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We study squeezing in electromagnetic field quadrature components, produced by a colleétidnosf
level atoms interacting with a single mode of a strong electromagnetic field. We present analytic results both
for short and long interaction times. At short times, squeezing grows with the number of atoms for a given
initial number of photons. The maximum squeezing which can be achieved in a strong-field case is 66%. At
long interaction times, collective effects increase the quadrature fluctuations, compared to the single-atom case.
However, for a given number of aton#s any initial pure atomic state exhibits squeezing when the mean
photon number of the initial coherent field satisfies the conditior(2A)“. At times close to the first revival,
strong squeezing can be achieved for special initial atomic condifi&i€50-294®@7)07703-2

PACS numbd(s): 42.50.Dv, 42.50.Fx

I. INTRODUCTION: THE DICKE MODEL diation field mode is described by the photon operatdrs,
n=a'a. The collective atomic operators féridentical two-
Usually strong quantum electromagnetic fields are generevel atoms are defined as
ated by lasers as coherent states, which are “as classical A
states as possible.” How can a resonant interaction with an 5 - S 4l
atomic system modify a strong coherent field so as to make it R Tz
more ‘“quantum”? One of the specifically quantum proper-
ties of the field is squeezing in quadrature components. The They obey the usual §2) commutation relations
simplest example, the Jaynes-Cummings meodeM) [1,2], . . . .. .
shows that a small degree of squeezing can be produced by [S;,S.]=%S., [S;,S.]=2S,. (1.3
an interaction with a single two-level atom for short interac- ) ) ]
tion times[3,4] and for weak initial fields. This short-time L€t us introduce the bare atomic basis
squeezing can be enhanced by the introduction of an initial -
atomic coherencls]. Remarkably, the JCM can provide bet- SK)a=(k—A/2)|K)y, O<k=A, (1.9

ter squeezing for long interaction times and for strong initialWhere thek label denotes the number of excited atoms. In
clzggg/re.nt S}eld|$6,7]. In the I";ttfr case tge slgwm%ezolr)lg_rgr?es ©the space of symmetrical initial states, the atomic operators
0 In the large mean-photon-number imik—ec). TIS = ¢4 56 (A +1)-dimensional representation of the(8ualge-
strong noise reduction occurs for times around the first rpra (corresponding to the energy sphi2). The case of a
vival, which depends on the mean photon .numbertpas single resonant atonmA=1, corresponds to the well-known
=2m\nlg. It was argued 68| that, even taking into ac- jopm.
count moderate cavity losses that destroy the revival phe- 1o excitation number operatdﬂt is a constant of the
nomenon, the squeezing survives for largeNevertheless, o in the Dicke model. If the initial state belongs to a
short interaction times seem to be more attractive from th%ubspace with a given excitation numbér the system al-

experimental point of view. This region is close to recent,,ys evolves within this subspace. Thus it is convenient to
experiments in cavity QED9-11]. introduce the basis
One can expect that a way to enhance squeezing is to

1.2

consider a collection of resonant atoms simultaneously inter- INKY=|n)¢®|K)ar, N=k+n, O<k=A,
acting with the field. In the present paper we will work with
the Hamiltonian originally proposed by Dickigl2] (also l§||N,k>:(N—A/2)| N, k), (1.5

called the Tavis-Cummings modgel3]). It describes the in-

teraction of a collection of identical two-level atoms with a where|n); is a number state of the field anrgA/2 represents
single cavity mode of the field. We restrict ourselves to thethe bottom energy level of the atomic system.

lossless case. Making the standard dipole and rotating wave The Dicke model can be analytically studied in at least
approximations for the atom-field interaction, the Hamil-two limit cases: The first occurs when the number of excita-

tonian reads as follow&i=1): tions in the system is much smaller than the number of at-
R R, R ) R oms, N<A. This weak-field regiorhas been studied in the
H=wN+gV, V=aS,+a's_, =n+S,. (1.1 set of papers given ifil4]. Squeezing in the Dicke model in

the weak-field region has been discussed in Rdfs-18.
Here w is the resonant frequency for the atoms and the raThe second soluble case corresponds to the strong-field re-
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gion, when the initial number of photons is much larger than A. Factorization approximation
the number of atoméi<N [19-23. Numerical evidence for  \yg gtart with the definition of the semiclassical atomic

the existence of squeezing in trilinear optical processegiates for the Dicke modg23]. In the classical field limit the
(which is mathematically equivalent to the Dicke mod#s  q|q operators become complex numbers:

been reported ih24].

In this paper we employ an analytic approach to study the a—a=\ne?, a'-a, (2.1
squeezing properties in the Dicke modBM) in the strong-
field limit for both long- and short-time regions. This article and the DM Hamiltonian becomes proportional to the opera-
is organized as follows: In Sec. Il squeezing properties at théor
revival regime (for long interaction timesare studied by . . .
using the factorization approximation. This approach enables Hu(¢)=(S,e'?+S_e '?)2=H(a—a)l|al. (2.2
us to describe the dynamics of an arbitrary initial state in . . .
terms of a special set of atomic statesmiclassical states | ¢ HamiltonianH(¢) describes a collection of two-level

We show that collective phenomena strongly reduce squeef‘—tomS in the presence .Of an external cIa;spaI f|e.ld. The
ing (compared to the single-atom cager bare initial atomic P"ase¢ of the classical field is chosen to coincide with the
states. In the end of the section we briefly discuss the effetﬁhas_e of the initial cqherent state of the field. Semiclassical
of field dissipation for long interaction times by using a nu- atomic states are defined as eigenstateld 4ii):
merical simulation. o

To discuss squeezing properties in the short-time region HC'(¢)|M>_)‘P|M>’ |M>—exp(| ¢SZ)|9>'
we use a more accurate approd2h|, which will be referred 2.3
to as a “quasilinear approximation.” In Sec. Ill we outlineé The semiclassical state with zero phags, is defined as
this approximation for the strong-field region and use it to —
find the Heisenberg field operators. In Sec. IV the maximum c _ _A_ _
squeezing as a function of the number of atoms and of the 2Sdp)=help) Ap=A=2p, p=01..A. (24
field intensities is estimated, and the time instant is fOUnq/Ve Qenote the components of the eigenvectors of the opera-
when squeezing occurs. In studying short-time squeezing, Wr S, in the bare atomic basis a§E2<k|p>v ie.
I’eStI’iCt Ourselves to the case in Wh|Ch a” Of the atoms ar?p>:§‘lkcg|k> These Coefﬁcients can eas”y be_found from
initially excited (the results for initially nonexcited atoms the usual angular momentum thedsge alsg14,26)). For a
can be obtained from the symmetry properties of the DMsystem ofA two-level atoms, there aré+1 different semi-
[14,19). The initial field will always be taken to be in a cjassical states which form a complete basis in the space of
coherent stat¢CS) with large photon numben>A. all symmetrical atomic states. In what follows we restrict

ourselves to the casg=0 that distinguishes the direction

in field phase space, since, for bare initial atomic states,
Il. SQUEEZING IN THE REVIVAL REGIME squeezing appears only in tledirection.

Squeezing in the JCM in the revival regime has been dis- NOw let us assume that the initial field is taken to be in a
covered by Kuklinski and Madajczyk6]. This case corre- Strong coherent statie)) and that the atomic system is ini-
sponds to the strong-field region, when the average numbéi@lly prepared in a semiclassical state. Then the total wave
of photons in the initially coherent field is larger>1.  function of the system can be approximately written as a
Strong noise reduction in one of the field quadrature compoProduct of its field and atomic parf49,23:
nents was predicted. Rigorous study of field properties in the

JCM has been carried out by Woods and Gea-Banacloche |q’(t)>2|¢P(t)>®|Ap(t)>’

[7]. They use the expansion of the initial atomic state in the _ . =

basis of semiclassical eigenstatege., eigenstates of the | (1)) =exd —igthpVn—A/2+1/2]|a),

atomic Hamiltonian in an external classical fieltf such an oA

initial atomic state interacts with a strong initially coherent [Ap(t))=exd —i=(S,+A2)]|p), (2.9

field, the total state of the system remains, to high accuracy,

factorized into field and atomic parft5]. This factorization where

holds for a long-time ranggt<n, which covers the revival

regime. The evolution of an arbitrary initial atomic state can r= 9Ap t= lt na=n—A/2+1/2. (2.6)
be described by a superposition of the factorized states. We Zﬁ tr’

shall refer to this approach as tfectorization approxima-

tion. This approach has been further extended to describe Bhe factorization(2.5 holds for times that are short com-
wide class of atomic systems interacting with a strong resopared tot,~n/g with an accuracy in coefficients of order
nant quantum fiel19] (see als¢22] and[23]). This method O(A//n) In the simplest case of a single atofk=1, Egs.
gives a very transparent picture of the dynamics in thg2.5 exactly reproduce the result of Gea-Banacloche for the
strong-field region and naturally explains the structure of the]CM [25].

quasiprobability distributionlthe Q function) in the field The field state|(1>p(t)> appears in the factorized wave
phase spacg23]. Here we use it for studying the DM function as a response to the interaction with the atomic
squeezing properties in the revival regime. In fact, the resultsemiclassical statfp). In field phase space each factorized
of the present section should be considered as a generalizstate can be described by @sfunction, which has the shape
tion of Ref.[7] to the case of many atoms. of a single hump revolving around a circle of radigrswith
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the dynamics, which will be used below to describe squeez-
ing in the revival regime. However, in the rest of this paper

we will need a more accurate approximation, and it will be

presented in Sec. lll. The derivation of the factorization ap-
proximation from the results of Sec. [land also corrections

to the wave function$2.5)] are given in Appendix C.

Qx,p)

B. Squeezing in factorized states

We start with the case in which the atomic system is
prepared in one of its semiclassical stafge} at t=0. This
leads to the approximate factorization of the wave function.
Let us recall that the general quadrature operator is defined
as

a,=(ae ’+a'e'%/2, (2.10
FIG. 1. Q function of the field at tim&=tg/4 for the three-atom . ) . . ) .
case. All the atoms are assumed to be initially in their excited state®Nd a state is said to be squeezed in thelirection if
The field is initially taken in a coherent state with=49 andA=3. (A%a,)<1/4. Squeezing in the andy directions correspond
The Q function at this time splits into four humps. All of them are t0 the valuesg=, 27 and 6=m/2, 3m/2, respectively.
well pronounced as described by H3.9). By reasons which will become clear later, we first calcu-
late the quadrature fluctuations as if the factorization of the
an angular velocit;g)\p/(z\/n—A) [23]. The photon distribu- Wwave functiAon were exact. l.e., we first study the noise in the
tion for these states is always Poissonian, but they spread kpmponeng, for the pure field statelsb (t)) defined by Eq.

phase, due to an intensity-dependent phase shift. (2.5. We have
Any initial atomic state can be expanded in the basis of - - -
the semiclassical states as <A2a9>p:<¢t’(t)|aﬁ|¢9(t)>_<@P(t)|aﬂ|¢9(t)>2('2 11
|in>at:2 cplp), 2.7 Using Eq.(2.5 and making further approximations, it is
p - possible to derive an explicit expression f@a,), as has

) been done by Kuklinski and Madajczyl6] for the JCM
and, correspondingly, the state of a total system can be reuse. They predicted perfect squeezing in the imitee. For

written as a superposition of the factorized states: a given value ofn, their result works until timeg~n_

Woods and Gea-Banacloché] pointed out that squeezing
|\]f(t)>=z Cpl Do) ®|AL(D)). (2.8  disappears at larger timés-n > That is why we wish to
p present here a better analytical approximation which is valid
S until imesgt~n >4,
Hence a generic initial state causes the appearanéetdf It is clear from Eq(2.5) that the evolution of the field part
humps which revolve around the circle of radiyis in field  of the factorized wave function can be described by the fol-
phase space with angular velocitigs /(2 Jn,). Figure 1 lowing effective Hamiltoniar{23]
shows the exad function for the field at timé=tgz/4. We
take A=3 and all of the atoms are initially excited. Ti@ Hei= g)\p\/ﬁ—A/2+ 1/2. (2.12
function of the initial field CS splits into four well- . i i ) o
pronounced humps, as we expect from E29). Let us re- S_lnce weigle4 only mterested_m terms which remain finite at
mark in advance that for this time instant each hump exhibitdimesgt~n ", we can approximate the square rootigy as
squeezing in some direction. However, the total state is not

. . ZT] (Z?])Z o
squeezed, because of the spatial separation of the humps. |, _ AN _ KA=A-T~n
The motion of the humps in field phase space determines = O 2N, 8n3? |’ v

the behavior of the atomic inversion. When all of the humps (2.13

are well separated, there are no Rabi oscillatim@lapse ) _ o
region. The collision of two humpp andp+1 leads to the Here we have neglected the term which gives a contribution
revival of Rabi oscillationdin contrast, the collision of two t0 the evolution operator of order

humpsp and p+k, k>1, does not lead to a reviyalThe

An)3
revival time in the Dicke model almost coincides with the ¢ (An) r (2.14
JCM revival time[19,23 N2 '
tRZZW\/TA/g_ (2.9 since this contribution disappears at timgs~n°“ Note

that it is senseless to distinguish betwegpandn if they
In fact, the representatiai2.8) holds exactly for any state of appear in denominators; i.e., we can write/d{=1/\nx
the syster(see, e.g., Ref22]). What is approximate in Eq. +O(A/n°?). The terms in Eq(2.5) have a very transparent
(2.8) are our expressions for the factorized std&8§). This  physical sense: The first term multiplies the wave function
approximation gives a very transparent qualitative picture oby a phase factdwhich leads to Rabi oscillations in the case
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of bare initial atomic stateés The second term rotates the 200
state about the origin of phase space, and the third is respon-
sible for the phase spread.

At this point it is natural to make an analogy to the optical 1501
Kerr medium(see, e.g.[27,28)). Indeed, Eq(2.13 is just
the Kerr Hamiltonian. The only difference is the sign of the
last term. This difference may be important: E.g., it leads
to a strong phase spread reduction when the interactions with
the Kerr medium and with the resonant atoms act simulta- 50 |
neously[29]. However, the origin of squeezing in the Kerr
medium[27] and in the factorized states of the Dicke model JoM o
is, in fact, similar. The approximate effective Hamiltonian 0 1 , 3

(2.13 provides an analytic solution for the field Heisenberg t/tr
operators

FIG. 2. Squeezing along the direction as a function of the

_ 1+2AR normalized timet,=t/tg, for A=3 andn=100. Atoms are initially
a(t)y=e '"ex i)\pgt T a. (2.15 prgpared ina sgmiclassica! state \M@:l Solid line: exact evo-
lution. Dashed line: analytical approximation, E@.17). Dotted

line: asymptotic approximation, Eq2.18. For long interaction
Recall thatr=\,gt/2yn. We have, for the mean value of the times we observe an excellent agreement between the exact evolu-
field operators, tion and the analytical approximatioi2.17). The asymptotic ap-

proximation(2.18 fails for long interaction times, for finite values
. — e iT n.

é, :ae*IT(l*1/4n) exgn eﬂf/2n_1+ _
< >p 2n

tion approximation. For a given field intensityand for any

~ae 17 T8, (2.16  chosen directiom, any field statéd,(t)) will reveal squeez-
ing at some time instants.
Thus the phase of the field approximately equals while It was noticed in Ref[7] that squeezing disappears at

its amplitude decreases as™® (due to the phase spréad times gt~3n>“ One can reproduce Othis estimation from

here,T=)\pgt/F After some algebra, we arrive at the fol- the following arguments: Th_e phase spreao_l, yvhich initially
lowing expression for the quadrature fluctuations: squeezes the state, at later times deforms it into a crescent

shape and causes disappearance of squeésseg-ig. 1 and

n T the discussion of th€ function below. The same reason
2 2 . . . .

= (e TR_eg T8 applies to the decreasing of the field amplit(i¢)|. In fact,

(A%a,) ~E+
6/p 4

2 64 squeezing disappears at times when the field amplitude de-
) ) creases by unity
X (e 76— 4e"T78) |cog26+27)
= |lal=@)pl>1, (2.19
TVn 2 2
~T2/8_ o~ T?/16) i
+—g (2 e )Sin(20+27) and we have, from Eq2.16), \,gt>8n>".
o We can easily find the directiofiin which the maximum
n 2 squeezing occurs. Differentiating E@®.17) with respect to
1_A-T?16
+ > (1-e ). (2.17 6, we get
For the JCM case\,==*1, one can easily restore the asymp- oy T 2.9
totic result from[6,7]. ReplacingT=27/\/n and neglecting Omax=—z arccot5 | =, (2.20

all of the terms which contaim in the denominators, one

gets in full agreement with Ref[7]. Now it is easy to find the
L times when squeezing occurs in thedirection. Replacing

~ T — = i
(8%,),~ 7 + & [1-cos20+27)]+ Zsin20+27). 07 (KZ12.) N BG. (220, we get

(2.18 1 ( 7')

7=Kkm— = arcco 5

5 (2.2)

We show the exact results for the quadrature fluctuation
in the x direction (§=0) and the approximation&.17) and . .
(2.18 in Fig. 2. T(he e3<act CUI’VGN?’[E\OU'[ use ofétzhe?‘actor- The second term is small here, and with reasonable accuracy
ization approximatiopand the present approximatigd.17) we can write
appear to be very close in this graph, while the asymptotic
result(2.18 from Refs.[6,7] shows apparently different be- tsq 1 (kﬂ) K

havior for finite photon numbers. Equati¢®.17) describes Tsi i, T k=5 arccof 5 =12,

2 2 '
all the essential properties of squeezing under the factoriza- (2.22
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12 ‘ ‘ ‘ ‘ : exd —(r—rg)?
- (¢+ o(t) — 27k)?
X2 exp[_ (D) '

(2.29

Here each term is a Gaussian functi@f a phase variab)e
whose center is moving with angular velocityy(t)
=tg\p/(2Vrro—A/2+1/2) and with an intensity-dependent
variance

2

, Tro=4n, (2.25

1 gApt
T T . = 4| ==
o w0 o (2rro

which describes a phase spread of the wave packet. Each
term in the sum2.24) contributes for different times. Only
the termk=0 is important near the first revival. Then the
level curves of th& function are given as

[¢— po(1)]? e
w(t)

These equations confirm the picture which has been de-
scribed in the previous section: The field stade(t))
revolves and spreads along the circle of radius. For
short timesgt<n>"“ stretching along the arc of the circle
does not differ too much from stretching along a straight
line. The level curves of th® function are almost ellipses.
This has to be expected for squeezed states. But for times
gt~3n°* the ellipses are deformed to acquire a crescent
shape and the fluctuations of a quadrature component in any
direction exceeds 1/&he level of fluctuations in a coherent

(r—ro)®+ onst. (2.26

b ' iR

FIG. 3. Squeezing along the direction as a function of the
normalized timet,,=t/tg, for A=3 andn=100. Atoms are initially
prepared in a semiclassical state wigh\,=1 and(b) A,=3. Solid
line: exact evolution. Dashed line: analytical approximation, Eq.
(2.17. The time scale fok,=3 is 3 times the time scale fof,=1.

In case(b) we observe that squeezing predicted at tiqe1/3 by

the factorization approximation does not occur in the exact evolu-State) L . . .
tion. This disagreement arises because of the presence of the sec-The predictions of the factorization approximation are
ondary humps. The field was initially assumed to be as in Fig. 2. rather accurate when they concern the collapses and revivals

of Rabi oscillations, the structure of tigzfunction, and even
. . . o the quadrature fluctuations when they are lafgee Figs. 1
Hence minimum quadrature fluctuations in thedirection  anqg 2. Unfortunately, the factorization approximation fails
correspond to times slightly before the revival {5 explain squeezingor, rather, the absence of squeezing
times: tg=0.9g, 1.98g,...[7]. even in the JCM and, as we now shall see, also in the Dicke
Note that the most important difference between the fieldnodel. The question may arise, why do we show the formula
parts of the factorized states in the JCM and in the Dickg2.17), which does not work? The answer is the follow-
model occurs in the time scale. In fact, one can write ing: First, it is still useful under some restrictions. Second,
we believe that the field states which enter into the factorized
wave functions are important in themselves. They appear for
Do (1)=[D(\pl)), (2.23  any atomic system interacting with a strong quantum field
[19]. Similar field states are produced by the Kerr medium
[Eq. (2.17) describes the Kerr medium, if we replate-
where|®(t)) is the JCM statéA=1) with Ap=1. Itcanalso —TI.
be seen in the graph of quadrature fluctuations. See Fig. 3, One should expect from E@2.11) that for A>1 the best
where quadrature fluctuations in thedirection (exact and squeezing is reached at time§(|)\p|, p=1,...A. For in-
under the factorization approximatiprmre shown for two stance, in the case &=3 we have|\;|=1,3. The[\,|=1
initial semiclassical statep=0 (\,=3) and p=1 (\,=1);  states revolve with the same angular velocity as in the JCM,
A=3 andn=100. For factorized wave functions, the graph and maximum squeezing is expected close to the revival
for A,=3 is similar to the 3-times-compressed graph fortimes. In turn, for the stateb\p|=3, maximum squeezing
Ap=1. This correspondence is less accurate for the exaghould appear near the fractional revival timg/3. Figure 3
curves, due to the reason which will be explained below. tests these predictions against the exact solution for the case
The squeezing properties can be naturally explained imf A=3. We see that the noise reduction at fractional revival
terms of the quasiprobability distributio®(a)=|(|¥)]? in  times, predicted by the factorization approximation, does not
field phase space. The function corresponding to the state occur in the exact solution. On the other hand, the factorized
|@,(t)) can be represented as follof&3]: wave functions still work near the revival times, for both
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a general form for an arbitrary initial atomic state. The semi-
classical states are distinguished since one of the terms in Eq.
(2.8) dominates over the others and the state becomes ap-
proximately disentangled.

Generally, squeezing is weaker for the humps which
move faster. Indeed, squeezing can only appear at revival
times 27+\/n/g independently of the value af,. On the
other hand, squeezing cannot be better than predicted by the
factorization approximation, Eq2.17). As defined by the
latter equationA?a depends only ont (not onA, andt
separatelyand grows when ,gt>n. For instance, quadra-
ture fluctuations in the stat@s,|=3 (faster humpgare much
larger than in the stat,|=1 (slow hump$, as seen in Fig.

3. For a given semiclassical state, maximum squeezing
grows with the field intensity.

C. Squeezing for bare initial atomic states

To discuss this item we use the expansi@i’) of an

FIG. 4. ExactQ function of the field at timet,=7 for A=3,  arbitrary atomic state in the basis of semiclassical states. As
n=49. Atoms are initially prepared in a semiclassical state withmentioned above and shown in Fig. 1, a bare atomic state
A\p=1. In order to observe the secondary peak structure, we haveplits the fieldQ function into A+1 humps independently
split the graph into three pieces, each piece containing a singleevolving in phase space. Secondary humps are located at the
peak. We emphasize that there is a three-order-of-magnitude diffeeame places as the principal ones and, hence, can be ne-
ence between the sizes of the main hump and the secondary Ones-dﬂacted. Strictly speaking, revivals happen when any two
principle, there exists anoth&malle) hump in the fourth quadrant humpsp andp=1 collide[23]. However, for the bare initial
of phase space, due to the second-order corrections to the factorizggymic state it implies that all of the humps get superposed at
wave function. the revival times. Taking into account the approximate or-
thogonality of the factorized atomic wave functions at the
Eevival times[19,23 (see alsd7]), we obtgin the following
expression for the quadrature fluctuatioragfwhich is valid
for times close to revival instants:

Ap=1 and\,=3. As a result, no squeezing appears at frac
tional revival times. Squeezing can only be expected near th
revival times(and only in case it is predicted by the factor-
ization approximation

In order to explain this behavior, let us consider the exact

dynamics of theQ function in the field phase space, Fig. 4. (A%3;)= > |CRIX @ (1)|a2| D (1))

We notice that, in addition to the well-pronounced hump p

corresponding to the semiclassical st@g(t)), there exists 2

some additional structure. This secondary structure consists -1 > ICRIX D@ (t)|ag| Pp(D)) | . (2.27
P

of small humps which evolve with frequencieﬁ;q/\/ﬁ,_ o}
#p. (The secondary structure in the JCM was discovered in
[7].) The heights of additional humps are extremely small Curves produced by making use of this formula are in
compared to the height of the main hill. However, if the very good correspondence with the exact results. They show
secondary humps are far from the main hill, squeezing cathat, for a given initial photon number, squeezing is de-
be destroyed7]. Precisely, this happens at fractional revival stroyed very fast with growing numbers of atoms. The physi-
times; see Fig. 4. At revival timg23] all of the humps get cal reasons for the growth of fluctuations are also clear. The
superposed. In this case the field properties are essentialfpructure of theQ function suggests that squeezing can only
determined by the contribution of the main hump. Then theoccur if all of the humps associated with different semiclas-
factorization approximation works and squeezing can appeagical states coincide in a given region of phase space at the
(see Figs. 3 and)5 same time. It does happen at the revival times. Thus we can
Secondary structure lies beyond the factorization approxiexpect squeezing if all of the humps associated with different
mation. It can be easily incorporated by considering the corfrequencieg\,| are squeezed. On the other hand, we know
rections to the factorized wave functiof5 coming from  from the latter section that quadrature fluctuations become
the contributions of higher powers of the small parametemuch larger for faster humpghy|>1). These fast humps
Al\/n. See Appendix C, where it is shown that, at most, twocontribute significantly in the dynamics to destroy squeezing
additional humpgassociated with the valugs+1) accom- for the case of initial bare atomic stat¢Bor a given number
pany the main humb,(t)). Using the results of Appendix of atoms, one can always restore squeezing by means of
C, a generalization of Eq2.11) can easily be found which increasing the initial field intensity.
takes into account the secondary humps. However, it is cer- We can estimate the “threshold” number of photons for
tainly beyond our present scope of interest. We may onlyhich squeezing appears. The semiclassical state with
stress that a more accurate description of the dynamical réAp|=1 is always squeezed at the first revival tinte,
sponse to the initial atomic semiclassical state leads to & 2m\nlg. Squeezing is destroyed at timegn >, We may
wave function in the forng2.8). This latter equation provides expect squeezing if all of the semiclassical states which con-
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FIG. 5. Threshold for the appearance of squeezing in the revival FIG. 6. Effect of field dissipation on the evolution of quadrature
regime. Squeezing along thedirection as a function of the nor- fluctuations in thex direction for two atoms, which are initially
malized time t,=t/tg, for A=3 andn=1000. Dashed line: semi- prepared in their excited states. The field is taken to be initially in a
classical state\,=1. Dotted line: semiclassical staig=3. Solid cohereﬁnzt state witn=49. (& =0, (b) %=10"%, and (o) _
line: bare atomic statf=3). All the curves are exact. v.=10"“. All the curves have been obtained from the exact numeri-

cal solution of the dissipative master equation.

tribute to the given initial atomic state are squeezed at th@nort times(until the first collapsgand at revival times. For

revival time. The state with maximufi,|=A has the maxi-  these reasons we adopt a different scheme to investigate the
mum fluctuations in this regime. This state evolves with theghort-interaction-time region.

time scaleAt, i.e., A times faster than the state wifky,|=1.
Therefore, the faster state is squeezed at the first revival time D. Field dissipation
if Atz<3n°>% Thus we arrive at the condition for the exist-
ence of squeezing in the revival regime for a systermAof
atoms:

Up to now, we have considered the system imbedded in
an ideal cavity. For short interaction times, around the first
collapsegt~1, the effect of the dissipation can be neglected
_ 4 for the present experimental setup. However, in general, it

n>(2A)". (2.28 can be expected that dissipation completely changes the pic-

ture for interaction times close to the first revival. Here we

If this inequality holds, squeezing appears for any initialinclude a brief discussion of the field dissipation for typical
atomic state. Our exact numerical evidences are in accokalues of parameters in recent experiments, in which the
dance with this result. We show the graph for the thresholds3p,,— 61ps), transition of®®Rb atoms with a coupling con-
value of n, when squeezing appear, in Fig. 5. Quadraturestantg=44 kHz is used and a cavity decay constant2.5
fluctuations in thex direction are shown as a function the Hz [30]. Thus we havey,/g~10"% We argue that dissipa-
normalized timet,=t/tg for the semiclassical states with tion should not affect significantly squeezing at times close
Ap=1 and 3 and for the bare atomic state with all atomsto the first revival time. For these times squeezing is deter-
excited,[k=3). All the curves in Fig. 5 are exac§=3 and  mined by fluctuations in the semiclassical states which con-
n=1000. For larger photon numbers, squeezing becomesibute to a given initial atomic condition.
stronger. In Fig. 6 we show the effect of dissipation for differents

To conclude this section, we may say that the factorizavalues of the field decay constant/g=0, 10 3, and 102
tion approximation(2.5) describes, at least qualitatively, the Even for the worst casg./g=10" 2, quadratures fluctuations
squeezing for long interaction timéthe revival regimgin ~ Aa; do not increase compared to the non dissipative case
the Dicke model. However, the long-time squeezing is(which also means that the dissipation does not affect signifi-
strongly suppressed in this model, with respect to the JCMantly intensity fluctuations The main effect of the dissipa-
case. In the rest of this paper we will be concerned with shortion appears to be a reduction of the average photon number,
times. It turns out that the direct application of the factoriza-which can be approximately given agt)=n exp(— yt)
tion approximation2.5) to study short-time squeezing leads [31,32. In fact, the minimum of fluctuations occurs at the
to an error. In fact, it is knowf3] that short-time squeezing revival time; it appears earlier for largeg/g, which corre-
in the JCM decreases with the growth of the field intensity.sponds to a decrease of the revival time due to the decrease
Hence one can expect an inverse dependence of short-tina$ the average photon number. Figure 6 also shows that the
squeezing on the field intensity. This means that the asympnterference of the semiclassical states around the revival
totic expansior(2.5), with an error in the coefficients of or- time (small oscillations seen in the curge=0) completely
der O(A/\/n), is not reliable in this case. disappears for finite values of,. These oscillations are a

Another argument is that the short-time squeezing appeargminisence of the revival of Rabi oscillations of the atomic
essentially due to interference among different semiclassicahverstion. Recall that dissipation destroys the revival itself
states, which is absent in the factorization approximdtidn  for the chosen values af./g; i.e., the coherence between the
Indeed, the atomic parts of the factorized wave functions areemiclassical states is lost.
nearly orthogonal at times-ktg, k=0,1,.... Thus matrix Finally, Fig. 6 shows that for chosen values of the decay
elements between different factorized states vanish both a@onstant all the curves coincide for short times, as expected,
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and the dissipation can be neglected for short times as it wiHere {} denotes the anticommutator. It has been shown
be done in Sec. IV. A more detailed study of the field dissi-[21,23,19 that even the zeroth-order approximatigust the
pation in the Dicke model, both analytically and numerically, first term in the above expansipn

will published elsewherg33]. ~
H=2g\h— A2+ 1/2S,

describes well all of the essential quantum phenomena like

collapses and revivals of the atomic inversion, trapping
As we have seen in the previous section, the factorizatiogtates, the wave function factorization, evolution of Qe

approximation does not provide enough accuracy to describginction, etc. The EO takes on the form

squeezing for short times. Better approximations are avail-

(3.8
Ill. DM EVOLUTION OPERATOR
IN THE QUASILINEAR APPROXIMATION

able[14,21]. We shall use the approximate evolution opera-

tor (EO) found in Ref.[21]. (It corresponds to the zeroth-
order approximation for the wave functions from R¢fs4],
translated to the strong-field regipn.In fact, we need to
calculate the Heisenberg operataf$) anda?(t). However,

we include here a brief derivation of the EO for the strong-

field case.
Following Ref.[21], let us introduce the transformation

Q=exdi (S, +AR2)],
where exp=i é&) are the field phase operatd®4]. Since the

(3.9

U(t)=QU1)Q", 3.9

where

Ungt)=exp—i7S,), r=2gtJn+1/2—A/2.
(3.10

This evolution operator has a very simple physical sense.
In every subspace with given excitation numbgiit leads to
linear dynamics, which is just a precession of the Bloch vec-
tor (energy spirA/2) around thex axis. The frequency of this
precession (the generalized Rabi frequengy Qy

operatorS,+ A/2 is reduced to integer numbers when acting=g+N—A/2+1/2, depends nonlinearly oM, which ac-

on the bare atomic statesS,(+A/2)|k) =k|k) 4, the opera-

counts for the nonlinearity of the model. We call thig@za-

tor Q is a direct sum of different powers of the phase operasilinear approximation For the Jaynes-Cummings case,

tor:

A ~
é=k§0 K)o oK. (3.2

In general R,Q"]=|0);/(0|. However, acting in the basis
(1.5, the Q operator is unitary on the states>A=k. The
following commutation properties of th@ operator will be
used latef21]:

f(MQT=QM(A+S,+A2), Qf(A)=f("+S,+A/2)Q,
QS,Q'=exi$)S,, QS Q'=exp(~ih)S .
(3.3
Acting on field operators thé transformation gives

A=Q'TAQ=h—S,—A/2, (3.4

n I n—S,—Al2+1
A=Ota0=/A_a — i < 3
a=Q'aQ=+n—S,—al2+1e Ar1

(3.9
Applying the Q transformation to the Dicke Hamiltonian
(1.1) and making use of Eqs(3.3), we diagonalize the
Hamiltonian in the field space:

H=0"HO=g(VAi—A2—S,+1S, +S JA—A2—-S,+1).

(3.9

In the strong-field case, one can expand the transformed
Hamiltonian (3.6) in a power series of a small parameter

(N—A2+1/2)"1<1 (see[21)):
9{S,.SJ

H= Zg\/ﬁ—A/Z‘l' 1/2’\3(— m

. 37

A=1, the EO(3.9) reproduces the exact resii#ll the cor-
rections due to higher order terms in the expandids)
vanisHh.

The evolution operato3.9) enables us to easily find all
the atomic and field operators in the Heisenberg representa-
tion. Since [5,,Q]=0, the Heisenberg operatd,(t) is
given by

UlSU.=S, cos7—S, sin 7. (3.1

In turn, for the photon-number operator we have

A =UTA0=QUQQU.Q"=QUaU,.Q".
(3.12

Hence the transformed photon-number operator, (Bd),
evolves with time as

A =UlAa(t) Uu=n—A2—S, cos7+S, sin 7.
(3.13

Making use of the commutation relations for t@eoperator,
Egs.(3.3), we finally get

N N c - l - o . oA . A oA
A(t)=n+S,(1-cosv)+ (S,€? sin v—sin v 19S.)

=A+L(R), (3.14

where

y=07QT=2gt\A+1/2+S,. (3.15

The operatot_(n) in Eq. (3.14 is a function of both atomic
and field variables. We only indicate its dependence on the
field variables, in order to simplify notations. If initially all
the atoms are excited, we have
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A function in thep direction and the minimum fluctuations
at<A|”(t)|A>at—n+ (1—cosvy), always occur in thex direction.
To study thg short-time dynamics, we expand Egsl9
Da=2gtVA+ 172+ A2, (3.16 for a(t) anda“(t) in a power series of a small parameter

gt/\Jn=<1. Taking the initial field in a coherent state with
Similarly, one can get the evolution of the annihilation op-z€ro phase, we get

erator _ A
(A2a1>——+ (£<1—co§;A)—<ﬂ>)

a(t)=vy1+n(t exr(nf; \/1 ( i a, (3.17 4 4 n (n+1)

A(gt)? 1 (sinva/2)4

whereL is defined by Eq(3.14). The evolution ofa? di- 2 (h+1)2/ 7\ (A+1)?

rectly follows from the this expression

t)* 1 1 1— cow
: +a7 QY <A2A >+_<Azﬂ_~>
s L(n) L(n+1) . 16 (n+1)/ 4 (n+1)
as(t)y=\/1+=— + a®. (3.18 R
n+1 n+2 _(gt)Z (<1_COS/A>
In the strong-field limit 6> A), we can expand the square 4 (N+1)?
roots in Eqs(3.17) and(3.18) in powers of 1(n+1) and take SRS
S . . 1 1—cosvp
an average over the initial atomic state. Following the stan- < A >< ~ >) ] 4.1
dard technique of S(2) group representation theorigee (n+1) (n+1)

Appendixes A and B we calculate the matrix element of the

operatorsa(t) and a2(t) between the fully excited atomic where the average values of the diagonal photon operator

states: f(n) in the coherent statly); are determined as follows:
S0 Ay=cod| AT VAM )|y AZ (FE)=3 Pof(n), (A2)=(1) (N2 (42
<A|a(t)|A)—cos“( > 1+ TGRS ) 2 Pn (A%f)
AZ(AZ+1-2Zy)], In the short-time regiongt</n), all the averages in Eq.
32(n+1)? ' (4.1) can be easily calculated. For instance, expanding the
shifted arguments of the trigonometric functions in series of
A0 _ VA~ Va+2 A22 gt/\/ﬁTWe get
(AJa%(t)|A) coS“( > ) 1+ 2T 1)
cos/A L9t
B :0\22 & (3.19 n+1 (cost> (sva>
4(n+1)
where In turn, assuming the Gaussian limit of the Poisson distri-
bution and replacing the sums by corresponding integrals we
- - have
cog(var +va)l2
S (RN 320

cog (va+j—va)l2]

and 3A+]:29t\/ﬁ+j+1/2+A/ The dynamical behavior

of the atom-field system is described well by these expres-
sions up to timegt~n, with an error in coefficients of order where ny=n-+ 1/2+Aj2. After straightforward calculation,
O(AN). keeping terms up to orderrin Eq. (4.1), we get the fol-

lowing expression for the fluctuations af:

2:2

(cosp) = exp{ - %%COiZQt\/TA),

IV. SQUEEZING AT SHORT TIMES

. (gt)? n
(A?3;)= sm(29t\/=)ex;< —;>

In the short-time regime, we consider only bare initial 4 \/= 2 My
atomic states. These states split the fi€ldfunction into (gH2 n
A+1 humps, which are independently revolving in phase ﬂ[exp< gt)2 — ;{_ :)
space. Thus the short-time squeezing appears due to the in- 321 2 na
terference between the humfemiclassical statgsFor ini- A2 , A3
tial bare atomic states, secondary humps overlap with the x cog4gtyn,) + 3_2n_(1_e—(gt) 1)+ 0 ﬁ)
principal ones and, hence, can be neglected. We will study n
the quadrature fluctuations for the case#sfO in Eq.(2.10, 4.3

i.e.,a,=(a+a"/2. This choice ofg leads to the maximum

noise reduction for bare initial atomic states in this regime.This equation contains all the information about short-time
Indeed, for each moving hump there always exists a symmettuctuations in the field quadrature component for different
ric image with respect to thg axis, which spreads th@  numbers of atoms and different initial field intensities.
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exact numerical result is compared with the analytic expres-
sion for short times, Eq4.3).

Equation(4.3) allows us to find the conditions for the best
squeezing and its dependence on the system paramfeters
andn. The time instant when the maximum squeezing occurs
is determined by the secor(@eculay term in Eq.(4.3). It
describes modulated oscillations. The local maxima of
squeezing correspond to the minima of the sine function,
which occur at timesgt(k) = (k— 1/4)w/\n,, k=1,2,....
The best squeezing occurs at the instdnrt t(k*), which is
the closest to the minimum of the envelope

0.0 0.5 1.0 1.5 2.0

gt Na
glo=\ = 1. (4.4)

FIG. 7. Short-time squeezing in the direction (exact evolu-
tion). A=2, 4, 6. The field is taken to be initially in a coherent state The global minimum is always on the left-hand side of the
with n=49, and all the atoms initially excited. envelope minimum, as is clearly seen in Fig&)and 1b).

] ] Precisely, the best squeezing time is given by
Quadrature fluctuations for different numbers of atoms

are shown in Fig. 6. For interaction timgé~1, noise de- - ™ 1
creases for larger numbers of atoms. When Rabi oscillations t* = ( Al- —) ) 4.5
collapse the squeezing disappeaf. may appear again 9\/n=A myn| 4

around the first revival timg. ) . .

In Fig. 7(a) we plot the variance\?a, as a function of ~One can arrive at this result by calculating the number of
time from exact numerical calculation and from E¢&19,  Periods of the sine function in the intervidl gt,]. The best
which is valid for long times. We observe a good agreemengdueezing time, to high accuracy, is independent of the num-
between curves both for short and medium interaction timed?€r of atoms. However, the maximum squeezing which can

In Fig. 7(b) the same variance is shown for short times; thePe produced in a strong-field region by the system of two-
level atoms depends on the number of atoms. Calculating the

varianceAZa, at the timet*, we find

6.0

A=6,’I /I 2 - 1 A A’

45 /,’ /,’ . (A%a)pest= Z l1-a \/_nL+b % ) (4.6)
(s /// //I
T30 S Saes where a=e ?~0.606 and b=1+a-a’—a*~1.103.
g // / Squeezing grows linearly with the number of atoms partici-

J / pating in the interaction.
157 py ] From the above equation one can determine the atomic
number which maximizes squeezing for a given mean num-
00 ‘ ‘ , ber of photons in the initial coherent state. We have
0.0 1.5 3.0 4.5 6.0

(a) gt Apest=2.4n. (4.7)

04

This is consistent with the assumptiés<n accepted in the
quasilinear approximation, provided thtn~2.4/\/n<1. If
this latter condition is satisfied, one can expect to reach the
upper limit for squeezing, which is 66. This is the best
squeezing which can be produced in a strong-field region for
short interaction times.

For lower field intensities, this theory works fArR Apegts
but not for A~ A, itself. Our numerical tests show that in
this case the maximum possible squeezing is less than 66%
‘ ‘ ‘ and that the time instant when the best squeezing occurs
"0.00 0.25 0.50 075 1.00 moves to shorter times than predicted by E45).
(b) gt It is worthwhile to note that the small parameter required
in the factorization approximation of Sec. 114 /n<1. The

FIG. 8. (a) Short-time squeezing in thedirection both from the ~ Short-time squeezing is proportional & \n. Clearly, this
exact evolution(solid line and from the approximatiori3.19  effectis beyond the scope of the factorization approximation.
(dashed ling A=4 and 6.(b) Quadrature fluctuations from the In contrast to the long-time squeezing, the short-time one is
exact evolution(solid line) and from the short-time analytic ap- essentially a consequence of interference between different
proximation(4.3) (dashed ling A=2 and 4. semiclassical states.
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V. CONCLUSION where

We have studied the ability of a collection of resonant _ a aal ——m
two-level atoms interacting with a strong electromagnetic Ua()=expli7Sy), 7(n)=2gtyn—A/2+1/2. (A2)

field quantum mode to produce squeezing in thefield

guadrature component. It is assumed that the number of ayve want to palculate the averages over the e>_<cited initial
oms is significantly smaller than the initial number of pho- atomic statefin),=|A). Expanding|A) in the basis|p) of

tons. It is shown that this system exhibits squeezing in bot@genvectgrs of the ato”_‘"? operr?tﬁ,(, qu' (2.4, we have

short- and long-time regions, |A)=%,Cplp). The coefficient<C p=C§ have been chosen
As in the Jaynes-Cummings model, a significant amount®. pe real._ The expression for the average value over the

of squeezing can be achieved in the Dicke model at the relitial atomic state can be written as

vival regime if the atomic system is initially prepared in a R - . -

special statdsemiclassical state with the paramelgre=1:  (Ala(t)|A)=e'*A(AlUTQTaQU|A)e™"**

see Eq(2.4)]. Then the noise reduction occurs at an instant R R

slightly before the first revival time. For an arbitrary initial =gl A CSC§<Q|UTQT56U|p>e_i¢A

atomic statde.g., for a bare stafgecollective effects suppress P, — —

long-time squeezing, in contrast to the JCM. However, for a

given number of atoms, any initial atomic state leads to :eiéﬁ\E CACAeixq”T<q|(gTéQ|p>e—ixp9e—i<}5A_
squeezing, provided that>(2A)%. g P —
The fluctuations in the long-time region can be com- (A3)

pletely analyzed in terms of the factorization approximation,
which leads to a very transparent physical picture. Howevery || contains the field operators because we have not cal-

this approach fails when applied to short times when intereated the average over the initial field state. Introducing the
ference between different semiclassical states is responsiblgorse expansion, we have

for squeezing.

To study squeezing in the short-time region, we have ap- . X . .
plied a new operator method developed21] which pro- (Ala(t)|A)y=€' A C’;CQeiWE ClicPe '#kae'?!
vides better accuracy. In the short-time region, the time in- P.q Lk
stant for best squeezing is almost independent of the number
of atoms and is close to the collapse tifsee Eq(4.5)]. The
maximum possible squeezing produced by resonant atoms in - -
this region grows with the number of atonss, and is pro- Here we denoté,=e'*Are~'?A=2gt\/h+ A/2+ 1/2. Then
portional toA/\/n. For givenn, the best squeezing occurs for

A~2.4n and equals to 66%. . AnA ind n+1—k+A
The influence of field dissipation on quadrature fluctua- (A|a(t)|A>=% CpCqeta A; CRCk AFl

tions of the field has been numerically studied. For typical i

values of the parameters in recent experimentsg~10*, X e Mpratiy, (A5)
we have found that at short times the dissipation can be

totally neglected. For long times, the main consequences ofVe notice that

dissipation are an exponential decay of the average photon

number and a loss of coherence between different semiclai Amb—ird e

sical atomic states, which destroys revivals of Rabi oscilla- CpCke™ prari=2> (Ale 'VA”SX|E><E| k)

tions. However, for moderately high initial photon numbers, P P

dissipation does not significantly affects the squeezing prop-

X 8@ MoTe TR, (A4)

erties of the field. A more detailed study of the effect of =(Ale A+ 1HK) =da(— Pas1), (AB)
dissipation on the Dicke dynamics will be published else-
where[33]. whered A\ (6) are the usual Wignet functions from standard

angular momentum theoigee Appendix B Finally, we get
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APPENDIX A A

In this appendix we show the details of calculations of the (Ala(t)|A)= kgo dak(— Va+1)da( V)
averagega(t)) and(a(t)):
. .. . A-k (k=A%)
a)=U'(Haut)=QUl(HQTaQULHQ!, (A1) I oEr D smen/d A9
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Applying formulas from Appendix B, we get E€3.17). Fol-  The phase operator acting on the coherent state gieeall
lowing the same procedure we can obtain the average valubat we take the initial phase to ke=0)
K 2
—l |. (C3
n

of a%(t), Eq.(3.18.

Here we outline some properties of Wignerfunctions  Thys theQ operator transforms the initial state as
which are defined as the matrix elements for finite rotations
by operators from the S) group representatiorise€g[26]),

i) =[a)+ 20 [0y 0
APPENDIX B @l T oA

—

S[(S,+ A2)[p)al.
(C4)
wherek,n=0,1,...A. HereA is the number of atoms which  The second term in E4C4) is of orderO(k/n). This term

determines the dimension of the Gl group representation, causes the superstructure that destroys squeezing in the fac-
dim=A+1. For example, for the one-atom cat&=1),  (grized states. However, the principal contribution comes

An
S @)

o | Qi) ~p)a®| )i~
dni(0)=dic(0) =(k|e'*>|n), (B1)

dim=2 and the matrixd" is defined as from the first term.
Neglecting for a while the influence of the second term,
o . .0 ~ o
cos— i sin— we now let the operatdd act on the transformed initial state
dA(9) = 20 02 . (B2) (C4): From Egs.(3.8 and (3.9 we have

sy €053 0lp)a=exp{~it2g i~ A2+ 1725} p)a
For our calculations we need the functicmh,(6): =exp{—it2gyn— A2+ 1/2\ }|p)a.  (CH)

Al Indeed, since the photon number operator commutes with

dp =i~ k\/m sim K coé‘—. (B3)  S,,n can be treated as @ number when calculating this

exponent. On the other hanfh), is an eigenvector oS, .
Acting by Q on Eq.(C5) and using the Hermitian conjugate

The following sums have been used in calculati :
wing su v . ! ulatipes) of Eqg. (C4), we have

A
+6 . =
S dmdiie=cod 2 @y W () ~exp=it2gh A+ 8,4 U2 p)ol . (CH
The last step is to expand the square root in this expression:
A
Al A (6:—0)
2 Ak( 91)d K 92)( ):_ coOS———— SZ+A/2 A?
k=0 2) 2 2 VR+S,+1/2~n—Al2+ 1/2+ ————=+0 )
> 2h—ARt12 \n*?
6,+6 C
x cod 1 {62+ 62) 12 2), (B5) €7
These two commuting terms give two commuting factors in
A the evolution operator, and we have
A 2
PIEATCALAT 92)( 2) W (1)) = exp{ — it2g\ ,JA— A2+ 1/2}| )¢
A (6,—0,) (61+ 6, —itgkp(éz+A/2)
=— cos———cog"! ®ex . C8)
4 2 2 Vn—A/2+1/2 LS
AA-D) (61— 65) 2 (011 65) This last equation coincides with Eq&.5)
+ e B . q X .
4 cos’ 2 cost 2 (B6) It is also clear how to find the corrections to the factorized
wave functions. We need to take into account the second
APPENDIX C term in Eqg.(C4). The evolution operator
Here we prove the wave-function factorization used in U=exp{—it2gA— A2+ 1/2S,}, (C9

Sec. Il, starting from the evolution operator defined in Sec.
m Applymg the Q' operator to the wave function, we get acting on the different semiclassical atomic states leads to
humps revolving with different angular frequencies, since

|W(t)>:éQéT|in>. (C1) the atomic operato8, acting on the semiclassical stdf®
A reduces to the numbey,. Note thatU commutes with the
First, we find the action of th€' operator on the initial photon operatoAn in the second term of EqC4). Thus we
state, need to expand the atomic state in the second term of Eq.
(C4) in terms of the semiclassical states. This expansion is
[iny=|a);®|p). (C2  given as follows:
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~ A tion. Substituting Eq(C10 into Eq.(C1) and, in turn, sub-
2| S+ E) Ipy=Alp)+V(p+1)(A—p)|p+1) stituting it into Eq.(C4), one can get a improved wave func-
tion.
+Jp(A—p+1)|p-1). (C10 This leads to secondary humps discussed in Sec. Il. Note

that the exact evolution of any state can be presented as a
superposition oA +1 factorized state&see, e.g.[22]). How-
. ever, if a semiclassical atomic state is taken to be an initial
Acting on these three terms, the evolution operdfopro-  atomic state, one of the coefficients in the sum is of order
duces three small humps corresponding.j@ndX,.,. The  ~1, while the others are of ordé)(A/\/ﬁ)_ or smaller. This
hump A, is not noticeable since its location coincides with is clearly seen in the picture of ti@ function, Fig. 4, where
the principal hill, but the humpk,.., may give a contribu- the secondary humps are negligibly small.
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