the product of the twimcal) dichotomic observ-
already visible in Eq(34). The probabilityPqy(k,l) is de-  ables, andfor the singlet stateis given by
pendent solely on the suk+-1 (moduloN, of course. The
perfect correlations occur only when for certdirone has E(a,b)=—-a-b, (37)
Pom(1l)=1/N [again this implies thaP ) (1,]") =0 for all
|" different from|]. Thus there areN classes of different where the unit vectors specify the orientations of the two
perfect correlations. In each class correlated counts are egpparata. The perfect EPR correlations for the system con-
pected only for outputk (side A) andl (sideB) for which  sidered by Bell occur for the parameter settings for which
k+1 has a specified fixed valienoduloN), no other events this correlation function is either equal 1 erl. Thus the
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two numbers+ 1, naturally signify the two types of perfect N

correlations which are possible for the two sginase. For a E YEZO,

given perfect EPR correlation the product of the measured k=1

values of the two dichotomic variables always has the same |y(k—1)| -1 (41)
value (=1). We shall show below that for the two-Bell- N
multiport device experiment one can find a set of numbersare generalizations of the properties discussed earlier.

with similar properties. One can associate them with photon The generalized Bell correlation function should give the
registration acts at specified detectors. Surprisingly, these asverage value of the product of pairs results; thus in our case
not the numbers which form the usual set of eigenvalues oit reads

higher than} spin projection operators.

N N
Let us first discuss the two-tritter case. One might be 1 N. ;1 Ny _ k=1_1-1p(k,)
X E v DA DR . PR)= ptel.
tempted to assign the valuesl, 0, and—1 to the three (P4 Pnidi ?s) kgl 21 N
possible outcomes on each side. However, such a procedure (42

has some disadvantages, because when calculating the pr
uct of the valuegthe way Bell did i}, the appearance of a
“0” result on any side always leadta 0 value for the
product, independent of which type of correlation occurs an
thus information is lost. Therefore, here we propose a differ- k=1 I~ 1p(kl)_ nom—1p(Lm)

ent procedure which aims at curing this problem. We assign YN YN Pom =Nww Pam s (43)
the numbersy, o?, anda®=1 to the three possible outcomes

on either side. It then follows that the product of the twoand thus with the use of the explicit formula for the prob-
local values for the three cases of perfect EPR correlationgbilities the overall expression for the correlation function
are equal to powers ofr (see Fig. 8 Our nonstandard becomes

choice can be expressed in the simplest way as the assign- 1 N N 2

ment of a valuex*" ! to a detection event at theh detector > WU S AV Dexdi(¢l+ o)1 . (44)

on a side. The usual features of the third complex roots of N4= m=1

unity

Olqie guantum-mechanical prediction for this correlation func-
tion can be easily calculated in the following way. First we
(?bserve that

k+l=m+1

Now one can write the squared modulus as a product of a

3 sum and its complex conjugate, and with the use of identity
> ak=0, (20), one obtains
k=1
(38) E(¢a, .- Bhidp, - - PB)
laf=1 1 N
— H m m m+1 m+1
are evident generalizations of the properties of the original _Nmz::l exfli(¢at ds—da —¢5 )l
Bell numbers.
The correlation function of Bell for our experiment de- (45
fined with the use of these numbers reads where the numerical values of the indices are to be under-
stood moduld\. ForN=2, it is easy to see that the function
E(Gh ¢4, Bh: b8 5. 68) (39 dces o Y
3 1 2 1 2
_1 (- cog (pa— )+ (dg—dp)], (46)
= 2 o ValTVPKD(L 4R AR s bR 08,
k=1,1=1 i.e., it acquires its standard form.

(40
V. BELL THEOREM FOR THE MULTIPORT

whereP is the probability of the firing of detectoksand EXPERIMENTS

I. For the perfect EPR correlations it acquires the value equal
to one of the Bell numbergthat this is indeed so will be The quantum prediction for the joint probabilit%‘,\? to
shown latey. detect a photon at thieh output of multiportA and another
Let us move to the general case of twdl 2nultiport  one at thelth output ofB is given by Eq.(35) (we assume
devices. For the case of correlations between two particlegerfect detection and perfect interferometesshereas the
fed into two spatially separated multiports, it is quite naturalcounts at a single detector, of course, do not depend upon the
to try to generalize the procedure just given. However, weocal phase setting®6). The predicted results of the experi-
should point out, foN>3 this procedure, including the un- ments described above cannot be reproduced by any local
conventional Bell values assignment of thih roots of  realistic theory. We shall show below that this claim can be
unity to the detectors, seems to fail unless the multiport desubstantiated by the application of the Clauser-Horne Bell-
vices are Bell multiport devicelS0] (see the caption of Fig. inequalities(see, e.g.[6]).
9). Despite the fact that these inequalities were derived for
For the two-Bell-multiport device experimefthe one de-  the case of an experiment involving dichotomic variables,
scribed in Sec. Il a good choice is to assign the value they are also useful for the two-Bell-multiport experiment, as
y'ﬁ,’l to a detection event at outplat(the same assignment we shall see. The Clauser-Hor€H) inequalities impose
for both sides The features oNth complex roots of unity  constraints on coincident counts and singles counts at a cer-
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tain pair of detectors. There is nothing in their original deri- Let us now discuss the impact of some imperfections of

vation which specifies what kind of quantum process is beinghe experiment on the above result. The visibility of the pat-

monitored by the detector pair. Thus they are applicable tderns followed by the probabilities in the actual experiment

the counts at any pair gkpatially separateddetectors be- may be lower than the one predicted for the perfect case. We
hind our multiport devices. Using our earlier notation, theyshall describe the expected form of the experimental results
can be put into the following form: in the following way:

—1=PD(a,b)+PD(a,b")+ Pk (a’,b) T S
K))ar K ) Poxpt(éat da)= (11 + s
—PR’(@",b")—PiR(a)—Pp(a)<0, (47

o , o X((N=1)2+1+2(N—1)cod ¢p+ d5)),
where the letters LR indicate that the inequality is satisfied (« ) ( Jcosdat ¢e))
by theories that comply with the premiseslotal realism (52

The symbolsa, a’ andb, b’ denote the settings of the local .
operational parameters, in our case the phase shifts where Osr=<1. The parameter has been introduced to de-

mand T m (m=1,...N), ie., a={é™m scribe the reduction of the visibility of the underlying perfect
A e e ( ), {e™ quantum-interference patter(®0), due to various possible

=1,... N}, etc. The hidden variable version of a local real- . . ]
istic theory of the family of experiments introduced abovef?"St!”b,?.”CGS- The first te”T‘ In Ec(52) represents  the
noise” introduced by these imperfections.

requires th{:\t the probabilities of coincident counts can be The threshold value for parameter(above which we
expressed in the form S i N
have a violation of CH inequalijyis given by

PL(a,b) = f dr p(OPE(LRPY (D), (48)

re(N)= (53

. o . . N+(2y2-2)
where p(\) is the distribution of the hidden variables, and

PY(\,a) is the probability of a detection of the photon at For the lowestN's one hasr (2)= \1/2~0.707 (a well-

the kth detector behind the multipo/ (see Fig. 7, if the  known result, r,(3)~0.784, r,(4)~0.826, and r(5)
local macroscopic parameters settings are,and the hid-  ~0.858. This means, that the requirement on the perfection
den variable describing the SyStem)\liG] The probablllty of the interferometric setup grows with.

PY)(\,b) is analogously defined for a detection event behind It is interesting to notice that the actual visibility of the
the multiportB. The locality assumption reveals itself by the modulation of the probabilityPglxblt) for the thresholdr is
absence of the parametein P&k)()\,a), i.e., this probability  given by

is independent of the settings of the remote appaffusnd

analogousiP®(\,b) is independent cé. One immediately 2(N—1)(\/2+1)

can derive the inequality47) by recalling that that for any Vi(N)= 2+ (2+1)(N-1)%+1) (54)
X, ¥y, X" andy’, which are between 0 and 1, one must have

[45]

One now has V,(2)=1/2~70.7%, and surprisingly
_lgxy_l_ Xy’+X’y_X’y’—X_y$0, (49) Vtr(3)~686%, Vtr(4)%554%, andV"(5)~449% This

stems from the fact that fdd>2 the visibility of theperfect
puttingx=P{(\,a), y=P¥(\,b), etc., and finally averag- quantum fringes, as predicted by H§0) for N>2, is less
ing the resulting expression over the distributjof). than 100%, namely, N—1)/[(N—1)*+1],

We shall now demonstrate that the Clauser-Horne in- Various imperfections of the experiment, like the approxi-
equalities are violated for any two Bell-multiport experi- mate nature of the phase-matching conditi@g), which
ments. To make our reasoning as simple as possible let 8y cause only one of the two entangled photons to pass the
restrict the range of the macroscopic parameters to those s#tinholes, losses at optical elements, and finally less than per-
isfying ®[=0 for allm#1 (i.e., we let only one local phase fect quantum efficiency of the detectors, change the relative

to be varied: the other ones are fixed at zetben one ob- weight of the observed coincident counts to that of the
tains ’ singles. One can introducecallection efficiency parameter

7 (0< 7<) to describe the effect of all those imperfections
A0y 11 o1 1 ) L (we tacitly assume a symmetric situatjofhe rate of counts
Pain (¢arde)= {3 (N=1)"+1+2(N-1)coddx+ #5)).  at a single detector will be lowered by the factgri.e.,

(50)
Pi(r[r11);)erf: 7'/I:’(ina/l ) (55
Putting this into the CH inequality we obtaffor the optimal
setting$ the contradiction wheren=k or |, whereas for the coincidences one will have
Pimper= 7°PGi (56)

N—1
W(4J§—4)so. (51)

Even for no visibility reduction, the threshold value gf
Thus no local realistic description of the experiment is pos-allowing for a violation of the Bell inequality47) is quite
sible. demanding, and reads
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N2
N24+2(y/2—1)(N-1)'

M
7e(N) = (57 T 070

ie., one has 7,(2)=~0.828, #,(3)~0.844, and
7u(4)~0.865.

If one allows all local phase settings to be varied in
P& [given by Eq.(35)], then one obtains a stronger viola-
tion of the Clauser-Horne inequality. For example, for the
two tritter case, the search of the maximum of the middle
expression of the CH inequality giveg;1.748>0 (a FIG. 11. The optical analog of a Stern-Gerlach dev&ienula-
MATHEMATICA calculation. This is slightly more than the tjon of a spin-1 particle Only the devices needed to obtain the
value of the left-hand side of the expressi@d) for N=3.  second, third, and fourth unitary transfomation of E§1) are
Also the experimentally relevant parameterg(3) and  shown. The box represents a Mach-Zehn(dZ) interferometer
7v(3) decrease their values to 0.774 and 0.837, respectivelwith a tunable internal phasg, and the external phase correction
The second value is only slightly larger than the usualcompare Eq(62)]. The other two beam splitters are 50-50 ones,
threshold forN=2. and the top object is a mirror. The unitary transformatiéd),

We conjecture that future investigations will lead to dif- performed by the full device, acts upon a single-photon state, and is
ferent Bell inequalities, further lowering those limits. In the exactly equalin the mathemacital senst the unitary transforma-
Appendix we present a version of the Bell theorem involvingtion linking the spin-1 eigenstates sfz, wherez=(0,0,1), with
the correlation functions for which the critical value of those ofs:n, where in turnn=(sinf,sinf,cos).
decreases té.

of our photons represents an entanglement ofdilhections
of propagation of the particles, measurement ofgheom-
ponent of the “spin” can be defined simply by placing, at
each side of the experiment, three detectanse for each
bean). Thus if, say, the detector at sidein beamm clicks,

As was already mentioned earlier, thus far most of thesuch an event will be treated as equivalent to obtaining the
theoretical studies of higher dimensional entanglement werealuem in the case of a measurementsyfperformed upon

confined to higher thas= 1 correlated spins. There is a rich @ real spin-1 object.

literature of the subjed®5,28. However, to our knowledge However, we must be also able to construct a device
no experiment has been done. which is equivalent to measurement of arbitrary compo-

We would like to present here an optical analog of thenent of spin-1. To this end, we need a multiport beam splitter

spin-1 EPR-Bell gedanken experiments. We are interesteffnich imparts on the local subsystem a unitary transforma-
specifically in reproducing the experiment extensively dis-t'on which is identical to the one which transforms the eigen-

cussed by Mermin and Schwarz, and other auttdg, Vectors of thez component of the spirg,, into the eigen-
which involved two spin-1 particles in a singlet state fed intoStates of an arbitrary componemts. If the unit vectorn is
two spatially separated Stern-Gerlach apparata. represented by

n= (sind cosp, sind sing, cos), (59

VI. OPTICAL ANALOGS OF SPIN-1 STERN-GERLACH
DEVICES AND THE KOCHEN-SPECKER
CONTRADICTION

A. Initial state

The beam entang'ement shown in F|g 6, C|ear|y, can reS!JCh a transform.ation can be I’epl’.eserﬁﬂdhe 0r|g|na| ba-

system:
) R(nN)=Ry(0)R,(¢)

[W(3))=V1/3 2, (-1)MmA)-mB), (59 Y(1+cosd) —+/ising %(1-cos)

=1
= \/gsine cosy — \/gsine

where we have changed the numeration of the beams to

make it correspond to the set of eigenvalues of spin-1. It is 3(1—cosh) \/gsine 3(1+4cosh)
evident that the exact production of this state will be possible

with appropriate tuning of all six phase shifts. However, in e i 0 0

order to obtain staté8), up to a trivial external phase factor,

it is enough to tune only two of them, say at sidgtAis is x| 01 0/ (60)
one of the striking properties of the entanglement 0 0 €¢

B. Optical analog of a spin-1 Stern-Gerlach device Of course, the diagonal matrix represents just two conjugate

As the next step we construct a local measuring apparatyshase shifts performed upon the beams 1 arid The op-
that would mimic the Stern-Gerlach devip&7]. First of all,  erational realization of the other matrix is more involved.
if the situation described by Ed58) is to be treated as According to Reclet al.[35], any unitary operator can be
equivalent to the spin case, then, due to the fact that the stasplit into a sequence of (@) beam-splitter operators acting in
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two-dimensional subspacdthis method includes also the The overall phase shift, ekif 6 — 7/2)), is applied to com-
possibility of relabelling of the output and input ports, and pensate the relative phase otherwise introduced by such a
introducing phase shifts Please note that one can decom-device with respect to the third degree of freedom.
pose the matriR,(6) in the following way: If one places three detectors behind th& 3 multiport
beam splitter performing the unitary transformatiBn),
one obtains an exact analog of a Stern-Gerlach device mea-
sind 0 cow suring the component- s of the spin. With two such multi-
port devices, the stat®8), and six detectors, one has all that
o 1 0 is needed to perform the optical analog of theua) gedan-
cosd¥ 0 —sind ken EPR-Bell experiments involving correlations of spin-1
particles.
J Construction of devices like the ones described above is
within the reach of any good quantum optical laboratory. It
involves only standard optical elements. Thus the multiports
open the possibility of actually performing the Bell-type
(gedankep experiments discussed in the literature. Since in

1

o — O
o O -
o

H
o
o
°., I\$NII—\
|
%Nll—‘ ©
N|

o
o » O
= O O
o O -

1

|
o %
N| - =
o %
N| ] N -

X (61) the bibliography of the problem one can find the appropriate
Bell inequalities for the experimeite.g.[45]), we shall not
1 discuss them here.
This decomposition defines the structure of the multiport de- C. Optical analogs of the observables
vice performing the transformatioR,( ). The first and the of the Kochen-Specker paradox

last matrix represent trivial relabelings of the input and the

output ports. The middle ones represent action of three star(lj— tlir;eﬁh:nzﬁ,clogfvﬁewgl gr;etsofgtutshg 4 ﬁ?}nfégjité%goﬁntheof
dard 2x2 beam splitters, mixing, respectively, the ampli- P d P 9

tudes of first the beam 1 and 0, then 1 angi, and finally O Kochen and Speck€i26]. The paradoxical contradictions

and—1. Thus, once one chooses a specific basis to represe%?tween realistic theories and quantum mechanics are in this

X ; case state independent. The properties of the operator algebra
the measurement of the spin compongnt one can indeed . :
. . e ._play the essential role. However, the postulates concerning
construct a multiport of the properties specified by matrix

(60). In this way one can select superpositions of the origina e:}:'?:g tngl(i)trifss are of a different kind than those leading the

photon basis states which are exact analogs of the eigenstates q : -
of the operaton-s. In other words, a photon leaves the mul- The argument assumes that for a realllst|c theory(phe- .
tinort via output .ortm with roba'bilit 1 only if its initial determinegiresults of measurements are independent of their
P put p probabiiity L, only it ... _context. That is, the result of the act of measurement of an
state was a coherent superposition of the original directions 2 : . . .
operator, say g n,)“ (wheren, is again a unit vector defin-

of propagation with coefficients exagtly equal to the complexmg thez direction of acertaintriad of orthogonal unit vec-
conjugate of thanth row of the matrixR(n).

. : . . tors), depends solely on the properties of the system to be
It is an interesting feature of the actual constructlonmeasureol It should not depend on whether we measure
shown above that the anglesand 6, which define the di- : P

. e " . . (s-n,)? alone ortogetherwith any other commuting(i.e.,
rection of the “spin component,” translate here in a simple
. X i commeasurabjebservable. Kochen and Specker focused on
way into the two opposite phase shiffsepresented by

. 2 .
R,(¢)], and the reflection and transmission amplitudes o perators like ¢-n,)° because it has a degenerate spectrum.

only one beam splitter. If one wants the device to be tunable ith such an operator one cannot unambiguously associate a

so that, depending on the settings of the parameters, it woul%oranGte set of commuting observables. There are many mu-

be able to performany transformationR(n), these ampli tually noncommuting operators which still commute with
) - . 2 1 H
tudes cannot be fixed. They must be variable. To this eno(S n;)”. If an operator is degenerate, there are different bases

one can replace the middle beam splitter with an equivalen'{1 which it is diagonal. Such bases correspond, of course, to

; P ihequivalent operational situations.

DUl 176 Mach-zehnder wit the use of o symmeti beam, /AN OPETatOr is calleanaximalif it possesses a nondeger

: X ) .~ _erate spectrum. Thus its diagonalization is unambiguous. It
splitters and two phase shifters. The unitary transformaﬂon?,efers to solely one operational procedure. For the spin-1
representing these devices, when multiplied, should reproc')bject one can easily find an example of alnontrivial maxi-
duce the matrix of the tunable beam splitter. For simplicity,rnal operator commuting withs(n,)2, namely
we shall describe this property within the two-dimensional z o
subspace of the degrees of freedom upon which the interfer- G(n,,ny,n)=a(s n)?+b(sn)2+c(sn)? (63

ometer operates. An exemplary realization reads

11 il[e€? 0]1[1 i (we do not denote this operator by its usual symbb[,26],
expi(0—m/2))—]| . — . since it is a bit confusing, as this usually reserved in the
veli 1]l o 1 \/E i literature for the Hamiltonian The numbers, b, andc are
) arbitrary distinct real numbers. Thanks to this fact the spec-
_|sine  co (62  [Tum of G, which consists of+b, b+c, andc+a, is non-
cos) —sind|’ degenerate.
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One more crucial assumption of the Kochen-Specker dis- D.
cussion links the values of the outcomes of the measure- +1 BS x
ments of commuting observables. Let the functional relation —> S-G 1 2
between the two observables, sayand B, be given by —> Sy
B=1f(A), wheref is a certain function. A realistic theory ﬁz 0 2p
. e —> D..
would assign to each individual system, denoted here by the | y
index k, of an ensemble described by the quantum state
|) a set of numerical values for each observablg for
A, By for B). These values must belong to the spectrum of T DZ
the observables concerned. Thus one must tBavef (Ay).
One has for any three orthogonal spatial directions FIG. 12. The optical equivalent of the maximal observaBle
Ny, andn,, (for details see text The device must discriminate between three
eigenstates given by E@68). This can be done by introducing a
(s'nY2+(sny)2+(sny)?=s(s+1)=2. (64)  phase shift in the- 1 beam of the value 2. The beam splitter BS

has a transformation matrix given by H§6). The resulting output

Therefore, as the spectrum of each square of a component efates differ from those of Eq68) only by overall phase factors.
the spin-1 operator consists solely of 0 and 1, one of th@he system composed of the phase shifter and detector station
values((s-n) 2y, ((s- ny)z)k, and((s-n,)?), must be 0, and {D,.,D,.} can be, in principle separated by an arbitraly long dis-
the other two 1. tance form the detectdD, (this enables one to invoke Einstein’s

The Kochen-Specker theorem shows that all that was sailcality in our argument
above is self-contradictory. A set of directions is given for
which there is no possibility whatsoever to assign 1's and 0'G(n, ,n, ,n,); however, a different triad of orthogonal direc-
in a way which is consistent with the constraint imposed bytions is used. The direction is still the saméhis is required
Eq. (64). For the detailed geometric argument leading to thefor the commeasurability of ou® with s-n,), while the two
above se¢26,11,47. other vectors have been rotated, say, by the aBglét is

The results of Sec. V enable us to propose optical analogsbvious that the eigenstates @{n’y,n’y,n,) are given by:
of the operational situations leading to the contradiction. We
can already build a device reproducing asy, operator. 1 .
Obviously, the same device can be used to measure [b+c)'= \[E(elﬁ|_1>nz_e IB|"'1>nz):|o>n’x*
(s-n,)%. We simply ignore the sign of the nonzero eigen- (67)
value ofs-n,. This sign may be even made totally inacces- 1 _
sible for us by superposing the beamsl and —1 on a la+c)' = \[z(e'ﬂl—1>nz+e"3|+1)nz):|0)n/ ,
standard 50-50 beam splitter. Surprisingly, via this simple y
trick we create the operational procedure to measure
G(ny,ny,n,). Itis easy to show thak has the following set
of eigenvectors:

|a+b)=|0), . (68)

This can be achieved by introducing two opposite phase
1 shifts behind the optical Stern-Gerlach devi@e slightly
|b+c)= §(| —1)n —[+ 1)) =[0)n, modified version of this arrangement is presented in Fig. 12
The full transformation now reads

1 - -
|a+c>:\/;(|_1>nz+|+1>nz):|o>nyi (65 _\ﬁ 0 \/E .
2 2([e ™ 0 ©
la+ b>=|0>nz, 0 1 0 0 1 0 69)
. _ 1 1 0 0 e#
where, e.g.,|0>nz denotes the eigenket & n, associated > 0 >
with the eigenvalue 0. The beam splitter needed to perform i ]

this transformation is described by the matrix
With the construction of this device we now have a method

[ 1 17 enabling us to build an optical equivalent of any of the op-
“ V2 0 2 erators involved in the Kochen-Specker reasoning.
The clear representation of the operational procedures in-
0 1 0 i (66)  Volved in the Kochen-Specker argument enables one to un-
1 1 derstand more intuitively the physical reason for the contra-
\[5 0 \ﬁ diction. Let us imagine the following situation. We prepare a
photon in an arbitrary state. It is important to make this
preparation in an event-ready schef@g]. This means that
Further, as the argument rests upon different operationalle use an operational procedure which enables us to know
procedures which may pertain to the measurement of ththat we indeed have a single photon in the apparatus even
same degenerate operator, we should be able to buildefore the actual detectidfor details, se¢22)). In this way
G(ng,ny,n,). This operator is similar in its nature to we have a preparation of the system which fully agrees with
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the quantum-mechanical interpretation of the sfa®, as versity of Innsbruck for hospitality.

describing an ensemble of identically prepared systewis

pass the photon through the machine measuring AppeNpix: BELL THEOREM FOR THE TRITTER

G(ny,ny,Nny), in order to measures(n,)“. Now, if we reg- CORRELATION FUNCTION

ister a click at the detectdd, in the path 0, than we can say

that the measured result is 0. No click in the path 0 means The correlation functions described in the main text can-

that the result is 1. Now, please note that the beam splittef)ot be reproduced by any local realistic theory. We shall

and the two conjugate phase shifters which define the othegxplicitly prove this claim here only for the two-tritter ex-

two directions involved, namelyy’y,n’y, can be placed ar- periment(the generalization for higher Bell multiport beam

bitrarily far away from the aforementioned detector. Thussplitters is possible

Einstein’s locality would demand that click or no click at  Let us first write down the expected structure of a local

D, should not depend upon the setting of the remote phaskidden variable prediction for the two-tritter experiment.

B. This is a clear argument for noncontextuality in this caseMotivated by simplicity, here we shall represent the local
So where must the contextuality enter? The Kochen-and€alistic theories by their version employing deterministic

Specker-type argument§25,26,11,4§ proceed by consid- hidden variables. It is well known that, once the Bell theo-

ering a whole series of orthogonal triads. If we want to buildrem is established for this case, one can easily present its

a tunable device which would provide optical analogs ofmore refined versioni3].

maximal operators which are commeasurable with, say, We denote the set of hidden variables describing the in-

(s-n,)?, we can do it in the following way. First, we con- dividual system byx, and the distribution of these for the

struct an optical Stern-Gerlach device ferif,). Second, we €nsemble of pairs of particles involved in the experiment by

build theG(n ,n} ,n,) device. The cyclic permutation of the P(X). The result of the measurement at sAKelB),zprecsieter-

indicesx, y, andz has been done deliberately. Our construc-mined by A, is given by functionsVa(¢a,da,da;\)

tion of the operator defines first the unprimed vector, andVa($gd3ds;))). The functionsV, and Vg depend solely

behind this device we put the set(§9), which enables us to on thelocal settings of the phase shifters. The values of these

perform the rotation to the primed directions. The contextufunctions are, of course, limited to the set of Bell numbers

ality is transparent when one notices that the device$or the experiment, herer, ¢, and «®=1. We shall not

G(ny,n,,n,) and G(n,,n,,n,) are, from an operational assume any specific form of these functions. Following Bell

point of view, different constructions. One cannot continu-[37], the local hidden variable prediction for the correlation

ously modify the phasg to transform the first device into function has the following structure:

the second one. The two devices are interferometers of a

completely different construction. Please note here the deep Eyy(da, b4, ba;ds. b5, d3)

analogy with the version of the proof of the impossibility of

noncontextual realistic models of quantum mechanics given _ 1 42 3. 1 42 3.
by Bell [25]. f ANp(MVA(Pa, D PN Ve( DA, Pa daiN).
The present authors view these facts as a direct manifes- (A1)
tation of the validity of the operational ideas of Bohr, which
are the main pillar of the Copenhagen interpretation. Our aim is to show that the quantum prediction for the

two-tritter experiment, nameljcompare Eq(45)]
VII. FINAL REMARKS
. . Eqm( ¢4, P4 ba: b5 5 bp)
The present paper presenits,statu nascenlithe theory QWL FATATA TR TR TR
of some applications of the idea of optical multiport devices 3
to areas of research connected with fundamental questions in =13 exi (PN+ dF—pN 1= pI* ], (A2)
guantum mechanics. One can expect experimental results to m=1

be presented soo()32]). Also we expect new theoretical o
resultS, not necessar”y of our authorship_ Where a” |nd|CeS are mOdu|0 3, cannot be reproduced by

(A).
We shall present now a derivation of a simple Bell in-
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can always choose the third phase to béHds will be used and, for sideB,
below, and thus we skip this parameter from all expresgions

Let us first formulate a certain lemma. The matrix {65V, 08?05 5V} ={0,m, 7,0}, (A9)
2
1 o° 0 a {62 08 ? da° ¢ "} ={0,0m 7},  (A10)
> 1 a O . -
N= 0 . 5 (A3)  then for the chosen phases the quantum prediction satisfies
o o
2 2
@ 0 o B =Eou( 44”437 194" 44" =g N,
has the following property: (A11)

a2 . b where * denotes complex conjugation.
ma 6121 b21 alaT MNP =6, (A4) It is very easy to check that at the specific settings,
namely, Eqgs.(A7)—(A10), the quantum predictions, when
where the maximum is taken over all possible pairs of quainserted to inequalitfA6) instead ofEyy, violate this in-
druples{n,,n,, ns, Ny} and{my, m,, mg, m,} of arbitrary ~ €quality, as evidently
natural numbers. Thus, the equal{&4) is a specific prop-
erty of the Bell numberr and the matridN2®. It is very easy > Egl;leab: 2% Nabxab—g, (A12)
to write a computer program to find the maximum. a,b
Let us now apply this auxiliary lemma to our problem. o ) ]
The possible values df , and Vg are limited to the powers thus we have a violation of the Bell inequality E@h6) by

1
of «. Thus the upper bound of the expression 333%. )
In the actual experiment one cannot expect that the prob-

abilities will follow the pattern given by Eq27), but rather
1 2(a) . 1(b) 4 2(b).
max, ;} Valda? 62 iMVe(dp” , dh )’N)Nab‘ the data would be close to the following:

(A5)

PRIk, =(1/3%{3+1[2c08 $5+ g — A~ g — P*")
is 6. Please note, that this fact is independent of the actual 2. 42 43 3 kn
phases defininy, andVg. TeOt Pt 5 dam Pe— P
The hidden variable correlation function has the structure +Cod pat g — dat pp— PN}, (A13)
(Al). The modulus of an average of a variable cannot be
greater than the maximum modulus of its value. Thus, after.e., we expect to observe, due to various reasons, lower vis-
averaging the expressi¢A5) overp(\), we finally obtain a ibility (given byr) than 1. Due to the above, the experimen-

Bell inequalityfor the problem in the form of upper bound tal correlation functionE e, would also have its variations
for the sum of the products of the values of the hidden varidegraded by the same factor:
able correlation function. The explicit form of the inequality

reads Eonl 44 6560 45)
=rEQM(¢/1-\(a) L3P i), pAD). (A14)

We can inserEg, into Eq.(A6), instead ofE,,, and fix its

The quantum predictions can violate this inequality. If, for S€ttings to the phases defining E411), thus obtaining
the phases on sid&, one chooses the settings

aEb Env(¢n®, 2@ pi®) 42P)N2P <6,  (AB)

EanNP=8r. Al
(G20, LD LD gL\ 13 Ar3, A3, I3}, 2 EoolN™=8r (ALS)

(A7)
It is clear that the inequalityA6) is violated only forr > 2,
{2V p2? 23 P2 N ={7/3,7/3,47/3,47/3}, This is a considerable improvement over the Clauser-Horne
(A8) inequalities studied in the main text.
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