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Squeezing of light by a collection of atoms
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We study squeezing in electromagnetic field quadrature components, produced by a collection ofA two-
level atoms interacting with a single mode of a strong electromagnetic field. We present analytic results both
for short and long interaction times. At short times, squeezing grows with the number of atoms for a given
initial number of photons. The maximum squeezing which can be achieved in a strong-field case is 66%. At
long interaction times, collective effects increase the quadrature fluctuations, compared to the single-atom case.
However, for a given number of atomsA, any initial pure atomic state exhibits squeezing when the mean
photon number of the initial coherent field satisfies the conditionn̄.(2A)4. At times close to the first revival,
strong squeezing can be achieved for special initial atomic conditions.@S1050-2947~97!07703-2#

PACS number~s!: 42.50.Dv, 42.50.Fx
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I. INTRODUCTION: THE DICKE MODEL

Usually strong quantum electromagnetic fields are gen
ated by lasers as coherent states, which are ‘‘as clas
states as possible.’’ How can a resonant interaction with
atomic system modify a strong coherent field so as to mak
more ‘‘quantum’’? One of the specifically quantum prope
ties of the field is squeezing in quadrature components.
simplest example, the Jaynes-Cummings model~JCM! @1,2#,
shows that a small degree of squeezing can be produce
an interaction with a single two-level atom for short intera
tion times @3,4# and for weak initial fields. This short-time
squeezing can be enhanced by the introduction of an in
atomic coherence@5#. Remarkably, the JCM can provide be
ter squeezing for long interaction times and for strong ini
coherent fields@6,7#. In the latter case the squeezing goes
100% in the large mean-photon-number limit~n̄→`!. This
strong noise reduction occurs for times around the first
vival, which depends on the mean photon number astR
52pAn̄/g. It was argued@6–8# that, even taking into ac
count moderate cavity losses that destroy the revival p
nomenon, the squeezing survives for largen̄. Nevertheless,
short interaction times seem to be more attractive from
experimental point of view. This region is close to rece
experiments in cavity QED@9–11#.

One can expect that a way to enhance squeezing i
consider a collection of resonant atoms simultaneously in
acting with the field. In the present paper we will work wi
the Hamiltonian originally proposed by Dicke@12# ~also
called the Tavis-Cummings model@13#!. It describes the in-
teraction of a collection of identical two-level atoms with
single cavity mode of the field. We restrict ourselves to
lossless case. Making the standard dipole and rotating w
approximations for the atom-field interaction, the Ham
tonian reads as follows~\51!:

Ĥ5vN̂1gV̂, V̂5aŜ11a†Ŝ2 , N̂5n̂1Ŝz . ~1.1!

Herev is the resonant frequency for the atoms and the
551050-2947/97/55~3!/2413~13!/$10.00
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diation field mode is described by the photon operatorsa†, a,
n̂5a†a. The collective atomic operators forA identical two-
level atoms are defined as

Ŝ6,z5(
j51

A

s6,z
j . ~1.2!

They obey the usual su~2! commutation relations

@Ŝz ,Ŝ6#56Ŝ6 , @Ŝ1 ,Ŝ2#52Ŝz . ~1.3!

Let us introduce the bare atomic basis

Ŝzuk&at5~k2A/2!uk&at, 0<k<A, ~1.4!

where thek label denotes the number of excited atoms.
the space of symmetrical initial states, the atomic opera
form an~A11!-dimensional representation of the su~2! alge-
bra ~corresponding to the energy spinA/2!. The case of a
single resonant atom,A51, corresponds to the well-know
JCM.

The excitation number operatorN̂ is a constant of the
motion in the Dicke model. If the initial state belongs to
subspace with a given excitation numberN, the system al-
ways evolves within this subspace. Thus it is convenien
introduce the basis

uN,k&5un& f ^ uk&at, N5k1n, 0<k<A,

N̂uN,k&5~N2A/2!uN,k&, ~1.5!

whereun& f is a number state of the field and2A/2 represents
the bottom energy level of the atomic system.

The Dicke model can be analytically studied in at lea
two limit cases: The first occurs when the number of exc
tions in the system is much smaller than the number of
oms,N!A. This weak-field regionhas been studied in th
set of papers given in@14#. Squeezing in the Dicke model in
the weak-field region has been discussed in Refs.@15–18#.
The second soluble case corresponds to the strong-field
2413 © 1997 The American Physical Society
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2414 55RETAMAL, SAAVEDRA, KLIMOV, AND CHUMAKOV
gion, when the initial number of photons is much larger th
the number of atoms,A!N @19–23#. Numerical evidence for
the existence of squeezing in trilinear optical proces
~which is mathematically equivalent to the Dicke model! has
been reported in@24#.

In this paper we employ an analytic approach to study
squeezing properties in the Dicke model~DM! in the strong-
field limit for both long- and short-time regions. This artic
is organized as follows: In Sec. II squeezing properties at
revival regime~for long interaction times! are studied by
using the factorization approximation. This approach enab
us to describe the dynamics of an arbitrary initial state
terms of a special set of atomic states~semiclassical states!.
We show that collective phenomena strongly reduce squ
ing ~compared to the single-atom case! for bare initial atomic
states. In the end of the section we briefly discuss the ef
of field dissipation for long interaction times by using a n
merical simulation.

To discuss squeezing properties in the short-time reg
we use a more accurate approach@21#, which will be referred
to as a ‘‘quasilinear approximation.’’ In Sec. III we outlin
this approximation for the strong-field region and use it
find the Heisenberg field operators. In Sec. IV the maxim
squeezing as a function of the number of atoms and of
field intensities is estimated, and the time instant is fou
when squeezing occurs. In studying short-time squeezing
restrict ourselves to the case in which all of the atoms
initially excited ~the results for initially nonexcited atom
can be obtained from the symmetry properties of the D
@14,19#!. The initial field will always be taken to be in
coherent state~CS! with large photon numbern̄.A.

II. SQUEEZING IN THE REVIVAL REGIME

Squeezing in the JCM in the revival regime has been
covered by Kuklinski and Madajczyk@6#. This case corre-
sponds to the strong-field region, when the average num
of photons in the initially coherent field is large:n̄@1.
Strong noise reduction in one of the field quadrature com
nents was predicted. Rigorous study of field properties in
JCM has been carried out by Woods and Gea-Banaclo
@7#. They use the expansion of the initial atomic state in
basis of semiclassical eigenstates~i.e., eigenstates of the
atomic Hamiltonian in an external classical field!. If such an
initial atomic state interacts with a strong initially cohere
field, the total state of the system remains, to high accura
factorized into field and atomic parts@25#. This factorization
holds for a long-time rangegt,n̄, which covers the reviva
regime. The evolution of an arbitrary initial atomic state c
be described by a superposition of the factorized states.
shall refer to this approach as thefactorization approxima-
tion. This approach has been further extended to descri
wide class of atomic systems interacting with a strong re
nant quantum field@19# ~see also@22# and@23#!. This method
gives a very transparent picture of the dynamics in
strong-field region and naturally explains the structure of
quasiprobability distribution~the Q function! in the field
phase space@23#. Here we use it for studying the DM
squeezing properties in the revival regime. In fact, the res
of the present section should be considered as a genera
tion of Ref. @7# to the case of many atoms.
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A. Factorization approximation

We start with the definition of the semiclassical atom
states for the Dicke model@23#. In the classical field limit the
field operators become complex numbers:

â→a[An̄eif, â†→ā, ~2.1!

and the DM Hamiltonian becomes proportional to the ope
tor

Hcl~f!5~S1e
if1S2e

2 if!/25H~ â→a!/uau. ~2.2!

The HamiltonianHcl~f! describes a collection of two-leve
atoms in the presence of an external classical field. T
phasef of the classical field is chosen to coincide with th
phase of the initial coherent state of the field. Semiclass
atomic states are defined as eigenstates ofHcl~f!:

Hcl~f!up~f!&5lpup~f!&, up~f!&5exp~ ifŜz!upI &.
~2.3!

The semiclassical state with zero phase,up&, is defined as

2ŜxupI &5lpupI &, lp5A22p, p50,1,...,A. ~2.4!

We denote the components of the eigenvectors of the op
tor Ŝx in the bare atomic basis asC p

k5^kupI &, i.e.,
upI &5(kC p

kuk&. These coefficients can easily be found fro
the usual angular momentum theory~see also@14,26#!. For a
system ofA two-level atoms, there areA11 different semi-
classical states which form a complete basis in the spac
all symmetrical atomic states. In what follows we restr
ourselves to the casef50 that distinguishes thex direction
in field phase space, since, for bare initial atomic sta
squeezing appears only in thex direction.

Now let us assume that the initial field is taken to be in
strong coherent stateua& and that the atomic system is in
tially prepared in a semiclassical state. Then the total w
function of the system can be approximately written as
product of its field and atomic parts@19,23#:

uC~ t !&.uFp~ t !& ^ uAp~ t !&,

uFp~ t !&5exp@2 igtlpAn̂2A/211/2#ua&,

uAp~ t !&5exp@2 i t~Ŝz1A/2!#upI &, ~2.5!

where

t5
glp

2An̄A
t5

pt

tR
, n̄A5n̄2A/211/2. ~2.6!

The factorization~2.5! holds for times that are short com
pared tot0;n̄/g with an accuracy in coefficients of orde
O(A/An̄) In the simplest case of a single atom,A51, Eqs.
~2.5! exactly reproduce the result of Gea-Banacloche for
JCM @25#.

The field stateuFp(t)& appears in the factorized wav
function as a response to the interaction with the atom
semiclassical stateupI &. In field phase space each factorize
state can be described by itsQ function, which has the shap
of a single hump revolving around a circle of radiusAn̄ with
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55 2415SQUEEZING OF LIGHT BY A COLLECTION OF ATOMS
an angular velocityglp /(2AnA) @23#. The photon distribu-
tion for these states is always Poissonian, but they sprea
phase, due to an intensity-dependent phase shift.

Any initial atomic state can be expanded in the basis
the semiclassical states as

u in&at5(
p
cpupI &, ~2.7!

and, correspondingly, the state of a total system can be
written as a superposition of the factorized states:

uC~ t !&5(
p
cpuFp~ t !& ^ uAp~ t !&. ~2.8!

Hence a generic initial state causes the appearance ofA11
humps which revolve around the circle of radiusAn̄ in field
phase space with angular velocitiesglp /(2AnA). Figure 1
shows the exactQ function for the field at timet5tR/4. We
takeA53 and all of the atoms are initially excited. TheQ
function of the initial field CS splits into four well-
pronounced humps, as we expect from Eq.~2.8!. Let us re-
mark in advance that for this time instant each hump exhi
squeezing in some direction. However, the total state is
squeezed, because of the spatial separation of the hump

The motion of the humps in field phase space determ
the behavior of the atomic inversion. When all of the hum
are well separated, there are no Rabi oscillations~collapse
region!. The collision of two humpsp andp11 leads to the
revival of Rabi oscillations~in contrast, the collision of two
humpsp and p1k, k.1, does not lead to a revival!. The
revival time in the Dicke model almost coincides with th
JCM revival time@19,23#

tR52pAn̄A/g. ~2.9!

In fact, the representation~2.8! holds exactly for any state o
the system~see, e.g., Ref.@22#!. What is approximate in Eq
~2.8! are our expressions for the factorized states~2.5!. This
approximation gives a very transparent qualitative picture

FIG. 1.Q function of the field at timet5tR/4 for the three-atom
case. All the atoms are assumed to be initially in their excited sta
The field is initially taken in a coherent state withn̄549 andA53.
TheQ function at this time splits into four humps. All of them ar
well pronounced as described by Eq.~2.8!.
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the dynamics, which will be used below to describe sque
ing in the revival regime. However, in the rest of this pap
we will need a more accurate approximation, and it will
presented in Sec. III. The derivation of the factorization a
proximation from the results of Sec. III@and also corrections
to the wave functions~2.5!# are given in Appendix C.

B. Squeezing in factorized states

We start with the case in which the atomic system
prepared in one of its semiclassical statesupI & at t50. This
leads to the approximate factorization of the wave functi
Let us recall that the general quadrature operator is defi
as

âu5~ âe2 iu1â†eiu!/2, ~2.10!

and a state is said to be squeezed in theu direction if
^D2âu&,1/4. Squeezing in thex andy directions correspond
to the valuesu5p, 2p andu5p/2, 3p/2, respectively.

By reasons which will become clear later, we first calc
late the quadrature fluctuations as if the factorization of
wave function were exact. I.e., we first study the noise in
componentâu for the pure field statesuFp(t)& defined by Eq.
~2.5!. We have

^D2âu&p5^Fp~ t !uâu
2uFp~ t !&2^Fp~ t !uâuuFp~ t !&

2.
~2.11!

Using Eq.~2.5! and making further approximations, it i
possible to derive an explicit expression for^D2âu&, as has
been done by Kuklinski and Madajczyk@6# for the JCM
case. They predicted perfect squeezing in the limitn̄→`. For
a given value ofn̄, their result works until timest;An̄
Woods and Gea-Banacloche@7# pointed out that squeezin
disappears at larger timest;n̄ 3/4. That is why we wish to
present here a better analytical approximation which is va
until timesgt;n̄ 3/4.

It is clear from Eq.~2.5! that the evolution of the field par
of the factorized wave function can be described by the
lowing effective Hamiltonian@23#

Heff5glpAn̂2A/211/2. ~2.12!

Since we are only interested in terms which remain finite
timesgt;n̄ 3/4, we can approximate the square root inHeff as

Heff5glpFAn̄A1
Dn̂

2An̄A
2

~Dn̂!2

8n̄ A
3/2 G , Dn̂[n̂2n̄;An̄.

~2.13!

Here we have neglected the term which gives a contribu
to the evolution operator of order

t
~Dn̂!3

n̄ 5/2 ;
t

n̄
, ~2.14!

since this contribution disappears at timesgt;n̄ 3/4. Note
that it is senseless to distinguish betweenn̄A and n̄ if they
appear in denominators; i.e., we can write 1/An̄A51/An̄A
1O(A/n̄ 3/2). The terms in Eq.~2.5! have a very transparen
physical sense: The first term multiplies the wave funct
by a phase factor~which leads to Rabi oscillations in the cas

s.
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2416 55RETAMAL, SAAVEDRA, KLIMOV, AND CHUMAKOV
of bare initial atomic states!. The second term rotates th
state about the origin of phase space, and the third is res
sible for the phase spread.

At this point it is natural to make an analogy to the optic
Kerr medium~see, e.g.,@27,28#!. Indeed, Eq.~2.13! is just
the Kerr Hamiltonian. The only difference is the sign of t
last term. This difference may be important: E.g., it lea
to a strong phase spread reduction when the interactions
the Kerr medium and with the resonant atoms act simu
neously@29#. However, the origin of squeezing in the Ke
medium@27# and in the factorized states of the Dicke mod
is, in fact, similar. The approximate effective Hamiltonia
~2.13! provides an analytic solution for the field Heisenbe
operators

a~ t !5e2 i t expF ilpgtS 112Dn̂

8n̄ 3/2 D Ga. ~2.15!

Recall thatt5lpgt/2An̄. We have, for the mean value of th
field operators,

^â&p5ae2 i t~121/4n̄ ! expF n̄S e2 i t/2n̄211
i t

2n̄D G
'ae2 i te2T2/8. ~2.16!

Thus the phase of the field approximately equals2t, while
its amplitude decreases ase2T2/8 ~due to the phase spread!;
here,T5lpgt/n̄. After some algebra, we arrive at the fo
lowing expression for the quadrature fluctuations:

^D2âu&p'
1

4
1F n̄2 ~e2T2/82e2T2/16!1

T

64

3~e2T2/1624e2T2/8!Gcos~2u12t!

1
TAn̄
8

~2e2T2/82e2T2/16!sin~2u12t!

1
n̄

2
~12e2T2/16!. ~2.17!

For the JCM case,lp561, one can easily restore the asym
totic result from@6,7#. ReplacingT52t/An̄ and neglecting
all of the terms which containn̄ in the denominators, one
gets

^D2âu&p'
1

4
1

t2

8
@12cos~2u12t!#1

t

4
sin~2u12t!.

~2.18!

We show the exact results for the quadrature fluctua
in the x direction ~u50! and the approximations~2.17! and
~2.18! in Fig. 2. The exact curve~without use of the factor-
ization approximation! and the present approximation~2.17!
appear to be very close in this graph, while the asympt
result~2.18! from Refs.@6,7# shows apparently different be
havior for finite photon numbers. Equation~2.17! describes
all the essential properties of squeezing under the factor
n-

l

s
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-

l
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n

ic
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tion approximation. For a given field intensityn̄ and for any
chosen directionu, any field stateuFp(t)& will reveal squeez-
ing at some time instants.

It was noticed in Ref.@7# that squeezing disappears
times gt;3n̄ 3/4. One can reproduce 0this estimation fro
the following arguments: The phase spread, which initia
squeezes the state, at later times deforms it into a cres
shape and causes disappearance of squeezing~see Fig. 1 and
the discussion of theQ function below!. The same reason
applies to the decreasing of the field amplitudeu^â&u. In fact,
squeezing disappears at times when the field amplitude
creases by unity

uau2u^â&pu.1, ~2.19!

and we have, from Eq.~2.16!, lpgt.A8n̄ 3/4.
We can easily find the directionu in which the maximum

squeezing occurs. Differentiating Eq.~2.17! with respect to
u, we get

umax52 1
2 arccotS t

2D2t, ~2.20!

in full agreement with Ref.@7#. Now it is easy to find the
times when squeezing occurs in thex direction. Replacing
u5kp ~k51,2,...! in Eq. ~2.20!, we get

t5kp2
1

2
arccotS t

2D . ~2.21!

The second term is small here, and with reasonable accu
we can write

tsq[
tsq
tR

p'kp2
1

2
arccotS kp

2 D , k51,2,... .

~2.22!

FIG. 2. Squeezing along thex direction as a function of the
normalized time,tn5t/tR , for A53 andn̄5100. Atoms are initially
prepared in a semiclassical state withlp51. Solid line: exact evo-
lution. Dashed line: analytical approximation, Eq.~2.17!. Dotted
line: asymptotic approximation, Eq.~2.18!. For long interaction
times we observe an excellent agreement between the exact e
tion and the analytical approximation~2.17!. The asymptotic ap-
proximation~2.18! fails for long interaction times, for finite value
n̄.
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55 2417SQUEEZING OF LIGHT BY A COLLECTION OF ATOMS
Hence minimum quadrature fluctuations in thex direction
correspond to times slightly before the reviv
times: tsq.0.9tR , 1.95tR ,... @7#.

Note that the most important difference between the fi
parts of the factorized states in the JCM and in the Dic
model occurs in the time scale. In fact, one can write

uFp~ t !&'uF~lpt !&, ~2.23!

whereuF(t)& is the JCM state~A51! with lp51. It can also
be seen in the graph of quadrature fluctuations. See Fig
where quadrature fluctuations in thex direction ~exact and
under the factorization approximation! are shown for two
initial semiclassical statesp50 ~lp53! and p51 ~lp51!;
A53 and n̄5100. For factorized wave functions, the gra
for lp53 is similar to the 3-times-compressed graph
lp51. This correspondence is less accurate for the e
curves, due to the reason which will be explained below

The squeezing properties can be naturally explained
terms of the quasiprobability distributionQ~a!5u^auC&u2 in
field phase space. TheQ function corresponding to the sta
uFp(t)& can be represented as follows@23#:

FIG. 3. Squeezing along thex direction as a function of the
normalized time,tn5t/tR, for A53 andn̄5100. Atoms are initially
prepared in a semiclassical state with~a! lp51 and~b! lp53. Solid
line: exact evolution. Dashed line: analytical approximation, E
~2.17!. The time scale forlp53 is 3 times the time scale forlp51.
In case~b! we observe that squeezing predicted at timetn51/3 by
the factorization approximation does not occur in the exact ev
tion. This disagreement arises because of the presence of the
ondary humps. The field was initially assumed to be as in Fig.
d
e

3,

r
ct

in

Q~b5reif!p5
exp@2~r2r 0!

2#

Arr 0m~ t !

3 (
k52`

1`

expF2
~f1f0~ t !22pk!2

m~ t ! G .
~2.24!

Here each term is a Gaussian function~of a phase variable!
whose center is moving with angular velocityf0(t)
5tglp /(2Arr 02A/211/2) and with an intensity-dependen
variance

m~ t !5
1

rr 0
1S glpt

2rr 0
D 2, r 0[An̄, ~2.25!

which describes a phase spread of the wave packet. E
term in the sum~2.24! contributes for different times. Only
the termk50 is important near the first revival. Then th
level curves of theQ function are given as

~r2r 0!
21

@f2f0~ t !#
2

m~ t !
5const. ~2.26!

These equations confirm the picture which has been
scribed in the previous section: The field stateuFp(t)&
revolves and spreads along the circle of radiusAn̄. For
short timesgt,n̄ 3/4, stretching along the arc of the circl
does not differ too much from stretching along a straig
line. The level curves of theQ function are almost ellipses
This has to be expected for squeezed states. But for ti
gt;3n̄ 3/4, the ellipses are deformed to acquire a cresc
shape and the fluctuations of a quadrature component in
direction exceeds 1/4~the level of fluctuations in a coheren
state.!

The predictions of the factorization approximation a
rather accurate when they concern the collapses and rev
of Rabi oscillations, the structure of theQ function, and even
the quadrature fluctuations when they are large~see Figs. 1
and 2!. Unfortunately, the factorization approximation fai
to explain squeezing~or, rather, the absence of squeezin!
even in the JCM and, as we now shall see, also in the Di
model. The question may arise, why do we show the form
~2.17!, which does not work? The answer is the follow
ing: First, it is still useful under some restrictions. Secon
we believe that the field states which enter into the factori
wave functions are important in themselves. They appear
any atomic system interacting with a strong quantum fi
@19#. Similar field states are produced by the Kerr mediu
@Eq. ~2.17! describes the Kerr medium, if we replaceT→
2T#.

One should expect from Eq.~2.11! that forA.1 the best
squeezing is reached at timestsq/ulpu, p51,...,A. For in-
stance, in the case ofA53 we haveulpu51,3. The ulpu51
states revolve with the same angular velocity as in the JC
and maximum squeezing is expected close to the rev
times. In turn, for the statesulpu53, maximum squeezing
should appear near the fractional revival time:tsq/3. Figure 3
tests these predictions against the exact solution for the
of A53. We see that the noise reduction at fractional revi
times, predicted by the factorization approximation, does
occur in the exact solution. On the other hand, the factori
wave functions still work near the revival times, for bo

.
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lp51 andlp53. As a result, no squeezing appears at fra
tional revival times. Squeezing can only be expected near
revival times~and only in case it is predicted by the factor
ization approximation!.

In order to explain this behavior, let us consider the exa
dynamics of theQ function in the field phase space, Fig. 4
We notice that, in addition to the well-pronounced hum
corresponding to the semiclassical stateuFp(t)&, there exists
some additional structure. This secondary structure cons
of small humps which evolve with frequencies,glq/An̄, q
Þp. ~The secondary structure in the JCM was discovered
@7#.! The heights of additional humps are extremely sma
compared to the height of the main hill. However, if th
secondary humps are far from the main hill, squeezing c
be destroyed@7#. Precisely, this happens at fractional reviva
times; see Fig. 4. At revival time@23# all of the humps get
superposed. In this case the field properties are essenti
determined by the contribution of the main hump. Then th
factorization approximation works and squeezing can app
~see Figs. 3 and 5!.

Secondary structure lies beyond the factorization appro
mation. It can be easily incorporated by considering the co
rections to the factorized wave functions~2.5! coming from
the contributions of higher powers of the small paramet
A/An̄. See Appendix C, where it is shown that, at most, tw
additional humps~associated with the valuesp61! accom-
pany the main humpuFp(t)&. Using the results of Appendix
C, a generalization of Eq.~2.11! can easily be found which
takes into account the secondary humps. However, it is c
tainly beyond our present scope of interest. We may on
stress that a more accurate description of the dynamical
sponse to the initial atomic semiclassical state leads to
wave function in the form~2.8!. This latter equation provides

FIG. 4. ExactQ function of the field at timetn5
1
4 for A53,

n̄549. Atoms are initially prepared in a semiclassical state wi
lp51. In order to observe the secondary peak structure, we h
split the graph into three pieces, each piece containing a sin
peak. We emphasize that there is a three-order-of-magnitude dif
ence between the sizes of the main hump and the secondary one
principle, there exists another~smaller! hump in the fourth quadrant
of phase space, due to the second-order corrections to the factor
wave function.
-
he

t

ts

in
ll

n
l

lly
e
ar

i-
r-

r

r-
ly
e-
a

a general form for an arbitrary initial atomic state. The sem
classical states are distinguished since one of the terms in
~2.8! dominates over the others and the state becomes
proximately disentangled.

Generally, squeezing is weaker for the humps wh
move faster. Indeed, squeezing can only appear at rev
times 2pAn̄/g independently of the value oflp . On the
other hand, squeezing cannot be better than predicted by
factorization approximation, Eq.~2.17!. As defined by the
latter equation,D2â depends only onlpt ~not on lp and t
separately! and grows whenlpgt.n̄. For instance, quadra
ture fluctuations in the statesulpu53 ~faster humps! are much
larger than in the stateulpu51 ~slow humps!, as seen in Fig.
3. For a given semiclassical state, maximum squeez
grows with the field intensityn̄.

C. Squeezing for bare initial atomic states

To discuss this item we use the expansion~2.7! of an
arbitrary atomic state in the basis of semiclassical states
mentioned above and shown in Fig. 1, a bare atomic s
splits the fieldQ function into A11 humps independently
revolving in phase space. Secondary humps are located a
same places as the principal ones and, hence, can be
glected. Strictly speaking, revivals happen when any t
humpsp andp61 collide @23#. However, for the bare initial
atomic state it implies that all of the humps get superpose
the revival times. Taking into account the approximate
thogonality of the factorized atomic wave functions at t
revival times@19,23# ~see also@7#!, we obtain the following
expression for the quadrature fluctuation ofâ1 which is valid
for times close to revival instants:

^D2â1&k5(
p

uCk
pu2^Fp~ t !uâ1

2uFp~ t !&

2S (
p

uCk
pu2^Fp~ t !uâ1uFp~ t !& D 2. ~2.27!

Curves produced by making use of this formula are
very good correspondence with the exact results. They s
that, for a given initial photon number, squeezing is d
stroyed very fast with growing numbers of atoms. The phy
cal reasons for the growth of fluctuations are also clear. T
structure of theQ function suggests that squeezing can on
occur if all of the humps associated with different semicla
sical states coincide in a given region of phase space at
same time. It does happen at the revival times. Thus we
expect squeezing if all of the humps associated with differ
frequenciesulpu are squeezed. On the other hand, we kn
from the latter section that quadrature fluctuations beco
much larger for faster humps~ulpu.1!. These fast humps
contribute significantly in the dynamics to destroy squeez
for the case of initial bare atomic states.~For a given number
of atoms, one can always restore squeezing by mean
increasing the initial field intensity.!

We can estimate the ‘‘threshold’’ number of photons f
which squeezing appears. The semiclassical state
ulpu51 is always squeezed at the first revival time,tR
52pAn̄/g. Squeezing is destroyed at times;3n̄ 3/4. We may
expect squeezing if all of the semiclassical states which c
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55 2419SQUEEZING OF LIGHT BY A COLLECTION OF ATOMS
tribute to the given initial atomic state are squeezed at
revival time. The state with maximumulpu5A has the maxi-
mum fluctuations in this regime. This state evolves with
time scaleAt, i.e.,A times faster than the state withulpu51.
Therefore, the faster state is squeezed at the first revival
if AtR,3n̄ 3/4. Thus we arrive at the condition for the exis
ence of squeezing in the revival regime for a system oA
atoms:

n̄.~2A!4. ~2.28!

If this inequality holds, squeezing appears for any init
atomic state. Our exact numerical evidences are in ac
dance with this result. We show the graph for the thresh
value of n̄, when squeezing appear, in Fig. 5. Quadrat
fluctuations in thex direction are shown as a function th
normalized timetn[t/tR for the semiclassical states wit
lp51 and 3 and for the bare atomic state with all ato
excited,uk53&. All the curves in Fig. 5 are exact;A53 and
n̄51000. For larger photon numbers, squeezing beco
stronger.

To conclude this section, we may say that the factori
tion approximation~2.5! describes, at least qualitatively, th
squeezing for long interaction times~the revival regime! in
the Dicke model. However, the long-time squeezing
strongly suppressed in this model, with respect to the J
case. In the rest of this paper we will be concerned with sh
times. It turns out that the direct application of the factoriz
tion approximation~2.5! to study short-time squeezing lead
to an error. In fact, it is known@3# that short-time squeezin
in the JCM decreases with the growth of the field intens
Hence one can expect an inverse dependence of short
squeezing on the field intensity. This means that the asy
totic expansion~2.5!, with an error in the coefficients of or
derO(A/An̄), is not reliable in this case.

Another argument is that the short-time squeezing app
essentially due to interference among different semiclass
states, which is absent in the factorization approximation@7#.
Indeed, the atomic parts of the factorized wave functions
nearly orthogonal at times;ktR , k50,1,. . . . Thus matrix
elements between different factorized states vanish bot

FIG. 5. Threshold for the appearance of squeezing in the rev
regime. Squeezing along thex direction as a function of the nor
malized time,tn5t/tR , for A53 andn̄51000. Dashed line: semi
classical statelp51. Dotted line: semiclassical statelp53. Solid
line: bare atomic stateuk53&. All the curves are exact.
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short times~until the first collapse! and at revival times. For
these reasons we adopt a different scheme to investigate
short-interaction-time region.

D. Field dissipation

Up to now, we have considered the system imbedded
an ideal cavity. For short interaction times, around the fi
collapsegt'1, the effect of the dissipation can be neglect
for the present experimental setup. However, in genera
can be expected that dissipation completely changes the
ture for interaction times close to the first revival. Here w
include a brief discussion of the field dissipation for typic
values of parameters in recent experiments, in which
63p3/2→61p5/2 transition of

85Rb atoms with a coupling con
stantg544 kHz is used and a cavity decay constantgc52.5
Hz @30#. Thus we havegc/g;1024. We argue that dissipa
tion should not affect significantly squeezing at times clo
to the first revival time. For these times squeezing is de
mined by fluctuations in the semiclassical states which c
tribute to a given initial atomic condition.

In Fig. 6 we show the effect of dissipation for differen
values of the field decay constant,gc/g50, 1023, and 1022.
Even for the worst casegc/g51022, quadratures fluctuation
Da1 do not increase compared to the non dissipative c
~which also means that the dissipation does not affect sig
cantly intensity fluctuations!. The main effect of the dissipa
tion appears to be a reduction of the average photon num
which can be approximately given asn̄(t)5n̄ exp(2gct)
@31,32#. In fact, the minimum of fluctuations occurs at th
revival time; it appears earlier for largergc/g, which corre-
sponds to a decrease of the revival time due to the decr
of the average photon number. Figure 6 also shows that
interference of the semiclassical states around the rev
time ~small oscillations seen in the curvegc50! completely
disappears for finite values ofgc . These oscillations are a
reminisence of the revival of Rabi oscillations of the atom
inverstion. Recall that dissipation destroys the revival its
for the chosen values ofgc/g; i.e., the coherence between th
semiclassical states is lost.

Finally, Fig. 6 shows that for chosen values of the dec
constant all the curves coincide for short times, as expec

al FIG. 6. Effect of field dissipation on the evolution of quadratu
fluctuations in thex direction for two atoms, which are initially
prepared in their excited states. The field is taken to be initially i
coherent state withn̄549. ~a! gc50, ~b! gc51023, and ~c!
gc51022. All the curves have been obtained from the exact num
cal solution of the dissipative master equation.
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and the dissipation can be neglected for short times as it
be done in Sec. IV. A more detailed study of the field dis
pation in the Dicke model, both analytically and numerical
will published elsewhere@33#.

III. DM EVOLUTION OPERATOR
IN THE QUASILINEAR APPROXIMATION

As we have seen in the previous section, the factoriza
approximation does not provide enough accuracy to desc
squeezing for short times. Better approximations are av
able @14,21#. We shall use the approximate evolution ope
tor ~EO! found in Ref. @21#. ~It corresponds to the zeroth
order approximation for the wave functions from Refs.@14#,
translated to the strong-field region.! In fact, we need to
calculate the Heisenberg operatorsa(t) anda2(t). However,
we include here a brief derivation of the EO for the stron
field case.

Following Ref.@21#, let us introduce the transformation

Q̂5exp@ i f̂~Ŝz1A/2!#, ~3.1!

where exp~6i f̂! are the field phase operators@34#. Since the
operatorŜz1A/2 is reduced to integer numbers when acti
on the bare atomic states, (Ŝz1A/2)uk&at5kuk&at, the opera-
tor Q̂ is a direct sum of different powers of the phase ope
tor:

Q̂5 (
k50

A

uk&ate
i f̂k

at̂ ku. ~3.2!

In general [Q̂,Q̂†]5u0& f f^0u. However, acting in the basi
~1.5!, the Q̂ operator is unitary on the statesn.A>k. The
following commutation properties of theQ̂ operator will be
used later@21#:

f ~ n̂!Q̂†5Q̂†f ~ n̂1Ŝz1A/2!, Q̂f ~ n̂!5 f ~ n̂1Ŝz1A/2!Q̂,

Q̂Ŝ1Q̂
†5exp~ i f̂ !Ŝ1 , Q̂Ŝ2Q̂

†5exp~2 i f̂ !Ŝ2 .
~3.3!

Acting on field operators theQ̂ transformation gives

nÎ [Q̂†n̂Q̂5n̂2Ŝz2A/2, ~3.4!

aÎ [Q̂†âQ̂5An̂2Ŝz2a/211ei f̂5An̂2Ŝz2A/211

n̂11
â.

~3.5!

Applying the Q transformation to the Dicke Hamiltonia
~1.1! and making use of Eqs.~3.3!, we diagonalize the
Hamiltonian in the field space:

HI [Q̂†HQ̂5g~An̂2A/22Ŝz11Ŝ11Ŝ2An̂2A/22Ŝz11!.
~3.6!

In the strong-field case, one can expand the transform
Hamiltonian ~3.6! in a power series of a small paramet
~n̂2A/211/2!21!1 ~see@21#!:

HI 52gAn̂2A/211/2Ŝx2
g$Ŝz ,Ŝx%

An̂2A/211/2
1••• . ~3.7!
ill
-
,

n
be
il-
-

-

-

ed

Here $ % denotes the anticommutator. It has been sho
@21,23,19# that even the zeroth-order approximation~just the
first term in the above expansion!

HI .2gAn̂2A/211/2Ŝx ~3.8!

describes well all of the essential quantum phenomena
collapses and revivals of the atomic inversion, trapp
states, the wave function factorization, evolution of theQ
function, etc. The EO takes on the form

Û~ t !.Q̂Ûat~ t !Q̂
†, ~3.9!

where

Uat~ t !5exp~2 i t̂Ŝx!, t̂[2gtAn̂11/22A/2.
~3.10!

This evolution operator has a very simple physical sen
In every subspace with given excitation numberN, it leads to
linear dynamics, which is just a precession of the Bloch v
tor ~energy spinA/2! around thex axis. The frequency of this
precession ~the generalized Rabi frequency!, VN

5gAN2A/211/2, depends nonlinearly onN, which ac-
counts for the nonlinearity of the model. We call this aqua-
silinear approximation. For the Jaynes-Cummings cas
A51, the EO~3.9! reproduces the exact result@all the cor-
rections due to higher order terms in the expansion~3.7!
vanish#.

The evolution operator~3.9! enables us to easily find a
the atomic and field operators in the Heisenberg represe
tion. Since [Ŝz ,Q̂]50, the Heisenberg operatorŜz(t) is
given by

Ûat
† ŜzÛat5Ŝz cos t̂2Ŝy sin t̂. ~3.11!

In turn, for the photon-number operator we have

n̂~ t !5Û†n̂Û5Q̂Ûat
†Q̂†n̂Q̂ÛatQ̂

†[Q̂Ûat
†nÎ ÛatQ̂

†.
~3.12!

Hence the transformed photon-number operator, Eq.~3.4!,
evolves with time as

nÎ ~ t ![Ûat
†nÎ ~ t !Ûat5n̂2A/22Ŝz cos t̂1Ŝy sin t̂.

~3.13!

Making use of the commutation relations for theQ̂ operator,
Eqs.~3.3!, we finally get

n̂~ t !5n̂1Ŝz~12cos n̂ !1
1

2i
~Ŝ1e

i f̂ sin n̂2sin n̂e2 i f̂Ŝ2!

[n̂1L̂~ n̂!, ~3.14!

where

n̂5Q̂t̂Q̂†52gtAn̂11/21Ŝz. ~3.15!

The operatorL̂(n̂) in Eq. ~3.14! is a function of both atomic
and field variables. We only indicate its dependence on
field variables, in order to simplify notations. If initially al
the atoms are excited, we have
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at̂ Aun̂~ t !uA&at5n̂1
A

2
~12cos n̂A!,

n̂A[2gtAn̂11/21A/2. ~3.16!

Similarly, one can get the evolution of the annihilation o
erator

â~ t !5A11n̂~ t ! exp~ i f̂ !5A11
L̂~ n̂!

n̂11
â, ~3.17!

where L̂ is defined by Eq.~3.14!. The evolution ofâ2 di-
rectly follows from the this expression

â2~ t !5A11
L̂~ n̂!

n̂11
A11

L̂~ n̂11!

n̂12
â2. ~3.18!

In the strong-field limit (n̄@A), we can expand the squar
roots in Eqs.~3.17! and~3.18! in powers of 1/~n̂11! and take
an average over the initial atomic state. Following the st
dard technique of SU~2! group representation theory~see
Appendixes A and B!, we calculate the matrix element of th
operatorsâ(t) and â2(t) between the fully excited atomi
states:

^Auâ~ t !uA&5cosAS n̂A2 n̂A11

2 D F11
AZ1

4~ n̂11!

2
AZ1~AZ1112Z1!

32~ n̂11!2 G â,
^Auâ2~ t !uA&5cosAS n̂A2 n̂A12

2 D F11
AZ2

2~ n̂11!

2
AZ2

4~ n̂11!2G â2, ~3.19!

where

Zj512
cos@~ n̂A1 j1 n̂A!/2#

cos@~ n̂A1 j2 n̂A!/2#
0 ~3.20!

and n̂A1 j52gtAn̂1 j11/21A/2. The dynamical behavio
of the atom-field system is described well by these exp
sions up to timesgt;n̄, with an error in coefficients of orde
O(A/n̄).

IV. SQUEEZING AT SHORT TIMES

In the short-time regime, we consider only bare init
atomic states. These states split the fieldQ function into
A11 humps, which are independently revolving in pha
space. Thus the short-time squeezing appears due to th
terference between the humps~semiclassical states!. For ini-
tial bare atomic states, secondary humps overlap with
principal ones and, hence, can be neglected. We will st
the quadrature fluctuations for the case ofu50 in Eq.~2.10!,
i.e., â15(â1â†)/2. This choice ofu leads to the maximum
noise reduction for bare initial atomic states in this regim
Indeed, for each moving hump there always exists a symm
ric image with respect to thex axis, which spreads theQ
-

-

s-

l

e
in-

e
y

.
t-

function in the p direction and the minimum fluctuation
always occur in thex direction.

To study the short-time dynamics, we expand Eqs.~3.19!
for â(t) and â2(t) in a power series of a small paramet
gt/An<1. Taking the initial field in a coherent state wit
zero phase, we get

^D2â1&5
1

4
1
n̄

4 HAS 1n ^12cosn̂A&2 K 12cosn̂A
~ n̂11! L D

1
A~gt!2

2 K 1

~ n̂11!2L 2AK ~sinn̂A/2!4

~ n̂11!2 L
1A2F ~gt!416 K D2

1

~ n̂11!L 1
1

4 K D2
~12cosn̂A!

~ n̂11! L
2

~gt!2

4 S K 12cosn̂A
~ n̂11!2 L

2 K 1

~ n̂11!L K 12cosn̂A
~ n̂11! L D G J , ~4.1!

where the average values of the diagonal photon oper
f (n̂) in the coherent stateua& f are determined as follows:

^ f ~ n̂!&5(
n

Pnf ~n!, ^D2f &5^ f 2&2^ f &2. ~4.2!

In the short-time region (gt!An̄), all the averages in Eq
~4.1! can be easily calculated. For instance, expanding
shifted arguments of the trigonometric functions in series
gt/An̄, we get

K cosn̂An11 L '
1

n̄ F ^cosn̂A&1
gt

An̄A
^sinn̂A&G .

In turn, assuming the Gaussian limit of the Poisson dis
bution and replacing the sums by corresponding integrals
have

^cosn̂A&5expF2
g2t2

2

n̄

n̄A
Gcos~2gtAn̄A!,

where n̄A5n̄11/21A/2. After straightforward calculation
keeping terms up to order 1/n̄ in Eq. ~4.1!, we get the fol-
lowing expression for the fluctuations ofâ1:

^D2â1&5
1

4
1

Agt

4An̄A
sin~2gtAn̄A!expS 2

~gt!2

2

n̄

n̄A
D

1
A2

32n̄ FexpS 22~gt!2
n̄

n̄A
D2expS 2

~gt!2

2

n̄

n̄A
D G

3cos~4gtAn̄A!1
A2

32n̄
~12e2~gt!2n̄/n̄A!1OS A3

n̄ 2D .
~4.3!

This equation contains all the information about short-tim
fluctuations in the field quadrature component for differe
numbers of atoms and different initial field intensities.
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Quadrature fluctuations for different numbers of ato
are shown in Fig. 6. For interaction timesgt;1, noise de-
creases for larger numbers of atoms. When Rabi oscillat
collapse the squeezing disappears.~It may appear again
around the first revival time.!

In Fig. 7~a! we plot the varianceD2â1 as a function of
time from exact numerical calculation and from Eqs.~3.19!,
which is valid for long times. We observe a good agreem
between curves both for short and medium interaction tim
In Fig. 7~b! the same variance is shown for short times;

FIG. 7. Short-time squeezing in thex direction ~exact evolu-
tion!. A52, 4, 6. The field is taken to be initially in a coherent sta
with n̄549, and all the atoms initially excited.

FIG. 8. ~a! Short-time squeezing in thex direction both from the
exact evolution~solid line! and from the approximation~3.19!
~dashed line!; A54 and 6. ~b! Quadrature fluctuations from th
exact evolution~solid line! and from the short-time analytic ap
proximation~4.3! ~dashed line!; A52 and 4.
s

ns

t
s.
e

exact numerical result is compared with the analytic expr
sion for short times, Eq.~4.3!.

Equation~4.3! allows us to find the conditions for the be
squeezing and its dependence on the system parameteA
andn̄. The time instant when the maximum squeezing occ
is determined by the second~secular! term in Eq. ~4.3!. It
describes modulated oscillations. The local maxima
squeezing correspond to the minima of the sine functi
which occur at timesgt(k)5(k21/4)p/An̄A, k51,2,. . . .
The best squeezing occurs at the instantt*5t(k* ), which is
the closest to the minimum of the envelope

gt05An̄A
n̄

;1. ~4.4!

The global minimum is always on the left-hand side of t
envelope minimum, as is clearly seen in Figs. 7~a! and 7~b!.
Precisely, the best squeezing time is given by

t*5
p

gAn̄A
S F n̄A

pAn̄G2
1

4D . ~4.5!

One can arrive at this result by calculating the number
periods of the sine function in the interval@0,gt0#. The best
squeezing time, to high accuracy, is independent of the n
ber of atoms. However, the maximum squeezing which
be produced in a strong-field region by the system of tw
level atoms depends on the number of atoms. Calculating
varianceD2â1 at the timet* , we find

~D2a1!best.
1

4 S 12a
A

An̄
1b

A2

8n̄D , ~4.6!

where a5e21/2'0.606 and b511a2a22a4'1.103.
Squeezing grows linearly with the number of atoms part
pating in the interaction.

From the above equation one can determine the ato
number which maximizes squeezing for a given mean nu
ber of photons in the initial coherent state. We have

Abest;2.4An̄. ~4.7!

This is consistent with the assumptionA!n̄ accepted in the
quasilinear approximation, provided thatA/n̄'2.4/An̄!1. If
this latter condition is satisfied, one can expect to reach
upper limit for squeezing, which is 66. This is the be
squeezing which can be produced in a strong-field region
short interaction times.

For lower field intensities, this theory works forA,Abest,
but not forA;Abest itself. Our numerical tests show that i
this case the maximum possible squeezing is less than
and that the time instant when the best squeezing oc
moves to shorter times than predicted by Eq.~4.5!.

It is worthwhile to note that the small parameter requir
in the factorization approximation of Sec. II isA/An̄!1. The
short-time squeezing is proportional toA/An̄. Clearly, this
effect is beyond the scope of the factorization approximati
In contrast to the long-time squeezing, the short-time on
essentially a consequence of interference between diffe
semiclassical states.
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V. CONCLUSION

We have studied the ability of a collection of resona
two-level atoms interacting with a strong electromagne
field quantum mode to produce squeezing in theâ1 field
quadrature component. It is assumed that the number o
oms is significantly smaller than the initial number of ph
tons. It is shown that this system exhibits squeezing in b
short- and long-time regions.

As in the Jaynes-Cummings model, a significant amo
of squeezing can be achieved in the Dicke model at the
vival regime if the atomic system is initially prepared in
special state@semiclassical state with the parameterlp51:
see Eq.~2.4!#. Then the noise reduction occurs at an inst
slightly before the first revival time. For an arbitrary initia
atomic state~e.g., for a bare state!, collective effects suppres
long-time squeezing, in contrast to the JCM. However, fo
given number of atoms, any initial atomic state leads
squeezing, provided thatn̄.(2A)4.

The fluctuations in the long-time region can be co
pletely analyzed in terms of the factorization approximatio
which leads to a very transparent physical picture. Howe
this approach fails when applied to short times when in
ference between different semiclassical states is respon
for squeezing.

To study squeezing in the short-time region, we have
plied a new operator method developed in@21# which pro-
vides better accuracy. In the short-time region, the time
stant for best squeezing is almost independent of the num
of atoms and is close to the collapse time@see Eq.~4.5!#. The
maximum possible squeezing produced by resonant atom
this region grows with the number of atoms,A, and is pro-
portional toA/An̄. For givenn̄, the best squeezing occurs fo
A;2.4n̄ and equals to 66%.

The influence of field dissipation on quadrature fluctu
tions of the field has been numerically studied. For typi
values of the parameters in recent experiments,gc/g;1024,
we have found that at short times the dissipation can
totally neglected. For long times, the main consequence
dissipation are an exponential decay of the average ph
number and a loss of coherence between different semic
sical atomic states, which destroys revivals of Rabi osci
tions. However, for moderately high initial photon numbe
dissipation does not significantly affects the squeezing pr
erties of the field. A more detailed study of the effect
dissipation on the Dicke dynamics will be published els
where@33#.
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APPENDIX A

In this appendix we show the details of calculations of
averageŝ â(t)& and ^â2(t)&:

â~ t !5U†~ t !aU~ t !5Q̂Uat
† ~ t !Q̂†aQ̂Uat~ t !Q̂

†, ~A1!
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where

Uat~ t !5exp~ i t̂Sx!, t̂~ n̂!52gtAn̂2A/211/2. ~A2!

We want to calculate the averages over the excited in
atomic stateuin&at5uA&. ExpandinguA& in the basisup& of
eigenvectors of the atomic operatorSx, Eq. ~2.4!, we have
uA&5SpC p

Aup&. The coefficientsC p
n5Cn

p have been chosen
to be real. The expression for the average value over
initial atomic state can be written as

^Auâ~ t !uA&5ei f̂A^AuU†Q̂†âQ̂UuA&e2 i f̂A

5ei f̂A(
p,q

Cp
ACq

A^quU†Q̂†âQ̂Uup&e2 i f̂A

5ei f̂A(
p,q

Cp
ACq

Aeilqt̂^quQ̂†âQ̂up&e2 ilpt̂e2 i f̂A.

~A3!

It still contains the field operators because we have not
culated the average over the initial field state. Introducing
inverse expansion, we have

^Auâ~ t !uA&5ei f̂A(
p,q

Cp
ACq

Aeilqt̂(
l ,k

Cl
qCk

pe2 i f̂kâei f̂ l

3dk,le
2 ilpt̂e2 i f̂A. ~A4!

Here we denoten̂A5ei f̂Ate2 i f̂A52gtAn̂1A/211/2. Then

^Auâ~ t !uA&5(
p,q

Cp
ACq

Aeilqn̂A(
k
Ck
qCk

pAn̂112k1A

n̂11

3e2 ilpn̂A11â. ~A5!

We notice that

(
p
Cp
ACk

pe2 ilpn̂A115(
p

^Aue2 i n̂A11Ŝxup&^puk&

5^Aue2 i n̂A11Ŝxuk&5dAk~2 n̂A11!, ~A6!

whered nk
A ~u! are the usual Wignerd functions from standard

angular momentum theory~see Appendix B!. Finally, we get

^Auâ~ t !uA&5(
k
dAk~2 n̂A11!dAk~ n̂A!An̂112k1A

n̂11
â.

~A7!

In the high-photon-number limit we can expand the squ
root in the above expression in powers of~n̂11!21:

^Auâ~ t !uA&5 (
k50

A

dAk~2 n̂A11!dAk~ n̂A!

3S 11
A2k

2~ n̂11!
2

~k2A!2

8~ n̂11!2D â. ~A8!
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Applying formulas from Appendix B, we get Eq.~3.17!. Fol-
lowing the same procedure we can obtain the average v
of â2(t), Eq. ~3.18!.

APPENDIX B

Here we outline some properties of Wignerd functions
which are defined as the matrix elements for finite rotatio
by operators from the SU~2! group representations~see@26#!,

dnk
A ~u!5dkn

A ~u!5^kueiuSxun&, ~B1!

wherek,n50,1,. . .,A. HereA is the number of atoms which
determines the dimension of the SU~2! group representation
dim5A11. For example, for the one-atom case~A51!,
dim52 and the matrixd1 is defined as

dA~u!5F cos
u

2

i sin
u

2

i sin
u

2

cos
u

2

G . ~B2!

For our calculations we need the functionsdAk
A ~u!:

dAk
A 5 i A2kA A!

~A2k!!k!
sinA2k

u

2
cosk

u

2
. ~B3!

The following sums have been used in calculations@26#:

(
k50

A

dAk
A ~u1!dAk

A ~u2!5cosA
~u11u2!

2
~B4!

(
k50

A

dAk
A ~u1!dAk

A ~u2!S k2
A

2 D5
A

2
cos

~u12u2!

2

3cosA21
~u11u2!

2
, ~B5!

(
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A

dAk
A ~u1!dAk

A ~u2!S k2
A

2 D 2

5
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4
cos

~u12u2!

2
cosA21

~u11u2
2

1
A~A21!

4
cos2

~u12u2!

2
cosA22

~u11u2!

2
. ~B6!

APPENDIX C

Here we prove the wave-function factorization used
Sec. II, starting from the evolution operator defined in S
III. Applying the Q̂† operator to the wave function, we ge

uC~ t !&5Q̂UÎ Q̂†u in&. ~C1!

First, we find the action of theQ̂† operator on the initial
state,

u in&5ua& f ^ upI &. ~C2!
ue

s

.

The phase operator acting on the coherent state gives~recall
that we take the initial phase to bef50!

e6 i f̂kua&5ua&1
kDn̂

2n̄
ua&1OS F k

An̄G
2D . ~C3!

Thus theQ operator transforms the initial state as

Q̂†u in&'upI &a^ ua& f2FDn̂

2n̄
ua& f G ^ @~Ŝz1A/2!upI &a].

~C4!

The second term in Eq.~C4! is of orderO(k/An̄). This term
causes the superstructure that destroys squeezing in the
torized states. However, the principal contribution com
from the first term.

Neglecting for a while the influence of the second ter
we now let the operatorUÎ act on the transformed initial stat
~C4!: From Eqs.~3.8! and ~3.9! we have

UÎ upI &a5exp$2 i t2gAn̂2A/211/2Ŝx%upI &a

5exp$2 i t2gAn̂2A/211/2lp%upI &a . ~C5!

Indeed, since the photon number operator commutes w
Ŝx,n̂ can be treated as aC number when calculating this
exponent. On the other hand,up&a is an eigenvector ofŜx .
Acting by Q̂ on Eq.~C5! and using the Hermitian conjugat
of Eq. ~C4!, we have

uC~ t !&'exp$5 i t2glpAn̂1Ŝz11/2%up&aua& f . ~C6!

The last step is to expand the square root in this express

An̂1Ŝz11/2'An̂2A/211/21
Ŝz1A/2

2An̂2A/211/2
1OS A2

n̄3/2D .
~C7!

These two commuting terms give two commuting factors
the evolution operator, and we have

uC~ t !&5exp$2 i t2glpAn̂2A/211/2%ua& f

^expH 2 i tglp~Ŝz1A/2!

An̄2A/211/2
J upI &x . ~C8!

This last equation coincides with Eqs.~2.5!.
It is also clear how to find the corrections to the factoriz

wave functions. We need to take into account the sec
term in Eq.~C4!. The evolution operator

UÎ 5exp$2 i t2gAn̂2A/211/2Ŝx%, ~C9!

acting on the different semiclassical atomic states lead
humps revolving with different angular frequencies, sin
the atomic operatorŜx acting on the semiclassical stateup&

reduces to the numberlp . Note thatUÎ commutes with the
photon operatorDn̂ in the second term of Eq.~C4!. Thus we
need to expand the atomic state in the second term of
~C4! in terms of the semiclassical states. This expansion
given as follows:
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2S Ŝz1 A

2 D upI &5AupI &1A~p11!~A2p!up11&

1Ap~A2p11!up21&. ~C10!

Acting on these three terms, the evolution operatorUÎ pro-
duces three small humps corresponding tolp andlp61. The
hump lp is not noticeable since its location coincides w
the principal hill, but the humpslp61 may give a contribu-
. A

s

s.
.

et

.

rfi
tion. Substituting Eq.~C10! into Eq. ~C1! and, in turn, sub-
stituting it into Eq.~C4!, one can get a improved wave func
tion.

This leads to secondary humps discussed in Sec. II. N
that the exact evolution of any state can be presented
superposition ofA11 factorized states~see, e.g.,@22#!. How-
ever, if a semiclassical atomic state is taken to be an in
atomic state, one of the coefficients in the sum is of or
;1, while the others are of orderO(A/An̄) or smaller. This
is clearly seen in the picture of theQ function, Fig. 4, where
the secondary humps are negligibly small.
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