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Phase transitions forN-electron atoms at the large-dimension limit
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Symmetry breaking of electronic structure configurationsNeglectron atoms in weak magnetic and elec-
tric fields at the large-dimension limit is described in terms of standard phase transitions. This symmetry
breaking, which leads to ionization, is completely analogous to phase transitions and critical phenomena in
statistical mechanics. This analogy is shown by allowing the nuclear charge to play a role analogous to
temperature in statistical mechanics. For the exact solutidi-efectron atoms at the large-dimension limit,
the symmetry breaking is shown to be a first-order phase transition. For the special case of two-electron atoms,
the first-order transition shows a triple point where three phases with different symmetry coexist. Treatment of
the Hartree-Fock solution reveals a different kind of symmetry breaking where second-order phase transitions
exist for N=2. We show that Hartree-Fock two-electron atoms in a weak external electric field exhibit a
critical point with mean field critical exponent8€ 3, a=0g4s, 6=3, andy=1).[S1050-29477)09101-4

PACS numbgs): 31.15.Gy, 05.70.Jk

I. INTRODUCTION Coulomb center problems is completely analogous to stan-
. . . - . dard phase transitions. This analogy was shown by allowing
A wide variety of physical systems exhibit phase rans-e nuclear charge for atoms and the inverse internuclear

tions and critical phenomena such as IIqu'd'gas%distance for the two-Coulomb problem to play a role analo-

ferromagnetic-paramagnetic, fluid-superfluid, and conductoryqs to temperature in statistical mechanics. These systems

superconductor transitiord]. Phase transitions can be clas- gxibit critical points with mean field critical exponents. In
sified mainly as first-order and second-order phase transinis paper we will use the large-dimension limit model for
tions. First-order phase transitions are generally defined to b@ye generaN-electron atom to study symmetry breaking of
those that involve a nonzero latent heat and radical change @fectronic-structure configurations leading to ionization. This
the structure of the material at the transition points. Secondmodel is simple, has an analytical solution for highly sym-
order phase transitions are continuous phase changes wheretric configurationg8], and yet contains a great deal of
the properties of the system do not change discontinuously @formation about the “real” atom. This model of the atom
the critical point, but at least one of their rates of changes just the zeroth-order approximation and can be improved
does[2]. upon by a systematic perturbation expansion D [9].

Yaffe [3] has shown that if a quantum theory satisfies The general outline of this paper is as follows. In Sec. I,
certain assumptions, then it is possible to find a set of genwe present detailed calculations for Hartree-Fock two-
eralized coherent states which can be used to obtain a sen@lectron atoms in external weak electric and magnetic fields.
classical Hamiltonian such that the resulting dynamics agreed/e show that the symmetry breaking of the symmetric con-
with the large-dimension quantum dynamics. One shouldiguration exhibits critical points with mean field critical ex-
emphasize that the lardg2-limit is a semiclassical approxi- ponents =3, a=04s,6=3, andy=1). These results are
mation toD =3 completely different from the conventional generalized to the Hartree-Fodk-electron atoms in weak
WKB approximation[3]. In the application of dimensional electric and magnetic field in Sec. Ill. Section IV describes
scaling to electronic structure, the liniit—o reduces to a symmetry breaking leading to ionization for the general ex-
semiclassical electrostatic problem in which the electrons aract N-electron atoms including correlations. Finally, we dis-
assumed to have fixed positions relative to the nuclei and touss corresponding states Mfelectron atoms and ways to
each other in th®-scaled spacf4]. This configuration cor- improve this zeroth-order model.
responds to the minimum of an effective potential which
includes Coulomb interactions as well as centrifugal terms
arising from the generalize®-dependent kinetic energy.
Typically, in the largeb regime the electronic-structure con-  |n the HF approximation at theD—o limit, the
figuration undergoes symmetry breaking for certain ranges ofimensional-scaled effective Hamiltonian for the two-

nuclear chargefs] or molecular geometrigi$] electron atom in an external weak electric figldcan be
Recently[7], we have shown that symmetry breaking of written as[10]

electronic-structure configurations at the large-dimension
limit for Hartree-Fock(HF) two-electron atoms and the two-

Il. HARTREE-FOCK TWO-ELECTRON ATOMS
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nuclear charge. The direction of the electric field was chosen By studying the eigenvalues of the Hessian matrix, we
in order to preserve the symmetry of the effective Hamil-have found that this solution is a minimum of the effective

tonian
H%(ngvplipZ):Hw(Z!_5lp2!pl)' (2)

The ground-state energy at the lafgdimit is then given
by

E.(Z,£)= min H.. 3

{p1.p2}
This condition yields the equations
1 z pi
-+ —=————35=0,
pi el (pitpp)¥

i=1,2, o1=1, o,=—1. (4)

In the absence of an external electric fiede; 0, Hersch-

bach and co-workerfll] have found that these equations
have a symmetric solution with the two electrons equidistant

from the nucleus, withp;=p,=p=2%%(2%?2—1). This

symmetric solution represents a minimum in the region
where all the eigenvalues of the Hessian matrix are positive,

Z=Z.=2, and the ground-state energy is given by
1 2
Ex(Z)=—<Z— 2—3/§> : 5

For values ofZ smaller thanZ., the solutions of the

variational equation§4) become unsymmetric with one elec-

tron much closer to the nucleus than the othey# p,). In

potential for the range£Z<Z.. We now turn to the ques-
tion of how to describe the system near the critical point. To
answer this question, a complete mapping between this prob-
lem and critical phenomena in statistical mechanics is readily
feasible with the following analogies(i) nuclear charge
Z—temperatureT, (i) external electric field€« ordering
field h, (iii) ground-state energy¥..(Z,£)«free energy
f(T,h), (iv) asymmetry parameten« order parametem,
(v) stability limit point (Z.,£=0)«critical point
(T¢,h=0).

Using the above scheme, we can define the critical expo-
nents 3, «, &, andvy) for the electronic structure of the
two-electron atom in the following way:

7(Z,E=0)~(—AZ)f, AZ—0",
E.(Z,E=0)~|AZ|?>"®, AZ—0,
&(Ze,m)~n’sgn(y), 7—0,
o ~|AZ|7?, AZ—0, (11)
IE| oy

whereAZ=Z7-7Z.. These critical exponents describe the na-
ture of the singularities in the above quantities at the critical
chargeZ.. To calculate these critical exponents we start
with the asymptotic expression for the electric field near the
critical point, we obtain from Eqg7) and(8)

9 9 9
order to describe this symmetry breaking, it is convenient to£(AZ, z) = EAZn+3—2AZ7]2+ ——=7>+0(AZ%n, 7%).

introduce new variablesp(#) of the form

p1=p, p2=(1=7n)p, (6)

6442

(12

From this expression and Eq®8) and(11), it is straight-

where 7#0 measures the deviation from the symmetric soforward to obtain the critical exponents. The critical expo-

lution. In these new variables, the electric figddcan be
written as a function oZ and 7,

1z 1
Aem =t g e 7
where
1_(A-nl2A-n+221[,  (2-n-n?
P (1-p+1 [2(1—m+ 7T
)

For £=0, the asymmetry parameteris given by

(Z.+2)Vqz2-(Z5-2%)*7

(Ze—2)Y* (9

and the energy is given by
[2(1— )+ 7
(1-mp| 2(1-n)p

31—+
C[2(1— )+ 21

E.(Z,£=0)=

(10

nent 8 determines the rate of vanishing of the order param-
eter, which is the asymmetry parametgrin the absence of
external electric fields. Faf=0, we obtain from Eq(12)

9 9
0=—AZ+——=5*+0O(AZn, 7).

16 6442

This condition givesn~254—AZ)Y? when AZ—0".
Comparing this result with the above definition of the critical

exponeniB, Eq.(11), givesB=3. The a exponent gives the
rate of divergence of the second derivative of the energy with
respect to the nuclear charge, which is analogous to the di-
vergence of the heat capacity near the critical temperature.
From Egs.(5) and(10) we obtained

(13

7

PPE(Z,£=0) ——, AZ—0"

- 9z2 - 4 (14
=7, -2, AZ—O0%.

This quantity has a discontinuity &t=Z., and therefore
a=04s. The subindex discontinuity, dis, is necessary in or-
der to distinguish this case from other known systems where
the divergence is logarithmic witlk=0 as in the two-
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FIG. 2. The asymmetry parameteras a function of the exter-
nal electric field€ for the Hartree-Fock two-electron atom for three
different values oZ: Z=Z.=2; Z=1.35<Z.; Z=1.5>7,.

dimensional Ising model. At the critical charge, the external

FIG. 1. The asymmetry parametgras a function of the nuclear
chargeZ for the Hartree-Fock two-electron atom.

field varies with thes power of the asymmetry parameter H(Z.B)= E n —Z(—+ i) n 1
n. ForAZ=0, Eq.(12) gives &~ (9/64y2) 5°. Thus the re- A2B)=3 p? " p3 p1 p2) (pi+ps)t?
sponse to a small electric field is highly nonlinear with 52
6=3. Finally, in standard phase transition, the expongnt + —(p2+p2 18
. . S (p1tp2) (18
determines the rate of divergence of the susceptibility, or 2
more generally, the divergence of rate of change of the field . )
with the order parameter. From E@.2) we obtain and the variational equations are
9 27 . 18 s P B0, i—12 (19
ZAZ+ ——=nP="—(-AZ), AZ—0" piop (pitp)¥
A& B 16 64\/5 16
an 5_0_ 9 (15 as in the zero-field case. We have a symmetric solution with
- 1—6AZ, AZ—07 p1=p2=p, given by
1
and thereforey=1. The values obtained for these critical P(Z— 237 +B%p*= 1. (20
exponents are known as classical or mean-field critical expo-
nents with The smallest eigenvalue of the Hessian matrix equal to
1 zero gives the stability limit
=— — = [——22——3724—82: 0.
_ gps  dpdp2| _ _ pilp 2
Only two of the four are independent because of the two P1=P2=P 21)
relations between them known as Rushbrooke’s and Grif-
fiths” laws 2], Equations(20) and (21) at the stability limit give the
value of the magnetic field as a function of the nuclear
at+2B+y=2, atp(o+l)=2. (17 charge for the symmetric solution

The results of the asymmetry parameieas a function of 3 "
nuclear charge &=0 and as a function of the external field Bsyn(Z) = EZ[?’Z( V2-2)1" (22)
for different values of the nuclear charge are shown in Figs.
1 and 2. These curves of the asymmetry parameter shown With a nonzero magnetic field, the symmetry will be broken
these figures are completely analogous to curves representiagid we should consider the nonsymmetric solutions of Egs.
the behavior of magnetization as a function of the tempera¢19). Again, with  measuring the deviation from the sym-

ture in mean field models of ferromagnetic systdi2is metric solution, we obtained the two equations

Finally, we consider the effect of a uniform magnetic field
on the symmetry breaking and phase transitions of the 1 [B(1-m)+71(1-nZ
Hartree-FockHF) two-electron atoms. In the presence of a o [21—n)+57(2—7) (23

uniform external magnetic fiel8, the Hamiltonian is given
by [10] and
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FIG. 3. Phase diagram for the Hartree-Fock two-electron atom . )
in an external magnetic field. FIG. 4. The two branches of the energy in the nonsymmetric
A, phase as a function df for Z=1.2< 2 for the Hartree-Fock
1 7 1 e o N-electron atom.
273 - 27172 = U . . .
[2(1-m)+5°1p°[2—7n [2(1-n)+ 7] nucleus, withp;=p=2%%(2%2Z—N+1). This symmetric

(24) solution represents a minimum in the region where all the
eigenvalues of the Hessian matrix are positive,

The stability limit of this solution is the same as the OneZzZS(N)z(SN—Z)IZW% and the energy is given by

given by Eq.(22). Therefore, in the external magnetic field

the value of the critical charge will change with the magnetic N N—1\2
field but not the order of the phase transition. The phase EY™N,Z)=— —(Z— —3,2—) (28
diagram for two-electron atoms in an external magnetic field 2 2

is shown in Fig. 3. We note that @&=1 and critical field
B.==[3(y2—1)]¥2=0.209 01, the electrons are confined
to a quadratic potential. With higher field8>B., there is
only a single phase, which is the symmetric phase.

For N-electron atoms, the symmetry is broken in a differ-
ent way than in the special case N=2. In general, the
phase transition point does not coincide with the stability
limit of the symmetric phase poinZy(N). For N#2 we
found a region with two or more stable solutions of the varia-

IIl. HARTREE-FOCK  N-ELECTRON ATOMS tional equations. This indicates that there are several local

In this section, we would like to generalize the previousmir,‘ima correspond_ing to different elgctronic configuration_s.
results of symmetry breaking and phase transitions of the HE IS Phenomenon is completely equivalent to phase coexist-
two-electron atoms in weak magnetic and electric fields t"C€ in mean field theories of first-order phase transitions,
the general case of HR-electron atoms. The dimensional- where th_e _flrst-order phase transition line appears when the
scaled effective Hamiltonian for HN-electron atoms at the global minimum degenerates.

largeD limit can be obtained by the constraint that the in- F0r small values ofN, solutions with lower symmetry
terelectronic angles become fixed at 909] appear by the removal of one electron to a much larger dis-
’ tance leaving a core dfi—1 equivalent electrons with

1N 1 N

1 "t 1
Ho= 53, 5-23 —+ .
251 pf izlpi 2’1 51 (pf +p))

N
(25) p1=p2=- =pn-1=p, pn=(1+7)p. (29

. This solution, which we will refer to as phasge, is stable
wherep; are the electron-nucleus radii, adds the nuclear  for small values ofZ, but there is a coexistence region with
charge. o o the symmetric solution where both are minimas of the varia-

The largeb limit ground-state energy is given by tional equations. For a fixed value Nf the first-order phase
. transition pointZ, is given by the condition
E..(N,Z)=minH.. (26) points, 1S given by
{pi}

EZMN,Z,)=ELY(N,Zy), (30)
This condition yields the set of equations

whereEﬁoAl)(N,Z) is the energy in the phads;.

1 z 1 . . . . .
. —P'E =0, i=1,2,...N. Equation (29) gives two electronic configurations for
pP p? P (pP+ D) A

and

o0

27) 7n>0 and <0 with different values of energ§
(A1)

As in two-electron atoms, these equations have a symmeF—m
ric solution with the N electrons equidistant from the sponds toE

, respectively. FoON>2 the global minimum corre-
(A7)

oo

, while for N<2, ELAD is the global mini-
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FIG. 5. Energy versug at fixed value oN for the Hartree-Fock
N-electron atom. FoN=3 the symmetric to nonsymmetrié, FIG. 6. Phase diagram in th&-N plane for the Hartree-Fock
phase transition occurs {=2.405. ForZ=N—1=2 one electron  N-electron atom for small values @. The dashed lines represent
is at infinity, and the energy goes continuously to Me2 sym-  first-order phase transitions. The second-order line between the
metric energy. nonsymmetric phases ends at the critical point. The dot-dashed lines
represent the ionization lineZ&N—1) and the neutral atom line

+ - —
mum. Over the lineN=2 we haveEEOAl)z EfﬂAl). Figure 4 (Z=N).
L ©
shows that the two curvé‘sﬁcAl)(N,Z) andEﬁcAl)(N,Z) Cross P1=  =PN-m=Pr PN-mi1=- - =pn=(1+7)p.
each other aN=2 with different slopes. Therefore, the line (33

N=2 with Z<Z(N=2)=2 is a first-order phase transi-
tion line which ends at the critical poinN¢=2,Z.=/2).
For N>2, the variational equations give

Second, we introduce a nonsymmetric phase, which we will
refer to as phasB, in which two electrons will move away
from the nucleus and other electrons with different radii,

lim n=co (31
ZoN-1 p1=- =pn-2=p, pn-1=(1+wp)p, pn=(1+ 77)(%-4)

ins finite in this limit; theref .
andp remains finite in this limit; therefore For N;<N<N,=27.45, starting from neutral atoms and

lim py=c. (32) decreasind at fixedN we see that the nonsymmetric phase
ZN-1 A is the global minimum for alz>Zg, whereZg is de-
fined by the condition
For Z=N-1, one of theN electrons is at infinite distance

from the nucleus, therefore the poiMd € 1,Z) must be iden- EAY(N,Zg) =E®(N,Zp). (35)
tified with the point (N,Z) as shown in Fig. 5 for small
values ofZ. Figure 5 shows that faz>Z,=2.405 the sym- At this point, a first-order phase transition occurs between

metric solution forN=3 is the global minimum, while for the nonsymmetric phask; and the nonsymmetric phage
2<Z<Z=127Z,=2.405 the nonsymmetric solution is the glo- The mechanism of symmetry breaking involves the removal
bal minimum. AtZ=2, ionization occurs where one electron of one electron to complete ionization at the limit
moves to an infinite distance and the symmemie 2 solu- Z—N-—1. At this value ofZ, the system again makes a
tion is the global minimum. Since there is no shell structurefransition to the nonsymmetric phagg configuration, but
we can consider the opposite process, bringing back the elewdith N—1 electrons. A phase diagram with stability lines is
tron to a finite distance. lonization and electron affinity pro-shown in Fig. 7.
cesses connected with neutral atoms occur only in the region For N;<N<N,=27.45 the nonsymmetric phasag, are
whereN<Z<N+1. In this work, we restrict our study to not the global minimum fom>1. At N=N,, the global
these processes. A phase diagram illustrating these processemimum for neutral atoms jumps to the nonsymmetric
for small values oNN is shown in Fig. 6. m= 2 electronic configurations. This change in the electronic
For neutral atoms the symmetric solution is the globalconfiguration for neutral atoms might be regarded as a kind
minimum for all values oN less tharN;=12.177. For val-  of “shell structure” (which is not the ordinary shell structure
ues ofN greater tharN, the nonsymmetric phask, is the  at D=3) for the HFN-electron atom at the large-limit.
global minimum. Therefore we need to consider new non- Now, we turn to the effect of an external electric field on
symmetric electronic configurations to describe symmetrithe symmetry breaking and phase transitions for the general
breaking leading to ionization. First we consider generalizingcase of N-electron atoms. The effective Hamiltonian for
the nonsymmetric phasAd; to nonsymmetric phaseA,,. N-electron atoms in a weak external electric field takes the
These new phases are defined by form
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FIG. 7. Phase diagram for the Hartree-Fddlelectron atom in FIG. 9. Order parameter versus external electric field for differ-

theZ-N plane. In this case, the neutral atom is in the nonsymmetrient values ofN in the Hartree-Fock approximation, over the first-
A, configuration, and the first-order phase transition occurs betweearder line: (N=272=7.=+2), (N=3Z=2,~2.405), and

the nonsymmetrié\; andB phases. (N=4,Z=27,=3.457). Only the curvél=2 is symmetric with re-
spect to€.
N—1
Hm(N.z,&:Hm(N,a—s( 2 pi—pN). (36) 7, 7<0
= PNT P2
R A &7
ForN+ 2, the phase transition between symmetric to non- g 1+ 7’ e

symmetric phasé\; is not continuous and the system has a
different response to the external field in comparison withwherep- is the maximum betweep,; andpy .
the continuous transition &i=2. In Fig. 8 we show the In Fig. 9 curves ofyy versusE over the phase transition
energy versus the external electric field f8e=3 over the  line is shown for different values dfl. Note that only at
first-order phase transition lin=2Z,=2.405. In this case, N=2, where both nonsymmetri@d; configurations are
the energy presents the typical behavior of the free energy iaquivalent, is the curve symmetric with respectto
mean-field theories of first-order phase transitions.

For two-electron atoms, Iingcnzo and thereforey is
a good order parameter to measure the asymmetry of the
electronic configuration. Becausgis a real positive param- For the exact solution of thé-electron atom at the
eter, which goes to infinity a8—N-—1, it is convenient to D—c limit, the dimensional-scaled effective Hamiltonian
define a new order parameter for the gendkadlectron atom can be written a§8]

IV. N-ELECTRON ATOMS
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FIG. 10. Phase diagram in th&N plane for small values of
FIG. 8. Energy versus electric field in the Hartree-Fock approxi-Z. Dashed lines represent first-order phase transitions. The line be-
mation forN=3 andZ=2Z,=2.405. tween the nonsymmetric phases ends at a triple point.
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N ) N fori=1,2,... N=-1;j=i+1,... N.
1 Nt 1 ) ] )
He= 22 T ZE — Loeser[8] obtained the totally symmetric solution when
=1 NP 1=1pi the effective Hamiltonian is completely symmetric in each
N-1 N 1 set,pj=p andy; ;= y. Under this assumption, the Grammian
+ 2 (39 determinant and its derivative takes the simple fg¢see the

=15 (pi+ 0y = 2pip57i )Y Appendiy

Here, p; are the electron-nucleus radi, is the nuclear
charge,y; ; are the cosines of the angle between elections
andj, I'y is the Grammian determinahy; ;| for all N elec-
trons, andl'{{) is the Grammian determinant for all but the

Iy=[1+(N=1)y](1-n" Y,

ith electron.

The N(N—1)/2 angles{; j} are new variational param- 'y _ N—2

. A e ] —| =—2y(1-y)" " (42
eters along with thé\ radii {p;}. The largeb limit ground Vil sym
state energy is given by the minimum of the effective Hamil- Y
tonian,
E.(N,Z)= min H... (39) Using these results, the radial, E40), and the angular,
{pi i} Eq. (41), become

This condition yields the radial equations
ﬂHx 1"“) 1 Z Pi—Pi Vi 1+(N—2)’y N—1 _

S R —— 171 -0 (40 (1= TN= +Z-sap——m=0, (43
dpi  Tnpi pi 1= (pi+pi=2pipjm ) A=A+ (N=1)ylp 27 (1=y)
fori=1,2,...,N. The angular extremum conditions give the
equations 2+(N-2 1—y)2

q X [[1+((N_1));/]]2:) ( 237;2) o, (42
M. 1o 1 . ar{ 10N 1
dyvi; 2&aT{\ Nayi; N oaw,)pk

. Solving these equations gives a closed form expression
e Pip; a5=0 (41  for the ground-state energy of the total symmetric configu-
(pi+pi—2pipjvi) ration

N[1+(N—1)y][1+(2N—3)y+(N—1)(N—2)y?]Z?

E2MIN,Z)=~ , 45
2 2(1-) 49
|
where y(N,Z) is the largest negative root of the equation Fy=(1— N1+ (N-2)y— (N—1)u?],
—2(1-pN3(y—u?, i,j<N
PO Gk b (46) . R N—(;/ “ o (49)
22+ (N=-2)y]y’ %ijl, (—2m(1=y)""% i<N;j=N.

Substituting these expressions into E¢40) and (41)

As in the HFN-electron atoms, we define new variables gives four coupled nonlinear equations for the variational
(7, 1) to describe the motion which breaks the total symmetparametergp, 7, v, u} which have to be solved numerically.
ric configuration and allows us to study the transitions to theThe phase diagram for small values &fis qualitatively
nonsymmetric phasa, electronic configurations similar to the phase diagram obtained in the Hartree-Fock

approximation. However, for the exact solution, the symme-
try breaking of the electronic configuration is always a first-
p1=--pn-1=p,  pn=(1+7)p, 47 order phase transition. Therefore, the critical poiniNat 2
in the HF approximation is now replaced by a triple point, as
shown in Fig. 10.

For two-electron atoms there is only one interelectronic
angle, so the equations take a much simpler form and some

The Grammian determinant and its derivates can be cakesults can be obtained analytically. The Hessian matrix can
culated analytically for this phagsee the Appendjx be calculated for both phases, the stability limit of the sym-

Yii=7% LI<N, yn=u. (48)
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FIG. 11. The nuclear chargéas a function of the order param- FIG. 12. Corresponding-states plot of the scaled energy as a
eter ¢ for the exact and Hartree-Fock two-electron atoms. function of Z—2,./Z,, where Z,=N—1, for the exact

_ ] ) ) ) ] ) N-electron atom. The solid liné&y =, coincides with the Hartree-
metric configuration is given analytically withZ Fock scaled energy line.

=3Y4(2+/3)/4=1.2279 andy=1-2/\/3=—0.1547. For
the nonsymmetric phasi, configuration, the stability limit the symmetric solution no longer is the global minimum,
is given byZ=1.2352 andy=—0.118. For the first-order N, is defined by the conditio@;(N;)=N;=13.403. For

point, given by greater values o (N>N,) it is necessary to consider new
nonsymmetric configurations. The nonsymmetric phAse
EYM(N=22Z,)= EECAl)(N: 2.2,), (50)  electronic configuration is defined by
we obtainZ;(N=2)=1.2334. Figure 11 show? as a func- L= opn-2=p pr-a=pn= (1 7)p,

tion of the order parametep defined by Eq.(37) for both o o _ , e
Hartree-Fock and the exact two-electron atoms. The different Yig=ye LISNEL O yinea = v,
behavior aty=0 explains the change of the order of the i<N—1,
phase transition.

The symmetric configuration corresponds to the global For this solution, the Grammian determinant and its deri-
minimum for small values oN. The value ofN for which  vates are given bysee the Appendjx

YN-IN= O. (51)

Iy=(1-»"3(1-w)[1=0+(N=3)y(1-0)—2(N-2)u?],
—2(1- N *1-0)[(1+0)y—2ux2], i,j<N-1
% —{ —21-@u(1-yNE i<N-1; j=N-1 62
Ttz | _a(1— )N Y[+ (N-3)yJo— (N-2)u?), i=N—1; j=N.

For neutral atoms af,=53 the nonsymmetric phage,  metry breaking solutions in both Hartree-Fock and exact so-
configuration has a lower energy than the nonsymmetridutions of N-electron atoms requires new interpretations. The
phaseA;. We note that this “shell structure” appears for mapping of this problem to standard phase transitions allows
smaller values oN in the Hartree-Fock approximation com- US to treat the nuclear charge in an analogous fashion as
pared with the exact solution. To study the symmetry breakiemperature in statistical mechanics. Therefore, the symmet-
ing for large atoms requires a fair amount of labor because ofic electronic configurations can be thought of as a high tem-
the large number of variational parameters and the complexerature phase. By “cooling” the system, new different or-

ity of the Grammian determinant. dered phases appear for certian values of the nuclear charges.
For the Hartree-Fock solution, we have found a critical point
V. DISCUSSION at (N.=2,2Z.= \/5) with mean field critical exponents. The

exact solution has first order phase transitions with a triple
We established an analogy between mean-field theory gfoint replacing the critical point found in the Hartree-Fock
phase transitions and symmetry breaking of electronic strucapproximation.

ture configurations at the larde-limit. In this context, sym- Another characteristic of critical phenomena is the exist-
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ence of the law of corresponding states. We note that fronsaid to be members of the same universality c[d3% Sys-
Eq. (28), the rescaled Hartree-Fock energy of the symmetridtems in the same universality class have the same critical
configuration does not depend on the valudNoand can be exponents independent of the model systems or the details of

written as the forces. To study the behavior of a given system near the
E (N7 E.(Z/Z.) 53 critical point one has to rely on model calculations which are
=(N,Z)— NZZ (53 simple, capture the main physics of the problem, and belong

to the same universality class. According to variational cal-
where Z,, defines the boundary line for ionization and is culations at the larg® limit, we obtained classical critical
given byZ,.=N—1. The same scaling is valid, as an asymp-exponents for the symmetry breaking of electronic structure
totic law, for the exact solution. Figure 12 shows the corre-configurations leading to ionization. Although we have fo-
sponding states for the exact and NFelectron atoms. cused upon symmetry breaking at the lai@ydimit, where

This symmetry breaking and phase transition offers a dif-multicritical phenomena appear for more complicated elec-
ferent point of view for looking at atomic and molecular tronic structure problemgl8], research is underway to ex-
processes such as ionization, electron affinity, dissociationgmine phase transitions &=3 by including higher-order
and related phenomena. The fact that one can formally trederms in 1D expansion.
electronic structure problems as thermodynamic systems
gives the possibility of using powerful statistical mechanics ACKNOWLEDGMENTS
techniques to treat large atomic and molecular sys{d@k ) )

Since the larged limit is pseudoclassical, it does not ex- _ 1he authors would like to thank Igal Szleifer, Aaron F.
hibit shell structure, so some means to incorporate this iSt@nton, and Richard E. Bleil for many useful discussions.
required. Loeser suggested a simple procedure which par?n€ of the authorgP.S) would like to acknowledge the
tions the energy into shell contributions, scales each of thesg@rtial financial support of the Facultad de Mat¢ios As-
by a hydrogenic factor, and sums the successive shell ionizdl0nome. y Fsica, Universidad Nacional de @mba—
tion energied8]. However, one can define a “pseudoshell Argentina.
structure” at the largd limit. For the Hartree-Fock
N-electron neutral atoms the symmetric solution is the global APPENDIX
minimum for all values oN less tharN;=12.177. For val-

ues ofN greater tharN, the nonsymmetric phask, is the In order to study the stability of the solutions at the large-

e N L D limit, we need to evaluate the Grammian determinant,
global minimum. AtN= N,=27.45, the global minimum for T;;=v with %=1, and the determinant of the Hessian

neutral atoms jumps to the nonsymmetnic=2 electronic .

. ) d matrix
configurations. For the exact solution of tNeelectron neu- 92H
tral atoms the symmetric configuration corresponds to the 9= g ,
global minimum for values oN less thanN,;=13.403. For XiXj

paet?ot:laLZtsOZTo?vNeT gié?e Qﬁgiy?;?igfsp&arﬁtﬁgnfg; where{x;} represent both the radial and angular coordinates
9y y P where the determinant is evaluated for a particular solution.

This change in the .eltlactro.mc configurations for neytral at'Actually, both matrices have a similar block structure. For
oms at the larg® limit might be regarded as a kind of

“pseudoshell structure” of variational nature. In order to example, the Hessian matrix of the nonsymmetric phase
pseu : . : . A, electronic configuration for thN-electron HF atoms has
examine the relation of this pseudoshell structure with th

ordinary shell structure ab=3, one still has to include the general form
higher order terms in the I/ expansion. Wom)xm . mX(N_—'L)

Recently, Herschbadi 3] suggested charge renormaliza- ab,b,....,b Cy ... C
tion at the larged limit, which involves finding an effective b

. . ab....,b Cy...,C

nuclear charge that renders the dimensionally scaled energy
at theD—oo limit a good approximation to that fob =3
with the actual nuclear charge The renormalized charge is
readily evaluated by comparing the Hartree-Fock energy for
D=3 with its D—~ limit. Another procedure of charge
renormalization is to determine an effective nuclear charge ¢c,...,c eyde,...,e
such that the Hartree-Fock results will be significantly closer
to the exact energies by utilizing the larBedimit results.
This procedure was proven to be useful for atdri4| and NN N RN
simple diatomic moleculegl5]. The study of critical phe- )
the different versions of charge renormalizations. X=(X1, -+« XN—m:0, . . . ,0) satisfies

One striking aspect of critical phenomena is the hypoth-
esis of the universality of the critical exponepi$]. Accord- .
ing to this hypothesis, only two quantities determine the axﬁb% Xj, 1<N-m
critical behavior of most systems: the dimensionality of (GX);= (A3)
space and the dimensionality of the order parameter. A_II sys- CE Xj, i>N-m.
tems that have the same values of these two quantities are ]

(A1)

G= b,b,b...,a Cy...,C . (AZ)
Cy.n.sC dese,...,e
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If we impose the conditioX;x;= 0, thenx is an eigenvector de(G)=\)"""IAD I . (A5)
with an eigenvalua ;=a—Db. But, there aré&l—m—1 linear

independent vectors that satisfy this condition, therefore This expression is also useful for Grammian matrices.
has the multiplicityN—m—1. In the same way, we can de- Setting the diagonal elements equal to 1, we obtain, for
fine the vectory=(0, ... ,0¥n_pm, - - . yn) With 2y;=0, m=0, the Grammian matrix_ for the s_;ymmetric _solution, and,
which gives\,=d—e as an eigenvalue with multiplicity in general, from them Hessian matrix we obtain the—1
m—1. The other two eigenvalues are calculated with twoGrammian matrix. For more complicated electronic structure
configurations, such as the nonsymmetric phRs¢he ma-

vectors orthogonal to {x.y}; z;=(1.....1.4. .. ..{) trices have a different structure, but it is still possible to use
N—m m the same technique to calculate the determinants. General
) . .. proprieties of the Grammian determinant and its derivates
for i=1,2. The eigenvalue equati@dz = \z; gives are given in Ref[19]. In particular, Eq.(A.6) of that refer-
A.=2%(@+d+(n—-m-1)b+(m-1)e ence,
+{[(a—d+(n—m—1)b—(m—1)e]? oI .
{[(a—d+( Jb—(m—1)e] 22 Ve =T, (A6)
+4(N—m)c?}?) (A4) 17 i

and the determinant is given by the product of the eigenvalgives us a linear system to obtain the derivates of the Gram-
ues mian determinant for each particular solution.
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