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Quantum interference in three-photon down-conversion
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We study degenerate three-photon down-conversion as a potential scheme for generating nonclassical states
of light that exhibit clear signatures of phase-space interference. The Wigner function representing these states
contains an interference pattern manifesting quantum coherence between distinct phase-space components and
has substantial areas of negativity. We develop an analytical description of the interference pattern, which
demonstrates how the oscillations of the Wigner function are built up by the superposition principle. We
analyze the impact of dissipation and pump fluctuations on the visibility of the interference pattern; the results
suggest that some signatures of quantum coherence can be observed in the presence of a moderate amount of
noise.@S1050-2947~97!00603-3#
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I. INTRODUCTION

The superposition principle is a fundamental ingredien
quantum theory, resulting in interference phenomena not
isting in classical mechanics. In atomic, molecular, and
tical physics this striking feature of quantum mechanics
be studied within several examples of simple quantum s
tems: a trapped ion, a diatomic molecule, and a single e
tromagnetic field mode in a cavity or free space. In this c
text Schleich and Wheeler@1# developed a phase-spac
picture of quantum interference. They demonstrated in
semiclassical limit that quantum-mechanical transition pr
abilities are governed by a set of simple rules in the ph
space: a probability amplitude is given by a sum of over
areas, with phase factors defined by an area caught betw
the states.

Recent developments in quantum optics have gener
significantly increased interest in the phase-space repres
tion of quantum states, providing feasible schemes for m
suring the Wigner functions of a single light mode@2–4#, the
vibrational manifold of a diatomic molecule@5#, and the mo-
tional state of a trapped atom@6#, or an atomic beam@7#.
These advances open up new possibilities in experime
studies of the quantum superposition principle, as the Wig
function provides direct insight into the interference ph
nomena through its fringes and negativities and also c
pletely characterizes the quantum state. Additionally,
negativity of the Wigner function is strong evidence for t
distinctness of quantum mechanics from classical statis
theory. Consequently, it is now possible to obtain full info
mation on the coherence properties of a quantum state
measuring its Wigner function, instead of observing quant
interference only as fringes in marginal distributions
single observables.

Therefore, schemes for generating quantum states
nontrivial phase-space quasidistributions, especially th
possessing substantial negativities, are of considerable i
est. The system that appears to provide the most oppor
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ties currently is a trapped ion, whose quantum state can
quite easily manipulated through interaction with suitab
applied laser beams@8#. In the case of traveling optical fields
the range of available interactions is far more restricted,
generating states with interesting phase space properties
nontrivial task from both theoretical and experimental poi
of view. One of the states that most clearly illustrate qua
tum interference is a superposition of two distinct coher
states@9#, whose generation in microwave frequency ran
has been recently reported@10#. The production of these
states in the optical domain has been a subject of consi
able theoretical interest. Though several ingenious sche
have been proposed@11–14#, they require extremely precis
control over the dynamics of the system, which makes th
very difficult to implement experimentally.

In this paper we study degenerate three-photon do
conversion@15–22# as a scheme for generating states of lig
that exhibit clear signatures of phase-space interference.
generation scheme seems to be quite attractive since, a
will show, it is not overly sensitive to some sources of noi
Additionally, numerous experimental realizations of tw
photon down-conversion for generating squeezed light giv
solid basis for studying higher-order processes, at leas
principle, and developments in nonlinear optical materi
suggest it may be possible to reexamine higher-order non
ear quantum effects.

Interference features of states generated in higher-o
down-conversion have been noted by Braunstein and Ca
@17#, who showed oscillations in quadrature distributions a
explained them as a result of coherent overlap of two a
displayed by theQ function. The purpose of the present p
per is to provide a detailed analysis of the interference f
tures, based on the Wigner function rather than distributi
of single observables. Compared to theQ function, discussed
previously by several authors, the Wigner function carr
explicit evidence of quantum coherence in the form of os
lations and negative areas. These features are not visib
the Q function, which describes inevitably noisy simulta
neous measurement of the position and the momentum.

The states generated in three-photon down-conver
cannot be described using simple analytical formulas. I
thus necessary to resort to numerical means in order to
t
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55 2369QUANTUM INTERFERENCE IN THREE-PHOTON DOWN- . . .
cuss their phase-space properties. However, we will sh
that the interference features can be understood with the
of simple analytical calculations. These calculations will
veal the essential role of the superposition principle in cre
ing the interference pattern in the phase space. Experime
realization of the discussed scheme along with detection
the Wigner function of the generated field would be an
plicit optical demonstration of totally nonclassical quantu
interference in the phase space.

This paper is organized as follows. First, in Sec. II w
discuss some general properties of the Wigner function
Sec. III we present the numerical approach used to deal
three-photon down-conversion. The Wigner function rep
senting states generated in this process is studied in deta
Sec. IV. In Sec. V we briefly discuss prospects of experim
tal demonstration of quantum interference using the stud
scheme. Finally, Sec. VI concludes the results.

II. GENERAL CONSIDERATIONS

Before we present the phase-space picture of three-ph
down-conversion, let us first discuss in general how the
terference pattern is built up in the phase space by the su
position principle. Our initial considerations will closely fo
low previous discussions of the semiclassical limit of t
Wigner function@23#. They will give us later a better under
standing of the interference we are concerned with in thr
photon down-conversion and help us derive an analyt
description of the interference pattern for this specific ca

We will start by considering a wave function of the for

c~q!5A~q!exp@ iS~q!#, ~1!

whereS(q) is a real function defining the phase andA(q) is
a slowly varying positive envelope. The Wigner function
this state is given by~throughout this paper we set\51)

Wc~q,p!5
1

2pE dx A~q2x/2!A~q1x/2!

3exp@2 ipx2 iS~q2x/2!1 iS~q1x/2!#.

~2!

Let us first separate the contribution from the direct nei
borhood of the pointq. For this purpose we will expand th
phaseS(q) up to the linear term and take the value of t
envelope at the pointq, which gives

Wc~q,p!'A2~q!d„p2S8~q!…1•••. ~3!

Thus this contribution is localized around the moment
S8(q) and creates a concentration along the ‘‘trajector
@q,p5S8(q)#. This result has a straightforward interpret
tion in the WKB approximation of the energy eigenfun
tions, where the phaseS(q) is the classical action and it
spatial derivative yields the momentum. In this case, Eq.~3!
simply states that the Wigner function contains a posit
component localized along the classical trajectory@23#.

We will now study more carefully the relation betwee
the wave function and the Wigner function, taking into a
count contributions from other parts of the wave functio
denoted symbolically by dots in Eq.~3!. To make the discus
w
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sion more general, we will take the wave function to be
superposition of finite number of components defined in E
~1!:

c~q!5(
i
Ai~q!exp@ iSi~q!#. ~4!

The Wigner function is in this case a sum of integrals

Wc~q,p!5
1

2p (
i , j

E dx Ai~q2x/2!Aj~q1x/2!

3exp@2 ipx2 iSi~q2x/2!1 iSj~q1x/2!#.

~5!

We will evaluate these integrals with the help of th
stationary-phase approximation. The condition for the s
tionary points is given by the equation

Si8~q2x/2!1Sj8~q1x/2!52p, ~6!

which has a very simple geometrical intepretation. It sho
that the contribution to the Wigner function at the poi
(q,p) comes from the points of the ‘‘trajectories
@qi ,pi5Si8(q)# and @qj ,pj5Sj8(q)# satisfying

~qi1qj !/25q, ~pi1pj !/25p, ~7!

i.e., (q,p) is a midpoint of the line connecting the poin
(qi ,pi) and (qj ,pj ). These points may lie either on the sam
trajectory, i.e.,i5 j , or on a pair of different ones. In par
ticular, for i5 j we get thatqi5qj5q is always a stationary
point for p5Si8(q), which justifies the approximation ap
plied in deriving Eq.~3!. At these points the second deriva
tive of the phase disappears. Therefore, we will calcul
them separately, using the previous method. For the rem
ing pairs, we expand the phases up to quadratic terms
perform the resulting Gaussian integrals. As before, we
glect variation of the envelopes, taking their values at
stationary points. This yields an approximate form of t
Wigner function

Wc~q,p!'(
i
Ai
2~q!d„p2Si8~q!…

1(
i , j

(
qi ,qj

qi1qj52q

Si8~qi !1Sj8~qj !52p

Ai~qi !Aj~qj !

Ap i @Si9~qi !2Sj9~qj !#/2

3exp@ ip~qi2qj !2 iSi~qi !1 iSj~qj !#, ~8!

where the second double sum excludes the casei5 j and
qi5qj5q.

Thus the Wigner function of the state defined in Eq.~4!
exhibits two main features. The first one is the presence
positive humps localized along trajectories@qi ,pi
5S8(qi)#. Any pair of points on these trajectories gives ri
to the interference pattern of the Wigner function at the m
point of the line connecting this pair. Let us note that t
result that the interference pattern in a given area is ge
ated by equidistant opposite pieces of the quasidistribu
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2370 55KONRAD BANASZEK AND PETER L. KNIGHT
corresponds to the phase-space picture of the superpos
of two coherent states@2,9#, for which the interference struc
ture lies precisely in the center between the interfering sta

III. NUMERICAL CALCULATIONS

Numerical results presented in the following parts of t
paper are obtained using a model of two quantized li
modes: the signal and the pump, coupled by the interac
Hamiltonian

Ĥ5 il@ b̂~ â†!32b̂†â3#, ~9!

wherel is the coupling constant andâ and b̂ are the anni-
hilation operators of the signal and pump mode, respectiv
This Hamiltonian is very convenient for numerical calcu
tions, as it commutes with the operatorN̂53â†â1b̂†b̂, and
can be diagonalized separately in each of the fin
dimensional eigenspaces ofN̂. Details of the basic numerica
approach to these kinds of Hamiltonians can be found,
example, in Refs.@18,19#. In contrast, the limit of a classica
undepleted pump is difficult to implement numerically due
singularities of the evolution operator on the imaginary tim
axis @15#.

We assume that initially the signal mode is in the vacu
stateu0& and the pump is in a coherent stateub&. After evo-
lution of the system for the timet, which we calculate in the
interaction picture, we obtain the reduced density matrix
the signal field by performing the trace over the pump mo

r̂~ t !5Trpump@e
2 iĤ tu0&^0u ^ ub&^bueiĤ t#. ~10!

In general,r̂(t) describes a mixed state, as the interact
modes get entangled in the course of evolution. This den
matrix is then used to calculate the Wigner function a
other observables of the signal mode studied further in
paper. In the discussion, we will make use of the analo
between a single light mode and a harmonic oscillator,
signing the names position and momentum to the qua
turesq̂5(â1â†)/A2 andp̂5(â2â†)/A2i , respectively.

IV. WIGNER FUNCTION

We will restrict our studies to the regime of a stron
pump and a short interaction time. This regime is the m
reasonable one from the experimental point of view,
strong pumping allows us to compensate for the usu
weak effect of nonlinearity and the short interaction tim
gives us a chance to ignore or to suppress dissipation.
can gain some intuition about the dynamics of the system
considering the classical case; this is done in Appendix
The most important conclusion is that in the classical pict
the origin of the phase space is an unstable fixed point, w
three symmetric directions of growth, in a starlike formatio

In Fig. 1 we depict the Wigner function representing t
state of the signal field generated for the parametersb510
and t50.025/l. This state is almost pure, as Tr@ r̂2#50.92
indicates little entanglement between the pump and
down-converted mode. The three developing arms follow
classical directions of growth from the unstable origin of t
phase space. The coherence between these componen
ion
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sults in an interference pattern filling the regions between
arms, consisting of positive and negative strips. Thus
Wigner function is ‘‘forced’’ by the superposition principl
to take negative values in order to manifest the quant
coherence of the state.

Let us now study in more detail how the interference p
tern is generated by coherent superposition of distinct ph
space components. We will focus our attention on the th
arms displayed by the quasidistribution, neglecting the b
of positive probability at the origin of the phase space
maining from the initial vacuum ‘‘source’’ state. As the pu
rity factor of the generated state is close to one, we will b
our calculations on pure states. The relation between
wave function and the Wigner function derived in Sec.
suggests that the arms can be modeled by three compon
of the wave function,

w~q!5w0~q!1w1~q!1w2~q!. ~11!

FIG. 1. ~a! Surface and~b! contour plots of the Wigner function
representing the signal mode state generated forb510 and
t50.025/l. The dashed lines in the contour plot separate the p
tive and negative regions of the interference term of the mo
Wigner function derived in Eq.~15!, for comparison with the
shaded plot generated from the numerical analysis of the full mo
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55 2371QUANTUM INTERFERENCE IN THREE-PHOTON DOWN- . . .
with slowly varying envelopes and the position-depend
phase factor: S0(q)50, S1(q)5A3q2/2, and S2(q)
52A3q2/2, respectively. The interference pattern observ
in the phase space is a result of the coherent superpositio
these three components.

However, in order to calculate quantitatively the structu
of the interference pattern, we need to know the relat
phase factors between the wave functions in Eq.~11!. We
will obtain these factors with the help of the additional i
formation that the Hamiltonian defined in Eq.~9! excites or
annihilates triplets of signal photons. Consequently, the p
ton distribution of the generated state is nonzero only
Fock states being multiples of 3, as the initial state was
vacuum. Using this fact, we can define an operator that
forms a rotation in phase space by an angleu,

Û~u!5exp~2 iuâ†â!, ~12!

and impose the relationsw15Û(2p/3)w0 and w2

5Û(4p/3)w0. This choice for the phase of the operat
Û(u) ensures that the superposition defined in Eq.~11! has
the necessary property to generate the correct triplet ph
statistics. Let us now assume thatw0 is given by a slowly
varying positive functionA(q), localized forq.0. We will
not consider any specific form of the envelopeA(q), as the
main purpose of this model is to predict the position a
shape of the interference fringes. The other two wave fu
tions can be calculated with the help of the formula deriv
in Appendix B, which finally yields
s
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w0~q!5A~q!,

w1~q!5A2A~22q!exp~A3iq2/22 ip/6!,

w2~q!5A2A~22q!exp~2A3iq2/21 ip/6!. ~13!

Given this result, we can use the approximate form of
Wigner function in Eq.~8! to model the numerically calcu
lated Wigner function. Some problems arise from the f
that the three components are localized along straight lin
In this case the stationary-phase approximation fails to w
for points belonging to the same arm and the Wigner fu
tion of each component depends substantially on the en
lope. Therefore, we will denote them asWw0

(q,p),

Ww1
(q,p), andWw2

(q,p) without specifying their detailed
form. Nevertheless, the stationary-phase approximation
be safely used to calculate the interference pattern betw
the arms, where the contributing points belong to two d
tinct arms. Thus we represent the model Wigner function
a sum of four components

Ww~q,p!5Ww0
~q,p!1Ww1

~q,p!1Ww2
~q,p!1Wint~q,p!,

~14!

where the interference termWint(q,p) is given by
Wint~q,p!5
4

31/4p1/235
AS 22q2

2p

A3DAS 2pA3
22qD cosS p2A3

2A3q21
p

12D , upu,2q

AS 2q1
2p

A3DAS 4pA3D cosS 2p2A3
12qp2

p

12D , p.max$2A3q,0%

AS 2q2
2p

A3DAS 2
4p

A3D cosS 2p2A3
22qp2

p

12D , p,min$A3q,0%.

~15!
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As the envelopeA(q) is a positive function, the oscillation
of the interference pattern are determined by the argumen
the cosine function. The lines of constant argument are
perbolas with asymptoticsp50,6A3q. In Fig. 1~b! we su-
perpose the pattern generated by the interference term o
model Wigner function on top of the numerically calculat
quasidistribution; the agreement between the two is ex
lent. Thus our model effectively describes the form of t
interference pattern and predicts negative areas of
Wigner function.

Let us emphasize that this analytical model is based
clusively on two considerations: the position of the interf
ing components in the phase space and the phase rela
between them, which were derived from our study of t
triplet photon statistics for this problem. This shows that
interference pattern is very ‘‘stiff,’’ i.e., these two conside
ations strictly impose its specific form. Consequently,
of
y-

he
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interference pattern does not change substantially as lon
the crucial features of the state remain fixed. In particu
the interaction time and the pump amplitude have only
slight influence on the basic form of the interference patte
as they determine only the amount of probability dens
transferred to the arms of the quasidistribution.

V. CONSEQUENCES OF PHASE-SPACE INTERFERENCE
AND EXPERIMENTAL PROSPECTS

We will now briefly review the consequences of the
phase-space interference effects and the prospects for ex
mental demonstration of quantum interference using thr
photon down-conversion. First, let us discuss signatures
quantum coherence that can be directly observed in the
perimental data. An experimentally established technique
measuring the Wigner function of a light mode is optic
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2372 55KONRAD BANASZEK AND PETER L. KNIGHT
homodyne tomography@2–4#. In this method, the Wigne
function is reconstructed from distributions of the quadrat
operatorx̂u5(âe2 iu1â†eiu)/A2, measured with the help o
a balanced homodyne detector. These distributions are
jections of the Wigner function on the axis defined by t
equationq sinu2p cosu50. In Fig. 2 we plot the quadratur
distributions for the phaseu in the range (0,p/6). Due to the
symmetry of the Wigner function, other distributions ha
the same form, up to the transformationx→2x.

The fringes appearing forx,0 in Fig. 2 are a clear sig
nature of quantum coherence between the two arms of
quasidistribution that are projected onto the same half a
We can describe the position of the fringes using the mo
three-component wave function derived in Eq.~13!. For sim-
plicity, we will consider only the phaseu50, for which the
fringes have the best visibility due to equal contributio
from both the arms. The model quadrature distribution in
half axisx,0 is given by

uw1~x!1w2~x!u258A2~22x!cos2~A3x2/22p/6!. ~16!

An analysis of this expression reveals some interes
analogies. Expanding the argument of the cosine func
around a pointx yields that the ‘‘local’’ spacing between th
consecutive fringes isp/A3x. The same result can be ob
tained by considering a superposition of two coherent st
centered at the points (x,A3x) and (x,2A3x), i.e., where
the contributing pieces of the arms are localized. Furth
more, the argument of the cosine function in Eq.~16! is
equal, up to an additive constant, to half of the area cau
between the two arms of the generated state, and the Wi
function of the position eigenstate representing the meas
ment. Thus the quadrature distribution given in Eq.~16! il-
lustrates Schleich and Wheeler’s phase-space rules for c
lating quantum transition probabilities@1#.

Let us now estimate the effect of dissipation and nonu
detector efficiency on the interference pattern exhibited
the Wigner function. For this purpose we will calculate t
evolution of the generated state under the master equati

dr̂

dt
5

g

2
~2âr̂â†2â†âr̂2 r̂â†â!, ~17!

FIG. 2. Quadrature distributions^d(x2 x̂u)& for the state plotted
in Fig. 1.
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whereg is the damping parameter. Evolution over the inte
val Dt yields the state that is effectively measured in a h
modyne setup with imperfect detectors characterized by
quantum efficiencyh5exp(2gDt). In phase space, the effec
of dissipation is represented by coarsening of the Wig
function by convolution with a Gaussian function@24#

Wh~q,p!5
12h

2ph E dq8dp8W~q8,p8!

3expS 2
12h

2h
@~q2q8!21~p2p8!2# D .

~18!

This coarsening smears out entirely the very fine details
the Wigner function, whose characteristic length is sma
than A2h/(12h). In Fig. 3 we plot the Wigner function
along the position axis as a function ofh. The interference
pattern disappears faster in the area more distant from
origin of the phase space, where the frequency of the os
lations is larger. Nevertheless, the first negative dip, which
the widest one, can still be noticed even forh50.8.

Current technology gives some optimistic figures ab
the possibility of detecting the interference pattern, as vir
ally 100% efficient photodetectors are available in the ran
of light intensities measured~in a different context, that of
squeezed light! in a homodyne scheme@25#. However, there
are also other mechanisms of losses, such as absorption
ing nonlinear interaction and nonunit overlap of the hom
dyned modes, whose importance cannot be estimated w
out reference to a specific experimental setup. An analysi
these would be out of place here.

FIG. 3. Wigner function along the position axisq after dissipa-
tion characterized by the parameterh5exp(2gDt).
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55 2373QUANTUM INTERFERENCE IN THREE-PHOTON DOWN- . . .
Let us finally consider the impact of pump fluctuations
the interference pattern. We illustrate the discussion w
Fig. 4, depicting the state generated using a noisy pump
modeled by a GaussianP representation

P~b!5
1

pn̄
expS 2

ub2b0u2

n̄
D , ~19!

whereb0 is the average field amplitude andn̄ is the number
of thermal photons. In discussing the effect of noise, we h
to distinguish between phase and amplitude fluctuatio
Phase fluctuations have a quite deleterious effect, as a ch
in the pump phase byq is equivalent to the rotation of th
signal phase space byq/3. Consequently, phase fluctuatio
average the signal Wigner function over a certain ph
range. The fringes are most fragile near the arms due
neighboring bulk of positive probability. The interferenc
pattern in the areas between the arms varies slowly w
phase, which makes it more robust. These properties
clearly visible in Fig. 4. The effect of amplitude fluctuation
is not crucial, as the position of the fringes does not dep
substantially on the pump amplitude.

VI. CONCLUSION

We have demonstrated that degenerate three-ph
down-conversion generates nonclassical states of li
whose Wigner function exhibits nontrivial interference p
tern due to coherent superposition of distinct phase-sp
components. We have developed an analytical descriptio
this pattern, which precisely predicts its form. Let us no
that the rich phase-space picture of higher-order do
conversion contrasts with the two-photon case, where
only signature of quantum coherence is suppression
quadrature dispersion@26#.

Discussion of the impact of dissipation and pump fluctu
tions on the coherence properties of the generated s
shows that the interference pattern can partly be obse
even in the presence of moderate amount of noise. An

FIG. 4. Wigner function representing the signal field state g
erated using a pump with Gaussian noise, characterized by the
rametersb058 andn̄52. The interaction time ist50.025/l.
h
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portant element of the studied scheme is that the signal s
is generated using a strong external pump, which enhan
the usually weak effect ofx (3) nonlinearity. This allows us
the optimism to expect that three-photon down-conversio
perhaps more feasible than schemes based on nonlinear
interaction of the signal field. The analytical method dev
oped in this paper to describe the phase-space interfer
pattern can be applied to other cases, where the quasid
bution is a coherent superposition of well-localized comp
nents, for example, superpositions of two squeezed st
@27# and squeezed coherent states for the SU~1,1! group@28#.
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APPENDIX A: CLASSICAL DYNAMICS
OF THREE-PHOTON DOWN-CONVERSION

The dynamics of multiphoton down-conversion und
classical and quantum equations of motion has been c
pared in detail by Braunstein and McLachlan@15#; see also
Ref. @29#. Here, for completeness, we briefly discuss clas
cal trajectories for three-photon down-conversion in the
proximation of a constant pump. As the change in the pu
phase is equivalent to the rotation of the signal phase sp
we can assume with no loss of generality that the pu
amplitudeb is a real positive number. We will now decom
pose the complex signal field amplitude into its modulusu
and the phaseu. The classical Hamiltonian in this parametr
zation reads

H~u,u!52lbu3sin3u ~A1!

and the resulting equations of motion are

du

dt
53u2cos3u,

du

dt
523u sin3u, ~A2!

where t52lbt is the rescaled time. As the energy of th
system is conserved, trajectories of the system are define
the equationu3cos3u5const. Thus trajectories are of hype
boliclike shape, with asymptotic phases equal to multiples
p/3. The direction of motion can be read out from Eqs.~A2!,
showing that the sign of the derivativedu/dt is negative for
the phases in the intervals (0,p/3), (2p/3,p), and
(4p/3,5p/3), and positive in the remaining areas. The resu
ing picture of dynamics is presented in Fig. 5. It is seen t
the origin of the phase space is a threefold unstable fi
point, with the direction of growthu50, 2p/3, and 4p/3.

APPENDIX B: ROTATING THE WAVE FUNCTION
IN PHASE SPACE

In this appendix we will calculate the rotation of a wav
function defined by a slowly varying positive functio
A(q),

-
a-
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im-
b-

x
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c0~q!5A~q!, ~B1!

around the origin of the phase space. An operator perform
this rotation isÛ(u)5exp(2iuâ†â). Its position representa
tion is given by

^quÛ~u!uq8&5
1

Ap~12e22iu!
expS i2 q21q82

tanu
2 i

qq8

sinu D ,
~B2!

FIG. 5. Classical trajectories of the signal mode in the appro
mation of a constant pump.
s

.

tt

.

.

.

g

where the square root in the complex plane is defined
Areif5Areif/2 for r>0 and2p,f,p. The wave func-
tion rotated by an angleu is thus given by the integral

cu~q!5
1

Ap~12e22iu!
E dq8A~q8!

3expS i2 q21q82

tanu
2 i

qq8

sinu D . ~B3!

The stationary phase point for the exponential factor
q85q/cosu. We will take the value ofA(q8) at this point
and perform the integral. Some care has to be taken in ch
ing the proper branch of the square-root function when s
plifying the final expression. The easiest way to avoid pro
lems is to consider separately four intervals ofu, between
0, p/2, p, 3p/2, and 2p. The final result is

cu~q!5A eiu

cosu
AS q

cosu DexpS 2
iq2

2
tanu D . ~B4!

i-
@1# J. A. Wheeler, Lett. Math. Phys.10, 201 ~1985!; W. P.
Schleich and J. A. Wheeler, Nature~London! 326, 574~1987!;
J. Opt. Soc. Am. B4, 1715~1987!; W. Schleich, D. F. Walls,
and J. A. Wheeler, Phys. Rev. A38, 1177~1988!; J. P. Dowl-
ing, W. P. Schleich, and J. A. Wheeler, Ann. Phys.~Leipzig!
48, 423 ~1991!.

@2# K. Vogel and H. Risken, Phys. Rev. A40, R2847~1989!.
@3# D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phy

Rev. Lett.70, 1244 ~1993!; D. T. Smithey, M. Beck, J. Coo-
per, M. G. Raymer, and A. Faridani, Phys. Scr.T48, 35
~1993!.

@4# G. Breitenbach, T. Mu¨ller, S. F. Pereira, J.-Ph. Poizat, S
Schiller, and J. Mlynek, J. Opt. Soc. Am. B12, 2304~1995!.

@5# T. J. Dunn, I. A. Walmsley, and S. Mukamel, Phys. Rev. Le
74, 884 ~1995!.

@6# D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M
Itano, and D. J. Wineland, Phys. Rev. Lett.77, 4281~1996!.

@7# Ch. Kurtsiefer, T. Pfau, and J. Mlynek, Nature~London! ~to be
published!; U. Janicke and M. Wilkens, J. Mod. Opt.42, 2183
~1995!; M. G. Raymer, M. Beck, and D. F. McAlister, Phys
Rev. Lett.72, 1137~1994!.

@8# D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D
J. Wineland, Phys. Rev. Lett.76, 1796~1996!; C. Monroe, D.
M. Meekhof, B. E. King, and D. J. Wineland, Science272,
1131 ~1996!.

@9# W. Schleich, M. Pernigo, and Fam Le Kien, Phys. Rev. A44,
2172 ~1991!; for a review see V. Buzˇek and P. L. Knight, in
Progress in Optics XXXIV, edited by E. Wolf~North-Holland,
Amsterdam, 1995!.
.

.

@10# M. Bruneet al., Phys. Rev. Lett.77, 4887~1996!.
@11# B. Yurke and D. Stoler, Phys. Rev. Lett.57, 13 ~1986!; G. J.

Milburn and C. A. Holmes,ibid. 56, 2237~1986!; A. Mecozzi
and P. Tombesi,ibid. 58, 1055~1987!.

@12# M. Wolinsky and H. J. Carmichael, Phys. Rev. Lett.60, 1836
~1988!.

@13# S. Song, C. M. Caves, and B. Yurke, Phys. Rev. A41, 5261
~1990!; B. Yurke, W. Schleich, and D. F. Walls,ibid. 42, 1703
~1990!.

@14# T. Ogawa, M. Ueda, and N. Imoto, Phys. Rev. Lett.66, 1046
~1991!.

@15# S. L. Braunstein and R. I. McLachlan, Phys. Rev. A35, 1659
~1987!.

@16# M. Hillery, Phys. Rev. A42, 498 ~1990!.
@17# S. L. Braunstein and C. M. Caves, Phys. Rev. A42, 4115

~1990!.
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