PHYSICAL REVIEW A VOLUME 55, NUMBER 4 APRIL 1997
Bound states in continuum induced by relativity
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The nonrelativistic reduction of quasipotential equations in QED and Wick-Cutkosky models is considered.
It is shown that if we retain an energy dependence of the potdnéagl make the nonrelativistic reduction only
partially), there may arise discrete levels in the continuum for some large critical values of the coupling
constant. The fact that the discrete levels disappear in the exact nonrelativistic limit indicates a possible
connection with the abnormal solutions of the Bethe-Salpeter equation. Thorough investigatioanalytical
and numerical of the von Neumann—Wigner type potentials is provid&il050-294{@6)04612-4

PACS numbsgs): 12.20.Ds, 03.65.Ge, 11.10.St

I. INTRODUCTION Only the on-mass-shell quasipotential becomes local and co-
incides with the instantaneous kernel of the BS equation.
Long ago von Neumann and Wigni@] discovered thata  In [9], and also if{15], it was demonstrated that the non-

potential decreasing with oscillations at infinity may haverelativistic reduction and some additional approximations
discrete levels embedded in the continuum. Further studieansform the quasipotential to a local, but energy-dependent
revealed that the appearance of such positive eigenvalues @pression. The latter is not positive-definite due to overlap-
the Schrdinger equation is quite a subtle effect dependingPing of singularities of the particle propagators and the BS
on the specific form of the potentif2]. Numerous examples kernel. Below we will see that a sign-changing character of
were considered ifi3], while in [4] the technique of gener- the momentum space quasipotential results in oscillations of
ating isospectral potentials was applied. Various procedureie nonrelativistic potential in the coordinate space. These
for constructing bound states embedded in the continuurfiscillations inspired conjecture that the GSI resonaft8k
were compared ifi5] using methods based on the Gel'fand- are solutions of the VNW type potentigd].
Levitan and Marchenko equatiof8]. At present, interest in
such potentials has increased due to their applications in the 1I. QUASIPOTENTIAL AND ITS NONRELATIVISTIC
physics of atoms and moleculgs]. FORM

Recently, the possibility of an intrinsic connection of such . . L . .
potentials with relativistic physics has been discussed, A quasipotential equation Is an '”te“.’“?d.'a“? stage be-
E.g., in the paper§8,d] of Arbuzov et al. a quasipotential tween the fully covariant BS and nonrelativistic Satirger

equation with a single-photon exchange was employed t qugtions. As Iong as .there is an infinite numper of ways to
study the problem of the narroe*e~ resonances discov- eliminate the relative time dependence, there is also an infi-
ered in experiments of heavy ion collisioft0]. The unusual nite number of corresponding quasipotential equations. But

spectrum obtained if8,9] by numerical calculatiosee also g]eh I_gjs_t step of r;_onrell_?tlwsncbrelductlon I_e"ads to ﬂt]e tsame
[11]) caused several responses. In particulaf1i?] it was chralinger equation. Hence, below we will concentraté on

claimed that there can be no analogy between the solutiorQ® ;implgst example of the quasipotential gquqtion, which is
found in [8,9] and the bound states in continuu®IC) of  © tained in one-photon exchange approximation for QED
the von Ne’umann—Wi gnelNW) type with the wave function projected onto the positive frequency

In [13] the Wick-Cutkosky model, and also the Iaddersmltes[lfs'l?-|
approximation for QED and QCD was studied. For positive 1 da
binding energy 1 >2m) the Wick's rotation is of no use, so 20, [M—20,]%(p) =—3f 5—V(M;p,q)¥(q).
the corresponding Bethe-Salpe{&S) equation was studied (2m)°) 2wq
in a pseudo-Euclidean metric. No solutions of the type ob- (1)
tained in[8,9,11] were found. It seems that they were arti- >3 ]
facts of the numerical methods applied to the non-Fredholm Here w,=\p“+m*, the center-of-mass system is as-
kernels. Anyway, this question needs further investigation. Sumed and the fermions are taken with equal masses. The
The quasipotential method originates from the work ofduasipotentialV depends on the total energyl and in
[14]. Later a lot of alternative methods were developed. Théd(e”) approximation has the form
main idea of the quasipotential method is elimination of the 2
nonphysical parameter — relative tinger relative energy V(M'f) a): _ (2me) _ .
from the BS equation. This parameter makes transparent ” |p—q|(|\/|—a)p—wq—|p—q|+io)
physical interpretation of the BS amplitude difficult. The fi-
nal product of any quasipotential approach is a Lippmanit describes the interaction between opposite sign charges. In
Schwinger type equation with a potentiéduasipotential the case of the same sign charges one must substitute
[14]) depending on the total energy of the system. In generaky = e?/4w— — a. On mass sheM = 2w,= 2w, the quasipo-
the potential is a complex, nonlocal function of momenta.tential reduces to the nonrelativistic Coulomb potential. If we
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consider the approximation of small momenf,|q|<m,

then the quasipotenti@pP) takes a local form 25
.. (2me)? X
VIMiB,G) = == 3 s
lp—al(é-[p—g|+io) =
HereE=M—2m is a binding energy. The same quasipo- ~ 05
tential is obtained within the Wick-Cutkosky modehassive é_i )

scalar particles interacting via massless scalar exchange
the same approximation. The only difference is that one must 05
substitute the coupling=g,g,/167 instead ofm?a/ 7. For ©
“ordinary” bound states(when M <2m and hence£<0)
guasipotential2) as well as potentia{3) and the left-hand
sides of the corresponding equations never change sign. In
that case we have to deal with the Fredholm-type equation®
which can be studied by standard methods. If §e10 we
neglectf in the denominator of Eq3) we face the usual

FIG. 1. Functions(x) (7) (dashed lingandf(x)/x (solid line)
hich enter potentia(6).

v

ar
f(x)~§+xlnx+(y—1)x— x2+0(x3); x<1, (9

Coulomb problem. Preserving leads to an energy- 4

dependent potential. Of course it is a trace of relativity: de-

pendence over the relative time has transformed into the en- 21 4!

ergy dependence of the potential. It leads to existence of f)~S 1=zt a— ) x>1. (10
extra solutions, which in our opinion correspond to the ab-

normal ones of the BS equation. Herey=0.577 ... isEuler's constant. Hence f@<0 po-

When £>0, potential(3) is singular[like quasipotential tential (8) behaves likd17]
(2)] and taking the final nonrelativistic limf—0 is prob-
lematic even for the scattering problem. @
So in the approximation considered above we have to deal Ve(r)|gre1~— T
with Schralinger equation in the momentum spd8el5)

2 2
+— +—(y-—
1 7_rErIn(Er) 71_(y 1LEr

~2

n
p -« . —Z(Er)z}, (12)
S ‘Ifg(p)=—227_r qu

)
lp—ql(E—|p—q|+io)

(4) 2a

VE(r)|Er>1~_¥- (12

This equation is much easier to study than the initial qua-
sipotential one because the potential here is local and em- According to Eq(9) whenE=0 the potential is Coulom-
ploying the Fourier transformation we can pass to the follow-bic
ing differential equation in the coordinate space:

2

a
VE:o(r)z_T- (13
M

m

V(1) =V(n)Wr), (5)

Ve(r) asymptotically decreases as an inverse square,
where for€>0 potential has the forrf9,15| hence, under some restrictions @nthere will be finite num-
ber of eigenvaluefl9].

Let us get back to th&¢>0 case and note that potential
(6) in this case is complex, leading to nonconservation of the
energy in the scattering process. This absurdity originates
Here from the Feynmamo prescription in the denominator of qua-

sipotential(2). This point was criticized by Zastavenkd?2].
f(&r)=Ci(&r)sin(&r)—si(Er)cog Er) 7 He proposed the use of the principal value prescription,
which is equivalent to neglecting the imaginary part in Eq.
and Cix) and siik) are the integral cosine and sine, respec-(6) or, as it was admitted ifi8,9], to neglecting widths of

2a )
VEVg(r)=F[f(5r)—7Te'gr]. (6)

tively. possible resonances. So accepting the principal value pre-
If the binding energy were negative=—E<O0 then scription, for positive binding energies we have the follow-
ing potential:
2a f(ET)
Ve(n=-———. ® 2a
7 Ve(r)=—[f(&r) - mcog £r)]. (14)

It is worth noting that despite the trigonometric functions,
f(r) is quite smoott{see Fig. L It has the following asymp- According to Eq.(10), this potential decreases at infinity
totics [18]: with oscillations
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2a Denoting
V(1) grsa~ = ——COSEN); (15
, 2mé 2mu(r)
) . k= —7, =23 (21)
while at the origin we have h h
a 2 2 we express the potential
Vg(r)|gr<1~_? 1= —erin(ér)+ —(1=y)ér+--- |, Y
(16) V(r)=k?+ =—. (22)

All of the terms in the parentheses in the last equation ar_e The VNW procedure consists of decomposjadil,3] in

positive, i.e., here relativistic corrections to the pure Cou the following manner:
lomb potential pull it to the opposite side compared to the ’
case£<0 [see Eq(11)]. x(r)=xo(r)f(r),

Potential(14) behaves asymptotically quite like the VNW
type potentia[1-3]. Hence, it is natural to ask whether Eq. where x, is a solution of somedusually free Schralinger
(14) allows for discrete levels embedded in the continuum.equation, whilef (r) is the so-called modulating function. In
To answer this question let us recall Atkinson’s theoremthe VNW approach the boundary condition at the origin is

(23

from the Reed and Simon bo¢R].
Theorem XI.67 (c)Let the potential have the form

M

V=3, %A Q). a7
where the functiorQ(r) satisfies
Q(r)[=C(1+r3)~ 727" (18

for some positiveC and 7. Suppose thak= o;/2 for some
j- Then there is a solution(r) of the equation

— "V =K,

which asymptotically behaves as follows:
O'jr
co§ -
| ojf
sin —

The essence of the theorem is that when>o; the
Schralinger equation may have a square-integrable solutio

u(r)=r- 27y +0(1) ¥j/0>0,

u(r)=rt/29)

+0(1)) . ylo;<0. (19

i.e., there can appear normalizable solutions at the positiv

binding energie$2].
Comparing Eq{(17) with Eq. (14) we find the difference

in the phase of the trigonometric functions, but as long as the

n

satisfied by takingy,(0)=0. However, to construct a poten-
tial with cosinelike(or arbitrary phaseoscillations at infinity
we start with

1
X0=Esir‘(kr+ b). (24

Then

n

V(r)= T+2chtg(kr+ b).

!

(29

Now we must choosé(r) that will simultaneously ensure
the boundary condition at the origjny(r—0)~r], cancel
the poles of thetg(kr+ ¢) and produce a potential vanish-
ing at infinity. For that purpose let us define the standard
variable[1,3]

S(I’)Zkf;dZSinz(kZ'i‘ )

k 1
?r—z{sir{Z(kH@]—Sin(Z(ﬁ)}- (26)

So if ¢#0 s(r)~krsirf¢ for r—0 and s(r)~3kr for
r—o. Consequently, if we take, for instance,

e
s(r)

f(r):ATZ(r)’

A= const,

(27)

phase of asymptotic oscillations can be changed simply by,o 515ve-mentioned requirements will be satisfied, leading

shifting the coordinate, we foresee no problems in gener-
alizing the theorem for this case, too. Below we will gener-

alize the VNW procedure and construct an explicit example
of a potential decreasing with cosine oscillations and having

a discrete level in the continuum.

IIl. EXAMPLE OF THE VNW TYPE POTENTIAL
WITH COSINE OSCILLATIONS

For simplicity let us consider ars-wave Schrdinger
equation for the radial function

2m
x'+ P—[E—U(r)]xzo. (20

to a square-integrable solutigy(r).
Inserting Eqs(26) and(27) into Eq. (25) we find

A—-s?g" 3A-s? k?A-¢?

V(r) =72 ——252 viviaie Vi
A+s° s (A+s9) s A+s
xsin2(kr+ é)]. (28)

Evidently, we will have the desired cosinelike oscillations if
¢= /4. Using explicit expressionghelow we will simply
setA=1)

kr+ —

1.
sin 7

Xo= k
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Therefore using the VNW procedure one can construct

10 explicit examples showing that the Atkinson’'s theorem
10 works in the case of oscillations with an arbitrary phase, too.
The only difference is that the correct boundary condition at
V(r) 5 the origin is provided by the modulating functidr).

x(r)

IV. NUMERICAL SOLUTIONS

Let us assume that the Atkinson’s theorem is valid for our
potential(14) with cosinelike oscillations and rewrite the po-
tential in the form similar to Eq(17). Obviously we have to

-10 '
0 2 4 6 8 10 put
r
L o I - _ y=-2ma, o=§ k=mé¢. (33
FIG. 2. Potential with cosinelike oscillatiorisolid line) with its
analytically known BIC solutior§31) (dashed ling The wave func- So according to the theorem a discrete level may emerge
tion is not normalized to the unity. only at
E=4m, a>2, (34)

kr 1
s(r)==——[coq2kr)—1],
2 4 . . .
i.e., the coupling must be quite large.
K It follows that the levels found in8,11] by numerical
s'(r)==[1+sin(2kr)], methods cannot be of the VNW type because they were
2 found for a«=1/137. Below we are going to present our
, 5 method of numerical study of such potentials together with
s"(r)=k"cog 2kr), the results obtained. The method we will employ is quite
similar to that of searching for ordinary levels described,
e.g., in[20]. The latter consists of calculating the large dis-
4K tance be_havior of a solution of Schilinger d_ifferential equa-
V(r)— — —cog2kr), kr>1, (29)  tion starting from relevant boundary conditions at the origin.
r If this behavior changes discontinuou$iye., asymptotics of
the solution change from exp(\/|E[r) to —exp(/|E[r) or
vice versa; note that we have sat=1] within some small
K interval of energy, it means that there is a level located some-
V(r)——, kr<l. (300  Where in between. In our case the quantity that will change
r discontinuously is a phase of the solution. Indeed, when the
. _ . scattering energy passes the resonance energy, the phase of
Figure 2 shows the potenti&(r) and the corresponding ihe scattered wave changes by[21] and the range\E

it is straightforward to check that

while at the origin

wave function characterizes the width of the resonance. Discrete levels are,
1 o\ s in fact, resonances with vanishing width®,11] and there
(r)=—sin(kr+—)—2—_ (31) ~must be a jump byw in the phase-energy dependence
X k 4) 1+s5(r) S(E). It is understood that one cannot distinguish between

i ) ) the very small and exactly zero quantities using numerical
The latter decreases like *. Obviously the asymptotics of methods. However, the Atkinson’s theorem serves as a guide
Eq. (31) agrees with the Atkinson’s theorem. Indeed, in our__ \yhen we find a resonance, its energy allows us to deter-
case [compare to Eq.(19] y=-4k, o=2k and so mine whether it is a BIC or not without actual calculation of
yl2o=—1. the width. There is also an additional advantage in using this
Of course we could construct other examples by differentpethod: as a side product we will find also the ordinary
choices of the modulating functioi{r) with various behav-  resonance solutions of the equation. As we will see below,

ior at infinity, e.g., this will help us to understand what becomes of BICs when
the potential is slightly deformed.
s(r) 1-2n (32) Now let us explain how the mentioned jumps in phase can

f = .
(r) [A+s%(r)]" ' be detected. Suppose that the resonance energy is somewhere
within the intervalE+ AE. Then asymptotically we have

It is easy to establish that the leading asymptotics of the

corresponding potential will be We_ag~expi VE—AEr+is),
Vo~ Mcosﬁkr). Ve ae~exXdiVE+AEr+i(0+ m)]|sere1— —Ve-ae-
r
It means that if we plot the numerical solutions for
Again this asymptotic behavior agrees with E§i9) —  E=x AE, then in the interval where the solutions have already

yl20=1-2n. reached their asymptotic regime, bAEr is still small, we
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FIG. 5. Several solutions for the VNW potenti@ivhich is
scaled by a factop=0.7) near the resonance energy within the
interval 0.8<E=<0.9. Unlike Fig. 4 there is no mirror reflected pic-
must see mirror reflected behavior. For narrow resonancesre, though the phase changes rapidly. Saxfe solutions have
(including BIC9 these conditions can be satisfied becausealmost mirror reflected asymptoti¢shange of phase byr), but
AE can always be chosen small enough to maks <1 for  further reduction ofAE reveals that these solutions deform into
larger. For an illustration we will use the original VNW each other continuously.
potential[1,3] (see Fig. 3 Solutions for different energies
around the analytically known BIC solution are depicted inreduce it, the energy starts to grow. In the latter case reso-
Fig. 4. Their mirror reflected behavior is transparent. A simi-nance becomes broader, and starting from some valye of
lar picture will be obtained for arbitrarily smallE. While (depending, of course, on the accuracy of calculajions
reducingAE these solutions coincide with the BIC solution can notice that the familiar mirror reflected picture starts to
in the increasing interval af — so the BIC solution can be distort. Such a distorted picture is displayed in Fig. 5. Six
obtained numerically with a required precision by taking suf-numerical solutions with energies in the interval
ficiently small AE. Now let us slightly deform the VNW 0.8=E=<0.9 continuously deform into each other. The first
potential by multiplying it by a factoru and settinguw  (E=0.8) and the lastE=0.9) ones have opposite phases,
slightly different from the unity. Presumably even small de-but apparently the change of phase proceeds continuously.
formation of the potential must lead to the transformation ofFurther increase ofx results in the further growth of the
the BIC into a resonance. Again, we find the familiar mirror energy, but simultaneously the width also increases, the reso-
reflected picture but the energy is different than required bysance becomes broader and, finally, dissolves. At some criti-
the Atkinson’s theorem! So even being unable to distinguisttal values ofu there again arise BIC solutions and changing
between small and exactly zero widths by numerical methy, slightly around these critical values leads to the similar
ods we can conclude that small deformation of the potentiaiependence of the resonance energy and width.dbepen-
has implied transformation of the BIC into a resonance. Indence of the resonance energy ouefor the VNW potential
fact, near the BIC solution the change of energy of the resoand for potential(14) is quite similar and, for the latter, is
nance(when the coupling is varigdurned out larger than depicted in Fig. 6. Note that for a fixed value afthere is
the change of the width. So the former can be detected witlnly one resonance solution.
higher accuracy than the latter. If we increasethe reso-
nance energy tends to zero, having a small width, but if we

FIG. 3. The von Neumann-Wigner potentja!,3].

0.75
3 '
L \
1.25 I |
0.75 E I
0.50 025 b— — 4 — A — — — — — .
0.25 E=0.495 -
-0.00 + : L
0.00 5 30

-0.25 £=0.505

~038, 2.0 4.0 6.0 8.0 10.0
r FIG. 6. Dependence of the resonance enefgy ¢n the cou-
pling u (35 for potential (14). Dashed parts of the resonance
FIG. 4. The analytical BIC solution of the VNW potential branches correspond to the region where the width of a resonance
(dashed ling and adjacent solutions for two different valuesbf  begins to grow, and finally the resonance dissolves. BICs are lo-
(solid lines. The mirror reflected character of asymptotics of the cated at the interception of the depicted branches with the horizon-
solid lines is evident. tal dashed lindat E=0.25).
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V. CONCLUSIONS

5
4 The quasipotential method, which is a rather powerful
approach in relativistic physics, shows that in many models
3 the simplest one-massless-particle exchange quasipotential
& for positive binding energies in the small momenta approxi-
2 mation after discarding the imaginary part reduces to the
potential that decreases at spatial infinity with cosinelike os-
1 cillations [9,15]. As they are damped by the first power of
N TV TP the coordinate this potential imitates the famous von Neu-

mann and Wigner problerfi]. The origin of these oscilla-
a/2m tions is relativity — pseudoeuclidity of metrics.
It was manifestly shown above that the phase of the po-
FIG. 7. Dependence of a resonance eneydn the coupling  tential’s oscillations has no decisive importance for the
a. Clearly, resonances arise one by one when the coupling is in¥NW procedure, because the boundary conditions at the ori-
creased, so that for a fixed value of the coupling we can have morgin and infinity can be satisfied by a suitable choice of the
then one, but always finite number of resonances. BICs at the inmodulating function. All relevant results including the At-
terceptions with the horizontal dashed linefat A. kinson’s theorem remain valid. This theorem gives some in-
dication about the energy of discrete levels embedded in the
Up to this moment we have discussed the spectrum of theontinuum and the allowed areas of the coupling constant as
standard Schdinger equation with the VNW type potential. g |n general, for the pure VNW-type potentials the BICs
However, potential14) is energy dependent. So let us de- ynnear at arbitrary energies, but in our example the discrete
note level energy has quite definite value and the coupling con-
stant is bounded from below thanks to the above-mentioned
(35 theorem. In full agreement with theoretical predictions the
numerical method described in Sec. IV confirms existence of

and, for a while, consider. and E as independent param- the BIC at the indicated point and allows us to find corre-
eters. Then th&wave version of Eq(5) with potential(14) ~ SPonding values of the coupling constant, which happen to

1
x=¢&r, /.L=7T—g, E=E.

can be written in the standard forfwe takem=1) be quite large ¢~45;80; .. .).
The numerical results show unambiguously that the hy-
=W (X)+ V(X)) =E¥(X), (36)  pothesis about the relation between the GSI resonances and

the VNW-type potentials is not realistic. Such a conclusion
was made also ifl2] on different grounds. As for Eq1),
V(x)=[f(X)— mcog X) ]/X. additional investigation is desirable due to the nonlocality of
guasipotential2) and non-Fredholmity of its kernel.
Figure 6 shows the resonance branches that we have found
by varying the couplingu. After restoring original param-
eters, the picture becomes more interestisge Fig. 7. ACKNOWLEDGMENTS
Again, at some discrete, and rather lafgéich agree with
the estimate34)] critical values of the coupling constant we
have BICs which transform into resonances as soon as we,
deviate the coupling from the critical value. But now for a

with

It is a pleasure to thank A. Kvinikhidze and A. Lahiff for
ading the manuscript. We would also like to thank A. Pag-
namenta and U. Sukhatme and all participants of the Particle
i’geory Seminar at the University lllinois of Chicago for

In fact, as the coupling increases, more and more resonanc . :
many helpful discussions.

appear.

[1] J. von Neumann and E. Wigner, Phys.30, 465 (1929. [10] T. Cowanet al,, Phys. Rev. Lett56, 444 (1986; W. Koenig

[2] M. Reed and B. SimonMethods of Modern Mathematical et al, Phys. Lett. B218 12 (1989; P. Scalaburat al, ibid.
Physics(Academic Press, New York, 19¥8/ols. 3 and 4. 255, 153(1989.

[3] F. H. Stillinger and D. R. Herrik, Phys. Rev. B, 446(1975. [11] J. R. Spence and J. P. Vary, Phys. Let®}, 1 (199)).
[4] J. Pappademos, U. Sukhatme, and A. Pagnamenta, Phys. R¢®2] L. G. Zastavenkqunpublishegt T. A. Weber and D. L. Pur-

A 48, 3525(1993; F. Cooper, A. Khare, and U. Sukhatme, sey, Phys. Lett. BB31, 430(1994.

Phys. Rep251, 267 (1995. [13] A. A. Khelashvili, A. N. Tavkhelidze, and L. G. Vachnadze,
[5] T. A. Weber and D. L. Pursey, Phys. Rev.5Q, 4478(1994). Thilisi State University Report No. TMI P-07, 199unpub-
[6] T. A. Weber and D. L. Pursey, Phys. Rev.5Q, 4472(1994. lished.

[7] F. Capasset al, Nature(London) 358 565 (1992. [14] A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimeng9,
[8] B. A. Arbuzovet al, Teor. Mat. Phys83, 175 (1990. 380(1963.

[9] B. A. Arbuzovet al, Phys. Lett. B275 144 (1992. [15] A. A. Arkhipov, Teor. Mat. Phys83, 358(1990.



55 BOUND STATES IN CONTINUUM INDUCED BY RELATIVITY 2563

[16] R. N. Faustov, Teor. Mat. Phy8, 240(1970; V. G. Kadys-  [19] L. D. Landau and E. M. LifshitzQuantum Mechanic&Nauka,

hevsky, Nucl. Phys. B, 125(1968. Moscow, 1989.
[17] V. N. Kapshchai, V. I. Savrin, and N. B. Skachkov, Teor. Mat. [20] H. Gould and J. TobochnikAn Introduction to Computer
Phys.74, 69 (1988. Simulation Methods Applications to Physical Systems
[18] Handbook of Mathemetical Functignéppl. Math. Ser. No. (Addison-Wesley, Reading, MA, 1988

55, edited by M. Abramowitz and I. Steg@d.S. GPO, Wash- [21] R. G. Newton, Scattering Theory of Waves and Particles
ington, D.C., 1964 (McGraw-Hill, New York, 1968.



