PHYSICAL REVIEW A VOLUME 55, NUMBER 3 MARCH 1997
Direct sampling of the Susskind-Glogower phase distributions
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Coarse-grained phase distributions are introduced that approximate to the Susskind-Glogower cosine and
sine phase distributions to any desired degree of accuracy. The integral relations between the phase distribu-
tions and the phase-parametrized field-strength distributions observable in balanced homodyning are derived
and the integral kernels are analyzed. It is shown that the phase distributions can be directly sampled from the
field-strength distributions which offers the possibility of measuring the Susskind-Glogower cosine and sine
phase distributions with sufficiently high precision. Numerical simulations are performed to demonstrate the
applicability of the method.S1050-294{@7)08402-3

PACS numbd(s): 42.50.Dv, 03.65.Bz

[. INTRODUCTION of a signal mode can be obtained, as was first demonstrated
experimentally by Smithey, Beck, Faridani, and Raymer us-

Although the problem of defining and measuringing optical homodyne tomography]. In the experiments
guantum-mechanical phases of radiation-field modes ha®ported in Refd4] and[5] the Wigner function of a single-
been discussed for a long time, there has been no unifiethode squeezed vacuum is reconstructed from the measured
approach to the phase problem so[fAl. The reason is that quadrature-component histograms by convolving them with
there is no “good” (i.e., self-adjoint phase operator in the an appropriately chosen filter functidfiltered backprojec-
Hilbert space. The difficulties obviously arise from the tion) and performing the inverse Radon transform. To avoid
boundedness of the eigenvalue spectrum of the photorsmoothing the measured data and to improve the tomogra-
number operator, which is the canonical conjugate of thghic method, direct sampling of the density matrix has been
phase operator. suggested6], and it has been demonstrated experimentally

One way to overcome the difficulties was proposed bythat the single-mode density matrix in the Fock basis can
Susskind and Glogowé2] who used the non-Hermitian ex- directly be sampled from the measured dgta Other ad-
ponential phase operator and its adjoint in order to defin@antages of the direct sampling method over inverse Radon
two Hermitian operators. From the analogy between thenmethods are that the quantum state reconstruction and error
and classical trigonometric functions the two operators arestimation are very fast and can be performerkad timeg so
also referred to as cosine and sine phase operators. In pdhat it is no longer necessary to store large amounts of data.
ticular in the classical limit they exactly correspond to theln particular, systematic errors can easily be reduced to any
cosine and the sine of the phase. Since the cosine and sidesired level of accuracy and the remaining statistical errors
phase operators are self-adjoint, their eigenstates can be useuly reflect the finite number of measurement events. Apply-
to define proper probability distributions for observing theing direct sampling, the photon statistics of optical pulses
cosine and sine phases. However, these distributions cannleave been time resolved with subpicosecond sampling time,
be measured, in general, simultaneously and therefore do ntwo orders of magnitude better than possible with conven-
uniquely characterize the phase of the quantum state of #onal methodg8]. Further, proposals have been made to
mode. This is obviously the price to pay for introducing self-extend the direct sampling method to two-mode quantum
adjoint operators and keeping the concept of quantumstate reconstruction and the determination of internal quan-
mechanical probabilities. tum correlations of optical field§9,10]. Recently, experi-

In the classical limit the difference between the cosinements have been performed to demonstrate the novel possi-
and sine phase distributions vanishes. In particular, in clasdilities and determine the two-time photon-number
sical optics the phase difference between two radiation-fieldorrelations of an optical field on ultrafast time scdl&@].
modes can always be determined by simultaneously measur- In this paper we show that the direct sampling method can
ing the cosine and sine of the phase difference in interferencalso advantageously be used for measuring the single-mode
experiments. Inspired by such kinds of measurements, operguantum phase statistics, such as the SG quantum phase dis-
tional approaches to the cosine and sine phase operators haviéutions, which enables one to avoid the detour via the
also been introduce]. As expected, for classical fields the Wigner function in Ref.[11]. In this way, the mentioned
corresponding phase distributions agree with the quantundrawbacks of the Wigner-function reconstruction can be cir-
mechanical Susskind-GlogowéG) phase distributions, but cumvented and a more direct approach to phase measure-
for quantum fields they may be quite different from eachment is possiblg12]. In principle, one could also try to
other. calculate the phase distributions from the sampled density

A powerful interferometric method for determining matrix in the Fock basis. Since phase and photon number can
phase-sensitive properties of optical fields has been balancé® regarded, in a sense, as complementary variables, the den-
homodyne detection. It is well known that from the datasity matrix must be measured with very high precision to
recorded in a succession of measurements the quantum statietain the phase statistics sufficiently well. Since with in-
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creasing photon number the sampling functions for the C=

density-matrix elements are highly oscillating functions, the

statistical errors drastically increase, and hence the numbeid

of measurements must substantially be increased in order to

compensate for the errors. As we will see, this difficulty does S=-1Li(E-EM), ©)

not appear when the phase distributions are directly sampled

from the quadrature component distributions. respectively, which satisfy the eigenvalue equations
Here the difficulty is that the SG cosine and sine phase R

states(similar to the quadrature component statae con- C|cosp)=cosp|cosp) (4)

tinuous quantum states normalized dofunctions and the

sampling functions needed cannot be given explicitly, buf0<¢=m) and

they can only be defined by some limiting process. Since in a _ _

practice the precisioffresolution with which a continuous Slsing) = sing|sing) )

guantity can be measured is always finite, we can approa}v

(E+E" 2)

N

the problem of direct sampling of the SG phase distribution —7T/2s¢s77/2)_ The SG. cosine and sine phase states
introducing parametrized cosine and sine phase distributio 0sp) and_|sm¢>, respectlvely, form prthonormal and com-
that are defined on the basis of appropriately coarse-grain ete sets in the Hilbert space, that is to say,
SG cosine and sine phase states, which tend to the exact " — o
states when the coarse-graining parameter approaches zero. (cosplcosp’) = ¢= "), ©
It therefore follows that the exact SG phase distributions can o .
always be approximated to any desired degree of accuracy f d¢|cosp){cosp| =1, (7)
by choosing the coarse-graining parameter to be suitably 0
small. Since for anynonzerg value of the coarse-graining
. . . and
parameter the well-behaved sampling functions can explic-

itly be calculated, the SG phase distributions can directly be (sing|sing’)=8(p— '), &)
sampled from the recorded data, the systematic error being

determined by the coarse-graining parameter. It is worth not- w2 R

ing that the sampling procedure can simultaneously be per- f /2d¢|sin¢>(sind>|=l. (9)

formed for different coarse-graining parameters, so that the
systematic errors in the reconstruction of the phase distribul—n order to give a unified approach to the states, let us con-
tions can easny be cor_ltr_olled. In practice the nu_mber of meag;jar they-parametrized Hermitian operator
surements is always finite and therefore statistical errors are
introduced, which can also be estimated using the sampling ~ Ll P aigy Bt
method[13]. Hence, a suitable coarse-graining parameter is C)=3(Ee™""+E'e"). (10
found wh'en(for chosen number of measuremer_lt evettie Recalling Eq.(1), é(l/l) is easily proved to satisfy the eigen-
systematic errors are reduced below the statistical ones. FL\;—aIu e equation
ther decrease of the coarse-graining parameter obviously
makes no sense, because now the errors are fully determined A _
by the finite sample size. C(y)|®,¢)=cosb|D,4), 11
This paper is organized as follows. In Sec. Il coarseyhere
grained cosine and sine phase distributions are introduced.
Section 1l is devoted to the relations of the phase distribu- 2 _
tions to the field-strength distributions and the calculation of |®, )= \/;E e"’sir{ (n+1)®]|n). (12)
the cosine and sine phase sampling functions. In Sec. IV "
results of computer simulations of measurements of the Sg;e that|— @, y)=—|®, ) and |+, ) =—|®, Y+ ).
cosine and sine phase distributions for a squeezed vacuupy, choseny the states®, ¢), 0<d<1, form an orthonor-
state are presented, and error estimations are given. Finally, | complete basis. The SG cosine and sine phase states in
summary and some concluding remarks are given in Sec. VEqs.(4) and (5), respectively, can be obtained by appropri-
ately specifying the statd, i),
Il. COARSE-GRAINED COSINE

AND SINE PHASE DISTRIBUTIONS |cosp)=[®=¢,4=0), (13

Using the exponential phase operator [sing)=|®=37—,h=37). (14
o With regard to measurements, we now introduce coarse-

E=> |n}n+1] (1)  9grained states as
n=0
1 (O+e2
- - PP D, y, =—f do’'|®’, ). 15
(n|n) = n|n),n = a'a, [a,a’] = 1), Susskind and GI- [©.4:€) Jelo—e @74 19

ogower[2] introduced the Hermitian cosine and sine opera-
tors Using Eq.(12), the states®,,€) can be given by
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|®, €)= \/Z;Z e"sin (n+1)®]sinc[ (n+1)e/2]|n) (a)
(16) 8 I e=014

. . . . At e=0.8
(sincx = sinx/x). They are normalized to unity, 4 >

(D.¢,€|®, ¢ e)=1, 17

and tend to the exact statpB, ¢) as e approaches zero,

1.2

0.8

1 é 0.6
lim—|®,¢,e)=|D,y). (18 < \
64?0\/; 04l N

The coarse-grained cosine and sine phase states, respec- 02
tively, are obtained as|cosp,e)=|P=¢,y=0,) and 4 N
|sing,e)=|®= 37— ¢,h=3m, €) [cf. Egs. (13), (14), and % 05 1 15 ) 25 3 3.5
(15)]. According to Eq.(18), they approach the exact SG ¢ :
cosine and sine phase states in the limit ween 0.

The state§®,,€) can be used to define parametrized
phase distributions of a radiation-field mode via their over-

laps with the quantum stag of the mode (b)
1 _ 4
p(q)!wre):./\m p(q)vwaf) (19)
where
B(D,¢,6)=(D, i, el0] D, 1,€), (20
N, €)= | TawB(@, 0.0 CR
Note thatp(®, i, €)—p(P,y)=(P,|0|P, ) whene —
0. In particular, the coarse-grained cosine and sine phase-
state distributiong.(¢,€) andpg(¢,€) are given by . L = s 25
¢
Pc(d,€)=p(P=¢,§=0,¢), (22)
Ps(d,e)=p(®P=2m—p,p=3m¢€) (23 FIG. 1. The coarse-grained cosine phase state distributions of a
mode prepared in a coherent stbd® with (N)=1 (e=1) (a) and
[pc(¢)E<Cos¢|@|coﬁ>:|imﬁopc(¢,5), ps( ) (ny=2 (a=\/§) (b) are shown fore=0.4 (dashed lines and

=(¢|o|sing)=lim._ops(¢,€)]. The smaller the value of €=0.8 (dotted line$. For comparison, the exact distributions that

€ becomes the better the coarse-grained distributions apre observed in the limié—0 are also showfsolid lines.

proximate to the exact ones. In Figs. 1 and 2 plots of

Pc(¢,€) andps(, €) for various values ok are shown fora  sampling functions for the exact SG phase distributions. The
mode prepared in a coherent state. We see that with an igrjyantage of the coarse-grained distributions is that the sam-
creasing value of the mean number of photons the value gfjing functions can be calculated in a straightforward way.
€ must be decreased in order to obtain the coarse-grainehey are well behaved, so that the phase distributions can be
distributions comparably close to the exact ones. This is, OEiirectIy sampled from the recorded data. Since for suffi-

course, a reflection of thg fact that with a decreasmg value Oéiently small values of the coarse-graining parameter the sys-
gxthe vglue Of. th_e(effectl\ée cutoff photon number in the tematic errors that arise from it can be reduced below any
pansion(16) is increased. desired level, the method enables one to measure the exact
distributions with accuracies that are only determined by the
IIl. RELATIONS TO THE PHASE-PARAMETRIZED statistical errors due to the finite number of sampling points.
FIELD-STRENGTH DISTRIBUTIONS The difference-photocurrent statistics recorded in bal-
When we lete = 0, then Eq(16) reduces, after multipli- anced homodyning represents the statistics of a scaled field
cation bye Y2 to the expansion in the photon-number basisstrength(quadrature componenef the signal mode,
of the exact stateBb, ). All the photon-number states are
seen to contribute to the exact states with comparable
weight, which prevents one from explicitly calculating the IA:(<p)=|F|(ée*i‘P+éTei‘P), (29
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where the smeared field-strength distributigi(sF, ¢;S), S
=1-71, have been introduced, which are measured in non-
perfect detection, i.e., when the detection efficiemcig less
than unity (see, e.g.,[14]). The operator integral kernel

K(F,¢;—s) in Eq. (26) is given by
N |F|? [
K(]:,(p;—s)=7j” dyly|

xexpliy[F(¢)—F]—-3sy?|F|3. (27

Using Eqg. (26), from Eq. (200 we easily find that
P(P,,€) can be related tp(F, ¢;s) as

B e[ do | dFpFeK®UFeS)
(28)

where
K@, 4, F,¢;9) = (@, 4| K(F,0;—9)| D, ,€). (29

Equation(28) can be regarded as the basic equation for
direct sampling of the phase distributiop&b, ¢, €) from the
difference-photocurrent statistics in balanced homodyning,
where the integral kernel play the role of the sampling func-
tion. In order to calculate it, we substitute in E@9) for
|®,y,€) the expansion Eq16) and derive

, o
KA Figi9)= 3 3 {fon(x;s)exidi(n-m)

X(e=¢)]siM(n+1)P]
Xsin(m+1)®]sinc[(n+1)€/2]
Xsinc[(m+1)e/2]}, (30

where the functiorf,(x;s), x = F/(\/2|F]), is closely re-
lated to the sampling function

FIG. 2. The coarse-grained sine phase state distributions of a

mode prepared in a coherent stbt¢ with (R)=1 (ae=1) (a) and
(ny=2 (a=+/2) (b) are shown fore=0.4 (dashed linesand e=0.8

(NK(F,¢;—9)my=fm(x;s)exdi(n—m)e] (31

(dotted lineg. For comparison, the exact distributions that are ob-for measuring the signal-mode density matrix in the photon-

served in the limite—0 are also showisolid lines.

where the phase is determined by the chosen phase param-

eters of the apparatusee, e.g.[14]). The desired sampling

functions can therefore be obtained from the integral rela-
tions between the coarse-grained phase distributions

number basi$6]. From inspection of Eqg27) and(30) we
see that the symmetry relations

K@, 4, F,o+m5)=K(D,y,— F,¢;5), (32

K@, F ot ms)=K(P—m,4,F,¢;5), (33

p(®,¥,€) and the phase-parametrized field-strength distri- K(—®,¢,F 0:8)=K(D,,F ¢:5), (34)

butions of the signal field,

P(F.¢)=(F.0le|F.¢), (25)

| F,¢) being the eigenvectors oF (¢) (for details, see

[14,15)). For this purpose the density operatois expanded
as[16,17.,9

é=JWd<pfw dF p(F,@;8)K(F,0;—s),  (26)
0 — o0

K P, =4, F,—0:8) =K (P, 4, F,0;9), (35
Ke(@, 4, F,@;8) =K (P,0,F, 0~ ¢);5) (36)

are valid. Hence knowing the function
K@, F,0;5)=K(D,y=0.F,¢;5), (37)

with ®, ¢ e (7/2) intervals, the functior (P, ¢, F, ¢;S) is
known for all values ofb, , ande. In particular, the func-
tionsKS( ¢, F,¢;s) andK( ¢, F,¢;s), respectively, that are
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FIG. 3. The dependence af and ¢ of the sampling function FIG. 5'_ Th_e dependence dﬁsand‘P of the sampling func_tion
K (®,F,¢;s) is shown forb=3m, the values of ande beings=0 Kd®,F,¢:8) is shown for®@=gm, the values ofs and e being
(perfect detectionand e=0.4. s=0 (perfect detectionand e=0.4.

required in order to relate the cosine and sine phase staté&nm(¥)=fmn(x) if m<n], wherey,(x) and ¢n(x), respec-
distributionsp.( &, €) and p(#,e) to the field-strength dis- tively, are the regulafnormalizabl¢ and irregular(unnor-

tributions are given by malizablg solutions of the energy eigenvalue equation of the
harmonic oscillator for thenth eigenvalud18,13. The as-
KS( ¢, F,0:8) =K (D=, F,:5) (38) ymptotic behavior off,(x) for large values oh andm can

be found using the semiclassid®VKB) approximation. For
the argumenk within the classical allowed regiojx| <a,

s fe) — — 41 1.
K¢ F0:8)=K(P=d—2mFo=3ms). (39  —2n11)2the functionf,(x) (m=n) becomeg13]

The functionf,,(X;s) in the series expansia80) of the 2
sampling functiorK (®,F, ¢;s), Eq. (37), has been studied fam(X)~ ;(pnpm)_llz[ PmCOY Sy + 7 7)oy S+ 7 7)
in a number of papers and different algorithms for numerical
calculations have been discusgede[13,18 and references — PnSiN(S,+ 3 7)sin(Sy+ 1 7)1, (41
therein. For the sake of transparency let us restrict our at-
tention to perfect detection(y=1 and hences=1  where
—7~1=0). In this casef,m(X) = fum(X,5=0) can be writ-

ten as Pn(X)=(2n+1—x?)12 (42)
d denotes the classical momentum and
fnm(X)=&[l//n(X)¢m(X)] if m=n (40) )
Shi(x)= | dx'pp(x") (43
an

is the time-independent part of the classical action.

4 F/(V2|F))

FIG. 4. The dependence of and ¢ of the sampling function FIG. 6. The dependence gh and ¢ of the sampling function
K(®P,F, ¢;s) is shown fOI"I):;lﬂ'r, the values ofs and € being K(®,F,¢;s) is shown forCI>=%77, the values ofs and € being
s=0 (perfect detectionand e=0.4. s=0 (perfect detectionand e=0.4.
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For proving the convergence of the series expan- — w
sion of K (®,F,¢;s=0), it is sufficient to substitute in Ke(f;S)ZJ dOK (D, i, F,¢;5)
Eq. (30) for f,n(x;s=0) the semiclassical express- 0
ion (41). For x/a,— 0 the functionsp,(x) and S,(x) in *
Eq. (41) behave liken*? and —(n+3)w/2, respectively, :2620 fan(x;s)sinc?[(n+1)el2]  (47)
=

so that [py(X)/pn(X)1?~(m/n)Y* and cofS,(X)+7/4]
~cosf/2), sir S,(X) + /4] ~—sin(n#/2). Hence for an — .
e>0 tﬁe sgries S(néa%sion is expect(ed to)exist, because ){)f tig(éf' Eq.(30] Npte .thath(q)"’b']:"P;s) ar]dKE(]-'; s) differ
factor (nm) ! that arises from the sirfunctions. Results of Athe contributions  of the off-diagonal ~elements
numerical calculations oK (®,F,¢;s=0) are shown in (NIK(F,¢;—s)|m), n#¥m. The variance of the estimated
Figs. 3—6. It should be noted thit.(®,7,¢;s) separately Phase distributiorpes(®P, i, €) =Pes(P, ¥, €)/Nes(h,€) can
depends on the two phasésand ¢, whereas the sampling €ventually be estimated 4see, e.g.[19])

function for the London phase state distribution only de-

pends on the difference phagi). o3 (@.he)  oX (d€)

pes

ﬁesK(I)!‘//rf) " Ngs{ ,€)

ah (D,4,€)=pif D, ,€)

IV. DIRECT SAMPLING OF THE SG PHASE

DISTRIBUTIONS Kp N P10, €)

In order to demonstrate the feasibility of direct sampling a Pesl @, 10, €) Nosl ¥, 6)]’ (48)
of the SG cosine and sine phase state distributions from the
recorded difference-photocurrent statistics in balanced hoyhere
modyning, we have performed computer simulations of mea-
surements of the phase-parametrized field-strength distribu- w
tions p(F,¢) on an equidistant grid of pointgF; ,¢;} (for KBESNes[(‘I’al/fvf)“f W
simplicity, the discrete intervald ¢ and AF in the experi-
ment are considered as differentjalé/e have assumed that o
in the experiments the signal mode to be detected is prepared Xf mdfpes(]:!@;s)
in a squeezed vacuum state

de

0

|\If>=exp{—%[g(é*)z—g*éz]}m). (44) XK P, F, ;9K F}s) (49

Before presenting results, let us address the problem ad§ the correlation between the unnormalized distribution and
errors. For estimating the statistical errors that are unavoidthe normalization factor.
ably connected with the finite sample size in any realistic To give a quantitative measure of the systematic errors
experiment, we follow the arguments given[it3] and as-  arising from the nonvanishing coarse-graining parameter, let
sume that homodyne detection is a Poissonian process fois consider the factor
statistically independent values at phaseg. The experi-
mentally measured distributiong(F, ¢;s) are estimates of Ay, e)=€ 'My,e), (50)
the exact distributions p(F,¢;s), and the use of )
Pes(F,@;5) in the sampling formula28) then yields esti- Which has the property thaef. Egs.(17), (20), and(21)]

mates PP, s, €) of P(D,h,€). Thus the variance ®
2 . ~
Uﬁest(q)’w’e) may be estimated as lim Q(, €)= lim 2 sincz[(n+1)e/2](n|g|n)=1
e—0 e—0 n=0
2 (@ ~f”d@ fxd]-' Fo: (51
O.Eest( ,(//,6)~ 0 N(QD) o pes( v(P!S)

for any physical quantum stag. The measured estimates
X K2(D, 4, F, ¢:9), 45  Qes(,€) and UZQest( g, €)= e‘zoi/est(w, €) can then be used

to obtain a criterion of choosing a suitable value of the
whereN(¢) is the number of samples per phase interval acoarse-graining parameter Different values ofe give rise
phase. Equation(45) reveals that the estimation of the to different sampling functionK (®,,F,¢;s). Starting
statistical errors can also be performedréal time Using ~ with a (small) value ofe, the measured data can be sampled
Eq. (45), the variance of the normalization factdf,, [ob- ~ Simultaneously for different, decreasing valueseofn this
tained according to Eq(21), with Ps(®P,,€) in place of Wway the systematic errors can be reduced such that
P(®,4,€)] may then be estimated as Qo ,€)~1 within the root-mean-square deviation
o, (i,€). The errors are then given by the statistical ones,

est

2 | de [~ c\W 2 T and further decrease &fdoes not improve the accuracy of
TN Y€)= fo Wﬁxd}— Pes( 7, 0iS) K FS), the sampled distributions. Clearly, WEen the number ofysam-
(46)  pling points is increased, so that the statistical errors are
decreased, thea must also be decreased in order to ensure
where that the systematic errors are below the statistical ones.
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a broad maximum ath=/2, whereas the sine phase state

v (2) distribution has a broad maximum &t=0. When the value
3 i i i , , , of ¢ isincreased{>0), the “vacuum noise circle” centered
at the origin of coordinates in tHeomplex « phase space is
2.5 : squeezed to an ellipse with the small semiaxis parallel to the
real axis[20]. Hence, the cosine phase distribution is ex-
2t T pected to become more sharply peakedbatw/2. Accord-

ingly, the sine phase state distribution is expected to show a
double-peak structure, with the maxima close¢te /2
and the minimum aty=0.

1.5+

pe(®,€)

03 V. SUMMARY AND CONCLUSIONS

0 In this paper we have studied the problem of measuring
the SG cosine and sine phase state distributions in balanced
0 03 1 13 3 33 3 35 homodyne detection. For this purpose we have introduced
¢ coarse grained cosine and sine phase distributions such that
they always approximate to the exact SG cosine and sine
(b) phase distributions to any desired degree of accuracy, if the
coarse-graining parameter is suitably small.

We have shown that the coarse-grained phase distribu-
tions can be directly sampled from the recorded difference-
photocurrent statistics. The direct sampling method has a
number of advantages over indirect methods, such as recon-
struction of the Wigner function from smoothed experimen-
tal data and calculation of the phase statistics from the re-
constructed Wigner function. In particular, the sampling
method is fast and the phase distributions can be obtained in
real timg without storage of large amounts of data. Further,
the sampling method also enables one to estimate the statis-
tical errors introduced by the finite sample size.

For chosen sample size the systematic errors resulting
from coarse-graining can be reduced below the statistical er-
rors, provided that the coarse-graining parameter is suitably
small. In this way, the SG phase distributions can always be
measured with an accuracy determined by the statistical er-
rors. The coarse-graining parameter can be obtained either

FIG. 7. The sampled Susskind-Glogower codi@eand sine(b)  from somea priori information about the state or from the
phase state distributioripoints with error bansof a signal mode Samp"ng method. Performing the Samp"ng procedure for
prepared in a squeezed vacuum state, (B4), with mean photon  djfferent, decreasing coarse-graining parameters simulta-
number(h)=1 (¢£=0.88) are shown and compared with the calcu- neously, a suitable coarse-graining parameter is found when
lated distributions(full lines), the values ofs and e beings=0  fyrther decrease of the parameter does not change the errors.
(perfect detectionand e=0.1. In the computer simulation of the It is worth noting that the SG cosine and sine phase state
measurements 30 phases have been considered deddiits have distributions can be regarded as special cases of

?heee?ozf.snf;nﬁstgugferedﬁiﬁgﬁ ziggrg;zs; (g; error bars 'nd'cﬁ}%arametrized phase state distributions. The latter are based
‘ on y-parametrized phase states that fb+=0 and =3
reduce to the cosine and sine phase states, respectively. Ac-
In our computer experiments we have assumed that megordingly, the sampling functions for the cosine and sine
surements at 30 phases are performed afde6nts at each phase state distributions can be obtained by specifying the
phase are recordedf. Ref.[4]). From the results shown in sampling function for they-parametrized phase distribu-
Fig. 7 we see that the measured SG phase distributions arefiions. Their integral relation to the field-strength distributions
good agreement with the theoretical predictions. The erroreveals that the sampling function exhibits a number of sym-
bars indicate the standard deviations obtained accordingetry properties that can be used advantageously in calcula-
to Eq. (48). The value ofe has been determined from tions.
the measured data as outlined above. The systematic errors We have calculated the sampling function using an expan-
have been found to reduce below the statistical ones whesion in terms of the matrix elements of the corresponding
€<10 1. From Egs.(12) [together with Eqs(13) and (14)] operator integral kernel in the Fock basis. These matrix ele-
and (44) we easily see that the cosine and sine phase distriments, which are the sampling functions required for mea-
butions of the ordinary vacuumé&EQ) are given by  suring the signal-mode density matrix in the Fock basis, can
|(0|cosp)|?=(2/m)sirt¢ and |[{0|sing)[>=(27) ‘cogp, re- be calculated applying the algorithm developed13]. In
spectively. In this case the cosine phase state distribution hdkis way, the sampling function can be obtained for any
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(nonzerg coarse-graining parameter. acter of the state of the signal mode. They reflect the fact that
In order to give an example, we have performed computefor quantum states thénoncommuting cosine and sine
simulations of measurements of the SG cosine and singuantities cannot be related to a common phase. This effect
phase state distributions for a realistic grid of samplingis of course not observed in the London phase distribution

points and estimated the errors. Assuming that the signahat is related to a non-Hermitian operator.

mode is prepared in a squeezed vacuum state, the measured

phase distributions have been found to reproduce the exact

ones with sufficiently high precision. The definite value of

the coarse-graining parameter has been found reconstructing

the phase distributions for different probe values. This work was supported by the Deutsche Forschungsge-
It is worth noting that the different shaping of the cosine meinschaft. We would like to thank T. Opatrayd U. Le-

and sine phase distributions demonstrates the quantum chamhardt for discussions.
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