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Effects of noise on the turn-on dynamics of a modulated class-B laser
in the generalized multistability domain
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We have investigated the influence of intrinsic laser noise on recently proposed schemes for targeting laser
dynamics to unstable periodic orbits by meanfaswitching of modulated class-B lasers. Several interesting
features of turn-on statistics in such a nonlinear regime have been found, including scaling of targeting peaks
location with the strength of the spontaneous emission noise and universality of the transient time statistics,
i.e., their essential independence of the strength of noise. The concept of the highest passage times has been
introduced and their distribution functions double-peaked structure with the underlying symmetry properties
has been revealed and explained. The noise has been found to cause much more frequent phase switching in
comparison with the deterministic case with possible detrimental effects on the use of this particular scheme in
chaos control techniquepS1050-294{®@7)09003-3

PACS numbds): 42.55—f

[. INTRODUCTION material relaxation times. For class-B lasers, the dephasing
time of the active material dipole moment is much shorter
Transient statistics of a laser switch-on have been a suthan both the cavity photon lifetime and the population in-
ject of intense studies since the advent of the IgsprFrom  version decay time, so that the polarization of the active
a fundamental point of view such investigations give insightmedium adiabatically follows the cavity field and may be
into the basic processes triggered by quantum noise in ma@]|m|nated from Cons|derat|0n. Most SO“d'State |aserS, semil-
roscopic nonequilibrium systems. In applications, the turn-orfonductor lasers, and certain molecular laserg., CQ,)
delay jitter caused by spontaneous emission plays a signifRélong to this class. The general property of class-B lasers
cant role in determining optical communication system perdistinguishing them from class-A lasefide-Ne, Ar, dyg is
formance, and has been investigated both experimengilly that they readily exhibit relaxation oscillations lending them-
using numerical simulations3] and also analytical methods selves for modulat|on. Th|§ is why under moderate strength
[4]. However, the results reported so far in literatysee of modulation the o!ynamlcal response Of. such Ias_ers be_z-
eg’ the revi;aw by San MiguéH] of the situation in th’e comes strongly nonlinear, and the lasers display a rich vari-
field) have dealt mainly with dynamics only near the Iasinthy of nonlinear phenomena, ranging from bistability to the

. : ~ “period-doubling route to chaos, as has been shown in great
threshold, or from the point of view of the general dynamlcaldetail both theoretically and experimentallgee, e.g.]8]

system theory, the first laser instability, whereas in the laser, 4 roferences therdinin what follows, we consideQ

as a typical nonlinear dynamical system, the full hierarchy ofyitchings of a single mode class-B laser with sinusoidally
instabilities, including different bifurcating routes to chaos, yodulated cavity losses with a control parameter set just
have been found to exif5]. For a bifurcating laser the phase apove the first period-doubling bifurcation taking into ac-
space is more complicated, and a trajectory may pass negpunt intrinsic noise. As only intensity transient statistics are
one of the unstable orbits during the course of relaxatiorf interest, no explicit treatment of the phase of the laser
from the nonlasing unstable state and thus significant modifield is required here.
fication of turn-on statistics might be anticipated. In an ear-
lier paper[6], using fully deterministic numerical simula-
tions of aQ-switched class-B laser with modulated losses or
a saturable absorber, the possibility of steering dynamics to The effects of spontaneous emission and pump noises on
unstable lasing states during transient processes has be#me class-B laser dynamics can be well described in the
shown. Nonetheless, transient statistics of laser dynamidsamework of the Langevin formulation of the coupled cav-
from the off-state to one of the attractors in the generalizedty and atomic rate equations for the number of photons
multistability domain or the period-doubling regime have notand inversion populatiotN=N,—N; of the lasing pair of
yet been studied theoretically in any detail. That is the aim ofevels[9]
the present paper.

The classification of lasers A, B, and C was introduced in dn/dt=(KN— y(t))n+Rgt+ Fp(t), (1)
Ref.[7] and is based on relations between cavity and active

Il. MODEL

*On leave from Institute of Physics, Academy of Sciences, 7owhere K is the field-matter coupling constant, is the
Skarina Avenue, Minsk 220072, Belarus. pumping rate, andy, is the population decay rate. The pa-
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rametery accounts for two possible modification of the rate ized to describe the dynamics of a specific laser quantita-
equations: in the case of a two-level system, with a fixedively; nevertheless, it gives a fairly good approximation in
total population N,+N;=Ng), 7=2;inthe case of a four- many cases when the dimensionless parameters have been
level system(with the lower-level depopulation rate being chosen to match experimental results, e.g., relaxation oscil-
sufficiently fast so thaN;=0 andN=N, under all circum- lation frequency and their decay times. The paramgteray
stancep 7= 1. The photon cavity decay rate is taken in thebe estimated by fitting an experimental laser output-pump
form y.(t) = 'y(cz)(k(t)+m CoS(nt+¢)), wherem, g, and characteristic to the steady-state solution of E§sand (7)

¢ are the modulation depth, frequency, and arbitrary phasdor the unmodulated casem=0) with =1 and constant
andk(t) accounts for sudde® switching at the moment of cavity losses,

time t=0, being equal to the hold-off ratio= y{}/y{¥>1

for t<0, and 1 otherwise. The influence of spontaneous U= [Yo— K+ ((Yo— k)2 +4KByo) /2K 8
emission is taken into account by the average rate term

Rep=BYradN2, (3)  In the following, unless otherwise stated, we do not restrict

ourselves to any specific choice of laser paramdierpar-

which yields the mean power spontaneously emitted into théicular 3, which may be varied from 10 for bulk lasers up
lasing mode, and the corresponding Langevin force, whiclo nearly 1 for the recently developed microcavity semicon-

describes the fluctuations of this mean power: ductor lasersbut rather, using the given dimensionless pa-
2 rameters, we illustrate the general tendency in nonlinear dy-
Fn(t)=(2Rspn) (1) namics as the noise strength progressively increases. Finally,

we observe that the simplest model of a laser digdéhout
taking into account gain saturation effects, the linewidth en-
— St _ hancement factor, elcis isomorphic to Egs(6) and(7), so
(£(&(s))=4(t—s) and (£(1))=0, @ the results obtained in this consideration may be applicable

where y,,4 is the radiative decay rate from the upper level, {0 their dynamics as well.

and g is the spontaneous emission factor specifying the frac-

tion of the total spontaneous emission, which is coupled to Il RESULTS

an individual cavity mode. In the population equation the '

stochastic term In all calculations reported below we have chosen param-

etersy,=2 and v=70, which reflects a common case for

Ru(h) =(R)M (1) class-B lasers, when the laser is assumed to be pumped at

twice threshold and only a few spikes are observed in relax-

ation oscillations toward a steady state. The modulation

strength is assumed to have been set to the value that ensures

the period-doubling regime. A quite accurate estimate for the

accounts for several different sourdesg., density and tem- '0Wer threshold of a periOd-dtl)/lélbling bifurcation in the sys-
perature fluctuations in an active medium which are usuallyeM &t @=2wwe=2(v(yo—1))"* can be obtained from a
dominant over quantum shot nojsend which will be treated Floquet_stability analysig[10] _yleldlng my,=3yo/v for
phenomenologically when required. The zero-mean Gausdsp=0- FOryo=2, »=70 this givesm;,= 7. In the present
ian noisesé(t) andZ(t) are assumed to be mutually uncor- calculations we have fixed the modulation depth comfortably

- - _ 6 .
related. Having rescaled variables as follows=N/N,, above this threshold takingn=0.1>7, and varying o
—KN/¥?, u=n/ng=7Knly,, 7=y,t—and assuming slightly around 2. The hold-off ratiok is taken to be 4,
c ’ - -
for simplicity y,.4= v», it is possible to reduce Eqél) and S0 for_a smallg and 7.7_1. Eq.(8) gives the stationary laser
(2) to the dimensioniess forms intensity beforeQ switchingug= 8, andyg=2(1— ). For
the nonmodulated case it is easily checked that below thresh-

with

with

({(L(s))=46(t=s) and ({(1))=0 ©)

du/dr=v(y—Kk(7)=m cofwT+ @))u+rg, old the stochastic equation for the laser field can be treated as
a linear complex Ornstein-Ulenbeck process yielding the ex-
+(2r ) M2 (t), (6)  ponential probability density distribution for intensity in a
steady stateP,=(u)lexp(—u/(u)) with a second moment
dy/dr=yo—(1+u)y+(8) (1), (M (u?)—(u)?2=(u)? [11]. Furthermore, it is found, using stan-

dard techniquefl2], that in the small-signal modulation re-
where our parameters are given by=y?/y,, Yo  gime considered here the exponential distribution is main-
=Krp/(¥Py2), 0=wnly2,6=(RIv)K¥(¥P), andrg, tained(albeit with a slight change in the average valugn
=pPy in the case of a four-level system with a fast lower event of laseQ switching is modeled by numerical solution
lasing level, andrg,=vB(y+ KNo/y$?) in the case of a of the stochastic Eq$6) and(7) with the deterministic initial
two-level system with a fixed total populatid,. conditionsu(7<<0)=p, y(7<0)=2(1-p), which corre-

It can be seen that the normalized equations contain fewespond to the average number of spontaneous photons and
parameters than the original ones. This gives relative fregpopulation inversion in the laser off-state. Thus, at the mo-
dom in referring the results obtained to specific lasers. Thenent of Q switching, 7=0, there already exist “random-
dimensionless form of the rate equations is useful also irized” variablesu andy with corresponding rms deviations
another respect: the modél)—(2) is, in general, too ideal- B and 28. So the actual build-up laser intensity is initialized
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FIG. 1. First period-doubling bifurcation diagram for spontane- ;
ous emission factor3=0 (—, right), 10°* (¢), 5x1074
(+), 1078 (—, left), v=70, y,=2, andm=0.1.

from the noisy cloud centered at the stationary point, and of
a radius of approximately.

Inasmuch as the initial conditions have been chosen near
their average values in the nonlasing regime, the duration of
the “thermalization” stage is quite short and may be taken
as a few periods of modulation. It should be pointed out that 1|
in the deterministic simulationsr {;=0)du/d7=0, when-
everu(0)=0, therefore lasing is not possible without some
initial seeding. The influence of a nonzero spontaneous emis-
sion termrg,=vBy is known to be capable of shifting the
whole bifurcation diagram slightly to higher values of the 10— 045 0.50 055 060 0.65
modulation index, primarily due to the extra damping of re- Population Inversion

laxation OSCI||a.tIOI"IS and ”."'a"'”g the laser Toda potential FIG. 2. (a) The Poincaresection of the modulated laser system
more §ymmetrlca[13]. In Fig. 1 W,e present the results _Of prepared just after the first period-doubling bifurcation in the deter-
nume_rlcal .calcul.auons of such influence on the period-pinistic case B=0) for ¢=0.4m, wl(x(yo—1))¥?=1.9. The
doubling bifurcation for the parameter domain of interest. Itother parameters are as in Fig. 1. Curve 1 is the outset of nonlasing
is seen that the bifurcation is supercritical and almost insensteady statey(=0, y=Y,). Curves 2 and 2 are the insets of the
sitive to the spontaneous contribution up@e=10*; after-  unstableT-periodic cycle. The thick line corresponds to the outsets
wards the effect of the shrinking of the instability starts toof the unstabler-periodic cycle terminating at two stabld Zycle
increase quickly withB. The latter fact explains, for in- [see alsqb)]. The intersection points of curve 1 and curves 2 and
stance, why laser diodgbaving =10 *-10°) normally 2’ are shown by the small black circles, and correspond to the
exhibit only a few period-doubling bifurcations even underactual turn-on trajectory with the initial conditions
strong modulation. [u(0)=10"1° y(0)=vy,] during the course of the targeting pro-
cess.(b) Expanded version ofa). The dotted line corresponds to
the outset of theT-periodic cycle terminating at two stableT2
A. Deterministic case cycles[the thick line in(a)].

Intensity

Poincaresection The dynamical evolution of the laser as
prescribed by Eqg1) and(2) [or in normalized form in Eqs. by sampling at the modulation frequency starting from
(6) and(7)] occurs in a three-dimensional phase space whose=0 with the modulator phase fixed at 0.4r.
coordinates are defined by the photon number, the inversion, The stable and unstable fixed points of the Poincaa®
and time. The dynamics of the system can then be seen asay be found as the points minimizing the distance between
trajectories along the time axis. Understanding of complexthe input point and its Poincaimage.(The fixed point cor-
dynamics in such systems is aided considerably by perfornresponding to the nonlasing steady state is found immedi-
ing a periodical sampling of the phase-space dynamics. lately, for3=0, asu=0 andy=y,.) The stable fixed points
this way a stroboscopic projection of the dynamics onto aan, in fact, be found directly as the attractors of the system.
two-dimensional plane known as a Poincaeetion or Poin-  The identification of the unstable fixed points is aided in the
caremap is obtainefl14]. Such a procedure has been appliedpresent work by the targeting method which is described
here in the vicinity of the first period-doubling bifurcation of below. The initial modulation phase at tReswitching event
the laser dynamics. Poincasections are readily obtained can be tuned so that the system arrives directly at the re-
using standard numerical techniqyiéd]. In Fig. 2, the Poin-  quired unstable fixed point and remains there for a relatively
caresection for the deterministic cas@£0) was obtained long period of time. In practice a rather simple “trial and
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error” method based on this procedure was successfully apdown to the unstable manifold of thE-periodic cycle and
plied in this work. Then stable and unstable manifolds areapproaching it tangentially as— + .
calculated by taking sets of initial conditions along the eigen- In Fig. 2 the simplest nondegenerate case of mutual be-
directions of the linearized map near the unstable fixed pointhavior of the separatrix and the outset of the nonlasing state
and propagating these sets backward and forward in time. I3 shown, when only one intersection at fhesegment takes
the case of a nonlasing fixed point it is reasonable to choosglace =1.9».). Here, as noted above, tHEe segment
this initial set of points as being uniformly distributed over means a segment of the manifacurve 1 whose ends are
the so-calledT segment of the unstable manifold. Here themapped into each other in the modulation periadin the
T segment is defined as a segment of the manifold whosgeneral case, due to the additional separatrix foldings in the
ends are the sequential iterates of the Poinoaap, i.e., they vicinity of the bifurcation point, the intersections at tfie
are mapped into each other at every modulation pefiod segment are multiple. In the particular case of degeneracy,
Use is also made below of the terms “insets” and “outsets” the additional folding just touches curve 1 tangentially. The
which, as defined ifi14], refer to trajectories which are as- specific pattern of the behavior of the manifolds in the Poin-
ymptotic to a saddle point: the insets are asymptotic asaresection is completely defined by the number and type of
7— and the outsets are asymptoticias —. Insets(out-  attractors and repellers in the system for the given param-
set$ correspond to incomingoutgoing eigenvectors with eters. It has been shown through a systematic study of the
negative(positive eigenvalues. parameter range where these patterns take p&iciat the

The key elements of the Poincasection under consider- simplest picture(only one intersectionis observed almost
ation are the unstable saddleperiodic orbit (T=27/w) exactly at double the nonlinear  resonance:
and its insets Fig.(@) (curves 2 and 2 which are infinitely ~ w/{v(yo—1)}*?>=1.9. As the modulation frequency is de-
spiraling out backward in time forming a “swan’s head.” tuned and approaches the inverse period-doubling bifurca-
The insets serve as separatrixes and determine which of thian point[cf. Fig. 1: {w/v(yo— 1)}*?=2.07] the picture is
two antiphased 2-periodic attractors will be reached start- complicated due to extra intersections arising in pairs with
ing from the given initial conditions. Figurg@ also depicts  additional foldings—up to five crossings were found .
the outset of the nonlasing saddle pointrve 1) and the It may further be speculated that the number of intersection
outsets of the unstable saddleperiodic orbit which termi- points approaches infinity as the control parameter ap-
nate at the only Z-periodic attractors in this settinghe  proaches the bifurcation point. The basis of such a conjecture
thick line in Fig. 2a) which is shown as the dotted line in the is the observation that close to the bifurcation point two
expanded Fig. @)]. When the stroboscopic view is taken at 2T-periodic attractors and the unstalfleperiodic orbit are
a different time (or, equivalently, modulator phasethe about to emerge. As such, it can be anticipated that a tiny
whole picture(except the nonlasing state and its manifplds inaccuracy in initial conditions can lead to different period-2
rotates in the @,y) frame. In Fig. 2 the phase of modulator orbits—a condition which could be possible only in the case
has been deliberately chosen to make the separatrpa® where the separatrix experiences more foldings near the bi-
through the assumed initial poini€10™1° and y=y,).In  furcation point. The proof of this conjecture represents a
this case the system is “confused:” it must follow the outsetchallenging mathematical problem. Alternatively confirma-
of the nonlasing steady stateurve 1, and, on the other tion of the conjecture can be sought via numerical simula-
hand, the inset 2 which leads eventually to the unstable tions. It is noted, however, that due to the effects of critical
orbit. A compromise in fact is readily available, taking into slowing down near the bifurcation point this would require
account the stroboscopic nature of the Poincaetion: an  rather extensive computations. As such, it is not possible to
actual trajectory of laser turn-on follows all the points of indicatea priori precisely how many separatrix foldings oc-
intersection of curves 2,’2and 1[the sequential iterates are cur for arbitrary parameter values.
marked by small black circles in Fig.(@] and passes Targeting the unstable T-periodic orbithe special val-
through the unstabl&-periodic orbit. ues of the modulator phase when the laser goes through the

Generally, the dynamics of the bifurcating system is de-unstableT-periodic orbit during the course of the transient
termined by the presence of the unstable orbits and the bean be called the targeting phases, and might be considered
havior of their invariant manifolds. This behavior is gov- as a way of preparing the system in the unstable state before
erned by simple rules which are based on the fundamentapplying one of the recently developed schemes of feedback-
theorem of existence and unigueness of the solution of amonitored contro[15]. In the deterministic situation the re-
ordinary differential equation under given initial conditions. laxation time(the duration of the transientliverges at the
In particular, only manifolds belonging to different saddle targeting phases, because in the absence of noise the system
points which are opposite in respect of stability are allowedmight become trapped in the unstable orbit for quite a long
to intersect each other transversally in our heteroclinic settime, notwithstanding inevitable numerical noise. The total
ting. In our case, for instance, intersections of curve 1 anchumber of such phase values in the intef\@Psr] is odd in
curves 2 and 2are allowed, but intersections of curve 1 with the nondegenerate case and depends on the location of the
the outset of thé-periodic cycle[the thick line in Fig. 2a) control parameter relative to the period-doubling bifurcation
and the dotted line in the expanded Fig¢h)2 are prohibited. boundaries. In practice the phase values are easy to find by
As a consequence, curves 2 ariditersect the outset of the continuously sweeping the modulator phase over an interval
nonlasing state an infinite number of times@as —«, ap- 27 and looking at the relaxation time to the final
proaching its stable manifold tangentially and forming a2T-periodic attractors. Obviously, such dependencies of the
densely packed heteroclinic structure. In turn, the outset ofelaxation time versus modulator phase should reveal a struc-
the nonlasing statécurve ) behaves similarly—spiraling ture consisting of sharp peaks at the targeting phases and
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FIG. 3. The transient time vs the modulator phase: deterministic @@sé&angevin noise(solid lineg, spontaneous Langevin term
included(points; variance of the transient timéa) dash-dotted(b)—(d) dashed curves. Spontaneous emission fagter10™° (a) and(d),
1078 (b), 1076 (0); w/ (¥(yo—1))?=2 (a)—(c), and 1.95(d). Other parameters are as in Fig. 1. The bottom and top plais iare taken
with the criterion forT,, to be 0.1 and 0.0001, correspondingly.

broadened peaks in degeneracy, when the separatrix foldirdpwnward shift of all the curves. The narrow dips them-
just approaches the initial point tangentially. selves corresponds to the fast manifolds of tAeperiodic
Examples of such patterns are presented in Fig@—3 attractors, and are not related directly to the targeting phases.
3(d) by solid lines for different spontaneous deterministicAt this point it is noted that deterministic calculations with
terms and modulation frequencies. The transient fiijpdas  high resolution in phase give “fingerprints” of all the im-
been defined as the time of settling down to the finalportant geometrical features of the Poincaegtion, includ-
2T-period regime with a prescribed accuracy. This meansng the number and kind of unstable orbits and anisotropy of
that the integration was performed until the envelope of thehe phase spacén terms of the fast and slow manifolds
2T-periodic solution was conserved with this accuracy.and may be used as an alternative tool in exploring the non-
More precisely, use was first of all made of the linear dynamics of similar systems.
criteria [u(7)—u(r—2T)|/u(r)<10™4, |u(7)—u(r—T)|/ The heights of deterministic peaks at the targeting phases
u(7)>10"%, where 7 is when the maximum ofi appears are in principle infinite: in Figs. @—-3(d) their heights are
[Fig. 3(a), top dependencig¢sThe second inequality guaran- limited simply by the finite resolution in phase—taken to be
tees that the integration does not stop at targeting values ®&017. In Figs. 3a-3(c) the modulation frequency
phase, when the long-lived patterns Bfperiodic regimes w=2w, allows three peaks to be observed. Two peaks at
might be observed in transients. However, it is obvious thathe right side merge into one aé=1.95w, (degenerate
such a criterion cannot be universal as soon as noise is irtase, as shown in Fig. @)). Upon further reduction of the
cluded in the calculations, because then the laser output fluerodulation frequency this peak is broadened, and evolves
tuates even in the steady state, albeit much less than duririgto one with a finite amplitude corresponding to the vicinity
the transients. For the noise strengths used in this pajper of the separatrix folding. The most striking feature of these
to B=10"*) we have found that using a tolerance of 10n dependencies is their self-similarity for different averaged
the criteria to be quite adequate in all circumstances. As caspontaneous contributiounder otherwise identical condi-
be seen from comparison of the top and the bottom depertions), as can be seen from comparison of Figs)-33(c). To
dencies in Fig. &), which are calculated with these two illustrate this point in more detail, we have plotted the phase
different criteria(here B=10 19, some subtle details like of the maxima’s positions as a function of igg in Fig. 4. It
narrow dips are lost in this way. However, the main conse<an be seen that in a huge rangeféll three peaks move
guence of relaxing the criteria is merely to cause a globahlmost linearly with logy3, and the distances between them
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1 — ; . . - ing ¢ and more accurate calculations of the eigenvalues and
e eigenvectors of the laser off-state.

08 -

os | e . B. Stochastic case

ﬂ Spontaneous noise and universality of statisticsthis
e | section we describe simulations of the full stochastic Egjs.
and (7) performed with a spontaneous Langevin term in-
| cluded, and with population noise first of all taken to be zero.
Simulations have been performed using the algorithm de-
- scribed in[17], and with an integration step of>310° in
et | normalized timer. All results were averaged over 400 real-
g izations. The results of calculations of the mean transient
P - - - - - . time value(T,), and its variancer= ((T2)—(T,)?)*? as a
™ " avlfacep sponTanEoUS EMsSION * log,,8 function of the modulator phase are presented in Figs.
3(a)—3(d) by points and dashed lines, respectively. As can be
FIG. 4. The targeting phas¢siaximum in Figs. 8- 30]vs  seen from these figures, the effect of spontaneous noise on
the spontaneous factg@ on a decimal semilogarithmic scale. The the process of targeting the unstafigeriodic orbit is two-
straight Iin_es are the best fits of the analytical estinigte (11)] to fold. First, as might be anticipated, the random Langevin
the numerical data. term makes phase switchings possible even at some “detun-
) o ing” from the exact targeting values of the modulator phase,
also being conserved. This indicates some common underlyng, on the other hand, it diverts a trajectory from a targeting
ing mechanism. o , _ path when accurately tuning to these phases, thus leading to
The explanation of this linear law is essentially based Olkmearing of the sharp targeting peaks in {fig) versuse
the linear theory of relaxation from the nonlasing point andyependencies. In fact, rare events of noise-induced switch-
signifies little more than the dependence of the timing  jngs phetween the antiphased -periodic attractors are ob-
phasg on the initial intensity for lasing which is itself pro- ¢qred even in quiet regimes, i.e., far enough from the tar-
portional toB. Indeed, to reach the targeting regime we MaYgyeting phases.
either vary the phase for the given initial conditions or, al-= The second visible effect of spontaneous noise is a more
ternatively, change the initial intensity for fixed pha®®.  nronounced suppression of the middle targeting peak, which
Fig. 2) varying g or k and advancing along the unstable js explained by nature of this peak which arises as a conse-
manifold of the off-state to the next point of intersection with guence of the separatrix folding and tendings to merge with
the stable manifold of the unstableperiodic fixed point. I the third peak. Figure (@), taken at a smaller modulation
the linear regime{<0.1) the increase in the initial intensity frequencyw, demonstrates this nearly degenerate case more
u(0)[u(0)=pByo/(k—Yyo)] is prescribed via explicitly: here the same dependenc{d@g) versuse calcu-
_ lated with noise consists only of two peaks. It should be
u(T)=u(0) exp(»T), © noted, that in patterns with an odd total number of peaks
(nondegenerate cgsthe 2T-periodic regimes in the differ-

04 +

02

TARGETING PHASES
Q

wherey=v(yo—1) is the net gain over the modulation pe- ! . .
riod T. On the other hand, the targeting phases which diffe nt valleys between targeting peaks differ in phasenby

by 27 correspond to successive intersections of curve 1 with his |mp'l|es that when one qf t'he peaks disappears dynami-
curves 2 and 2 and are ends of th& segment whose in- cally or is smeared out statistically, frequent up and down

tensities are also given via E(@). Thus the 2r change in ™ phase changes may be induced. The latter is consistent

phase is equivalent to a change of initial intensity by theWith the recently reportefiL8] experimental observations of

factor exp@yT). Therefore it is possible to write the map “’?‘”d"”? phase swﬂchm_gs between dlffgrent 2-periodic re-
gimes in a CQ laser with loss modulation. In general, it

_ yT _ seems that the firgteft-hand-side peak, which originates in
U2(0)=us(0)e™,  ¢2=¢st 1, (19 the basic transversal crossing the separatrix by the initial
where the phase is normalized tor2Assuming the linear point, is most robL_Jst to the _influence of n_oifs,e_: it supports the
dependence same phase maximum as in the deterministic limit, and has
quite a smooth shape under conditions of statistical averag-
Pma=A 10010(BYo/(K—Yo))+B, (11 ing (400 trajectories Its position in the phase interval
[0;27] also scales with the noise strength in good agree-
we obtain ment with the linear law in Fig. 4. The scaling of the two
right-hand-sided peaks is not as good, thus implying that for
A=w/(2 logyo(e)v(ye—1)), (120  them nonlinear effects are more important.
The corresponding variance of the mean transient time
which fits very well to the observed linear lak£4) in Fig.  o=((T2)—(T,)?)*? is also shown at the bottom of Figs.
4 (the lines are the best fits of the analytical linear depen3(a)—3(d). It can be seen that the variance is dramatically
dence to the data shown by points wh-1). More detailed increased in the domain of peak crowding, in fact by more
calculations will be presented elsewhdiis] to take into  than one order of magnitude. Obviously, the reason is a large
accountT-periodical oscillations of the outset 1 with chang- dispersion of possible relaxation times near the targeting val-
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ues of the modulator phase, therefore the maximal variance %0 ' '
values correlated with targeting phases. The variances calcu-
lated with different criteria of reaching the final regime, as
has been discussed above, are shown at the very bottom of
Fig. 3. They practically coincide with each other thus indi-
cating that the coarsening of the criteria is analogous to a
purely deterministic rescaling of transient time.

The universality of dependencies obtained at different
noise strengths appears to be more interesting. The superim-
posed results of botliT,,) versuse and o versuse nearly
coincide, despite having noise strengths which differ by sev- wl
eral orders of magnitudghe calculations in Figs.(8)—3(a) )\
are given for3=10"%, 108 and 10 '° respectively. This @
means that to first approximation the statistics of such a non-
linear stage of laser turn-on do not depend on the noise lev- 25 , - ' ' ' - ' '
els, so that even in the limg— 0 the same spread of target-
ing peaks might be anticipated. The qualitative explanation
of this effect is rooted again in the self-similarity of the het-
eroclinic structure discussed in Sec. lll A. As the spontane-
ous background which initiates laser action tends to zero, the
dispersion of the initial conditions correspondingly de-
creases, but due to the infinitely dense heteroclinic structure
the reduced noisy initial cloud effectively covers the same
number of the heteroclinic crossings, and essentially the
same statistics are obtained. Similarly, negligibly small noise
may cause a macroscopic effect ofphase slipping of the
final 2T-periodic attractor, while the transient trajectory ap- o
proaches the unstableperiodic state in the second region of ~ (P)
the heteroclinic structurfnear the thick line in Fig. @)].

Highest passage time distributian&ollowing the pio-
neering work by Arecchi and Polifil9] the method of the
first passage timé=PT), has been widely used in studies of
laser switch-on statistics. In a laser the passage time is de-
fined as the time needed to build up intensity to a prefixed In Figs. & and 8b), we present the first four passage
level starting from the instant of laser turn-on, and may betime distribution functions for a “silent” phase @ switch-
identified with the lifetime of the initial unstable state. The ing, i.e., far enough from the region of the targeting peaks
width of the FPT distribution gives a value of jitter in a laser, crowding (¢/27=0.6) and for a “noisy” phase taken at the
which is of paramount importance in optical communicationdeft slope of the first targeting peak in Fig. (a3
applications. However, the FPT technique describes the verf/27=0.08), respectively. The prefixed level has been
first linear regime of laser amplification. Therefore, in thischosen to beu=1.63. In the former case the distributions
paper we focus on the highest passage tiHeT) distribu-  behave classically: the most severe fluctuations take place at
tions to explore the nonlinear regime of the noisy laser. Théhe very beginning of transients, producing large jitter for the
highest passage time may be defined similarly as the timérst pulse, then the width of distributions are quickly nar-
needed for a laser to reach the preassigned value of intensitpwed, signaling the decay of anomalous transient fluctua-
for a second, third time, and so on. The only additional contions. The corresponding intensity traces in time are shown
dition is to attach this definition to a leading edge of thein Fig. 6@). Conversely, in the latter cag€ig. 5b)] the
pulses. Such an approach is especially useful in the case bighest passage time distribution become progressively
modulated lasers. In the case of simple relaxation oscillationdouble-peak shaped. The typical time traces of transients for
(the prefixed value then is just the steady Statee HPT  such double-peak HPT arrangement is depicted in Kig., 6
distributions are progressively broadened functions reflectingnd clearly shows that the origin of the double-peak shape of
the fact of rising multiple nonlocked random responses at th¢he third passage time is the trajectory’s phase slipping by
relaxation frequency as the intensity approaches the steady near the separatrix, whereas the asymmetrical broadening
state. In a nonbifurcating laser the situation is better: externalf the second passage time distribution originates in the par-
modulation locks the relaxation oscillations in stationarytial phase slipping at the fast manifold of the attracting
modulation regimes, and therefore the width of the high pas2T-periodic regime[cf. dips in the deterministic top depen-
sage time distribution is quite narrow. However, if the modu-dence(T,,) versuse in Fig. 3@]. The important property of
lation frequency does not match the relaxation one, the prathe HPT distributions is the fact that all of them, starting
cess of lock-in takes some time, resulting in largefrom the third one, are symmetrical in the exact targeting
fluctuations in the intermediate transient. In particular, inphases, and invert the kind of symmetry upon crossing that
such a setting, we observed the second pulse jitter to bealue of the phase, while the FPT distribution remains nearly
significantly larger than that of the first giant pulse. intact. The nature of the asymmetrical broadening of the sec-
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30 , - . . . . — . tically meaningful changes of the targeting peaks widths and
heights. The explanation for this is that population noise acts
5 ] mainly along the stable manifold of a laser offset, and any
perturbations of this manifold tend to decay, whereas any
or 1 tiny perturbations along the unstable outset are amplified by
approximatelye?™=10' times during only one period of
modulation. The presence of the heteroclinic structure does
not change the situation significantly, at least near regular
targeting peaks. Curves 2 and »f Fig. 2 approach the
stable manifold of the laser off-state nearly tangently, so the
population noise does not cause their crossing. We observe,
AAS AAN however, that in special case of degeneracy, when one of the
Se (5 moceibion Mrieaelt M@ curves 2 or 2 tangentially touches the outset, the picture

inverts. Now the spontaneous noise acts tangentially to the
separatrix, but the population noise acts transversally. As a
result, the population noise contributes to the broadening of
these degenerate peaks significantly. More detailed results
will be reported elsewher21].

(arb. units)

INTENSITY

IV. DISCUSSION

The above obtained scaling law and the universality of the
turn-on statisticsi.e.,(Ty) versuse dependencigsare by no
means unique in such studies: it is well known, e.g., that the
first passage time in class-A lasers scales logarithmically
with the spontaneous emission noise, while its dispersion

e S e (jitter) remains independent of the noise strerigth But, as
(®) TIHE (in modulation perieds) has already been mentioned, the first passage time technique
) _ ) . _ is most useful in studies of the very first stage of laser am-
FIG_. 6. Re_presentatwe transient laser intensities vs time Correplification, while in this paper attention is given to a whole
sponding to Figs. @) and b). range of a transient process in a bifurcating laser where noise
effects are also very important. The dynamics characterized
ond passage time distribution function is defined by the fashere is, moreover, in a strongly nonlinear regime. Such terms
manifolds located between first and second targeting peakags the total transient time, targeting phases, or heteroclinic
so it changes its symmetry and location of maximgom-  intersection cannot even be defined in the linear limit. None-
pare Figs. t8) and 5b)] at the midpoint between these theless, the scaling law obtained is well described by a linear
peaks, or more precisely, between the two dips seen in Fignapping. Application of the HPT technique proved to pro-
3(a) (solid line). Thus the symmetry and double structure ofvide much more information about turn-on statistics than just
the HPT distributions reflects the structure of the Poincareising single FPT. The appearance of interesting features in
section of the underlying dynamical system. As a final pointthe HP statistics, namely, the double-peak structure of differ-
we also observe a nearly line@nd opposite in sigrdepen-  ent origin, seems not to have been observed previously.
dence of the maximal intensities of the first pulses on theTwo-peaked distributions of the FPT distribution reported so
corresponding first passage time. This is simply attributed tdar in a single-mode C@laser[20], two-mode dyg22], and
the fact that during the first passage time the cavity lossesemiconductor lase{®23] modulated at the GHz rate, were
rise as cos(0B82w+w7) in Fig. 6@, and fall as observed either due to the special initial setting near the
c0s(0.0& 27+ w7) in Fig. 6b), so, correspondingly, the threshold value or correlation between two modes or two
later the giant pulse is built up the worgthe better is the  successive pulses.
relation between losses and gain. The obtained regularities o) switchings suggest that

Influence of pump nois&Ve have also performed a few there is considerable scope for experiments in this field. For
preliminary simulations with the pump Langevin noise in-instance, from Eqs(8) and(11) it is seen that the targeting
cluded, and describe the results for the sake of completenegseak location is a linear function of the logarithm of the
In a real experimental situation the spontaneous emissiohold-off ratio k. This latter parameter may be readily tuned
contribution to the population noise is normally negligible in experimentally, so that experimental confirmation of the pre-
comparison with other noise sources, so we adopt here thdicted scaling is technically possible. The resolution of such
data of Giofiniet al.[20], yielding the estimate for the noise a scheme would be limited by the factor of statistical spread-
strength termp=2.5x 10" °. The spontaneous noise strengthing of the targeting peaks. In this respect the symmetry prop-
has been chosen to Ifi==10"8 and»=2 (two-level model. erties of the highest passage time statistics may be a possible
In spite of such a huge different it has been found that thalternative method of measurement of the location of target-
population noise alone leads only to a very slight smearingng peaks. Further, with the scheme presented, some notice-
of the targeting peaks, and being taken in combination wittable aspects of practical relevance might be examines such
the spontaneous noise emission does not produce any stat&s the detection of weak injected signals. The HPT distribu-
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tions near the targeting peaks are expected to be extremebf targeting peaks locations with the strength of the sponta-
sensitive to such weak signals, suggesting that previous seneous emission noise, and the universality of the transient
sitivity gained on the basis of the FPT may be improved. Agime statistics, i.e., their essential independence of the
far as the targeting itself is concerned in the context of posstrength of noise and double-peaked structure of the highest
sible application in laser chaos control schemes, the statistpassage times distribution functions with their underlying
cal spread of the targeting phases, of course, hinders its efymmetry properties. The noise has been found to cause
ficiency, although it is still possible in the statistical sense,much more frequent phase switching in comparison with the
i.e., with repeated trials, or with use of an external signaldeterministic case with possible detrimental effects on the
which normally makes the statistical spread narrower. Due taise of this particular scheme in chaos control techniques. In
the strong foldings of the separatrix just above the periodpractical schemes the statistical spread of the targeting
doubling bifurcation, the probability distributions for the phases may, however, be reduced by injecting an external
highest passage times becomes progressively two peakstynal.
shaped, so that the system behaves statistically even with
very small driven noise. This explains the recently reported
experimental observations of random phase switchings be- ACKNOWLEDGMENTS
tween different 2-periodic regimes in a GQaser with loss ) .
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