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Effects of noise on the turn-on dynamics of a modulated class-B laser
in the generalized multistability domain

S. I. Turovets,1,* A. Valle,2 and K. A. Shore1
1University of Wales, Bangor, School of Electronic Engineering and Computer Systems, Bangor LL57 1UT, Wales, United Kin

2Instituto de Fisica de Cantabria, CSIC-UC, E39005 Santander, Spain
~Received 22 July 1996!

We have investigated the influence of intrinsic laser noise on recently proposed schemes for targeting laser
dynamics to unstable periodic orbits by means ofQ switching of modulated class-B lasers. Several interesting
features of turn-on statistics in such a nonlinear regime have been found, including scaling of targeting peaks
location with the strength of the spontaneous emission noise and universality of the transient time statistics,
i.e., their essential independence of the strength of noise. The concept of the highest passage times has been
introduced and their distribution functions double-peaked structure with the underlying symmetry properties
has been revealed and explained. The noise has been found to cause much more frequent phase switching in
comparison with the deterministic case with possible detrimental effects on the use of this particular scheme in
chaos control techniques.@S1050-2947~97!09003-3#

PACS number~s!: 42.55.2f
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I. INTRODUCTION

Transient statistics of a laser switch-on have been a s
ject of intense studies since the advent of the laser@1#. From
a fundamental point of view such investigations give insig
into the basic processes triggered by quantum noise in m
roscopic nonequilibrium systems. In applications, the turn
delay jitter caused by spontaneous emission plays a sig
cant role in determining optical communication system p
formance, and has been investigated both experimentally@2#,
using numerical simulations@3# and also analytical method
@4#. However, the results reported so far in literature~see,
e.g., the review by San Miguel@4# of the situation in the
field! have dealt mainly with dynamics only near the lasi
threshold, or from the point of view of the general dynamic
system theory, the first laser instability, whereas in the la
as a typical nonlinear dynamical system, the full hierarchy
instabilities, including different bifurcating routes to chao
have been found to exist@5#. For a bifurcating laser the phas
space is more complicated, and a trajectory may pass
one of the unstable orbits during the course of relaxat
from the nonlasing unstable state and thus significant m
fication of turn-on statistics might be anticipated. In an e
lier paper @6#, using fully deterministic numerical simula
tions of aQ-switched class-B laser with modulated losses
a saturable absorber, the possibility of steering dynamic
unstable lasing states during transient processes has
shown. Nonetheless, transient statistics of laser dynam
from the off-state to one of the attractors in the generali
multistability domain or the period-doubling regime have n
yet been studied theoretically in any detail. That is the aim
the present paper.

The classification of lasers A, B, and C was introduced
Ref. @7# and is based on relations between cavity and ac

*On leave from Institute of Physics, Academy of Sciences,
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material relaxation times. For class-B lasers, the depha
time of the active material dipole moment is much shor
than both the cavity photon lifetime and the population
version decay time, so that the polarization of the act
medium adiabatically follows the cavity field and may b
eliminated from consideration. Most solid-state lasers, se
conductor lasers, and certain molecular lasers~e.g., CO2)
belong to this class. The general property of class-B las
distinguishing them from class-A lasers~He-Ne, Ar, dye! is
that they readily exhibit relaxation oscillations lending the
selves for modulation. This is why under moderate stren
of modulation the dynamical response of such lasers
comes strongly nonlinear, and the lasers display a rich v
ety of nonlinear phenomena, ranging from bistability to t
period-doubling route to chaos, as has been shown in g
detail both theoretically and experimentally~see, e.g.,@8#
and references therein!. In what follows, we considerQ
switchings of a single mode class-B laser with sinusoida
modulated cavity losses with a control parameter set
above the first period-doubling bifurcation taking into a
count intrinsic noise. As only intensity transient statistics a
of interest, no explicit treatment of the phase of the la
field is required here.

II. MODEL

The effects of spontaneous emission and pump noise
the class-B laser dynamics can be well described in
framework of the Langevin formulation of the coupled ca
ity and atomic rate equations for the number of photonsn
and inversion populationN5N22N1 of the lasing pair of
levels @9#

dn/dt5„KN2gc~ t !…n1Rsp1Fn~ t !, ~1!

dN/dt5r p2hKNn2g2N1RN~ t !, ~2!

where K is the field-matter coupling constant,r p is the
pumping rate, andg2 is the population decay rate. The p
0
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rameterh accounts for two possible modification of the ra
equations: in the case of a two-level system, with a fix
total population (N21N15N0), h52; in the case of a four-
level system~with the lower-level depopulation rate bein
sufficiently fast so thatN1>0 andN>N2 under all circum-
stances! h51. The photon cavity decay rate is taken in t
form gc(t)5gc

(2)
„k(t)1m cos(vmt1w)…, wherem, vg , and

w are the modulation depth, frequency, and arbitrary pha
andk(t) accounts for suddenQ switching at the moment o
time t50, being equal to the hold-off ratiok5gc

(1)/gc
(2).1

for t,0, and 1 otherwise. The influence of spontaneo
emission is taken into account by the average rate term

Rsp5bg radN2 , ~3!

which yields the mean power spontaneously emitted into
lasing mode, and the corresponding Langevin force, wh
describes the fluctuations of this mean power:

Fn~ t !5~2RsPn!1/2j~ t !

with

^j~ t !j~s!&5d~ t2s! and ^j~ t !&50, ~4!

whereg rad is the radiative decay rate from the upper lev
andb is the spontaneous emission factor specifying the fr
tion of the total spontaneous emission, which is coupled
an individual cavity mode. In the population equation t
stochastic term

RN~ t !5~R!1/2 z~ t !

with

^z~ t !z~s!&5d~ t2s! and ^z~ t !&50 ~5!

accounts for several different sources~e.g., density and tem
perature fluctuations in an active medium which are usu
dominant over quantum shot noise! and which will be treated
phenomenologically when required. The zero-mean Ga
ian noisesj(t) andz(t) are assumed to be mutually unco
related. Having rescaled variables as follows—y5N/Ntrh

5KN/gc
(2) , u5n/nsat5hKn/g2 , t5g2t—and assuming

for simplicity g rad5g2, it is possible to reduce Eqs.~1! and
~2! to the dimensionless forms

du/dt5n„y2k~t!5m cos~vt1w!…u1r sp

1~2r spu!1/2j~ t !, ~6!

dy/dt5y02~11u!y1~d!1/2z~ t !, ~7!

where our parameters are given byn5gc
(2)/g2 , y0

5Kr p /(gc
(2)g2), v5vm /g2 ,d5(R/g2)K

2/(gc
(2)), and r sp

5nby in the case of a four-level system with a fast low
lasing level, andr sp5nb(y1KN0 /g0

(2)) in the case of a
two-level system with a fixed total populationN0.

It can be seen that the normalized equations contain fe
parameters than the original ones. This gives relative fr
dom in referring the results obtained to specific lasers. T
dimensionless form of the rate equations is useful also
another respect: the model~1!–~2! is, in general, too ideal-
d
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ized to describe the dynamics of a specific laser quan
tively; nevertheless, it gives a fairly good approximation
many cases when the dimensionless parameters have
chosen to match experimental results, e.g., relaxation o
lation frequency and their decay times. The parameterb may
be estimated by fitting an experimental laser output-pu
characteristic to the steady-state solution of Eqs.~6! and ~7!
for the unmodulated case (m50) with h51 and constant
cavity lossesk,

ust5@y02k1„~y02k!214kby0…
1/2#/2k. ~8!

In the following, unless otherwise stated, we do not rest
ourselves to any specific choice of laser parameters~in par-
ticularb, which may be varied from 10210 for bulk lasers up
to nearly 1 for the recently developed microcavity semico
ductor lasers! but rather, using the given dimensionless p
rameters, we illustrate the general tendency in nonlinear
namics as the noise strength progressively increases. Fin
we observe that the simplest model of a laser diode~without
taking into account gain saturation effects, the linewidth e
hancement factor, etc.! is isomorphic to Eqs.~6! and ~7!, so
the results obtained in this consideration may be applica
to their dynamics as well.

III. RESULTS

In all calculations reported below we have chosen para
etersy052 and n570, which reflects a common case fo
class-B lasers, when the laser is assumed to be pumpe
twice threshold and only a few spikes are observed in re
ation oscillations toward a steady state. The modulat
strength is assumed to have been set to the value that en
the period-doubling regime. A quite accurate estimate for
lower threshold of a period-doubling bifurcation in the sy
tem at v>2v rel52„v(y021)…1/2 can be obtained from a
Floquet stability analysis@10# yielding mth>3y0 /n for
r sp50. For y052, n570 this givesmth>

6
70. In the present

calculations we have fixed the modulation depth comforta
above this threshold takingm50.1. 6

70, and varying v
slightly around 2v rel . The hold-off ratiok is taken to be 4,
so for a smallb andh51 Eq. ~8! gives the stationary lase
intensity beforeQ switchingust>b, andyst>2(12b). For
the nonmodulated case it is easily checked that below thr
old the stochastic equation for the laser field can be treate
a linear complex Ornstein-Ulenbeck process yielding the
ponential probability density distribution for intensity in
steady state:Pu5^u&21exp(2u/^u&) with a second momen
^u2&2^u&25^u&2 @11#. Furthermore, it is found, using stan
dard techniques@12#, that in the small-signal modulation re
gime considered here the exponential distribution is ma
tained~albeit with a slight change in the average value!. An
event of laserQ switching is modeled by numerical solutio
of the stochastic Eqs.~6! and~7! with the deterministic initial
conditions u(t!0)5b, y(t!0)52(12b), which corre-
spond to the average number of spontaneous photons
population inversion in the laser off-state. Thus, at the m
ment of Q switching, t50, there already exist ‘‘random
ized’’ variablesu and y with corresponding rms deviation
b and 2b. So the actual build-up laser intensity is initialize
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2428 55S. I. TUROVETS, A. VALLE, AND K. A. SHORE
from the noisy cloud centered at the stationary point, and
a radius of approximatelyb.

Inasmuch as the initial conditions have been chosen n
their average values in the nonlasing regime, the duratio
the ‘‘thermalization’’ stage is quite short and may be tak
as a few periods of modulation. It should be pointed out t
in the deterministic simulations (r sp50)du/dt50, when-
everu(0)50, therefore lasing is not possible without som
initial seeding. The influence of a nonzero spontaneous e
sion termr sp5nby is known to be capable of shifting th
whole bifurcation diagram slightly to higher values of th
modulation index, primarily due to the extra damping of r
laxation oscillations and making the laser Toda poten
more symmetrical@13#. In Fig. 1 we present the results o
numerical calculations of such influence on the perio
doubling bifurcation for the parameter domain of interest
is seen that the bifurcation is supercritical and almost ins
sitive to the spontaneous contribution up tob>1024; after-
wards the effect of the shrinking of the instability starts
increase quickly withb. The latter fact explains, for in
stance, why laser diodes~havingb>1024–1025) normally
exhibit only a few period-doubling bifurcations even und
strong modulation.

A. Deterministic case

Poincarésection. The dynamical evolution of the laser a
prescribed by Eqs.~1! and~2! @or in normalized form in Eqs.
~6! and~7!# occurs in a three-dimensional phase space wh
coordinates are defined by the photon number, the invers
and time. The dynamics of the system can then be see
trajectories along the time axis. Understanding of comp
dynamics in such systems is aided considerably by perfo
ing a periodical sampling of the phase-space dynamics
this way a stroboscopic projection of the dynamics onto
two-dimensional plane known as a Poincare´ section or Poin-
carémap is obtained@14#. Such a procedure has been appli
here in the vicinity of the first period-doubling bifurcation o
the laser dynamics. Poincare´ sections are readily obtaine
using standard numerical techniques@14#. In Fig. 2, the Poin-
carésection for the deterministic case (b50) was obtained

FIG. 1. First period-doubling bifurcation diagram for spontan
ous emission factorb50 ~—, right!, 1024 (L), 531024

(1), 1023 ~—, left!, n570, y052, andm50.1.
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by sampling at the modulation frequency starting fro
t50 with the modulator phasew fixed at 0.4p.

The stable and unstable fixed points of the Poincare´ map
may be found as the points minimizing the distance betw
the input point and its Poincare´ image.~The fixed point cor-
responding to the nonlasing steady state is found imm
ately, forb50, asu50 andy5y0.! The stable fixed points
can, in fact, be found directly as the attractors of the syst
The identification of the unstable fixed points is aided in t
present work by the targeting method which is describ
below. The initial modulation phase at theQ-switching event
can be tuned so that the system arrives directly at the
quired unstable fixed point and remains there for a relativ
long period of time. In practice a rather simple ‘‘trial an

-

FIG. 2. ~a! The Poincare´ section of the modulated laser syste
prepared just after the first period-doubling bifurcation in the de
ministic case (b50) for w50.4p, v/„n(y021)…1/251.9. The
other parameters are as in Fig. 1. Curve 1 is the outset of nonla
steady state (u50, y5y0). Curves 2 and 28 are the insets of the
unstableT-periodic cycle. The thick line corresponds to the outs
of the unstableT-periodic cycle terminating at two stable 2T cycle
@see also~b!#. The intersection points of curve 1 and curves 2 a
28 are shown by the small black circles, and correspond to
actual turn-on trajectory with the initial condition
@u(0)510210, y(0)5y0# during the course of the targeting pro
cess.~b! Expanded version of~a!. The dotted line corresponds t
the outset of theT-periodic cycle terminating at two stable 2T
cycles@the thick line in~a!#.
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55 2429EFFECTS OF NOISE ON THE TURN-ON DYNAMICS OF . . .
error’’ method based on this procedure was successfully
plied in this work. Then stable and unstable manifolds
calculated by taking sets of initial conditions along the eig
directions of the linearized map near the unstable fixed po
and propagating these sets backward and forward in time
the case of a nonlasing fixed point it is reasonable to cho
this initial set of points as being uniformly distributed ov
the so-calledT segment of the unstable manifold. Here t
T segment is defined as a segment of the manifold wh
ends are the sequential iterates of the Poincare´ map, i.e., they
are mapped into each other at every modulation periodT.
Use is also made below of the terms ‘‘insets’’ and ‘‘outset
which, as defined in@14#, refer to trajectories which are as
ymptotic to a saddle point: the insets are asymptotic
t→` and the outsets are asymptotic ast→2`. Insets~out-
sets! correspond to incoming~outgoing! eigenvectors with
negative~positive! eigenvalues.

The key elements of the Poincare´ section under consider
ation are the unstable saddleT-periodic orbit (T52p/v)
and its insets Fig. 2~a! ~curves 2 and 28) which are infinitely
spiraling out backward in time forming a ‘‘swan’s head
The insets serve as separatrixes and determine which o
two antiphased 2T-periodic attractors will be reached star
ing from the given initial conditions. Figure 2~a! also depicts
the outset of the nonlasing saddle point~curve 1! and the
outsets of the unstable saddleT-periodic orbit which termi-
nate at the only 2T-periodic attractors in this setting@the
thick line in Fig. 2~a! which is shown as the dotted line in th
expanded Fig. 2~b!#. When the stroboscopic view is taken
a different time ~or, equivalently, modulator phase!, the
whole picture~except the nonlasing state and its manifold!
rotates in the (u,y) frame. In Fig. 2 the phase of modulato
has been deliberately chosen to make the separatrix 28 pass
through the assumed initial point (u510210 and y5y0). In
this case the system is ‘‘confused:’’ it must follow the outs
of the nonlasing steady state~curve 1!, and, on the other
hand, the inset 28 which leads eventually to the unstab
orbit. A compromise in fact is readily available, taking in
account the stroboscopic nature of the Poincare´ section: an
actual trajectory of laser turn-on follows all the points
intersection of curves 2, 28, and 1@the sequential iterates ar
marked by small black circles in Fig. 2~a!# and passes
through the unstableT-periodic orbit.

Generally, the dynamics of the bifurcating system is d
termined by the presence of the unstable orbits and the
havior of their invariant manifolds. This behavior is go
erned by simple rules which are based on the fundame
theorem of existence and uniqueness of the solution o
ordinary differential equation under given initial condition
In particular, only manifolds belonging to different sadd
points which are opposite in respect of stability are allow
to intersect each other transversally in our heteroclinic
ting. In our case, for instance, intersections of curve 1 a
curves 2 and 28 are allowed, but intersections of curve 1 wi
the outset of theT-periodic cycle@the thick line in Fig. 2~a!
and the dotted line in the expanded Fig. 2~b!# are prohibited.
As a consequence, curves 2 and 28 intersect the outset of th
nonlasing state an infinite number of times ast→2`, ap-
proaching its stable manifold tangentially and forming
densely packed heteroclinic structure. In turn, the outse
the nonlasing state~curve 1! behaves similarly—spiraling
p-
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down to the unstable manifold of theT-periodic cycle and
approaching it tangentially ast→1`.

In Fig. 2 the simplest nondegenerate case of mutual
havior of the separatrix and the outset of the nonlasing s
is shown, when only one intersection at theT-segment takes
place (v51.9v rel). Here, as noted above, theT segment
means a segment of the manifold~curve 1! whose ends are
mapped into each other in the modulation periodT. In the
general case, due to the additional separatrix foldings in
vicinity of the bifurcation point, the intersections at theT
segment are multiple. In the particular case of degener
the additional folding just touches curve 1 tangentially. T
specific pattern of the behavior of the manifolds in the Po
carésection is completely defined by the number and type
attractors and repellers in the system for the given par
eters. It has been shown through a systematic study of
parameter range where these patterns take place@6# that the
simplest picture~only one intersection! is observed almos
exactly at double the nonlinear resonanc
v/$v(y021)%1/251.9. As the modulation frequency is de
tuned and approaches the inverse period-doubling bifu
tion point @cf. Fig. 1: $v/v(y021)%1/252.07# the picture is
complicated due to extra intersections arising in pairs w
additional foldings—up to five crossings were found in@6#.
It may further be speculated that the number of intersec
points approaches infinity as the control parameter
proaches the bifurcation point. The basis of such a conjec
is the observation that close to the bifurcation point tw
2T-periodic attractors and the unstableT-periodic orbit are
about to emerge. As such, it can be anticipated that a
inaccuracy in initial conditions can lead to different period
orbits—a condition which could be possible only in the ca
where the separatrix experiences more foldings near the
furcation point. The proof of this conjecture represents
challenging mathematical problem. Alternatively confirm
tion of the conjecture can be sought via numerical simu
tions. It is noted, however, that due to the effects of critic
slowing down near the bifurcation point this would requi
rather extensive computations. As such, it is not possible
indicatea priori precisely how many separatrix foldings o
cur for arbitrary parameter values.

Targeting the unstable T-periodic orbit. The special val-
ues of the modulator phase when the laser goes through
unstableT-periodic orbit during the course of the transie
can be called the targeting phases, and might be consid
as a way of preparing the system in the unstable state be
applying one of the recently developed schemes of feedb
monitored control@15#. In the deterministic situation the re
laxation time~the duration of the transient! diverges at the
targeting phases, because in the absence of noise the sy
might become trapped in the unstable orbit for quite a lo
time, notwithstanding inevitable numerical noise. The to
number of such phase values in the interval@0,2p# is odd in
the nondegenerate case and depends on the location o
control parameter relative to the period-doubling bifurcati
boundaries. In practice the phase values are easy to fin
continuously sweeping the modulator phase over an inte
2p and looking at the relaxation time to the fin
2T-periodic attractors. Obviously, such dependencies of
relaxation time versus modulator phase should reveal a st
ture consisting of sharp peaks at the targeting phases
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FIG. 3. The transient time vs the modulator phase: deterministic case~no Langevin noise! ~solid lines!, spontaneous Langevin term
included~points!; variance of the transient time:~a! dash-dotted,~b!–~d! dashed curves. Spontaneous emission factor:b510210 ~a! and~d!,
1028 ~b!, 1026 ~c!; v/„n(y021)…1/252 ~a!–~c!, and 1.95~d!. Other parameters are as in Fig. 1. The bottom and top plots in~a! are taken
with the criterion forTtr to be 0.1 and 0.0001, correspondingly.
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broadened peaks in degeneracy, when the separatrix fol
just approaches the initial point tangentially.

Examples of such patterns are presented in Figs. 3~a!–
3~d! by solid lines for different spontaneous determinis
terms and modulation frequencies. The transient timeTtr has
been defined as the time of settling down to the fi
2T-period regime with a prescribed accuracy. This me
that the integration was performed until the envelope of
2T-periodic solution was conserved with this accura
More precisely, use was first of all made of th
criteria uu(t)2u(t22T)u/u(t),1024, uu(t)2u(t2T)u/
u(t)@1024, wheret is when the maximum ofu appears
@Fig. 3~a!, top dependencies#. The second inequality guaran
tees that the integration does not stop at targeting value
phase, when the long-lived patterns ofT-periodic regimes
might be observed in transients. However, it is obvious t
such a criterion cannot be universal as soon as noise is
cluded in the calculations, because then the laser output
tuates even in the steady state, albeit much less than du
the transients. For the noise strengths used in this pape~up
to b>1024) we have found that using a tolerance of 1021 in
the criteria to be quite adequate in all circumstances. As
be seen from comparison of the top and the bottom dep
dencies in Fig. 3~a!, which are calculated with these tw
different criteria~hereb510210), some subtle details like
narrow dips are lost in this way. However, the main con
quence of relaxing the criteria is merely to cause a glo
ng

l
s
e
.

of
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downward shift of all the curves. The narrow dips them
selves corresponds to the fast manifolds of the 2T-periodic
attractors, and are not related directly to the targeting pha
At this point it is noted that deterministic calculations wi
high resolution in phase give ‘‘fingerprints’’ of all the im
portant geometrical features of the Poincare´ section, includ-
ing the number and kind of unstable orbits and anisotropy
the phase space~in terms of the fast and slow manifolds!,
and may be used as an alternative tool in exploring the n
linear dynamics of similar systems.

The heights of deterministic peaks at the targeting pha
are in principle infinite: in Figs. 3~a!–3~d! their heights are
limited simply by the finite resolution in phase—taken to
0.01p. In Figs. 3~a!–3~c! the modulation frequency
v52v rel allows three peaks to be observed. Two peaks
the right side merge into one atv51.95v rel ~degenerate
case!, as shown in Fig. 3~d!. Upon further reduction of the
modulation frequency this peak is broadened, and evo
into one with a finite amplitude corresponding to the vicin
of the separatrix folding. The most striking feature of the
dependencies is their self-similarity for different averag
spontaneous contribution~under otherwise identical condi
tions!, as can be seen from comparison of Figs. 3~a!–3~c!. To
illustrate this point in more detail, we have plotted the pha
of the maxima’s positions as a function of log10b in Fig. 4. It
can be seen that in a huge range ofb all three peaks move
almost linearly with log10b, and the distances between the
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55 2431EFFECTS OF NOISE ON THE TURN-ON DYNAMICS OF . . .
also being conserved. This indicates some common unde
ing mechanism.

The explanation of this linear law is essentially based
the linear theory of relaxation from the nonlasing point a
signifies little more than the dependence of the timing~or
phase! on the initial intensity for lasing which is itself pro
portional tob. Indeed, to reach the targeting regime we m
either vary the phase for the given initial conditions or,
ternatively, change the initial intensity for fixed phase~cf.
Fig. 2! varying b or k and advancing along the unstab
manifold of the off-state to the next point of intersection w
the stable manifold of the unstableT-periodic fixed point. In
the linear regime (u<0.1) the increase in the initial intensit
u(0)@u(0)5by0 /(k2y0)# is prescribed via

u~T!5u~0! exp~gT!, ~9!

whereg5v(y021) is the net gain over the modulation p
riod T. On the other hand, the targeting phases which di
by 2p correspond to successive intersections of curve 1 w
curves 2 and 28, and are ends of theT segment whose in
tensities are also given via Eq.~9!. Thus the 2p change in
phase is equivalent to a change of initial intensity by
factor exp(gT). Therefore it is possible to write the map

u2~0!5u1~0!egT, w25w111, ~10!

where the phase is normalized to 2p. Assuming the linear
dependence

wmax5A log10„by0 /~k2y0!…1B, ~11!

we obtain

A5v/„2p log10~e!n~y021!…, ~12!

which fits very well to the observed linear law (k54) in Fig.
4 ~the lines are the best fits of the analytical linear dep
dence to the data shown by points withB;1). More detailed
calculations will be presented elsewhere@16# to take into
accountT-periodical oscillations of the outset 1 with chan

FIG. 4. The targeting phases@maximum in Figs. 3~a!– 3~c!# vs
the spontaneous factorb on a decimal semilogarithmic scale. Th
straight lines are the best fits of the analytical estimate@Eq. ~11!# to
the numerical data.
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ing w and more accurate calculations of the eigenvalues
eigenvectors of the laser off-state.

B. Stochastic case

Spontaneous noise and universality of statistics. In this
section we describe simulations of the full stochastic Eqs.~6!
and ~7! performed with a spontaneous Langevin term
cluded, and with population noise first of all taken to be ze
Simulations have been performed using the algorithm
scribed in@17#, and with an integration step of 331025 in
normalized timet. All results were averaged over 400 rea
izations. The results of calculations of the mean transi
time value^Ttr&, and its variances5(^Ttr

2&2^Ttr&
2)1/2, as a

function of the modulator phasew are presented in Figs
3~a!–3~d! by points and dashed lines, respectively. As can
seen from these figures, the effect of spontaneous nois
the process of targeting the unstableT-periodic orbit is two-
fold. First, as might be anticipated, the random Lange
term makes phase switchings possible even at some ‘‘de
ing’’ from the exact targeting values of the modulator pha
and, on the other hand, it diverts a trajectory from a target
path when accurately tuning to these phases, thus leadin
smearing of the sharp targeting peaks in the^Ttr& versusw
dependencies. In fact, rare events of noise-induced swi
ings between the antiphased 2T-periodic attractors are ob
served even in quiet regimes, i.e., far enough from the
geting phases.

The second visible effect of spontaneous noise is a m
pronounced suppression of the middle targeting peak, wh
is explained by nature of this peak which arises as a con
quence of the separatrix folding and tendings to merge w
the third peak. Figure 3~d!, taken at a smaller modulatio
frequencyv, demonstrates this nearly degenerate case m
explicitly: here the same dependencies^Ttr& versusw calcu-
lated with noise consists only of two peaks. It should
noted, that in patterns with an odd total number of pea
~nondegenerate case! the 2T-periodic regimes in the differ-
ent valleys between targeting peaks differ in phase byp.
This implies that when one of the peaks disappears dyna
cally or is smeared out statistically, frequent up and do
p phase changes may be induced. The latter is consis
with the recently reported@18# experimental observations o
random phase switchings between different 2-periodic
gimes in a CO2 laser with loss modulation. In general,
seems that the first~left-hand-side! peak, which originates in
the basic transversal crossing the separatrix by the in
point, is most robust to the influence of noise: it supports
same phase maximum as in the deterministic limit, and
quite a smooth shape under conditions of statistical ave
ing ~400 trajectories!. Its position in the phase interva
@0;2p# also scales with the noise strength in good agr
ment with the linear law in Fig. 4. The scaling of the tw
right-hand-sided peaks is not as good, thus implying that
them nonlinear effects are more important.

The corresponding variance of the mean transient t
s5(^Ttr

2&2^Ttr&
2)1/2 is also shown at the bottom of Figs

3~a!–3~d!. It can be seen that the variance is dramatica
increased in the domain of peak crowding, in fact by mo
than one order of magnitude. Obviously, the reason is a la
dispersion of possible relaxation times near the targeting
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ues of the modulator phase, therefore the maximal varia
values correlated with targeting phases. The variances ca
lated with different criteria of reaching the final regime,
has been discussed above, are shown at the very botto
Fig. 3. They practically coincide with each other thus in
cating that the coarsening of the criteria is analogous t
purely deterministic rescaling of transient time.

The universality of dependencies obtained at differ
noise strengths appears to be more interesting. The supe
posed results of botĥTtr& versusw ands versusw nearly
coincide, despite having noise strengths which differ by s
eral orders of magnitude@the calculations in Figs. 3~c!–3~a!
are given forb51026, 1028, and 10210, respectively#. This
means that to first approximation the statistics of such a n
linear stage of laser turn-on do not depend on the noise
els, so that even in the limitb→0 the same spread of targe
ing peaks might be anticipated. The qualitative explanat
of this effect is rooted again in the self-similarity of the he
eroclinic structure discussed in Sec. III A. As the sponta
ous background which initiates laser action tends to zero,
dispersion of the initial conditions correspondingly d
creases, but due to the infinitely dense heteroclinic struc
the reduced noisy initial cloud effectively covers the sa
number of the heteroclinic crossings, and essentially
same statistics are obtained. Similarly, negligibly small no
may cause a macroscopic effect ofp phase slipping of the
final 2T-periodic attractor, while the transient trajectory a
proaches the unstableT-periodic state in the second region
the heteroclinic structure@near the thick line in Fig. 2~a!#.

Highest passage time distributions. Following the pio-
neering work by Arecchi and Politi@19# the method of the
first passage time~FPT!, has been widely used in studies
laser switch-on statistics. In a laser the passage time is
fined as the time needed to build up intensity to a prefix
level starting from the instant of laser turn-on, and may
identified with the lifetime of the initial unstable state. Th
width of the FPT distribution gives a value of jitter in a lase
which is of paramount importance in optical communicatio
applications. However, the FPT technique describes the
first linear regime of laser amplification. Therefore, in th
paper we focus on the highest passage time~HPT! distribu-
tions to explore the nonlinear regime of the noisy laser. T
highest passage time may be defined similarly as the t
needed for a laser to reach the preassigned value of inte
for a second, third time, and so on. The only additional c
dition is to attach this definition to a leading edge of t
pulses. Such an approach is especially useful in the cas
modulated lasers. In the case of simple relaxation oscillati
~the prefixed value then is just the steady state! the HPT
distributions are progressively broadened functions reflec
the fact of rising multiple nonlocked random responses at
relaxation frequency as the intensity approaches the ste
state. In a nonbifurcating laser the situation is better: exte
modulation locks the relaxation oscillations in stationa
modulation regimes, and therefore the width of the high p
sage time distribution is quite narrow. However, if the mod
lation frequency does not match the relaxation one, the p
cess of lock-in takes some time, resulting in lar
fluctuations in the intermediate transient. In particular,
such a setting, we observed the second pulse jitter to
significantly larger than that of the first giant pulse.
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In Figs. 5~a! and 5~b!, we present the first four passag
time distribution functions for a ‘‘silent’’ phase ofQ switch-
ing, i.e., far enough from the region of the targeting pea
crowding (w/2p50.6) and for a ‘‘noisy’’ phase taken at th
left slope of the first targeting peak in Fig. 3~a!
(w/2p50.08), respectively. The prefixed level has be
chosen to beu51.63. In the former case the distribution
behave classically: the most severe fluctuations take plac
the very beginning of transients, producing large jitter for t
first pulse, then the width of distributions are quickly na
rowed, signaling the decay of anomalous transient fluct
tions. The corresponding intensity traces in time are sho
in Fig. 6~a!. Conversely, in the latter case@Fig. 5~b!# the
highest passage time distribution become progressiv
double-peak shaped. The typical time traces of transients
such double-peak HPT arrangement is depicted in Fig. 6~b!,
and clearly shows that the origin of the double-peak shap
the third passage time is the trajectory’s phase slipping
p near the separatrix, whereas the asymmetrical broade
of the second passage time distribution originates in the
tial phase slipping at the fast manifold of the attracti
2T-periodic regime@cf. dips in the deterministic top depen
dencê Ttr& versusw in Fig. 3~a!#. The important property of
the HPT distributions is the fact that all of them, startin
from the third one, are symmetrical in the exact target
phases, and invert the kind of symmetry upon crossing
value of the phase, while the FPT distribution remains nea
intact. The nature of the asymmetrical broadening of the s

FIG. 5. First four passage time distribution functions for t
modulator phase 0.632p ~a! and 0.0832p ~b!. All other param-
eters are as in Fig. 3~a!.
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ond passage time distribution function is defined by the
manifolds located between first and second targeting pe
so it changes its symmetry and location of maximum@com-
pare Figs. 5~a! and 5~b!# at the midpoint between thes
peaks, or more precisely, between the two dips seen in
3~a! ~solid line!. Thus the symmetry and double structure
the HPT distributions reflects the structure of the Poinc´
section of the underlying dynamical system. As a final po
we also observe a nearly linear~and opposite in sign! depen-
dence of the maximal intensities of the first pulses on
corresponding first passage time. This is simply attributed
the fact that during the first passage time the cavity los
rise as cos(0.632p1vt) in Fig. 6~a!, and fall as
cos(0.0832p1vt) in Fig. 6~b!, so, correspondingly, the
later the giant pulse is built up the worse~the better! is the
relation between losses and gain.

Influence of pump noise. We have also performed a few
preliminary simulations with the pump Langevin noise i
cluded, and describe the results for the sake of completen
In a real experimental situation the spontaneous emis
contribution to the population noise is normally negligible
comparison with other noise sources, so we adopt here
data of Giofiniet al. @20#, yielding the estimate for the nois
strength termd52.531025. The spontaneous noise streng
has been chosen to beb51028 andh52 ~two-level model!.
In spite of such a huge different it has been found that
population noise alone leads only to a very slight smear
of the targeting peaks, and being taken in combination w
the spontaneous noise emission does not produce any s

FIG. 6. Representative transient laser intensities vs time co
sponding to Figs. 5~a! and 5~b!.
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tically meaningful changes of the targeting peaks widths a
heights. The explanation for this is that population noise a
mainly along the stable manifold of a laser offset, and a
perturbations of this manifold tend to decay, whereas a
tiny perturbations along the unstable outset are amplified
approximatelyegT>1012 times during only one period o
modulation. The presence of the heteroclinic structure d
not change the situation significantly, at least near regu
targeting peaks. Curves 2 and 28 of Fig. 2 approach the
stable manifold of the laser off-state nearly tangently, so
population noise does not cause their crossing. We obse
however, that in special case of degeneracy, when one o
curves 2 or 28 tangentially touches the outset, the pictu
inverts. Now the spontaneous noise acts tangentially to
separatrix, but the population noise acts transversally. A
result, the population noise contributes to the broadening
these degenerate peaks significantly. More detailed res
will be reported elsewhere@21#.

IV. DISCUSSION

The above obtained scaling law and the universality of
turn-on statistics~i.e., ^Ttr& versusw dependencies! are by no
means unique in such studies: it is well known, e.g., that
first passage time in class-A lasers scales logarithmic
with the spontaneous emission noise, while its dispers
~jitter! remains independent of the noise strength@4#. But, as
has already been mentioned, the first passage time techn
is most useful in studies of the very first stage of laser a
plification, while in this paper attention is given to a who
range of a transient process in a bifurcating laser where n
effects are also very important. The dynamics characteri
here is, moreover, in a strongly nonlinear regime. Such te
as the total transient time, targeting phases, or heteroc
intersection cannot even be defined in the linear limit. No
theless, the scaling law obtained is well described by a lin
mapping. Application of the HPT technique proved to pr
vide much more information about turn-on statistics than j
using single FPT. The appearance of interesting feature
the HP statistics, namely, the double-peak structure of dif
ent origin, seems not to have been observed previou
Two-peaked distributions of the FPT distribution reported
far in a single-mode CO2 laser@20#, two-mode dye@22#, and
semiconductor lasers@23# modulated at the GHz rate, wer
observed either due to the special initial setting near
threshold value or correlation between two modes or t
successive pulses.

The obtained regularities ofQ switchings suggest tha
there is considerable scope for experiments in this field.
instance, from Eqs.~8! and ~11! it is seen that the targeting
peak location is a linear function of the logarithm of th
hold-off ratio k. This latter parameter may be readily tune
experimentally, so that experimental confirmation of the p
dicted scaling is technically possible. The resolution of su
a scheme would be limited by the factor of statistical spre
ing of the targeting peaks. In this respect the symmetry pr
erties of the highest passage time statistics may be a pos
alternative method of measurement of the location of targ
ing peaks. Further, with the scheme presented, some no
able aspects of practical relevance might be examines s
as the detection of weak injected signals. The HPT distri

e-
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tions near the targeting peaks are expected to be extre
sensitive to such weak signals, suggesting that previous
sitivity gained on the basis of the FPT may be improved.
far as the targeting itself is concerned in the context of p
sible application in laser chaos control schemes, the sta
cal spread of the targeting phases, of course, hinders its
ficiency, although it is still possible in the statistical sen
i.e., with repeated trials, or with use of an external sig
which normally makes the statistical spread narrower. Du
the strong foldings of the separatrix just above the peri
doubling bifurcation, the probability distributions for th
highest passage times becomes progressively two pe
shaped, so that the system behaves statistically even
very small driven noise. This explains the recently repor
experimental observations of random phase switchings
tween different 2-periodic regimes in a CO2 laser with loss
modulation@18#. Finally, we wish to emphasize that simila
effects also seem to occur under gain switching, e.g., in la
diodes@24#.

V. CONCLUSION

We investigated the influence of intrinsic laser noise
recently proposed schemes for targeting laser dynamic
unstable periodic orbits by means ofQ switching of class-B
lasers. Several interesting features of turn-on statistics
such a nonlinear regime have been found, including sca
tt

h
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of targeting peaks locations with the strength of the spon
neous emission noise, and the universality of the trans
time statistics, i.e., their essential independence of
strength of noise and double-peaked structure of the hig
passage times distribution functions with their underlyi
symmetry properties. The noise has been found to ca
much more frequent phase switching in comparison with
deterministic case with possible detrimental effects on
use of this particular scheme in chaos control techniques
practical schemes the statistical spread of the targe
phases may, however, be reduced by injecting an exte
signal.
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