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Direct sampling of the Susskind-Glogower phase distributions

M. Dakna, L. Knöll, and D.-G. Welsch
Friedrich-Schiller-Universita¨t Jena, Theoretisch-Physikalisches Institut, Max-Wien-Platz 1, 07743 Jena, Germany

~Received 17 July 1996; revised manuscript received 30 October 1996!

Coarse-grained phase distributions are introduced that approximate to the Susskind-Glogower cosine and
sine phase distributions to any desired degree of accuracy. The integral relations between the phase distribu-
tions and the phase-parametrized field-strength distributions observable in balanced homodyning are derived
and the integral kernels are analyzed. It is shown that the phase distributions can be directly sampled from the
field-strength distributions which offers the possibility of measuring the Susskind-Glogower cosine and sine
phase distributions with sufficiently high precision. Numerical simulations are performed to demonstrate the
applicability of the method.@S1050-2947~97!08402-3#

PACS number~s!: 42.50.Dv, 03.65.Bz
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I. INTRODUCTION

Although the problem of defining and measurin
quantum-mechanical phases of radiation-field modes
been discussed for a long time, there has been no un
approach to the phase problem so far@1#. The reason is tha
there is no ‘‘good’’ ~i.e., self-adjoint! phase operator in the
Hilbert space. The difficulties obviously arise from th
boundedness of the eigenvalue spectrum of the pho
number operator, which is the canonical conjugate of
phase operator.

One way to overcome the difficulties was proposed
Susskind and Glogower@2# who used the non-Hermitian ex
ponential phase operator and its adjoint in order to de
two Hermitian operators. From the analogy between th
and classical trigonometric functions the two operators
also referred to as cosine and sine phase operators. In
ticular in the classical limit they exactly correspond to t
cosine and the sine of the phase. Since the cosine and
phase operators are self-adjoint, their eigenstates can be
to define proper probability distributions for observing t
cosine and sine phases. However, these distributions ca
be measured, in general, simultaneously and therefore do
uniquely characterize the phase of the quantum state
mode. This is obviously the price to pay for introducing se
adjoint operators and keeping the concept of quantu
mechanical probabilities.

In the classical limit the difference between the cos
and sine phase distributions vanishes. In particular, in c
sical optics the phase difference between two radiation-fi
modes can always be determined by simultaneously mea
ing the cosine and sine of the phase difference in interfere
experiments. Inspired by such kinds of measurements, op
tional approaches to the cosine and sine phase operators
also been introduced@3#. As expected, for classical fields th
corresponding phase distributions agree with the quant
mechanical Susskind-Glogower~SG! phase distributions, bu
for quantum fields they may be quite different from ea
other.

A powerful interferometric method for determinin
phase-sensitive properties of optical fields has been bala
homodyne detection. It is well known that from the da
recorded in a succession of measurements the quantum
551050-2947/97/55~3!/2360~8!/$10.00
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of a signal mode can be obtained, as was first demonstr
experimentally by Smithey, Beck, Faridani, and Raymer
ing optical homodyne tomography@4#. In the experiments
reported in Refs.@4# and@5# the Wigner function of a single-
mode squeezed vacuum is reconstructed from the meas
quadrature-component histograms by convolving them w
an appropriately chosen filter function~filtered backprojec-
tion! and performing the inverse Radon transform. To av
smoothing the measured data and to improve the tomo
phic method, direct sampling of the density matrix has be
suggested@6#, and it has been demonstrated experimenta
that the single-mode density matrix in the Fock basis c
directly be sampled from the measured data@7#. Other ad-
vantages of the direct sampling method over inverse Ra
methods are that the quantum state reconstruction and
estimation are very fast and can be performed inreal time, so
that it is no longer necessary to store large amounts of d
In particular, systematic errors can easily be reduced to
desired level of accuracy and the remaining statistical er
only reflect the finite number of measurement events. App
ing direct sampling, the photon statistics of optical puls
have been time resolved with subpicosecond sampling ti
two orders of magnitude better than possible with conv
tional methods@8#. Further, proposals have been made
extend the direct sampling method to two-mode quant
state reconstruction and the determination of internal qu
tum correlations of optical fields@9,10#. Recently, experi-
ments have been performed to demonstrate the novel p
bilities and determine the two-time photon-numb
correlations of an optical field on ultrafast time scales@10#.

In this paper we show that the direct sampling method
also advantageously be used for measuring the single-m
quantum phase statistics, such as the SG quantum phas
tributions, which enables one to avoid the detour via
Wigner function in Ref.@11#. In this way, the mentioned
drawbacks of the Wigner-function reconstruction can be
cumvented and a more direct approach to phase meas
ment is possible@12#. In principle, one could also try to
calculate the phase distributions from the sampled den
matrix in the Fock basis. Since phase and photon number
be regarded, in a sense, as complementary variables, the
sity matrix must be measured with very high precision
obtain the phase statistics sufficiently well. Since with
2360 © 1997 The American Physical Society
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55 2361DIRECT SAMPLING OF THE SUSSKIND-GLOGOWER . . .
creasing photon number the sampling functions for
density-matrix elements are highly oscillating functions, t
statistical errors drastically increase, and hence the num
of measurements must substantially be increased in ord
compensate for the errors. As we will see, this difficulty do
not appear when the phase distributions are directly sam
from the quadrature component distributions.

Here the difficulty is that the SG cosine and sine ph
states~similar to the quadrature component states! are con-
tinuous quantum states normalized tod functions and the
sampling functions needed cannot be given explicitly,
they can only be defined by some limiting process. Since
practice the precision~resolution! with which a continuous
quantity can be measured is always finite, we can appro
the problem of direct sampling of the SG phase distributio
introducing parametrized cosine and sine phase distribut
that are defined on the basis of appropriately coarse-gra
SG cosine and sine phase states, which tend to the e
states when the coarse-graining parameter approaches
It therefore follows that the exact SG phase distributions
always be approximated to any desired degree of accu
by choosing the coarse-graining parameter to be suita
small. Since for any~nonzero! value of the coarse-grainin
parameter the well-behaved sampling functions can exp
itly be calculated, the SG phase distributions can directly
sampled from the recorded data, the systematic error b
determined by the coarse-graining parameter. It is worth n
ing that the sampling procedure can simultaneously be
formed for different coarse-graining parameters, so that
systematic errors in the reconstruction of the phase distr
tions can easily be controlled. In practice the number of m
surements is always finite and therefore statistical errors
introduced, which can also be estimated using the samp
method@13#. Hence, a suitable coarse-graining paramete
found when~for chosen number of measurement events! the
systematic errors are reduced below the statistical ones.
ther decrease of the coarse-graining parameter obvio
makes no sense, because now the errors are fully determ
by the finite sample size.

This paper is organized as follows. In Sec. II coar
grained cosine and sine phase distributions are introdu
Section III is devoted to the relations of the phase distri
tions to the field-strength distributions and the calculation
the cosine and sine phase sampling functions. In Sec
results of computer simulations of measurements of the
cosine and sine phase distributions for a squeezed vac
state are presented, and error estimations are given. Fina
summary and some concluding remarks are given in Sec

II. COARSE-GRAINED COSINE
AND SINE PHASE DISTRIBUTIONS

Using the exponential phase operator

Ê5 (
n50

`

un&^n11u ~1!

(n̂ un& 5 n un&, n̂ 5 â†â, @ â,â†# 5 1), Susskind and Gl-
ogower@2# introduced the Hermitian cosine and sine ope
tors
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Ĉ5 1
2 ~Ê1Ê†! ~2!

and

Ŝ52 1
2 i ~Ê2Ê†!, ~3!

respectively, which satisfy the eigenvalue equations

Ĉucosf&5cosfucosf& ~4!

~0<f<p! and

Ŝusinf&5sinfusinf& ~5!

~2p/2<f<p/2!. The SG cosine and sine phase sta
ucosf& and usinf&, respectively, form orthonormal and com
plete sets in the Hilbert space, that is to say,

^cosfucosf8&5d~f2f8!, ~6!

E
0

p

dfucosf&^cosfu5 Î , ~7!

and

^sinfusinf8&5d~f2f8!, ~8!

E
2p/2

p/2

dfusinf&^sinfu5 Î . ~9!

In order to give a unified approach to the states, let us c
sider thec-parametrized Hermitian operator

Ĉ~c!5 1
2 ~Êe2 ic1Ê†eic!. ~10!

Recalling Eq.~1!, Ĉ(c) is easily proved to satisfy the eigen
value equation

Ĉ~c!uF,c&5cosFuF,c&, ~11!

where

uF,c&5A2

p(
n

eincsin@~n11!F#un&. ~12!

Note thatu2F,c&52uF,c& and uF1p,c&52uF,c1p&.
For chosenc the statesuF,c&, 0<F<p, form an orthonor-
mal complete basis. The SG cosine and sine phase stat
Eqs. ~4! and ~5!, respectively, can be obtained by approp
ately specifying the statesuF,c&,

ucosf&5uF5f,c50&, ~13!

usinf&5uF5 1
2p2f,c5 1

2p&. ~14!

With regard to measurements, we now introduce coa
grained states as

uF,c,e&5
1

Ae
E

F2e/2

F1e/2

dF8uF8,c&. ~15!

Using Eq.~12!, the statesuF,c,e& can be given by
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uF,c,e&5A2e

p (
n

eincsin@~n11!F#sinc@~n11!e/2#un&

~16!

(sincx 5 sinx/x). They are normalized to unity,

^F,c,euF,c,e&51, ~17!

and tend to the exact statesuF,c& ase approaches zero,

lim
e→0

1

Ae
uF,c,e&5uF,c&. ~18!

The coarse-grained cosine and sine phase states, re
tively, are obtained asucosf,e&5uF5f,c50,e& and
usinf,e&5uF5 1

2p2f,c5 1
2p, e& @cf. Eqs. ~13!, ~14!, and

~15!#. According to Eq.~18!, they approach the exact S
cosine and sine phase states in the limit whene → 0.

The statesuF,c,e& can be used to define parametriz
phase distributions of a radiation-field mode via their ov
laps with the quantum state%̂ of the mode

p~F,c,e!5
1

N~c,e!
p̃~F,c,e! ~19!

where

p̃~F,c,e!5^F,c,eu%̂uF,c,e&, ~20!

N~c,e!5E
0

p

dF p̃~F,c,e!. ~21!

Note thatp(F,c,e)→p(F,c)[^F,cu%̂uF,c& when e →
0. In particular, the coarse-grained cosine and sine ph
state distributionspc(f,e) andps(f,e) are given by

pc~f,e!5p~F5f,c50,e!, ~22!

ps~f,e!5p~F5 1
2p2f,c5 1

2p,e! ~23!

@pc(f)[^cosfu%̂ucosf&5lime→0pc(f,e), ps(f)
[^fu%usinf&5 lime→0ps(f,e)]. The smaller the value o
e becomes the better the coarse-grained distributions
proximate to the exact ones. In Figs. 1 and 2 plots
pc(f,e) andps(f,e) for various values ofe are shown for a
mode prepared in a coherent state. We see that with an
creasing value of the mean number of photons the valu
e must be decreased in order to obtain the coarse-gra
distributions comparably close to the exact ones. This is
course, a reflection of the fact that with a decreasing valu
e the value of the~effective! cutoff photon number in the
expansion~16! is increased.

III. RELATIONS TO THE PHASE-PARAMETRIZED
FIELD-STRENGTH DISTRIBUTIONS

When we lete 5 0, then Eq.~16! reduces, after multipli-
cation bye21/2, to the expansion in the photon-number ba
of the exact statesuF,c&. All the photon-number states ar
seen to contribute to the exact states with compara
weight, which prevents one from explicitly calculating th
ec-

-

e-

p-
f

in-
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f
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s
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sampling functions for the exact SG phase distributions. T
advantage of the coarse-grained distributions is that the sa
pling functions can be calculated in a straightforward wa
They are well behaved, so that the phase distributions can
directly sampled from the recorded data. Since for suffi
ciently small values of the coarse-graining parameter the s
tematic errors that arise from it can be reduced below a
desired level, the method enables one to measure the ex
distributions with accuracies that are only determined by th
statistical errors due to the finite number of sampling point

The difference-photocurrent statistics recorded in ba
anced homodyning represents the statistics of a scaled fi
strength~quadrature component! of the signal mode,

F̂~w!5uFu~ âe2 iw1â†eiw!, ~24!

FIG. 1. The coarse-grained cosine phase state distributions o
mode prepared in a coherent stateua& with ^n̂&51 (a51) ~a! and
^n̂&52 (a5A2) ~b! are shown fore50.4 ~dashed lines! and
e50.8 ~dotted lines!. For comparison, the exact distributions tha
are observed in the limite→0 are also shown~solid lines!.
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55 2363DIRECT SAMPLING OF THE SUSSKIND-GLOGOWER . . .
where the phasew is determined by the chosen phase para
eters of the apparatus~see, e.g.,@14#!. The desired sampling
functions can therefore be obtained from the integral re
tions between the coarse-grained phase distributi
p(F,c,e) and the phase-parametrized field-strength dis
butions of the signal field,

p~F,w!5^F,wu%̂uF,w&, ~25!

uF,w& being the eigenvectors ofF̂(w) ~for details, see
@14,15#!. For this purpose the density operator%̂ is expanded
as @16,17,6#

%̂5E
0

p

dwE
2`

`

dF p~F,w;s!K̂~F,w;2s!, ~26!

FIG. 2. The coarse-grained sine phase state distributions o
mode prepared in a coherent stateua& with ^n̂&51 (a51) ~a! and
^n̂&52 (a5A2) ~b! are shown fore50.4 ~dashed lines! ande50.8
~dotted lines!. For comparison, the exact distributions that are o
served in the limite→0 are also shown~solid lines!.
-

-
s
i-

where the smeared field-strength distributionsp(F,w;s), s
512h21, have been introduced, which are measured in n
perfect detection, i.e., when the detection efficiencyh is less
than unity ~see, e.g.,@14#!. The operator integral kerne
K̂(F,w;2s) in Eq. ~26! is given by

K̂~F,w;2s!5
uFu2

p E
2`

`

dyuyu

3exp$ iy@ F̂~w!2F#2 1
2sy

2uFu2%. ~27!

Using Eq. ~26!, from Eq. ~20! we easily find that
p̃(F,c,e) can be related top(F,w;s) as

p̃~F,c,e!5E
0

p

dwE
2`

`

dF p~F,w;s!Ke~F,c,F,w;s!,

~28!

where

Ke~F,c,F,w;s!5^F,c,euK̂~F,w;2s!uF,c,e&. ~29!

Equation~28! can be regarded as the basic equation
direct sampling of the phase distributionsp(F,c,e) from the
difference-photocurrent statistics in balanced homodyni
where the integral kernel play the role of the sampling fun
tion. In order to calculate it, we substitute in Eq.~29! for
uF,c,e& the expansion Eq.~16! and derive

Ke~F,c,F,w;s!5
2e

p (
n50

`

(
m50

`

$ f nm~x;s!exp@ i ~n2m!

3~w2c!#sin@~n11!F#

3sin@~m11!F#sinc@~n11!e/2#

3sinc@~m11!e/2#%, ~30!

where the functionf nm(x;s), x 5 F/(A2uFu), is closely re-
lated to the sampling function

^nuK̂~F,w;2s!um&5 f nm~x;s!exp@ i ~n2m!w# ~31!

for measuring the signal-mode density matrix in the phot
number basis@6#. From inspection of Eqs.~27! and ~30! we
see that the symmetry relations

Ke~F,c,F,w1p;s!5Ke~F,c,2F,w;s!, ~32!

Ke~F,c,F,w1p;s!5Ke~F2p,c,F,w;s!, ~33!

Ke~2F,c,F,w;s!5Ke~F,c,F,w;s!, ~34!

Ke~F,2c,F,2w;s!5Ke~F,c,F,w;s!, ~35!

Ke~F,c,F,w;s!5Ke~F,0,F,w2c;s! ~36!

are valid. Hence knowing the function

Ke~F,F,w;s![Ke~F,c50,F,w;s!, ~37!

with F,wP(p/2) intervals, the functionKe(F,c,F,w;s) is
known for all values ofF, c, andw. In particular, the func-
tionsKe

c(f,F,w;s) andKe
s(f,F,w;s), respectively, that are

a

-
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required in order to relate the cosine and sine phase s
distributionspc(f,e) andps(f,e) to the field-strength dis-
tributions are given by

Ke
c~f,F,w;s!5Ke~F5f,F,w;s!, ~38!

Ke
s~f,F,w;s!5Ke~F5f2 1

2p,F,w2 1
2p;s!. ~39!

The functionf nm(x;s) in the series expansion~30! of the
sampling functionKe(F,F,w;s), Eq. ~37!, has been studied
in a number of papers and different algorithms for numeri
calculations have been discussed~see@13,18# and references
therein!. For the sake of transparency let us restrict our
tention to perfect detection~h51 and hence s51
2h 2150!. In this case,f nm(x) [ f nm(x,s50) can be writ-
ten as

f nm~x!5
d

dx
@cn~x!fm~x!# if m>n ~40!

FIG. 3. The dependence onF andw of the sampling function
Ke(F,F,w;s) is shown forF5

1
8p, the values ofs ande beings50

~perfect detection! ande50.4.

FIG. 4. The dependence onF andw of the sampling function
Ke(F,F,w;s) is shown forF5

1
4p, the values ofs and e being

s50 ~perfect detection! ande50.4.
tes

l

t-

@ f nm(x)5f mn(x) if m,n#, wherecn(x) andfm(x), respec-
tively, are the regular~normalizable! and irregular~unnor-
malizable! solutions of the energy eigenvalue equation of t
harmonic oscillator for thenth eigenvalue@18,13#. The as-
ymptotic behavior off nm(x) for large values ofn andm can
be found using the semiclassical~WKB! approximation. For
the argumentx within the classical allowed regionuxu ,an
[(2n11)1/2 the functionf nm(x) (m>n) becomes@13#

f nm~x!;
2

p
~pnpm!21/2@pmcos~Sn1

1
4p!cos~Sm1 1

4p!

2pnsin~Sn1
1
4p!sin~Sm1 1

4p!#, ~41!

where

pn~x!5~2n112x2!1/2 ~42!

denotes the classical momentum and

Sn~x!5E
an

x

dx8pn~x8! ~43!

is the time-independent part of the classical action.

FIG. 5. The dependence onF andw of the sampling function
Ke(F,F,w;s) is shown forF5

3
8p, the values ofs and e being

s50 ~perfect detection! ande50.4.

FIG. 6. The dependence onF andw of the sampling function
Ke(F,F,w;s) is shown forF5

1
2p, the values ofs and e being

s50 ~perfect detection! ande50.4.
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55 2365DIRECT SAMPLING OF THE SUSSKIND-GLOGOWER . . .
For proving the convergence of the series exp
sion of Ke(F,F,w;s50), it is sufficient to substitute in
Eq. ~30! for f nm(x;s50) the semiclassical expres
ion ~41!. For x/an→ 0 the functionspn(x) and Sn(x) in
Eq. ~41! behave liken1/2 and 2(n1 1

2!p/2, respectively,
so that @pm(x)/pn(x)#

1/2;(m/n)1/4 and cos@Sn(x)1p/4]
;cos(np/2), sin@Sn(x)1p/4# ;2sin(np/2). Hence for any
e.0 the series expansion is expected to exist, because o
factor (nm)21 that arises from the sinc functions. Results of
numerical calculations ofKe(F,F,w;s50) are shown in
Figs. 3–6. It should be noted thatKe(F,F,w;s) separately
depends on the two phasesF andw, whereas the sampling
function for the London phase state distribution only d
pends on the difference phase@12#.

IV. DIRECT SAMPLING OF THE SG PHASE
DISTRIBUTIONS

In order to demonstrate the feasibility of direct sampli
of the SG cosine and sine phase state distributions from
recorded difference-photocurrent statistics in balanced
modyning, we have performed computer simulations of m
surements of the phase-parametrized field-strength distr
tions p(F,w) on an equidistant grid of points$Fi ,w j% ~for
simplicity, the discrete intervalsDw andDF in the experi-
ment are considered as differentials!. We have assumed tha
in the experiments the signal mode to be detected is prep
in a squeezed vacuum state

uC&5exp$2 1
2 @j~ â†!22j* â2#%u0&. ~44!

Before presenting results, let us address the problem
errors. For estimating the statistical errors that are unav
ably connected with the finite sample size in any realis
experiment, we follow the arguments given in@13# and as-
sume that homodyne detection is a Poissonian process
statistically independentF values at phasesw. The experi-
mentally measured distributionspest(F,w;s) are estimates o
the exact distributions p(F,w;s), and the use of
pest(F,w;s) in the sampling formula~28! then yields esti-
mates p̃est(F,c,e) of p̃(F,c,e). Thus the variance
s p̃est

2 (F,c,e) may be estimated as

s p̃est

2 ~F,c,e!'E
0

p dw

N~w!
E

2`

`

dF pest~F,w;s!

3Ke
2~F,c,F,w;s!, ~45!

whereN(w) is the number of samples per phase interva
phasew. Equation ~45! reveals that the estimation of th
statistical errors can also be performed inreal time. Using
Eq. ~45!, the variance of the normalization factorNest @ob-
tained according to Eq.~21!, with p̃est(F,c,e) in place of
p̃(F,c,e)# may then be estimated as

sNest
2 ~c,e!'E

0

p dw

N~w!
E

2`

`

dF pest~F,w;s!K̄e
2~F;s!,

~46!

where
-

the

-

he
o-
-
u-

ed

of
d-
c

for

t

K̄e~F;s!5E
0

p

dFKe~F,c,F,w;s!

52e (
n50

`

f nn~x;s!sinc2@~n11!e/2# ~47!

@cf. Eq. ~30!#. Note thatKe(F,c,F,w;s) andK̄e(F;s) differ
in the contributions of the off-diagonal elemen

^nuK̂(F,w;2s)um&, nÞm. The variance of the estimate
phase distributionpest(F,c,e)5p̃est(F,c,e)/Nest(c,e) can
eventually be estimated as~see, e.g.,@19#!

spest
2 ~F,c,e!'pest

2 ~F,c,e!Fs p̃est

2 ~F,c,e!

p̃est
2 ~F,c,e!

1
sNest
2 ~c,e!

Nest
2 ~c,e!

22
k p̃estNest~F,c,e!

p̃est~F,c,e!Nest~c,e!
G , ~48!

where

k p̃estNest~F,c,e!'E
0

pF dw

N~w!

3E
2`

`

dFpest~F,w;s!

3Ke~F,c,F,w;s!K̄e~F;s!G ~49!

is the correlation between the unnormalized distribution a
the normalization factor.

To give a quantitative measure of the systematic err
arising from the nonvanishing coarse-graining parameter
us consider the factor

Q~c,e!5e21N~c,e!, ~50!

which has the property that@cf. Eqs.~17!, ~20!, and~21!#

lim
e→0
Q~c,e!5 lim

e→0
(
n50

`

sinc2@~n11!e/2#^nu%̂un&51

~51!

for any physical quantum state%̂. The measured estimate
Qest(c,e) andsQest

2 (c,e)5e22sNest
2 (c,e) can then be used

to obtain a criterion of choosing a suitable value of t
coarse-graining parametere. Different values ofe give rise
to different sampling functionsKe(F,c,F,w;s). Starting
with a ~small! value ofe, the measured data can be samp
simultaneously for different, decreasing values ofe. In this
way the systematic errors can be reduced such
Qest(c,e);1 within the root-mean-square deviatio
s
Qest
(c,e). The errors are then given by the statistical on

and further decrease ofe does not improve the accuracy o
the sampled distributions. Clearly, when the number of sa
pling points is increased, so that the statistical errors
decreased, thene must also be decreased in order to ens
that the systematic errors are below the statistical ones.
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In our computer experiments we have assumed that m
surements at 30 phases are performed and 103 events at each
phase are recorded~cf. Ref. @4#!. From the results shown in
Fig. 7 we see that the measured SG phase distributions ar
good agreement with the theoretical predictions. The er
bars indicate the standard deviations obtained accord
to Eq. ~48!. The value of e has been determined from
the measured data as outlined above. The systematic er
have been found to reduce below the statistical ones wh
e<1021. From Eqs.~12! @together with Eqs.~13! and ~14!#
and ~44! we easily see that the cosine and sine phase dis
butions of the ordinary vacuum (j50) are given by
u^0ucosf&u25(2/p)sin2f and u^0usinf&u25(2p)21cos2f, re-
spectively. In this case the cosine phase state distribution

FIG. 7. The sampled Susskind-Glogower cosine~a! and sine~b!
phase state distributions~points with error bars! of a signal mode
prepared in a squeezed vacuum state, Eq.~44!, with mean photon
number^n̂&51 (j50.88) are shown and compared with the calcu
lated distributions~full lines!, the values ofs and e being s50
~perfect detection! and e50.1. In the computer simulation of the
measurements 30 phases have been considered and 103 events have
been assumed to be recorded at each phase. The error bars ind
the root-mean-square deviations according to Eq.~48!.
a-

in
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ors
en
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as

a broad maximum atf5p/2, whereas the sine phase sta
distribution has a broad maximum atf50. When the value
of j is increased (j.0), the ‘‘vacuum noise circle’’ centered
at the origin of coordinates in the~complex! a phase space is
squeezed to an ellipse with the small semiaxis parallel to
real axis @20#. Hence, the cosine phase distribution is e
pected to become more sharply peaked atf5p/2. Accord-
ingly, the sine phase state distribution is expected to sho
double-peak structure, with the maxima close tof5 6p/2
and the minimum atf50.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied the problem of measur
the SG cosine and sine phase state distributions in bala
homodyne detection. For this purpose we have introdu
coarse grained cosine and sine phase distributions such
they always approximate to the exact SG cosine and
phase distributions to any desired degree of accuracy, if
coarse-graining parameter is suitably small.

We have shown that the coarse-grained phase distr
tions can be directly sampled from the recorded differen
photocurrent statistics. The direct sampling method ha
number of advantages over indirect methods, such as re
struction of the Wigner function from smoothed experime
tal data and calculation of the phase statistics from the
constructed Wigner function. In particular, the sampli
method is fast and the phase distributions can be obtaine
real time, without storage of large amounts of data. Furth
the sampling method also enables one to estimate the s
tical errors introduced by the finite sample size.

For chosen sample size the systematic errors resu
from coarse-graining can be reduced below the statistica
rors, provided that the coarse-graining parameter is suita
small. In this way, the SG phase distributions can always
measured with an accuracy determined by the statistica
rors. The coarse-graining parameter can be obtained e
from somea priori information about the state or from th
sampling method. Performing the sampling procedure
different, decreasing coarse-graining parameters simu
neously, a suitable coarse-graining parameter is found w
further decrease of the parameter does not change the e

It is worth noting that the SG cosine and sine phase s
distributions can be regarded as special cases
c-parametrized phase state distributions. The latter are b
on c-parametrized phase states that forc50 and c51

2p
reduce to the cosine and sine phase states, respectively
cordingly, the sampling functions for the cosine and s
phase state distributions can be obtained by specifying
sampling function for thec-parametrized phase distribu
tions. Their integral relation to the field-strength distributio
reveals that the sampling function exhibits a number of sy
metry properties that can be used advantageously in calc
tions.

We have calculated the sampling function using an exp
sion in terms of the matrix elements of the correspond
operator integral kernel in the Fock basis. These matrix e
ments, which are the sampling functions required for m
suring the signal-mode density matrix in the Fock basis,
be calculated applying the algorithm developed in@13#. In
this way, the sampling function can be obtained for a

-

cate
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~nonzero! coarse-graining parameter.
In order to give an example, we have performed compu

simulations of measurements of the SG cosine and
phase state distributions for a realistic grid of sampl
points and estimated the errors. Assuming that the sig
mode is prepared in a squeezed vacuum state, the mea
phase distributions have been found to reproduce the e
ones with sufficiently high precision. The definite value
the coarse-graining parameter has been found reconstru
the phase distributions for different probe values.

It is worth noting that the different shaping of the cosi
and sine phase distributions demonstrates the quantum
s
,

.

s.
.

. A

G.
r
e

al
red
ct
f
ing

ar-

acter of the state of the signal mode. They reflect the fact
for quantum states the~noncommuting! cosine and sine
quantities cannot be related to a common phase. This e
is of course not observed in the London phase distribut
that is related to a non-Hermitian operator.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs
meinschaft. We would like to thank T. Opatrny´ and U. Le-
onhardt for discussions.
ud-

.

th
ice,

h.

s

e

@1# R. Lynch, Phys. Rep.256, 367 ~1995!.
@2# L. Susskind and J. Glogower, Physics1, 49 ~1964!; P. Carru-

thers and M.M. Nieto, Phys. Rev. Lett.14, 387 ~1965!; Rev.
Mod. Phys.40, 411 ~1968!.

@3# J.W. Noh, A. Fouge`res, and L. Mandel, Phys. Rev. Lett.67,
1426 ~1991!; 71, 2579 ~1993!; Phys. Rev. A45, 424 ~1992!;
46, 2840~1992!; 47, 4535~1993!; 47, 4541~1993!.

@4# D.T. Smithey, M. Beck, A. Faridani, and M.G. Raymer, Phy
Rev. Lett.70, 1244~1993!; D.T. Smithey, M. Beck, J. Cooper
M.G. Raymer, and A. Faridani, Phys. Scr.T48, 35 ~1993!.

@5# G. Breitenbach, T. Mu¨ller, S.F. Pereira, J.-Ph. Poizat, S
Schiller, and J. Mlynek, J. Opt. Soc. Am. B12, 2304~1995!.

@6# G.M. D’Ariano, C. Macchiavello, and M.G.A. Paris, Phy
Rev. A50, 4298~1994!; G.M. D’Ariano, Quantum Semiclass
Opt. 7, 693 ~1995!; G.M. D’Ariano, U. Leonhardt, and H.
Paul, Phys. Rev. A52, R1801~1995!; U. Leonhardt, H. Paul,
and G.M. D’Ariano,ibid. 52, R1801~1995!; H. Kühn, D.-G.
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