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Quantum interference in three-photon down-conversion
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We study degenerate three-photon down-conversion as a potential scheme for generating nonclassical states
of light that exhibit clear signatures of phase-space interference. The Wigner function representing these states
contains an interference pattern manifesting quantum coherence between distinct phase-space components and
has substantial areas of negativity. We develop an analytical description of the interference pattern, which
demonstrates how the oscillations of the Wigner function are built up by the superposition principle. We
analyze the impact of dissipation and pump fluctuations on the visibility of the interference pattern; the results
suggest that some signatures of quantum coherence can be observed in the presence of a moderate amount of
noise.[S1050-294{@7)00603-3

PACS numbd(s): 42.50.Dv, 03.65.Bz

[. INTRODUCTION ties currently is a trapped ion, whose quantum state can be
quite easily manipulated through interaction with suitably
The superposition principle is a fundamental ingredient ofapplied laser beanj$§]. In the case of traveling optical fields,
guantum theory, resulting in interference phenomena not exhe range of available interactions is far more restricted, and
isting in classical mechanics. In atomic, molecular, and opgenerating states with interesting phase space properties is a
tical physics this striking feature of quantum mechanics camontrivial task from both theoretical and experimental points
be studied within several examples of simple quantum sysef view. One of the states that most clearly illustrate quan-
tems: a trapped ion, a diatomic molecule, and a single eledum interference is a superposition of two distinct coherent
tromagnetic field mode in a cavity or free space. In this constates[9], whose generation in microwave frequency range
text Schleich and Wheelefl] developed a phase-space has been recently reportdd0]. The production of these
picture of quantum interference. They demonstrated in thetates in the optical domain has been a subject of consider-
semiclassical limit that quantum-mechanical transition prob-able theoretical interest. Though several ingenious schemes
abilities are governed by a set of simple rules in the phasbave been proposdd1-14, they require extremely precise
space: a probability amplitude is given by a sum of overlapcontrol over the dynamics of the system, which makes them
areas, with phase factors defined by an area caught betweeary difficult to implement experimentally.
the states. In this paper we study degenerate three-photon down-
Recent developments in quantum optics have generatezbnversior{15-22 as a scheme for generating states of light
significantly increased interest in the phase-space representfat exhibit clear signatures of phase-space interference. This
tion of quantum states, providing feasible schemes for meageneration scheme seems to be quite attractive since, as we
suring the Wigner functions of a single light mode-4], the  will show, it is not overly sensitive to some sources of noise.
vibrational manifold of a diatomic molecu|&], and the mo-  Additionally, numerous experimental realizations of two-
tional state of a trapped atof®], or an atomic beani7].  photon down-conversion for generating squeezed light give a
These advances open up new possibilities in experimentalolid basis for studying higher-order processes, at least in
studies of the quantum superposition principle, as the Wigneprinciple, and developments in nonlinear optical materials
function provides direct insight into the interference phe-suggest it may be possible to reexamine higher-order nonlin-
nomena through its fringes and negativities and also comear quantum effects.
pletely characterizes the quantum state. Additionally, the Interference features of states generated in higher-order
negativity of the Wigner function is strong evidence for the down-conversion have been noted by Braunstein and Caves
distinctness of quantum mechanics from classical statisticdlL7], who showed oscillations in quadrature distributions and
theory. Consequently, it is now possible to obtain full infor- explained them as a result of coherent overlap of two arms
mation on the coherence properties of a quantum state hyisplayed by theQ function. The purpose of the present pa-
measuring its Wigner function, instead of observing quantunper is to provide a detailed analysis of the interference fea-
interference only as fringes in marginal distributions oftures, based on the Wigner function rather than distributions
single observables. of single observables. Compared to éunction, discussed
Therefore, schemes for generating quantum states witpreviously by several authors, the Wigner function carries
nontrivial phase-space quasidistributions, especially thosexplicit evidence of quantum coherence in the form of oscil-
possessing substantial negativities, are of considerable intelations and negative areas. These features are not visible in
est. The system that appears to provide the most opportunihe Q function, which describes inevitably noisy simulta-
neous measurement of the position and the momentum.
The states generated in three-photon down-conversion
*Permanent address: Instytut Fizyki Teoretycznej, Uniwersytecannot be described using simple analytical formulas. It is
Warszawski, Hoa 69, PL-00-681 Warszawa, Poland. thus necessary to resort to numerical means in order to dis-
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cuss their phase-space properties. However, we will showion more general, we will take the wave function to be a
that the interference features can be understood with the hekuperposition of finite number of components defined in Eq.
of simple analytical calculations. These calculations will re-(1):
veal the essential role of the superposition principle in creat-
ing the interference pattern in the phase space. Experimental _ .
realization of the discussed scheme along with detection of ¢(Q)—Ei Aj(q)exdisi(a)]. (4)
the Wigner function of the generated field would be an ex-
plicit optical demonstration of totally nonclassical quantumThe Wigner function is in this case a sum of integrals
interference in the phase space.

This paper is organized as follows. First, in Sec. Il we W, ( ):i 2 dx A (q—x/2) A (q+X/2)
discuss some general properties of the Wigner function. In "% a.P)=50 ] 9 i
Sec. lll we present the numerical approach used to deal with . ) )
three-photon down-conversion. The Wigner function repre- Xexd —ipx—iS(q—x/2) +iS(q+x/2)].
senting states generated in this process is studied in detail in (5)
Sec. IV. In Sec. V we briefly discuss prospects of experimen-
tal demonstration of quantum interference using the studietiVe will evaluate these integrals with the help of the
scheme. Finally, Sec. VI concludes the results. stationary-phase approximation. The condition for the sta-

tionary points is given by the equation

Il. GENERAL CONSIDERATIONS
S/ (q—x/2)+ S/ (q+x/2)=2p, (6)
Before we present the phase-space picture of three-photon
down-conversion, let us first discuss in general how the inwhich has a very simple geometrical intepretation. It shows
terference pattern is built up in the phase space by the supeihat the contribution to the Wigner function at the point
position principle. Our initial considerations will closely fol- (g,p) comes from the points of the “trajectories”
low previous discussions of the semiclassical limit of the[q;,pi=S/ (q)] and[q; ,pjzsj’(q)] satisfying
Wigner function[23]. They will give us later a better under-
standing of the interference we are concerned with in three- (di+a)/2=q, (pi+p))/2=p, (7)
photon down-conversion and help us derive an analytical _ — . . .
description of the interference pattern for this specific casel-€-+ (@:P) is @ midpoint of the line connecting the points
). These points may lie either on the same

We will start by considering a wave function of the form (ai.pi) and @; ,p;) : _
trajectory, i.e.,i=j, or on a pair of different ones. In par-

()= A(q)exdis(q)], (1)  fticular, fori=j we get thaty;=q;=q is always a stationary

point for p=S/(q), which justifies the approximation ap-

whereS(q) is a real function defining the phase addq) is  plied in deriving Eq.(3). At these points the second deriva-

a slowly varying positive envelope. The Wigner function of tive of the phase disappears. Therefore, we will calculate

this state is given bythroughout this paper we sét=1) them separately, using the previous method. For the remain-

ing pairs, we expand the phases up to quadratic terms and

perform the resulting Gaussian integrals. As before, we ne-

glect variation of the envelopes, taking their values at the

) ) _ stationary points. This yields an approximate form of the
Xexd —ipx—iS(q—x/2)+iS(q+x/2)]. Wigner function

)

—~ 2 _ g
Let us first separate the contribution from the direct neigh- Ww(q,p)~2i Ai(@)o(p—5/(a)
borhood of the poing. For this purpose we will expand the
phaseS(q) up to th_e Iinea_lr term and take the value of the > Ai(g;)A;(q;)
envelope at the poirg, which gives ¥ i, \/wi[S{’(qi)—Sj’(qj)]IZ

W,(q,p)~A2(q) 8(p— &' 3 R
¢(q1p)~-/4 (Q) (p_S (Q))+ T ( ) Si’(qi)+sj,(qj)=2p

Thus this contribution is Iocallzgd around the momentum Xexip(gi—a;)—iS(q)+iS;(a)], (8)
S'(q) and creates a concentration along the “trajectory”
[g,p=8'(q)]. This result has a straightforward interpreta- where the second double sum excludes the ¢asge and
tion in the WKB approximation of the energy eigenfunc- q;=q;=q.
tions, where the phasé(q) is the classical action and its ~ Thus the Wigner function of the state defined in E4).
spatial derivative yields the momentum. In this case,(B). exhibits two main features. The first one is the presence of
simply states that the Wigner function contains a positivepositive humps localized along trajectorie$q;,p;
component localized along the classical trajec{@g]. =S8'(q;)]. Any pair of points on these trajectories gives rise
We will now study more carefully the relation between to the interference pattern of the Wigner function at the mid-
the wave function and the Wigner function, taking into ac-point of the line connecting this pair. Let us note that the
count contributions from other parts of the wave function,result that the interference pattern in a given area is gener-
denoted symbolically by dots in E¢B). To make the discus- ated by equidistant opposite pieces of the quasidistribution

1
W,(q,p)= EJ dx A(g—x/2) A(g+x/2)




2370 KONRAD BANASZEK AND PETER L. KNIGHT 55

corresponds to the phase-space picture of the superposithW(q,p)

of two coherent statd®,9], for which the interference struc-

ture lies precisely in the center between the interfering state:
02}

lIl. NUMERICAL CALCULATIONS o5

Numerical results presented in the following parts of the o,
paper are obtained using a model of two quantized ligh
modes: the signal and the pump, coupled by the interactio
Hamiltonian

0.05

ﬂ:i)\[ﬁ(é‘r)3_61‘é3]’ (9) -0.05

whereX is the coupling constant aralandb are the anni-
hilation operators of the signal and pump mode, respectively
This Hamiltonian is very convenient for numerical calcula-

tions, as it commutes with the operafdr=3a'a+b'b, and
can be diagonalized separately in each of the finite

dimensional eigenspaces Nf Details of the basic numerical 3\‘\\‘3\\\\\‘\\\\\\\\\\\\\\\\\\\\\\\:\‘\35ttt§§§§§§§§§§§§§§§§§§\a;f §

approach to these kinds of Hamiltonians can be found, fo Q}\\\\\\\\\\\\\\\\\\\QQS:QQSSQSSSS§§§§§§§§;&QE
example, in Refd.18,19. In contrast, the limit of a classical, 4 \\“\\\\\\\\\\\\‘\\: AR RN

undepleted pump is difficult to implement numerically due to \\\\\\\\\\\\\\\\:\\\\\\\\ \ AINNESSE
singularities of the evolution operator on the imaginary time \:\“.l‘,‘\\\“\“\‘\‘\\‘\‘\\‘\\\\‘\‘ =3 "
axis[15]. puini i == -

We assume that initially the signal mode is in the vacuumr ';'niﬁi':'.",‘ﬁl}",‘:“,a 0 ~
state|0) and the pump is in a coherent sty . After evo- p © ;EI:E}EHHHH H =t I

lution of the system for the time which we calculate in the .',';'.',':','H:':':':':'.';';' =

interaction picture, we obtain the reduced density matrix of ,'.',',':',','.',',',','I/I/I// =
the signal field by performing the trace over the pump mode .’,:",’,’I:','/'/'I//'///,//,',//, g5 ssszeezz| 00

A - - IIIMlllll’///,////,////,/I/ 47 8 Z ;ééé :222

p(t) :Trpum;{e I t|0><0|®|:8><13|el t]- (10) 4 7I:’lllllllllllll”ﬁ’;l///////;;7,’;{5?5ﬁﬁgéégééégégéé
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In general,p(t) describes a mixed state, as the interacting P IR 7 48454555552 55552525525222

modes get entangled in the course of evolution. This densit 6 4 2 0 2 4 6

matrix is then used to calculate the Wigner function and q

other observables of the signal mode studied further in the

paper. In the discussion, we will make use of the analogy FIG. 1. (a) Surface andb) contour plots of the Wigner function
between a single light mode and a harmonic oscillator, asrepresenting the signal mode state generated ferl0 and
signing the names position and momentum to the quadrd=0.025A. The dashed lines in the contour plot separate the posi-

q=(a+at N (A_At : ; _ tive and negative regions of the interference term of the model
turesq=(a+a )/\/E andp=(a-a )/\/EI’ respectively Wigner function derived in Eq(15), for comparison with the

shaded plot generated from the numerical analysis of the full model.
IV. WIGNER FUNCTION

We will restrict our studies to the regime of a strong Sults in an interference pattern filling the regions between the
pump and a short interaction time. This regime is the mos@rms, consisting of positive and negative strips. Thus the
reasonable one from the experimental point of view, adVigner function is “forced” by the superposition principle
strong pumping allows us to compensate for the usuallyo take negative values in order to manifest the quantum
weak effect of nonlinearity and the short interaction timecoherence of the state.
gives us a chance to ignore or to suppress dissipation. We Let us now study in more detail how the interference pat-
can gain some intuition about the dynamics of the system byern is generated by coherent superposition of distinct phase-
considering the classical case; this is done in Appendix Aspace components. We will focus our attention on the three
The most important conclusion is that in the classical pictureéarms displayed by the quasidistribution, neglecting the bulk
the origin of the phase space is an unstable fixed point, witl®f positive probability at the origin of the phase space re-
three symmetric directions of growth, in a starlike formation.maining from the initial vacuum *“source” state. As the pu-

In Fig. 1 we depict the Wigner function representing thefity factor of the generated state is close to one, we will base
state of the signal field generated for the paramegersl0  our calculations on pure states. The relation between the
andt=0.025A. This state is almost pure, as[fi?]=0.92 wave function and the Wigner function derived in Sec. Il
indicates little entanglement between the pump and th§U99ests that the arms can be modeled by three components
down-converted mode. The three developing arms follow th@' the wave function,
classical directions of growth from the unstable origin of the
phase space. The coherence between these components re- e(9)=@o(qQ)+ @1(q) + ¢2(q). (12
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with slowly varying envelopes and the position-dependent eo(q)=A(q),
phase factor: So(q)=0, S;(q)=+39%2, and S,(q)
= —/39%/2, respectively. The interference pattern observed
in the phase space is a result of the coherent superposition of ©1(q) = V2A(—20)exp(3iq?/2—i 7/6),
these three components.
However, in order to calculate quantitatively the structure
of the interference pattern, we need to know the relative @2(0) = V2A(—2q)exp(— \3ig¥/2+iml6). (13
phase factors between the wave functions in @d). We

will obtain these factors with the help of the additional in- . . .
) o . ; . Given this result, we can use the approximate form of the
formation that the Hamiltonian defined in E@) excites or : A X
Wigner function in Eq.(8) to model the numerically calcu-

annlh!latgas trlplets of signal photons. Consequently, the ph ated Wigner function. Some problems arise from the fact
ton distribution of the generated state is nonzero only for

Fock states being multiples of 3, as the initial state was th that the three components are localized along straight lines.

vacuum. Using this fact, we can define an operator that pe?—n this case the stationary-phase approximation fails to work

forms a rotation in phase space by an angjle for points belonging to the same arm and the Wigner func-
P P y tion of each component depends substantially on the enve-

lope. Therefore, we will denote them aw%(q,p),

i W(Pl(q,p), and W(pz(q,p) without specifying their detailed
and impose the relationse;=U(27/3)¢, and ¢, form. Nevertheless, the stationary-phase approximation can
=0 (4m/3)¢p,. This choice for the phase of the operator be safely used to calculate the interference pattern between
U(6) ensures that the superposition defined in @d) has the arms, v_\ll_rr]]ere the contnbutmhg pow:jtsl t\)/s!ong t]9 two dis-
the necessary property to generate the correct triplet phototht armfsf. us we reprttesent the model Wigner function as
statistics. Let us now assume thg§ is given by a slowly a sum of four components

varying positive function4(q), localized forg>0. We will

not_ consider any sp_ecific form of the en.velapi(eq), as the W¢(q,p):W%(q'p)+W(Pl(q,p)+w¢2(q,p)+Wim(q'p)’

main purpose of this model is to predict the position and (14)
shape of the interference fringes. The other two wave func-

tions can be calculated with the help of the formula derived

in Appendix B, which finally yields where the interference teriW,,(q,p) is given by

U(h)=exp —ihata), (12

( 2
2p 2p p T

Al —29—-—=|A| —=-2 — —J30%+ —=|, <-

( q g) & q)COS(ﬁ V3a*+ 35], [pl<—q

4 2 4 2p?
Win(d,p)= xX¢ A 2q+—p A i co Ll +2qp— il ,  p>max—3q,0} (15
317477172 /_3 /—3 /—3 12
2p 4p 2p? w) .

Al 20— —=| Al ——|co§ ——20p— ==/, <min{+/3q,0}.
\(Q@H@Hﬁqpl P

As the enveloped(q) is a positive function, the oscillations interference pattern does not change substantially as long as
of the interference pattern are determined by the argument ahe crucial features of the state remain fixed. In particular,
the cosine function. The lines of constant argument are hythe interaction time and the pump amplitude have only a
perbolas with asymptotice=0,= \/3q. In Fig. 1(b) we su- slight influence on the basic form of the interference pattern,
perpose the pattern generated by the interference term of th& they determine only the amount of probability density
model Wigner function on top of the numerically calculatedtransferred to the arms of the quasidistribution.
guasidistribution; the agreement between the two is excel-

!ent. Thus our model effectively describes_ the form of the,, CONSEQUENCES OF PHASE-SPACE INTERFERENCE
interference pattern and predicts negative areas of the AND EXPERIMENTAL PROSPECTS

Wigner function.

Let us emphasize that this analytical model is based ex- We will now briefly review the consequences of these
clusively on two considerations: the position of the interfer-phase-space interference effects and the prospects for experi-
ing components in the phase space and the phase relatiomental demonstration of quantum interference using three-
between them, which were derived from our study of thephoton down-conversion. First, let us discuss signatures of
triplet photon statistics for this problem. This shows that thequantum coherence that can be directly observed in the ex-
interference pattern is very “stiff,” i.e., these two consider- perimental data. An experimentally established technique for
ations strictly impose its specific form. Consequently, themeasuring the Wigner function of a light mode is optical
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(0(2 — 29)) Wy (g,0)

02}
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FIG. 2. Quadrature distributiosS(x—X,)) for the state plotted
in Fig. 1. Uj

homodyne tomographj2—4]. In this method, the Wigner 0.95
function is reconstructed from distributions of the quadrature
operatorx,=(ae~'’+a'e'’)/\/2, measured with the help of A
a balanced homodyne detector. These distributions are pro- -6 -4 2 0 2 4 6
jections of the Wigner function on the axis defined by the

equationqg siné—p cos¥=0. In Fig. 2 we plot the quadrature

distributions for the phase in the range (07/6). Due to the FIG. 3. Wigner function along the position axdsafter dissipa-
symmetry of the Wigner function, other distributions havetion characterized by the parametes exp(— yAt).

the same form, up to the transformatiof> —x.

The fringes appearing for<0 in Fig. 2 are a clear sig- wherey is the damping parameter. Evolution over the inter-
nature of quantum coherence between the two arms of theal At yields the state that is effectively measured in a ho-
guasidistribution that are projected onto the same half axismodyne setup with imperfect detectors characterized by the
We can describe the position of the fringes using the modefjuantum efficiency;= exp(— yAt). In phase space, the effect
three-component wave function derived in Et@). For sim-  of dissipation is represented by coarsening of the Wigner
plicity, we will consider only the phasé=0, for which the  function by convolution with a Gaussian functi®24]
fringes have the best visibility due to equal contributions
from both the arms. The model quadrature distribution in the 1-7
half axisx<0 is given by W,(q,p)= Wf dqg'dp’W(q',p’")

|@1(X) + @o(X)|2=8.A4%(— 2x)coL(\/3X2/2— 7/6). (16)

1-7
. . . . . Xexn(——z [(a—a")?+(p—p")?]].
An analysis of this expression reveals some interesting n
analogies. Expanding the argument of the cosine function (18)
around a poink yields that the “local” spacing between the

consecutive fringes isr/\3x. The same result can be ob- This coarsening smears out entirely the very fine details of
tained by considering a superposition of two coherent statefe Wigner function, whose characteristic length is smaller
centered at the pointsx(y3x) and (,—/3x), i.e., where  than 2,/(1— 7). In Fig. 3 we plot the Wigner function
the contributing pieces of the arms are localized. Furtherajong the position axis as a function gf The interference
more, the argument of the cosine function in E@i) is  pattern disappears faster in the area more distant from the
equal, up to an additive constant, to half of the area caughirigin of the phase space, where the frequency of the oscil-
between the two arms of the generated state, and the Wigngtions is larger. Nevertheless, the first negative dip, which is
function of the position eigenstate representing the measurgne widest one, can still be noticed even g+ 0.8.

ment. Thus the quadrature distribution given in Etp) il- Current technology gives some optimistic figures about
lustrates Schleich and Wheeler's phase-space rules for calce possibility of detecting the interference pattern, as virtu-
lating quantum transition probabiliti¢d]. ally 100% efficient photodetectors are available in the range

Let us now estimate the effect of dissipation and nonunil jight intensities measuretin a different context, that of
detector efficiency on the interference pattern exhibited bBéqueezed lightin a homodyne scheni@5]. However, there
the Wigner function. For this purpose we will calculate the gre also other mechanisms of losses, such as absorption dur-
evolution of the generated state under the master equationing nonlinear interaction and nonunit overlap of the homo-
- dyned modes, whose importance cannot be estimated with-
dp A out reference to a specific experimental setup. An analysis of

Y t_atan _aats
dt 2(2apa alap—paa), 17 these would be out of place here.
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portant element of the studied scheme is that the signal state
is generated using a strong external pump, which enhances
the usually weak effect of(®) nonlinearity. This allows us

the optimism to expect that three-photon down-conversion is
perhaps more feasible than schemes based on nonlinear self-
interaction of the signal field. The analytical method devel-
oped in this paper to describe the phase-space interference
pattern can be applied to other cases, where the quasidistri-
bution is a coherent superposition of well-localized compo-
nents, for example, superpositions of two squeezed states
[27] and squeezed coherent states for thélS1) group|28].
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APPENDIX A: CLASSICAL DYNAMICS
Let us finally consider the impact of pump fluctuations on OF THREE-PHOTON DOWN-CONVERSION
the interference pattern. We illustrate the discussion with
Fig. 4, depicting the state generated using a noisy pump fielgI
modeled by a Gaussidn representation

The dynamics of multiphoton down-conversion under
assical and quantum equations of motion has been com-
pared in detail by Braunstein and McLachlglb]; see also

= |2) Ref.[29]. Here, for completeness, we briefly discuss classi-
0

n

(19) cal trajectories for three-photon down-conversion in the ap-
proximation of a constant pump. As the change in the pump

L phase is equivalent to the rotation of the signal phase space,

where 3, is the average field amplitude ands the number we can assume with no loss of generality that the pump

of thermal photons. In discussing the effect of noise, we havemplitudeg is a real positive number. We will now decom-

to distinguish between phase and amplitude fluctuationsypose the complex signal field amplitude into its modulus

Phase fluctuations have a quite deleterious effect, as a changfd the phasé. The classical Hamiltonian in this parametri-

in the pump phase by is equivalent to the rotation of the zation reads

signal phase space hy/3. Consequently, phase fluctuations

average the signal Wigner function over a certain phase H(u,8) =2\ Bu3sin36 (A1)

range. The fringes are most fragile near the arms due to

neighboring bulk of positive probability. The interference and the resulting equations of motion are

pattern in the areas between the arms varies slowly with

1
P(B)= Tr—ﬁexi{

phase, \{vhich_makes it more robust. Thgse properti(_as are %=3uzcos3¢9, %:_&J sin30, (A2)
clearly visible in Fig. 4. The effect of amplitude fluctuations dr dr

is not crucial, as the position of the fringes does not depend

substantially on the pump amplitude. where 7=2\t is the rescaled time. As the energy of the

system is conserved, trajectories of the system are defined by
the equatiorucos®=const. Thus trajectories are of hyper-
boliclike shape, with asymptotic phases equal to multiples of
We have demonstrated that degenerate three-photos/3. The direction of motion can be read out from E@s2),
down-conversion generates nonclassical states of lighthowing that the sign of the derivatig®/d r is negative for
whose Wigner function exhibits nontrivial interference pat-the phases in the intervals ¢03), (2#/3,7), and
tern due to coherent superposition of distinct phase-spaget=/3,57/3), and positive in the remaining areas. The result-
components. We have developed an analytical description diig picture of dynamics is presented in Fig. 5. It is seen that
this pattern, which precisely predicts its form. Let us notethe origin of the phase space is a threefold unstable fixed
that the rich phase-space picture of higher-order downpoint, with the direction of growtte=0, 27/3, and 4r/3.
conversion contrasts with the two-photon case, where the
only signature of quantum coherence is suppression of AppENDIX B: ROTATING THE WAVE FUNCTION
guadrature dispersidr26]. IN PHASE SPACE
Discussion of the impact of dissipation and pump fluctua-
tions on the coherence properties of the generated state In this appendix we will calculate the rotation of a wave
shows that the interference pattern can partly be observednction defined by a slowly varying positive function
even in the presence of moderate amount of noise. An imA(q),

VI. CONCLUSION
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where the square root in the complex plane is defined by
Jre'?=re'*? for r=0 and — 7< <. The wave func-
tion rotated by an anglé is thus given by the integral

1
wa(Q):WJ dq'A(q")

PoN2 12 ’
I g°+q .49
ex[{i—tane —Im). (83)

FIG. 5. Classical trajectories of the signal mode in the approxi-The stationary phase point for the exponential factor is

mation of a constant pump. g’ =g/cos. We will take the value ofd(q’) at this point
and perform the integral. Some care has to be taken in choos-
o(q)=A(q), (B1)  ing the proper branch of the square-root function when sim-

plifying the final expression. The easiest way to avoid prob-
around the origin of the phase space. An operator performingems is to consider separately four intervals &fbetween
this rotation isU(8) =exp(—ifa'a). Its position representa- 0, #/2, 7, 3m/2, and 2r. The final result is
tion is given by

. (B4

. 1 i 9°+q’2 qq’ o0 P02
u(e)lq')= exp = —i=], N AT _a”
(alu(ala”) Ja(l—e 29 ;{2 tand Sm@( ) Po(q)= C099A<C039)8X[{ > tand
B2
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