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Bound states in continuum induced by relativity

A. Khelashvili and N. Kiknadze
High Energy Physics Institute and Department of Physics, Tbilisi State University, Chavchavadze ave. 1, Tbilisi 380028, Geo

~Received 29 January 1996!

The nonrelativistic reduction of quasipotential equations in QED and Wick-Cutkosky models is considered.
It is shown that if we retain an energy dependence of the potential~i.e., make the nonrelativistic reduction only
partially!, there may arise discrete levels in the continuum for some large critical values of the coupling
constant. The fact that the discrete levels disappear in the exact nonrelativistic limit indicates a possible
connection with the abnormal solutions of the Bethe-Salpeter equation. Thorough investigation~both analytical
and numerical! of the von Neumann–Wigner type potentials is provided.@S1050-2947~96!04612-4#

PACS number~s!: 12.20.Ds, 03.65.Ge, 11.10.St
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I. INTRODUCTION

Long ago von Neumann and Wigner@1# discovered that a
potential decreasing with oscillations at infinity may ha
discrete levels embedded in the continuum. Further stu
revealed that the appearance of such positive eigenvalu
the Schro¨dinger equation is quite a subtle effect depend
on the specific form of the potential@2#. Numerous examples
were considered in@3#, while in @4# the technique of gener
ating isospectral potentials was applied. Various procedu
for constructing bound states embedded in the continu
were compared in@5# using methods based on the Gel’fan
Levitan and Marchenko equations@6#. At present, interest in
such potentials has increased due to their applications in
physics of atoms and molecules@7#.

Recently, the possibility of an intrinsic connection of su
potentials with relativistic physics has been discuss
E.g., in the papers@8,9# of Arbuzov et al. a quasipotential
equation with a single-photon exchange was employed
study the problem of the narrowe1e2 resonances discov
ered in experiments of heavy ion collisions@10#. The unusual
spectrum obtained in@8,9# by numerical calculation~see also
@11#! caused several responses. In particular, in@12# it was
claimed that there can be no analogy between the solut
found in @8,9# and the bound states in continuum~BIC! of
the von Neumann–Wigner~VNW! type.

In @13# the Wick-Cutkosky model, and also the ladd
approximation for QED and QCD was studied. For posit
binding energy (M.2m) the Wick’s rotation is of no use, so
the corresponding Bethe-Salpeter~BS! equation was studied
in a pseudo-Euclidean metric. No solutions of the type
tained in@8,9,11# were found. It seems that they were ar
facts of the numerical methods applied to the non-Fredh
kernels. Anyway, this question needs further investigatio

The quasipotential method originates from the work
@14#. Later a lot of alternative methods were developed. T
main idea of the quasipotential method is elimination of
nonphysical parameter — relative time~or relative energy!
from the BS equation. This parameter makes transpa
physical interpretation of the BS amplitude difficult. The
nal product of any quasipotential approach is a Lippm
Schwinger type equation with a potential~quasipotential
@14#! depending on the total energy of the system. In gene
the potential is a complex, nonlocal function of momen
551050-2947/97/55~4!/2557~7!/$10.00
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Only the on-mass-shell quasipotential becomes local and
incides with the instantaneous kernel of the BS equation

In @9#, and also in@15#, it was demonstrated that the non
relativistic reduction and some additional approximatio
transform the quasipotential to a local, but energy-depend
expression. The latter is not positive-definite due to overl
ping of singularities of the particle propagators and the
kernel. Below we will see that a sign-changing character
the momentum space quasipotential results in oscillation
the nonrelativistic potential in the coordinate space. Th
oscillations inspired conjecture that the GSI resonances@10#
are solutions of the VNW type potential@9#.

II. QUASIPOTENTIAL AND ITS NONRELATIVISTIC
FORM

A quasipotential equation is an intermediate stage
tween the fully covariant BS and nonrelativistic Schro¨dinger
equations. As long as there is an infinite number of ways
eliminate the relative time dependence, there is also an
nite number of corresponding quasipotential equations.
the last step of nonrelativistic reduction leads to the sa
Schrödinger equation. Hence, below we will concentrate
the simplest example of the quasipotential equation, whic
obtained in one-photon exchange approximation for Q
with the wave function projected onto the positive frequen
states@16,17#

2vp@M22vp#C~pW !5
1

~2p!3
E dqW

2vq
V~M ;pW ,qW !C~qW !.

~1!

Here vp[ApW 21m2, the center-of-mass system is a
sumed and the fermions are taken with equal masses.
quasipotentialV depends on the total energyM and in
O(e2) approximation has the form

V~M ;pW ,qW !5
~2me!2

upW 2qW u~M2vp2vq2upW 2qW u1 io !
. ~2!

It describes the interaction between opposite sign charge
the case of the same sign charges one must subst
a5e2/4p→2a. On mass shellM52vp52vq the quasipo-
tential reduces to the nonrelativistic Coulomb potential. If w
2557 © 1997 The American Physical Society
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2558 55A. KHELASHVILI AND N. KIKNADZE
consider the approximation of small momentaupW u,uqW u!m,
then the quasipotential~2! takes a local form

V~M ;pW ,qW !5
~2me!2

upW 2qW u~E2upW 2qW u1 io !
. ~3!

HereE5M22m is a binding energy. The same quasip
tential is obtained within the Wick-Cutkosky model~massive
scalar particles interacting via massless scalar exchang! in
the same approximation. The only difference is that one m
substitute the couplingl[g1g2/16p

2 instead ofm2a/p. For
‘‘ordinary’’ bound states~whenM,2m and henceE,0)
quasipotential~2! as well as potential~3! and the left-hand
sides of the corresponding equations never change sign
that case we have to deal with the Fredholm-type equat
which can be studied by standard methods. If forE,0 we
neglectE in the denominator of Eq.~3! we face the usua
Coulomb problem. PreservingE leads to an energy
dependent potential. Of course it is a trace of relativity: d
pendence over the relative time has transformed into the
ergy dependence of the potential. It leads to existence
extra solutions, which in our opinion correspond to the a
normal ones of the BS equation.

When E.0, potential~3! is singular@like quasipotential
~2!# and taking the final nonrelativistic limitE→0 is prob-
lematic even for the scattering problem.

So in the approximation considered above we have to d
with Schrödinger equation in the momentum space@9,15#

S E2 pW 2

m
DCE~pW !5

a

2p2E dqW
CE~qW !

upW 2qW u~E2upW 2qW u1 io !
.

~4!

This equation is much easier to study than the initial q
sipotential one because the potential here is local and
ploying the Fourier transformation we can pass to the follo
ing differential equation in the coordinate space:

S ¹2

m
1EDCE~rW !5V~r !CE~rW !, ~5!

where forE.0 potential has the form@9,15#

V[VE~r !5
2a

pr
@ f ~Er !2peiEr #. ~6!

Here

f ~Er ![Ci~Er !sin~Er !2si~Er !cos~Er ! ~7!

and Ci(x) and si(x) are the integral cosine and sine, respe
tively.

If the binding energy were negativeE52E,0 then

VE~r !52
2a

p

f ~Er !

r
. ~8!

It is worth noting that despite the trigonometric function
f (r ) is quite smooth~see Fig. 1!. It has the following asymp-
totics @18#:
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f ~x!'
p

2
1xlnx1~g21!x2

p

4
x21O~x3!; x!1, ~9!

f ~x!'
1

x
1S 12

2!

x2
1
4!

x4
2••• D ; x@1. ~10!

Hereg50.5772 . . . isEuler’s constant. Hence forE,0 po-
tential ~8! behaves like@17#

VE~r !uEr!1;2
a

r F11
2

p
Er ln~Er !1

2

p
~g21!Er

2
p

4
~Er !2G , ~11!

VE~r !uEr@1;2
2a

Er2
. ~12!

According to Eq.~9! whenE50 the potential is Coulom-
bic

VE50~r !52
a

r
. ~13!

VE(r ) asymptotically decreases as an inverse squ
hence, under some restrictions ona, there will be finite num-
ber of eigenvalues@19#.

Let us get back to theE.0 case and note that potenti
~6! in this case is complex, leading to nonconservation of
energy in the scattering process. This absurdity origina
from the Feynmanio prescription in the denominator of qua
sipotential~2!. This point was criticized by Zastavenko@12#.
He proposed the use of the principal value prescripti
which is equivalent to neglecting the imaginary part in E
~6! or, as it was admitted in@8,9#, to neglecting widths of
possible resonances. So accepting the principal value
scription, for positive binding energies we have the follo
ing potential:

VE~r !5
2a

pr
@ f ~Er !2pcos~Er !#. ~14!

According to Eq.~10!, this potential decreases at infinit
with oscillations

FIG. 1. Functionsf (x) ~7! ~dashed line! and f (x)/x ~solid line!
which enter potential~6!.
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55 2559BOUND STATES IN CONTINUUM INDUCED BY RELATIVITY
VE~r !uEr@1;2
2a

r
cos~Er !; ~15!

while at the origin we have

VE~r !uEr!1;2
a

r F12
2

p
Er ln~Er !1

2

p
~12g!Er1••• G .

~16!

All of the terms in the parentheses in the last equation
positive, i.e., here relativistic corrections to the pure Co
lomb potential pull it to the opposite side compared to
caseE,0 @see Eq.~11!#.

Potential~14! behaves asymptotically quite like the VNW
type potential@1–3#. Hence, it is natural to ask whether E
~14! allows for discrete levels embedded in the continuu
To answer this question let us recall Atkinson’s theor
from the Reed and Simon book@2#.

Theorem XI.67 (c). Let the potential have the form

V~r !5(
j51

M

g j

sin~s j r !

r
1Q~r !, ~17!

where the functionQ(r ) satisfies

uQ~r !u<C~11r 2!21/22t ~18!

for some positiveC and t. Suppose thatk5s j /2 for some
j . Then there is a solutionu(r ) of the equation

2f91Vf5k2f,

which asymptotically behaves as follows:

u~r !5r2~g j /2s j !FcosS s j r

2 D1O~1!G , g j /s j.0,

u~r !5r ~g j /2s j !FsinS s j r

2 G1O~1! D , g j /s j,0. ~19!

The essence of the theorem is that whenug j u.s j the
Schrödinger equation may have a square-integrable solut
i.e., there can appear normalizable solutions at the pos
binding energies@2#.

Comparing Eq.~17! with Eq. ~14! we find the difference
in the phase of the trigonometric functions, but as long as
phase of asymptotic oscillations can be changed simply
shifting the coordinater , we foresee no problems in gene
alizing the theorem for this case, too. Below we will gen
alize the VNW procedure and construct an explicit exam
of a potential decreasing with cosine oscillations and hav
a discrete level in the continuum.

III. EXAMPLE OF THE VNW TYPE POTENTIAL
WITH COSINE OSCILLATIONS

For simplicity let us consider anS-wave Schro¨dinger
equation for the radial function

x91
2m

\2 @E2U~r !#x50. ~20!
re
-
e

.

n,
ve

e
y

-
e
g

Denoting

k2[
2mE
\2 , V~r ![

2mU~r !

\2 ~21!

we express the potential

V~r !5k21
x9

x
. ~22!

The VNW procedure consists of decomposingx @1,3# in
the following manner:

x~r !5x0~r ! f ~r !, ~23!

wherex0 is a solution of some~usually free! Schrödinger
equation, whilef (r ) is the so-called modulating function. I
the VNW approach the boundary condition at the origin
satisfied by takingx0(0)50. However, to construct a poten
tial with cosinelike~or arbitrary phase! oscillations at infinity
we start with

x05
1

k
sin~kr1f!. ~24!

Then

V~r !5
f 9

f
12k

f 8

f
ctg~kr1f!. ~25!

Now we must choosef (r ) that will simultaneously ensure
the boundary condition at the origin@x(r→0);r #, cancel
the poles of thectg(kr1f) and produce a potential vanish
ing at infinity. For that purpose let us define the stand
variable@1,3#

s~r !5kE
0

r

dzsin2~kz1f!

5
kr

2
2
1

4
$sin@2~kr1f!#2sin~2f!%. ~26!

So if fÞ0 s(r );krsin2f for r→0 and s(r ); 1
2kr for

r→`. Consequently, if we take, for instance,

f ~r !5
s~r !

A1s2~r !
, A5const, ~27!

the above-mentioned requirements will be satisfied, lead
to a square-integrable solutionx(r ).

Inserting Eqs.~26! and ~27! into Eq. ~25! we find

V~r !5
A2s2

A1s2
s9

s
22s82

3A2s2

~A1s2!2
1
k2

s

A2s2

A1s2

3sin@2~kr1f!#. ~28!

Evidently, we will have the desired cosinelike oscillations
f5p/4. Using explicit expressions~below we will simply
setA51)

x05
1

k
sinS kr1 p

4 D ,
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s~r !5
kr

2
2
1

4
@cos~2kr !21#,

s8~r !5
k

2
@11sin~2kr !#,

s9~r !5k2cos~2kr !,

it is straightforward to check that

V~r !→2
4k

r
cos~2kr !, kr@1, ~29!

while at the origin

V~r !→
4k

r
, kr!1. ~30!

Figure 2 shows the potentialV(r ) and the corresponding
wave function

x~r !5
1

k
sinS kr1 p

4 D s~r !

11s2~r !
. ~31!

The latter decreases liker21. Obviously the asymptotics o
Eq. ~31! agrees with the Atkinson’s theorem. Indeed, in o
case @compare to Eq. ~19!# g524k, s52k and so
g/2s521.

Of course we could construct other examples by differ
choices of the modulating functionf (r ) with various behav-
ior at infinity, e.g.,

f ~r !5
s~r !

@A1s2~r !#n
→r 122n. ~32!

It is easy to establish that the leading asymptotics of
corresponding potential will be

V;
4k~122n!

r
cos~2kr !.

Again this asymptotic behavior agrees with Eq.~19! —
g/2s5122n.

FIG. 2. Potential with cosinelike oscillations~solid line! with its
analytically known BIC solution~31! ~dashed line!. The wave func-
tion is not normalized to the unity.
r

t

e

Therefore using the VNW procedure one can constr
explicit examples showing that the Atkinson’s theore
works in the case of oscillations with an arbitrary phase, t
The only difference is that the correct boundary condition
the origin is provided by the modulating functionf (r ).

IV. NUMERICAL SOLUTIONS

Let us assume that the Atkinson’s theorem is valid for o
potential~14! with cosinelike oscillations and rewrite the po
tential in the form similar to Eq.~17!. Obviously we have to
put

g522ma, s5E, k25mE. ~33!

So according to the theorem a discrete level may eme
only at

E54m, a.2, ~34!

i.e., the coupling must be quite large.
It follows that the levels found in@8,11# by numerical

methods cannot be of the VNW type because they w
found for a51/137. Below we are going to present o
method of numerical study of such potentials together w
the results obtained. The method we will employ is qu
similar to that of searching for ordinary levels describe
e.g., in@20#. The latter consists of calculating the large d
tance behavior of a solution of Schro¨dinger differential equa-
tion starting from relevant boundary conditions at the orig
If this behavior changes discontinuously@i.e., asymptotics of
the solution change from1exp(AuEur ) to 2exp(AuEur ) or
vice versa; note that we have setm51# within some small
interval of energy, it means that there is a level located so
where in between. In our case the quantity that will chan
discontinuously is a phase of the solution. Indeed, when
scattering energy passes the resonance energy, the pha
the scattered wave changes byp @21# and the rangeDE
characterizes the width of the resonance. Discrete levels
in fact, resonances with vanishing widths@3,11# and there
must be a jump byp in the phase-energy dependen
d(E). It is understood that one cannot distinguish betwe
the very small and exactly zero quantities using numer
methods. However, the Atkinson’s theorem serves as a g
— when we find a resonance, its energy allows us to de
mine whether it is a BIC or not without actual calculation
the width. There is also an additional advantage in using
method: as a side product we will find also the ordina
resonance solutions of the equation. As we will see bel
this will help us to understand what becomes of BICs wh
the potential is slightly deformed.

Now let us explain how the mentioned jumps in phase c
be detected. Suppose that the resonance energy is somew
within the intervalE6DE. Then asymptotically we have

CE2DE;exp~ iAE2DEr1 id!,

CE1DE;exp@ iAE1DEr1 i ~d1p!#uDEr!1→2CE2DE .

It means that if we plot the numerical solutions f
E6DE, then in the interval where the solutions have alrea
reached their asymptotic regime, butDEr is still small, we
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55 2561BOUND STATES IN CONTINUUM INDUCED BY RELATIVITY
must see mirror reflected behavior. For narrow resonan
~including BICs! these conditions can be satisfied beca
DE can always be chosen small enough to makeDEr!1 for
large r . For an illustration we will use the original VNW
potential @1,3# ~see Fig. 3!. Solutions for different energie
around the analytically known BIC solution are depicted
Fig. 4. Their mirror reflected behavior is transparent. A sim
lar picture will be obtained for arbitrarily smallDE. While
reducingDE these solutions coincide with the BIC solutio
in the increasing interval ofr — so the BIC solution can be
obtained numerically with a required precision by taking s
ficiently small DE. Now let us slightly deform the VNW
potential by multiplying it by a factorm and settingm
slightly different from the unity. Presumably even small d
formation of the potential must lead to the transformation
the BIC into a resonance. Again, we find the familiar mirr
reflected picture but the energy is different than required
the Atkinson’s theorem! So even being unable to distingu
between small and exactly zero widths by numerical me
ods we can conclude that small deformation of the poten
has implied transformation of the BIC into a resonance.
fact, near the BIC solution the change of energy of the re
nance~when the coupling is varied! turned out larger than
the change of the width. So the former can be detected w
higher accuracy than the latter. If we increasem, the reso-
nance energy tends to zero, having a small width, but if

FIG. 3. The von Neumann-Wigner potential@1,3#.

FIG. 4. The analytical BIC solution of the VNW potentia
~dashed line! and adjacent solutions for two different values ofE
~solid lines!. The mirror reflected character of asymptotics of t
solid lines is evident.
es
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reduce it, the energy starts to grow. In the latter case re
nance becomes broader, and starting from some value om
~depending, of course, on the accuracy of calculations! we
can notice that the familiar mirror reflected picture starts
distort. Such a distorted picture is displayed in Fig. 5. S
numerical solutions with energies in the interv
0.8>E<0.9 continuously deform into each other. The fir
(E50.8) and the last (E50.9) ones have opposite phase
but apparently the change of phase proceeds continuou
Further increase ofm results in the further growth of the
energy, but simultaneously the width also increases, the r
nance becomes broader and, finally, dissolves. At some c
cal values ofm there again arise BIC solutions and changi
m slightly around these critical values leads to the simi
dependence of the resonance energy and width onm. Depen-
dence of the resonance energy overm for the VNW potential
and for potential~14! is quite similar and, for the latter, is
depicted in Fig. 6. Note that for a fixed value ofm there is
only one resonance solution.

FIG. 5. Several solutions for the VNW potential~which is
scaled by a factorm50.7) near the resonance energy within t
interval 0.8<E<0.9. Unlike Fig. 4 there is no mirror reflected pic
ture, though the phase changes rapidly. SomeDE solutions have
almost mirror reflected asymptotics~change of phase byp), but
further reduction ofDE reveals that these solutions deform in
each other continuously.

FIG. 6. Dependence of the resonance energy (E) on the cou-
pling m ~35! for potential ~14!. Dashed parts of the resonanc
branches correspond to the region where the width of a reson
begins to grow, and finally the resonance dissolves. BICs are
cated at the interception of the depicted branches with the horiz
tal dashed line~at E50.25).
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2562 55A. KHELASHVILI AND N. KIKNADZE
Up to this moment we have discussed the spectrum of
standard Schro¨dinger equation with the VNW type potentia
However, potential~14! is energy dependent. So let us d
note

x[Er , m[
2a

pE , E[
1

E ~35!

and, for a while, considerm andE as independent param
eters. Then theS-wave version of Eq.~5! with potential~14!
can be written in the standard form~we takem51)

2C9~x!1mV~x!C5EC~x!, ~36!

with

V~x!5@ f ~x!2pcos~x!#/x.

Figure 6 shows the resonance branches that we have f
by varying the couplingm. After restoring original param-
eters, the picture becomes more interesting~see Fig. 7!.
Again, at some discrete, and rather large@which agree with
the estimate~34!# critical values of the coupling constant w
have BICs which transform into resonances as soon as
deviate the coupling from the critical value. But now for
fixed value of the coupling there may be several resonan
In fact, as the coupling increases, more and more resona
appear.

FIG. 7. Dependence of a resonance energy (E) on the coupling
a. Clearly, resonances arise one by one when the coupling is
creased, so that for a fixed value of the coupling we can have m
then one, but always finite number of resonances. BICs at the
terceptions with the horizontal dashed line atE4D.
l
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V. CONCLUSIONS

The quasipotential method, which is a rather power
approach in relativistic physics, shows that in many mod
the simplest one-massless-particle exchange quasipote
for positive binding energies in the small momenta appro
mation after discarding the imaginary part reduces to
potential that decreases at spatial infinity with cosinelike
cillations @9,15#. As they are damped by the first power
the coordinate this potential imitates the famous von N
mann and Wigner problem@1#. The origin of these oscilla-
tions is relativity — pseudoeuclidity of metrics.

It was manifestly shown above that the phase of the
tential’s oscillations has no decisive importance for t
VNW procedure, because the boundary conditions at the
gin and infinity can be satisfied by a suitable choice of
modulating function. All relevant results including the A
kinson’s theorem remain valid. This theorem gives some
dication about the energy of discrete levels embedded in
continuum and the allowed areas of the coupling constan
well. In general, for the pure VNW-type potentials the BIC
appear at arbitrary energies, but in our example the disc
level energy has quite definite value and the coupling c
stant is bounded from below thanks to the above-mentio
theorem. In full agreement with theoretical predictions t
numerical method described in Sec. IV confirms existence
the BIC at the indicated point and allows us to find cor
sponding values of the coupling constant, which happen
be quite large (a;45;80; . . . ).

The numerical results show unambiguously that the
pothesis about the relation between the GSI resonances
the VNW-type potentials is not realistic. Such a conclusi
was made also in@12# on different grounds. As for Eq.~1!,
additional investigation is desirable due to the nonlocality
quasipotential~2! and non-Fredholmity of its kernel.
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