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Phase transitions forN-electron atoms at the large-dimension limit

Pablo Serra* and Sabre Kais
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

~Received 3 June 1996!

Symmetry breaking of electronic structure configurations forN-electron atoms in weak magnetic and elec-
tric fields at the large-dimension limit is described in terms of standard phase transitions. This symmetry
breaking, which leads to ionization, is completely analogous to phase transitions and critical phenomena in
statistical mechanics. This analogy is shown by allowing the nuclear charge to play a role analogous to
temperature in statistical mechanics. For the exact solution ofN-electron atoms at the large-dimension limit,
the symmetry breaking is shown to be a first-order phase transition. For the special case of two-electron atoms,
the first-order transition shows a triple point where three phases with different symmetry coexist. Treatment of
the Hartree-Fock solution reveals a different kind of symmetry breaking where second-order phase transitions
exist for N52. We show that Hartree-Fock two-electron atoms in a weak external electric field exhibit a
critical point with mean field critical exponents (b5

1
2, a50dis, d53, andg51). @S1050-2947~97!09101-4#

PACS number~s!: 31.15.Gy, 05.70.Jk
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I. INTRODUCTION

A wide variety of physical systems exhibit phase tran
tions and critical phenomena such as liquid-g
ferromagnetic-paramagnetic, fluid-superfluid, and conduc
superconductor transitions@1#. Phase transitions can be cla
sified mainly as first-order and second-order phase tra
tions. First-order phase transitions are generally defined t
those that involve a nonzero latent heat and radical chang
the structure of the material at the transition points. Seco
order phase transitions are continuous phase changes w
the properties of the system do not change discontinuous
the critical point, but at least one of their rates of chan
does@2#.

Yaffe @3# has shown that if a quantum theory satisfi
certain assumptions, then it is possible to find a set of g
eralized coherent states which can be used to obtain a s
classical Hamiltonian such that the resulting dynamics ag
with the large-dimension quantum dynamics. One sho
emphasize that the large-D limit is a semiclassical approxi
mation toD53 completely different from the conventiona
WKB approximation@3#. In the application of dimensiona
scaling to electronic structure, the limitD→` reduces to a
semiclassical electrostatic problem in which the electrons
assumed to have fixed positions relative to the nuclei an
each other in theD-scaled space@4#. This configuration cor-
responds to the minimum of an effective potential whi
includes Coulomb interactions as well as centrifugal ter
arising from the generalizedD-dependent kinetic energy
Typically, in the large-D regime the electronic-structure con
figuration undergoes symmetry breaking for certain range
nuclear charges@5# or molecular geometries@6#

Recently@7#, we have shown that symmetry breaking
electronic-structure configurations at the large-dimens
limit for Hartree-Fock~HF! two-electron atoms and the two
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Coulomb center problems is completely analogous to s
dard phase transitions. This analogy was shown by allow
the nuclear charge for atoms and the inverse internuc
distance for the two-Coulomb problem to play a role ana
gous to temperature in statistical mechanics. These sys
exhibit critical points with mean field critical exponents.
this paper we will use the large-dimension limit model f
the generalN-electron atom to study symmetry breaking
electronic-structure configurations leading to ionization. T
model is simple, has an analytical solution for highly sym
metric configurations@8#, and yet contains a great deal o
information about the ‘‘real’’ atom. This model of the atom
is just the zeroth-order approximation and can be impro
upon by a systematic perturbation expansion in 1/D @9#.

The general outline of this paper is as follows. In Sec.
we present detailed calculations for Hartree-Fock tw
electron atoms in external weak electric and magnetic fie
We show that the symmetry breaking of the symmetric c
figuration exhibits critical points with mean field critical ex
ponents (b5 1

2, a50dis,d53, andg51). These results are
generalized to the Hartree-FockN-electron atoms in weak
electric and magnetic field in Sec. III. Section IV describ
symmetry breaking leading to ionization for the general e
actN-electron atoms including correlations. Finally, we d
cuss corresponding states ofN-electron atoms and ways t
improve this zeroth-order model.

II. HARTREE-FOCK TWO-ELECTRON ATOMS

In the HF approximation at theD→` limit, the
dimensional-scaled effective Hamiltonian for the tw
electron atom in an external weak electric fieldE can be
written as@10#

H`5
1

2 S 1r12 1
1

r2
2D 2ZS 1r1 1

1

r2
D 1

1

~r1
21r2

2!1/2
2E~r12r2!,

~1!

wherer1 andr2 are the electron-nucleus radii, andZ is the
238 © 1997 The American Physical Society
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55 239PHASE TRANSITIONS FORN-ELECTRON ATOMS AT . . .
nuclear charge. The direction of the electric field was cho
in order to preserve the symmetry of the effective Ham
tonian

H`~Z,E,r1 ,r2!5H`~Z,2E,r2 ,r1!. ~2!

The ground-state energy at the large-D limit is then given
by

E`~Z,E!5 min
$r1 ,r2%

H`. ~3!

This condition yields the equations

2
1

r i
3 1

Z

r i
2 2

r i
~r1

21r2
2!3/2

5s iE,

i51,2, s151, s2521. ~4!

In the absence of an external electric field,E50, Hersch-
bach and co-workers@11# have found that these equation
have a symmetric solution with the two electrons equidist
from the nucleus, withr15r25r523/2/(23/2Z21). This
symmetric solution represents a minimum in the reg
where all the eigenvalues of the Hessian matrix are posit
Z>Zc5A2, and the ground-state energy is given by

E`~Z!52S Z2
1

23/2D
2

. ~5!

For values ofZ smaller thanZc , the solutions of the
variational equations~4! become unsymmetric with one ele
tron much closer to the nucleus than the other (r1Þr2). In
order to describe this symmetry breaking, it is convenien
introduce new variables (r,h) of the form

r15r, r25~12h!r, ~6!

wherehÞ0 measures the deviation from the symmetric
lution. In these new variables, the electric fieldE can be
written as a function ofZ andh,

E~Z,h!52
1

r3
1

Z

r2
2

1

r2@2~12h!1h2#3/2
, ~7!

where

1

r
5

~12h!@2~12h!1h2#

~12h!311 FZ2
~22h!~12h!2

@2~12h!1h2#5/2G .
~8!

For E50, the asymmetry parameterh is given by

h~Z,E50!5
~Zc1Z!1/2@Z2~Zc

22Z2!1/2#

Z221
~Zc2Z!1/2 ~9!

and the energy is given by

E`~Z,E50!5
1

~12h!r F2~12h!1h2

2~12h!r

2
3~12h!1h2

@2~12h!1h2#1/2G . ~10!
n
-

t

n
e,

o

-

By studying the eigenvalues of the Hessian matrix,
have found that this solution is a minimum of the effecti
potential for the range 1<Z<Zc . We now turn to the ques
tion of how to describe the system near the critical point.
answer this question, a complete mapping between this p
lem and critical phenomena in statistical mechanics is rea
feasible with the following analogies:~i! nuclear charge
Z↔temperatureT, ~ii ! external electric fieldE↔ordering
field h, ~iii ! ground-state energyE`(Z,E)↔free energy
f (T,h), ~iv! asymmetry parameterh↔order parameterm,
~v! stability limit point (Zc ,E50)↔critical point
(Tc ,h50).

Using the above scheme, we can define the critical ex
nents (b, a, d, andg) for the electronic structure of the
two-electron atom in the following way:

h~Z,E50!;~2DZ!b, DZ→02,

E`~Z,E50!;uDZu22a, DZ→0,

E~Zc ,h!;hdsgn~h!, h→0,

]h

]E UE50

;uDZu2g, DZ→0, ~11!

whereDZ[Z2Zc . These critical exponents describe the n
ture of the singularities in the above quantities at the criti
chargeZc . To calculate these critical exponents we st
with the asymptotic expression for the electric field near
critical point, we obtain from Eqs.~7! and ~8!

E~DZ,h!5
9

16
DZh1

9

32
DZh21

9

64A2
h31O~DZ2h,h4!.

~12!

From this expression and Eqs.~3! and~11!, it is straight-
forward to obtain the critical exponents. The critical exp
nentb determines the rate of vanishing of the order para
eter, which is the asymmetry parameterh, in the absence of
external electric fields. ForE50, we obtain from Eq.~12!

05
9

16
DZ1

9

64A2
h21O~DZh,h3!. ~13!

This condition givesh;25/4(2DZ)1/2 when DZ→02.
Comparing this result with the above definition of the critic

exponentb, Eq. ~11!, givesb5 1
2 . Thea exponent gives the

rate of divergence of the second derivative of the energy w
respect to the nuclear charge, which is analogous to the
vergence of the heat capacity near the critical temperat
From Eqs.~5! and ~10! we obtained

]2E`~Z,E50!

]Z2 U
Z5Zc

5H 2
7

4
, DZ→02

2 2, DZ→01.

~14!

This quantity has a discontinuity atZ5Zc , and therefore
a50dis. The subindex discontinuity, dis, is necessary in
der to distinguish this case from other known systems wh
the divergence is logarithmic witha50 as in the two-
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240 55PABLO SERRA AND SABRE KAIS
dimensional Ising model. At the critical charge, the exter
field varies with thed power of the asymmetry paramet
h. For DZ50, Eq. ~12! givesE;(9/64A2)h3. Thus the re-
sponse to a small electric field is highly nonlinear w
d53. Finally, in standard phase transition, the exponeng
determines the rate of divergence of the susceptibility,
more generally, the divergence of rate of change of the fi
with the order parameter. From Eq.~12! we obtain

]E
]h U

E50

55
9

16
DZ1

27

64A2
h25

18

16
~2DZ!, DZ→02

9

16
DZ, DZ→01

~15!

and thereforeg51. The values obtained for these critic
exponents are known as classical or mean-field critical ex
nents with

b5
1

2
, a50dis, d53, g51. ~16!

Only two of the four are independent because of the t
relations between them known as Rushbrooke’s and G
fiths’ laws @2#,

a12b1g52, a1b~d11!52. ~17!

The results of the asymmetry parameterh as a function of
nuclear charge atE50 and as a function of the external fie
for different values of the nuclear charge are shown in F
1 and 2. These curves of the asymmetry parameter show
these figures are completely analogous to curves represe
the behavior of magnetization as a function of the tempe
ture in mean field models of ferromagnetic systems@2#.

Finally, we consider the effect of a uniform magnetic fie
on the symmetry breaking and phase transitions of
Hartree-Fock~HF! two-electron atoms. In the presence of
uniform external magnetic fieldB, the Hamiltonian is given
by @10#

FIG. 1. The asymmetry parameterh as a function of the nuclea
chargeZ for the Hartree-Fock two-electron atom.
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H`~Z,B!5
1

2 S 1r12 1
1

r2
2D 2ZS 1r1 1

1

r2
D 1

1

~r1
21r2

2!1/2

1
B2

2
~r1

21r2
2! ~18!

and the variational equations are

2
1

r i
3 1

Z

r i
2 2

r i
~r1

21r2
2!3/2

1B2r i5 0, i51,2 ~19!

as in the zero-field case. We have a symmetric solution w
r15r25r, given by

rS Z2
1

23/2D1B2r45 1. ~20!

The smallest eigenvalue of the Hessian matrix equa
zero gives the stability limit

l5
]2H`

]r1
2 2

]2H`

]r1]r2
U

r15r25r

5
1

r3 F3r 22Z2
1

23/2G1B25 0.

~21!

Equations~20! and ~21! at the stability limit give the
value of the magnetic field as a function of the nucle
charge for the symmetric solution

Bsym~Z!5
3

16
Z@3Z~A22Z!#1/2. ~22!

With a nonzero magnetic field, the symmetry will be brok
and we should consider the nonsymmetric solutions of E
~19!. Again, with h measuring the deviation from the sym
metric solution, we obtained the two equations

1

r
5

@3~12h!1h2#~12h!Z

@2~12h!1h2#~22h!
~23!

and

FIG. 2. The asymmetry parameterh as a function of the exter-
nal electric fieldE for the Hartree-Fock two-electron atom for thre
different values ofZ: Z5Zc5A2; Z51.35,Zc; Z51.5.Zc .
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55 241PHASE TRANSITIONS FORN-ELECTRON ATOMS AT . . .
1

@2~12h!1h2#r3 F Z

22h
2

1

@2~12h!1h2#1/2G1B25 0.

~24!

The stability limit of this solution is the same as the o
given by Eq.~22!. Therefore, in the external magnetic fie
the value of the critical charge will change with the magne
field but not the order of the phase transition. The ph
diagram for two-electron atoms in an external magnetic fi
is shown in Fig. 3. We note that atZ51 and critical field
Bc5

3
16@3(A221)#1/2.0.209 01, the electrons are confine

to a quadratic potential. With higher fields,B.Bc , there is
only a single phase, which is the symmetric phase.

III. HARTREE-FOCK N-ELECTRON ATOMS

In this section, we would like to generalize the previo
results of symmetry breaking and phase transitions of the
two-electron atoms in weak magnetic and electric fields
the general case of HFN-electron atoms. The dimensiona
scaled effective Hamiltonian for HFN-electron atoms at the
large-D limit can be obtained by the constraint that the
terelectronic angles become fixed at 90°@10#,

H`5
1

2(i51

N
1

r i
2 2Z(

i51

N
1

r i
1 (

i51

N21

(
j5 i11

N
1

~r i
21r j

2!1/2
, ~25!

wherer i are the electron-nucleus radii, andZ is the nuclear
charge.

The large-D limit ground-state energy is given by

E`~N,Z!5min
$r i %
H`. ~26!

This condition yields the set of equations

2
1

r i
3 1

Z

r i
2 2r i(

jÞ i

1

~r i
21r j

2!3/2
50, i51,2, . . . ,N.

~27!

As in two-electron atoms, these equations have a symm
ric solution with the N electrons equidistant from th

FIG. 3. Phase diagram for the Hartree-Fock two-electron a
in an external magnetic field.
c
e
d

F
o

t-

nucleus, withr i5r523/2/(23/2Z2N11). This symmetric
solution represents a minimum in the region where all
eigenvalues of the Hessian matrix are positiv
Z>Zs(N)5(5N22)/25/2, and the energy is given by

E`
sym~N,Z!52

N

2 S Z2
N21

23/2 D 2. ~28!

ForN-electron atoms, the symmetry is broken in a diffe
ent way than in the special case ofN52. In general, the
phase transition point does not coincide with the stabi
limit of the symmetric phase pointZs(N). For NÞ2 we
found a region with two or more stable solutions of the var
tional equations. This indicates that there are several lo
minima corresponding to different electronic configuration
This phenomenon is completely equivalent to phase coex
ence in mean field theories of first-order phase transitio
where the first-order phase transition line appears when
global minimum degenerates.

For small values ofN, solutions with lower symmetry
appear by the removal of one electron to a much larger
tance leaving a core ofN21 equivalent electrons with

r15r25•••5rN215r, rN5~11h!r. ~29!

This solution, which we will refer to as phaseA1, is stable
for small values ofZ, but there is a coexistence region wi
the symmetric solution where both are minimas of the va
tional equations. For a fixed value ofN, the first-order phase
transition pointZ1 is given by the condition

E`
sym~N,Z1!5E`

~A1!
~N,Z1!, ~30!

whereE`
(A1)(N,Z) is the energy in the phaseA1.

Equation ~29! gives two electronic configurations fo

h.0 andh,0 with different values of energyE
`

(A1
1)

and

E
`

(A1
2)
, respectively. ForN.2 the global minimum corre-

sponds toE
`

(A1
1)
, while for N,2, E

`

(A1
2)

is the global mini-

FIG. 4. The two branches of the energy in the nonsymme
A1 phase as a function ofN for Z51.2,A2 for the Hartree-Fock
N-electron atom.

m



e
i-

e

l

o-
n

re
le
o
gi

es

ba

on
tr
in

will

d
se

en

val
it
a

is

ric
nic
ind
e

n
eral
r
the

t
the
lines

242 55PABLO SERRA AND SABRE KAIS
mum. Over the lineN52 we haveE
`

(A1
1)

5E
`

(A1
2)
. Figure 4

shows that the two curvesE
`

(A1
1)
(N,Z) andE

`

(A1
2)
(N,Z) cross

each other atN52 with different slopes. Therefore, the lin
N52 with Z<Zs(N52)5A2 is a first-order phase trans
tion line which ends at the critical point (Nc52,Zc5A2).

For N.2, the variational equations give

lim
Z→N21

h5` ~31!

andr remains finite in this limit; therefore

lim
Z→N21

rN5`. ~32!

For Z5N21, one of theN electrons is at infinite distanc
from the nucleus, therefore the point (N21,Z) must be iden-
tified with the point (N,Z) as shown in Fig. 5 for smal
values ofZ. Figure 5 shows that forZ.Z1.2.405 the sym-
metric solution forN53 is the global minimum, while for
2,Z,Z5Z1.2.405 the nonsymmetric solution is the gl
bal minimum. AtZ52, ionization occurs where one electro
moves to an infinite distance and the symmetricN52 solu-
tion is the global minimum. Since there is no shell structu
we can consider the opposite process, bringing back the e
tron to a finite distance. Ionization and electron affinity pr
cesses connected with neutral atoms occur only in the re
whereN<Z<N11. In this work, we restrict our study to
these processes. A phase diagram illustrating these proc
for small values ofN is shown in Fig. 6.

For neutral atoms the symmetric solution is the glo
minimum for all values ofN less thanN1.12.177. For val-
ues ofN greater thanN1 the nonsymmetric phaseA1 is the
global minimum. Therefore we need to consider new n
symmetric electronic configurations to describe symme
breaking leading to ionization. First we consider generaliz
the nonsymmetric phaseA1 to nonsymmetric phasesAm .
These new phases are defined by

FIG. 5. Energy versusZ at fixed value ofN for the Hartree-Fock
N-electron atom. ForN53 the symmetric to nonsymmetricA1

phase transition occurs atZ1.2.405. ForZ5N2152 one electron
is at infinity, and the energy goes continuously to theN52 sym-
metric energy.
,
c-
-
on

ses

l

-
y
g

r15•••5rN2m5r, rN2m115•••5rN5~11h!r.
~33!

Second, we introduce a nonsymmetric phase, which we
refer to as phaseB, in which two electrons will move away
from the nucleus and other electrons with different radii,

r15•••5rN225r, rN215~11m!r, rN5~11h!r.
~34!

For N1,N,N2.27.45, starting from neutral atoms an
decreasingZ at fixedN we see that the nonsymmetric pha
A1 is the global minimum for allZ.ZB , whereZB is de-
fined by the condition

E`
~A1!

~N,ZB!5E`
~B!~N,ZB!. ~35!

At this point, a first-order phase transition occurs betwe
the nonsymmetric phaseA1 and the nonsymmetric phaseB.
The mechanism of symmetry breaking involves the remo
of one electron to complete ionization at the lim
Z→N21. At this value ofZ, the system again makes
transition to the nonsymmetric phaseA1 configuration, but
with N21 electrons. A phase diagram with stability lines
shown in Fig. 7.

ForN1,N,N2.27.45 the nonsymmetric phasesAm are
not the global minimum form.1. At N5N2, the global
minimum for neutral atoms jumps to the nonsymmet
m52 electronic configurations. This change in the electro
configuration for neutral atoms might be regarded as a k
of ‘‘shell structure’’ ~which is not the ordinary shell structur
at D53) for the HFN-electron atom at the large-D limit.

Now, we turn to the effect of an external electric field o
the symmetry breaking and phase transitions for the gen
case ofN-electron atoms. The effective Hamiltonian fo
N-electron atoms in a weak external electric field takes
form

FIG. 6. Phase diagram in theZ-N plane for the Hartree-Fock
N-electron atom for small values ofZ. The dashed lines represen
first-order phase transitions. The second-order line between
nonsymmetric phases ends at the critical point. The dot-dashed
represent the ionization line (Z5N21) and the neutral atom line
(Z5N).
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55 243PHASE TRANSITIONS FORN-ELECTRON ATOMS AT . . .
H`~N,Z,E!5H`~N,Z!2ES (
i51

N21

r i2rND . ~36!

ForNÞ2, the phase transition between symmetric to n
symmetric phaseA1 is not continuous and the system has
different response to the external field in comparison w
the continuous transition atN52. In Fig. 8 we show the
energy versus the external electric field forN53 over the
first-order phase transition lineZ5Z1.2.405. In this case
the energy presents the typical behavior of the free energ
mean-field theories of first-order phase transitions.

For two-electron atoms, limZ→Zc
h50 and thereforeh is

a good order parameter to measure the asymmetry of
electronic configuration. Becauseh is a real positive param
eter, which goes to infinity asZ→N21, it is convenient to
define a new order parameter for the generalN-electron atom
as

FIG. 8. Energy versus electric field in the Hartree-Fock appro
mation forN53 andZ5Z152.405.

FIG. 7. Phase diagram for the Hartree-FockN-electron atom in
theZ-N plane. In this case, the neutral atom is in the nonsymme
A1 configuration, and the first-order phase transition occurs betw
the nonsymmetricA1 andB phases.
-

h

in

he

c[
rN2r1

r.
5H h, h,0

h

11h
, h.0,

~37!

wherer. is the maximum betweenr1 andrN .
In Fig. 9 curves ofc versusE over the phase transition

line is shown for different values ofN. Note that only at
N52, where both nonsymmetricA1 configurations are
equivalent, is the curve symmetric with respect toE.

IV. N-ELECTRON ATOMS

For the exact solution of theN-electron atom at the
D→` limit, the dimensional-scaled effective Hamiltonia
can be written as@8#

i-
FIG. 10. Phase diagram in theZ-N plane for small values of

Z. Dashed lines represent first-order phase transitions. The line
tween the nonsymmetric phases ends at a triple point.

ic
en

FIG. 9. Order parameter versus external electric field for diff
ent values ofN in the Hartree-Fock approximation, over the firs
order line: (N52,Z5Zc5A2), (N53,Z5Z1.2.405), and
(N54,Z5Z1.3.457). Only the curveN52 is symmetric with re-
spect toE.
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H`5
1

2(i51

N
GN

~ i !

GN

1

r i
2 2Z(

i51

N
1

r i

1 (
i51

N21

(
j5 i11

N
1

~r i
21r j

222r ir jg i , j !
1/2. ~38!

Here, r i are the electron-nucleus radii,Z is the nuclear
charge,g i , j are the cosines of the angle between electroni
and j , GN is the Grammian determinantug i , j u for all N elec-
trons, andGN

( i ) is the Grammian determinant for all but th
i th electron.

TheN(N21)/2 angles$g i , j% are new variational param
eters along with theN radii $r i%. The large-D limit ground-
state energy is given by the minimum of the effective Ham
tonian,

E`~N,Z!5 min
$r i ;g i , j %

H`. ~39!

This condition yields the radial equations

]H`

]r i
52

GN
~ i !

GN

1

r i
31

Z

r i
22(

jÞ i

r i2r jg i , j

~r i
21r j

222r ir jg i , j !
3/250 ~40!

for i51,2, . . . ,N. The angular extremum conditions give th
equations

]H`

]g i , j
5
1

2(k51

N
1

GN
2 S GN

]GN
~k!

]g i , j
2GN

~k!
]GN

]g i , j
D 1
rk
2

1
r ir j

~r i
21r j

222r ir jg i , j !
3/250 ~41!
es
e
th

ca
-

for i51,2, . . . ,N21; j5 i11, . . . ,N.
Loeser@8# obtained the totally symmetric solution whe

the effective Hamiltonian is completely symmetric in ea
set,r i5r andg i , j5g. Under this assumption, the Grammia
determinant and its derivative takes the simple form~see the
Appendix!

GN5@11~N21!g#~12g!N21,

]GN

]g i , j
U
sym

522g~12g!N22. ~42!

Using these results, the radial, Eq.~40!, and the angular,
Eq. ~41!, become

2
11~N22!g

~12g!@~11~N21!g#r
1Z2

N21

23/2~12g!1/2
5 0, ~43!

@21~N22!g#g

@11~N21!g#2r
1

~12g!1/2

23/2
50. ~44!

Solving these equations gives a closed form express
for the ground-state energy of the total symmetric config
ration
E`
sym~N,Z!52

N@11~N21!g#2@11~2N23!g1~N21!~N22!g2#Z2

2~12g!
, ~45!
nal
.

ock
e-
st-

as

nic
ome
can
m-
whereg(N,Z) is the largest negative root of the equation

Z52
~12g!1/2

23/2@21~N22!g#g
. ~46!

As in the HFN-electron atoms, we define new variabl
(h,m) to describe the motion which breaks the total symm
ric configuration and allows us to study the transitions to
nonsymmetric phaseA1 electronic configurations

r15•••rN215r, rN5~11h!r, ~47!

g i , j5g, i , j,N, g i ,N5m. ~48!

The Grammian determinant and its derivates can be
culated analytically for this phase~see the Appendix!,
t-
e

l-

GN5~12g!N22@11~N22!g2~N21!m2#,

]GN

]g i , j
U
1

5H 22~12g!N23~g2m2!, i , j,N

22m~12g!N22, i,N; j5N.
~49!

Substituting these expressions into Eqs.~40! and ~41!
gives four coupled nonlinear equations for the variatio
parameters$r,h,g,m% which have to be solved numerically
The phase diagram for small values ofZ is qualitatively
similar to the phase diagram obtained in the Hartree-F
approximation. However, for the exact solution, the symm
try breaking of the electronic configuration is always a fir
order phase transition. Therefore, the critical point atN52
in the HF approximation is now replaced by a triple point,
shown in Fig. 10.

For two-electron atoms there is only one interelectro
angle, so the equations take a much simpler form and s
results can be obtained analytically. The Hessian matrix
be calculated for both phases, the stability limit of the sy
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metric configuration is given analytically withZ
531/4(21A3)/4.1.2279 andg5122/A3.20.1547. For
the nonsymmetric phaseA1 configuration, the stability limit
is given byZ.1.2352 andg.20.118. For the first-orde
point, given by

E`
sym~N52,Z1!5E`

~A1!
~N52,Z1!, ~50!

we obtainZ1(N52).1.2334. Figure 11 showsZ as a func-
tion of the order parameterc defined by Eq.~37! for both
Hartree-Fock and the exact two-electron atoms. The diffe
behavior atc50 explains the change of the order of th
phase transition.

The symmetric configuration corresponds to the glo
minimum for small values ofN. The value ofN for which

FIG. 11. The nuclear chargeZ as a function of the order param
eterc for the exact and Hartree-Fock two-electron atoms.
tr
r
-
ak
e
le

y
ru
nt

l

the symmetric solution no longer is the global minimum
N1, is defined by the conditionZ1(N1)5N1.13.403. For
greater values ofN (N.N1) it is necessary to consider ne
nonsymmetric configurations. The nonsymmetric phaseA2
electronic configuration is defined by

r15•••rN225r, rN215rN5~11h!r,

g i , j5g, i , j,N21, g i ,N215g i ,N5m,

i,N21, gN21,N5v. ~51!

For this solution, the Grammian determinant and its de
vates are given by~see the Appendix!

FIG. 12. Corresponding-states plot of the scaled energy a
function of Z2Z` /Z` , where Z`5N21, for the exact
N-electron atom. The solid line,N5`, coincides with the Hartree-
Fock scaled energy line.
GN5~12g!N23~12v!@15v1~N23!g~12v!22~N22!m2#,

]GN

]g i , j
U
2

5H 22~12g!N24~12v!@~11v!g22m2#, i , j,N21

22~12v!m~12g!N23, i,N21; j>N21

22~12g!N23$@11~N23!g#v2~N22!m2%, i5N21; j5N.

~52!
so-
he
ws
as
et-
m-
r-
rges.
int
e
ple
ck

ist-
For neutral atoms atZ2.53 the nonsymmetric phaseA2
configuration has a lower energy than the nonsymme
phaseA1. We note that this ‘‘shell structure’’ appears fo
smaller values ofN in the Hartree-Fock approximation com
pared with the exact solution. To study the symmetry bre
ing for large atoms requires a fair amount of labor becaus
the large number of variational parameters and the comp
ity of the Grammian determinant.

V. DISCUSSION

We established an analogy between mean-field theor
phase transitions and symmetry breaking of electronic st
ture configurations at the large-D limit. In this context, sym-
ic

-
of
x-

of
c-

metry breaking solutions in both Hartree-Fock and exact
lutions ofN-electron atoms requires new interpretations. T
mapping of this problem to standard phase transitions allo
us to treat the nuclear charge in an analogous fashion
temperature in statistical mechanics. Therefore, the symm
ric electronic configurations can be thought of as a high te
perature phase. By ‘‘cooling’’ the system, new different o
dered phases appear for certian values of the nuclear cha
For the Hartree-Fock solution, we have found a critical po
at (Nc52,Zc5A2) with mean field critical exponents. Th
exact solution has first order phase transitions with a tri
point replacing the critical point found in the Hartree-Fo
approximation.

Another characteristic of critical phenomena is the ex
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ence of the law of corresponding states. We note that fr
Eq. ~28!, the rescaled Hartree-Fock energy of the symme
configuration does not depend on the value ofN and can be
written as

E`~N,Z!→
E`~Z/Z`!

NZ`
2 , ~53!

where Z` defines the boundary line for ionization and
given byZ`5N21. The same scaling is valid, as an asym
totic law, for the exact solution. Figure 12 shows the cor
sponding states for the exact and HFN-electron atoms.

This symmetry breaking and phase transition offers a
ferent point of view for looking at atomic and molecul
processes such as ionization, electron affinity, dissociati
and related phenomena. The fact that one can formally t
electronic structure problems as thermodynamic syst
gives the possibility of using powerful statistical mechan
techniques to treat large atomic and molecular systems@12#.

Since the large-D limit is pseudoclassical, it does not ex
hibit shell structure, so some means to incorporate thi
required. Loeser suggested a simple procedure which p
tions the energy into shell contributions, scales each of th
by a hydrogenic factor, and sums the successive shell ion
tion energies@8#. However, one can define a ‘‘pseudosh
structure’’ at the large-D limit. For the Hartree-Fock
N-electron neutral atoms the symmetric solution is the glo
minimum for all values ofN less thanN1.12.177. For val-
ues ofN greater thanN1 the nonsymmetric phaseA1 is the
global minimum. AtN5N2.27.45, the global minimum for
neutral atoms jumps to the nonsymmetricm52 electronic
configurations. For the exact solution of theN-electron neu-
tral atoms the symmetric configuration corresponds to
global minimum for values ofN less thanN1.13.403. For
neutral atoms atN.53 the nonsymmetric phaseA2 configu-
ration has a lower energy than the nonsymmetric phaseA1.
This change in the electronic configurations for neutral
oms at the large-D limit might be regarded as a kind o
‘‘pseudoshell structure’’ of variational nature. In order
examine the relation of this pseudoshell structure with
ordinary shell structure atD53, one still has to include
higher order terms in the 1/D expansion.

Recently, Herschbach@13# suggested charge renormaliz
tion at the large-D limit, which involves finding an effective
nuclear charge that renders the dimensionally scaled en
at theD→` limit a good approximation to that forD53
with the actual nuclear chargeZ. The renormalized charge i
readily evaluated by comparing the Hartree-Fock energy
D53 with its D→` limit. Another procedure of charge
renormalization is to determine an effective nuclear cha
such that the Hartree-Fock results will be significantly clo
to the exact energies by utilizing the large-D limit results.
This procedure was proven to be useful for atoms@14# and
simple diatomic molecules@15#. The study of critical phe-
nomena presented in this paper might be useful in improv
the different versions of charge renormalizations.

One striking aspect of critical phenomena is the hypo
esis of the universality of the critical exponents@16#. Accord-
ing to this hypothesis, only two quantities determine t
critical behavior of most systems: the dimensionality
space and the dimensionality of the order parameter. All s
tems that have the same values of these two quantities
m
ic
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said to be members of the same universality class@17#. Sys-
tems in the same universality class have the same cri
exponents independent of the model systems or the detai
the forces. To study the behavior of a given system near
critical point one has to rely on model calculations which a
simple, capture the main physics of the problem, and bel
to the same universality class. According to variational c
culations at the large-D limit, we obtained classical critica
exponents for the symmetry breaking of electronic struct
configurations leading to ionization. Although we have f
cused upon symmetry breaking at the large-D limit, where
multicritical phenomena appear for more complicated el
tronic structure problems@18#, research is underway to ex
amine phase transitions atD53 by including higher-order
terms in 1/D expansion.
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APPENDIX

In order to study the stability of the solutions at the larg
D limit, we need to evaluate the Grammian determina
G i , j5g i , j with g i ,i51, and the determinant of the Hessia
matrix

gi , j5
]2H`

]xixj
, ~A1!

where$xi% represent both the radial and angular coordina
where the determinant is evaluated for a particular soluti
Actually, both matrices have a similar block structure. F
example, the Hessian matrix of the nonsymmetric ph
Am electronic configuration for theN-electron HF atoms has
the general form

~A2!

To calculate the determinant, we note that the vec
xW5(x1 , . . . ,xN2m,0, . . . ,0) satisfies

~GxW ! i5H axi1b(
jÞ i

xj , i<N2m

c(
j
xj , i.N2m.

~A3!
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If we impose the condition( j xj50, thenxW is an eigenvector
with an eigenvaluel15a2b. But, there areN2m21 linear
independent vectors that satisfy this condition, thereforel1
has the multiplicityN2m21. In the same way, we can de
fine the vectoryW5(0, . . . ,0,yN2m , . . . ,yN) with ( j y j50,
which gives l25d2e as an eigenvalue with multiplicity
m21. The other two eigenvalues are calculated with t

for i51,2. The eigenvalue equationGzW i5lzW i gives

l65 1
2 „a1d1~n2m21!b1~m21!e

6$@~a2d1~n2m21!b2~m21!e#2

14~N2m!c2%1/2… ~A4!

and the determinant is given by the product of the eigen
ues
n
,

l

D
m
d

o

l-

det~G!5l1
N2m21l2

m21l1l2 . ~A5!

This expression is also useful for Grammian matric
Setting the diagonal elements equal to 1, we obtain,
m50, the Grammian matrix for the symmetric solution, an
in general, from them Hessian matrix we obtain them21
Grammian matrix. For more complicated electronic struct
configurations, such as the nonsymmetric phaseB, the ma-
trices have a different structure, but it is still possible to u
the same technique to calculate the determinants. Gen
proprieties of the Grammian determinant and its deriva
are given in Ref.@19#. In particular, Eq.~A.6! of that refer-
ence,

G2
1

2(jÞ i

N

g i , j

]G

]g i , j
5G~ i !, ~A6!

gives us a linear system to obtain the derivates of the Gr
mian determinant for each particular solution.
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