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Dynamics of the four-level A system in a two-mode cavity
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In this paper we investigate the properties of a four-level atomic system interacting with two modes of the
electromagnetic field in a cavity. By linearization of the Hamiltonian we show that the corresponding math-
ematical model is exactly solvable. To obtain simpler effective Hamiltonians the method of multiple scales is
applied. It is shown that under some special values of the detunings and coupling constants, exactly predictable
collapses and revivals in the atomic populations appear. Also, due to the specific interactions of the atom with
the cavity modes and the ensuing measurement of energy or angular momentum and energy, two-mode
Schralinger-cat states arise in the cavity. Finally, the stabilization and trapping properties of the system are
demonstrated in a lossy cavity within the Wigner-Weisskopf approximation. The existence of stationary states
is shown and it is also shown that interference effects can cause cancellation of one line in both transmitted
light and spontaneous emission spedt&1050-294®7)08002-5

PACS numbeps): 42.50—-p, 32.90+a, 02.90+p

I. INTRODUCTION the level of the Schidinger equation for the time-evolution
operator to extract effective Hamiltonians which are useful
There exists a constant interest in simple quantum eledrom a physical point of view. Our system is a four-level
trodynamical systems, consisting of an atom—approximatedeneralization of the three-level nonresonant system”
by taking into account just two, three, or four levels—andconsidered, e.g., if5,6]. There has been some discrepancy
one or only a few cavity electromagnetic modes. This isbetween the authors ¢5] and[6] regarding the structure of
because in such a system one observes very interesting atite effective Hamiltonian which describes the coupling be-
fundamental effects such as collapses and revivals in atomigveen two lower levels. We believe that the method of mul-
inversion [1], squeezing, vacuum Rabi splittif@], anti- tiple scales, since it is universal and efficient, brings resolu-
bunching of photons, and the production of Scfinger-cat- tion to this discrepancy. It also provides several other
type states[3]. These effects demonstrate the gquantuminteresting effective Hamiltonians not considered 5 and
“grainlike” nature of light in a much more explicit way than [6].
spontaneous emission or resonance fluorescence. On a physical level, we find a two-mode system which
Simple quantum electrodynamical systems are also vergan exhibit regular and predictable collapses and revivals—
interesting from a formal point of view since they are oftenthis is a special type of the four-level system with two
exactly integrable if one neglects losses. In an important redegenerate upper levels. Unlike in the similar one-mode
cent papef4], it has been shown that the exact solvability of case, however, the dynamics of inversion, though described
the Jaynes-Cummings model is connected to the fact that they a closed-form expression, can also be only quasiperiodic
Jaynes-Cummings Hamiltonian can be expressed in terms ahd thus quite erratic. Furthermore, we propose a Stern-
the generators of the Lie algebra(8u This discovery pro- Gerlach type of experiment to produce a Sdclinger-cat-
duces the possibility to exactly solve few-level and few-type state in the cavity. Again, the best candidate for such an
mode generalizations of the Jaynes-Cummings model. experiment is the degenerdte the two upper leve)ssystem
The purpose of this communication is twofold. On a for-if the coupling constants are such that the Stark shifts are
mal level, we show quite a complicated system which we caridentical. Also, the trapping properties of the system are ana-
prove is exactly integrable, in the sense that the timelyzed within the Wigner-Weisskopf approximation.
evolution operator can be written in an explicit form. Thisis  The rest of the paper is organized as follows. In Sec. I,
done via the appropriate linearization of the Hamiltonian. Inwe present the model and attempt to solve it exactly. In Sec.
a sense, our model is a maximal one which possesses thid, we apply the method of multiple scales to extract a fam-
property. However, since the structure of the exact timeily of effective Hamiltonians for a generalized system.
evolution operator is very complicated and unmanageableSection IV is devoted to analyzing the production of
we use the method of multiple scal@dMS) and apply it on  Schralinger-cat states of the cavity modes and the two-mode
regular collapse-and-revival pattern. In Sec. V, we analyze
the stabilization properties and spectra of transmitted and
*Permanent address: Institute of Physics, Nicholas Copernicuspontaneously emitted radiation under the Wigner-
University, Grudzjezka 5, Torin87-100, Poland. Weisskopf approximation and Sec. VI contains some final
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Il. THE MODEL AND ITS SOLVABILITY the fact that they form an associative matrix algebra, isomor-
Phic to that spanned by the operatets. Let us for instance

Let us consider a model system consisting of a four'levecalculate the producs,,Sy;

atom interacting with two modes of the electromagnetic
field. We vyﬂl assume a very sp'eC|f.|c coupling between the S15S54= $1555,504
modes which is a direct generalization of thesystem con-

sidered, e.g., ifi5]. More precisely, the system is defined by 1 1 1
the following Hamiltonian: === 1013 = Q03— 3,04
J VN; VN, VN,
. 1 1
_ t
H_ZL Eio-ii+i:212wiai a =—a10'13N—(a12La2+1)0'34.
, VN 2
+j:34(glja1(rjl+gzja20'j2+H.C.). (1) But
. , , — (aja,+1)o —iNa
Thus, the first(lowes) level is coupled to the third and N, “292 34N, 27

fourth only via the first mode of the cavity field, while the
second level is coupled to the upper ones only via the second
mode. So far, we have not assumed any relationship between
the atomic energies and the mode frequencies; we will try to
solve the problem exactly. By “exact solution” we mean an
explicit expression for the time-evolution operator. With this
aim in mind, we start by linearizing the Hamiltonian. This is
simplified by the observation that for some givenphotons  henceS;,S,,= (1/YNy) a{crl4= Sis.

in the first mode and photons in the second, the following  One can now write the Hamiltonian in terms of the opera-
states of the system can be populatetim,n), |[3m,n),  torsS;:

|1,m+1,), and|2,m,n+1). This suggests that the problem

1 T
:N_z (aa,+1=Nj)oz

— T T —
N, (a8, +1—aza,~ 011~ 033~ 044) 034=0,

can be reduced to the four-level system in an external time- _i 2 T 2 2
independentwithin the rotating-wave approximatiprield H_i:1 EiSii‘Li:lvz wig ai+i:1'2j:3'4 (gi;Sji+H.c.).
if we find appropriate constants of motion. Let us further (5)

observe that, besides the Hamiltonian itself, the system in-
deed possesses at least two further constants of m@hien By applying the unitary transformation

excitation number operatgrsvhich turn out to be very use- _
ful: W=exfd —i(wiN;+ wyNy)t], (6)

we get the following “interaction” Hamiltonian which only
contains the operator§; andN; without the explicit pres-
ence of the free field terms:

H'=(E1— w2)S11+(Ex— 01)Sot (E3— 01— w3) Sg3

_ At
Ni=aja;+ oot o33t o4g 2
and

N2=a;a2+ (Tll+ U'33+ Tg4- (3)

o (0-S +a*S.
The operatordN; andN, commute not only with the Hamil- T(Bsm oy w2)844+i§,2 j§3,4 \/W,(g,JS“ 95 Sy)-

tonian (and with one anotherut also with the free part of

the Hamiltonian and with all products of the tyggo; , @)
1=12,j=34, as well amjajo;;, i,j=1,2. Letus define the |t e choose the zero of energy in such a way that
new operators as E,=w,+w,, we obtain
1 1 e X
531:\/?1 1031, 841:\/?1 a1041, H :—izl Ais.iJFi;Zj:E“ \/Wi(gijsiﬁgijsji), (8)
1 1 \XheEeE £ )Alz(E4_ Ei1)—woy, Ar=(E4—Ep) —wy,
=——a , Sp,=——a , 3~ \EBa™E3)- ) ) S
Sa2 N 2932 42 N 2942 The matrix representation of the Hamiltonian is given by
2 2
* *
Si=oji, i=1,234, Sy=o03. (4) -4, O Vs Vi
0 —Ax Vi v (9)
These operators, together with their Hermitian conjugates Y13 Y23 —A; 0 [’
and the operatoiS;,= S;3S3,= S1,S4, (and its conjugate Y4 Y24 0 0

span the Lie algebra &) (cf. [4]) with the usual commuta-
tor as the Lie product. Actually, of even more importance iswhere y;; = g;; IN;.
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Thus, the problem of the exact solution for our model hasGerry and Eberlyf5], but ourA is still arbitrary and we can
been reduced to the problem of the diagonalization of a quaconsider both strongly resonant and dispersive interactions.
dratic matrix of the fourth degree. This can always be perdn this case, it is more convenient to choose the zero of
formed, but the necessary intermediate step—the comput@nergy such thaE,=w,. Then the Hamiltonian in matrix
tion of the eigenvalues and eigenvectors—introduces #orm is given by
terrible algebraic mess which obscures both the formal struc-

ture of the Hamiltonian and the underlying physics. There- 0 0 713
fore, despite the fact that the system admits an exact solu- 0 0 3. (10
tion, in the next section we will apply an efficient Yiz Y23 A

perturbation scheme—the method of multiple scales—to ex-

tract the physical information contained in the Hamiltonian ~Let €;,€, denote two nonzero eigenvalueshich are of

H’, provided that a natural small parameter exists in it. Tocourse still operators containing the excitation number opera-
conclude this section, however, let (®ith aesthetical rea- tors) of the above matrix with inverse sigm,=(1/2)[A
sons in mingl obtain an exact solution for a simpler case. —\/A2+4(y123+ 'y223)], e2=(1/2)[A+\/A2+4(y213+ yzza)].
Namely, let us suppose that we may restrict ourselves to thalso let the square root term be denoted hylt is then
three-level model (with energies E;,E,,E3) such that possible to perform the exponentiation of the magriitH ')
A;=A,=A andg;; are real. This is the model considered by to obtain

2 : , 2
, - yid eexp( —iegt) —ejexp(—iest)] Y23
U'=exp(—iH't)= (2t 2 7 7 |Su
(¥ist+ 723 Y1zt Y23
yad e.exp( —iet) —eexp —iept)] Vi e,exp(—ie,t) —e;exp(—ie;t)
f(¥ist ¥ Yist ¥as f :
’y13’}/2iezexq_ielt)_el eXF(_iezt)_f] eX[X—IAt)
+ (Spp+ Sop) + ————
[ F(Yist Y59 12+ S2) f
. . 1 . .
X[expliet) —expiest) J(y13S13+ ¥23553) + 7 [exp(—iest) +exp(—iest) |(¥13Ss1t ¥23Ss0)- (11

The total time-evolution operator results if we multiply and finally in[15] to approximately solve the Heisenberg
the above expression by from the left (we have to set equations of motion and the Schlinger equation for the
044=0 in N; andN, contained inW). wave function for the case of an anharmonic oscillator. After

As we can see, althoughl’ has a structure fairly similar some preparatory work with MMS applied to the Heisenberg
to the time-evolution operator for the usual Jaynes-equations of motion for the Jaynes-Cummings model, we
Cummings mode[4], it is actually too complicated to be have decided to apply it rather on the level of the $ehro
useful in practice. It is a well-known fact in nonlinear me- ginger equation for the time-evolution operator. The reason
chanics that in many cases a perturbative treatment should Bg; ihis strategy is the following. On the one hand, the time-
applied even if the exact solution is available. evolution operator provides, together with some initially

given state, the most general information available about
IIl. APPLICATION OF THE METHOD quantum systems. On the other hand, due to the linearity, the
OF MULTIPLE SCALES whole procedure possesses a very transparent structure. We

As mentioned in the Introduction, the method of multiple Plieve that in many cases the method considered here is
scales (MMS) [7,8] belongs (together with the Krylov- Much superior with respect to the usual Dyson’s expansion
Bogo|iubov_Mitropo|skii method[gllo]) among the most Since it does not contain terms proportlonal to powers of
successful techniques of dealing with a nonlinear system. Iime and it preserves the unitarity of the evolution up to the
particular, it is widely used in nonlinear mechanics. In therequired order. We will see that MMS provides corrections
context of quantum-dynamical problems it has been applieto the unperturbed Hamiltonian, therefore giving some effec-
in [11] to describe the spontaneous emission from both onéive Hamiltonians.
atom and from a collection of many atoms, and[12] to From now on, in the following subsections, we will as-
study the dynamics of atoms and molecules in laser fields, isume that there is at least one small parameter contained in
[13] it has been used to investigate the dynamics of both théhe Hamiltonian in Eq(1). Our general procedure will be as
internal and external degrees of freedom of an atom excitetbllows. We will define a dimensionless timeand write a
by a standing wave, ifil4] to obtain the dynamics of sys- Hamiltonian which will generate the dynamics in the time
tems having both classical and quantum degrees of freedorthis Hamiltonian will also contain a dimensionless small
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parameter in an explicit form and will thus separate into twoexfd —i(w;N;+ w,N,)t] already factored oltas a function
parts, a free part and a perturbation. Then we will expand thef time 7. To obtain an asymptotic expression fowe ex-
time-evolution operatofstill in time 7) into a power series in  pand it as
terms of the small parameter and will use the solvability
conditions to eliminate the possible secular terms. The whole U=Up+ €Uy + e2Up+--- . (15
procedure is described in detail in Sec. Il A.

In this paper it will be assumed that the absolute values off aking into account Eqg¢12) and(14) we get

at least two of4;, i=1,2,3, are much larger than all

|gij|\/N—i, where N; denotes mean excitation numbers. We i %:houm (16)
will investigate the case of strongly resonant interactions dTo

elsewhere. Despite this assumption, several internal reso-

nances are possible in the system and hence we have to con- _dUp  dug et h 1
sider several cases; in some of these we will obtain interest- ' 9T, * o1, ot it (7
ing effective Hamiltonians to be compared with those in

[5,6]. We will also assume that the photon number distribu- Cdu,  duyp 0

tion functions remain well localized near their mean values. [ (9_To+ 07—-'-1+ a—-l-zzhouzﬂL hiu; +hyug (18)

We will first outline the general procedure assuming that
all three A; are of the same ordgr and that they are mucl‘[in Eq. (12 we have, of course, thét,=0].
larger than allg;; VN;. The effective coupling constants are  Even in the case of purely dispersive interactions we can
also assumed to be of the same order. Lehave internal resonances, the appearance of which com-
u=min(|A],|A,],|A4) and yzmaXQgij|\/N—i). We define a pletely changes the physical situation. In order to analyze

small dimensionless parametens them, we must consider several subcases.
e=1 A. Case 1:6;— 4;=0(1)
T We therefore have to consider the case in which the dif-

ferences between thé's are of the same order as tlés

Let 5= A/ andm; =g;;VN,/v. We introduce a dimen- o ceves. Equatiofl6) can easily be solved:

sionless timer=put. The dynamics inr are governed by the
Hamiltonian Up=exd —ihoTolv(T,,Ty)

=exi (6151111 8,S,,11 838339 Tolv(T1,T2). (19

3
h:_E 6|Si|+62 2 m”SiJ=h0+6hl (12)
i=1 i=12j=34 To solve Eq.(17) we write
There are two natural time scales of the evolution: one u;=exg —ihoToJu(To,T1,T), (20)
connected with the part of the Hamiltonian containing detun-
ings, the other connected with the coupling constants. Thereand Eq.(17) takes the form
fore, it is quite natural to look for an approximatasymp-
totic) solution as a function of at least two different times, _du; v T et
which are “faster” and “slower.” Actually, it is more con- ' r7_T0+I aT, © ofohje”Moloy(Ty,To). (21
venient and systematic to work from the very beginning with
many dimensionless time variables and to keep some of them The Hamiltonianh, in the “interaction representation”
according to the needs of a particular problem. Let us thereyjith respect tah, is
fore introduce some new time variables:
iNoToh. @=iNoTo— ( m* ~i813To i613To
To=7, Ti=er, T,=¢€r. (13 ehe (Mg _ M _ )
+(mi,Sie” 10+ m,Sye %1 70)
An approximate time-evolution operator is assumed to de- . st -
pend on all these time scales separately. +(M35S,3e ' 923104 M;,3S3,e'9230)
Thus we have +(M5,Spse 192704+ my,S,6'0270),

d_o , 0 L9 14 (22)
e b e— 2 — .
T T aT
dT J 0 J ! 2 Whereﬁij=5i—5j.
We see that, in the first order, all the terms on the right-
hand side of Eq(21) are of the type of (T,) and hence can
be integrated without the appearance of secular terms. There-

fore we put

Before proceeding further, let us introduce some “blanket”
notation. Namely, in all the formulas beloWw(T,), F;(Ty),

F'(Ty),... denote operators which contain exponential
functions of Ty such that the factors multiplyind, in the

exponents ar€®(1). Such operators can be safely integrated P
over T, without any danger of obtaining smdbr zerg de- v =0
nominators. Letu denote the time-evolution operatéwith Ty
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and integrate Eq(21); let x(T,,T,) denote a solution to the Hamiltonian of a form which is almost identical to that{#)

homogeneous equatiaofdu,/dTy)=0. will arise if an internal resonance is present in the system.
To solve Eq.(18) we again write

u,=e " MoTouy(Ty,T;,Ty). (23 B. Case 2:5,—6,=0(e)

Let us now assume that, although all thés are much
larger than the effective coupling constants, one of their dif-
du,  dug N ferencesA;—A,, is a small quantity, comparable with these
i a—TO+| (9_T1+| &—Tz—e 0'oh,e Mooy, , (24)  effective couplings. In this case we writg,=A;—(A;—A))
and defineu as mir(|A,,|As]), and v as maxA;,],g;; WN)).
Heredu,/dT,=dx/JT, sincev does not depend of,. Tak-  The dimensionless small parameter is defined as before,
ing into account Eq(22) we find the right-hand side of Eq. €=v/u and7=ut. The Hamiltonian which generates the dy-

Then Eqg.(18) becomes

(24): namics in timer is now given by
2 h=—61(S11+ Sp0) — 63533
e'hoToh, e~ MoToy, = m 13| (Sg3=S1)+ —— m | (S44—S11) 2 4
| 23| +e 512822"'; 123 (mﬁsij‘f‘m”S“)
(S35~ S22

=hg+ ehy, (28)

|m24|
5 (Su-S)|vtF(Ty. (29

+
where lower caseS and m;;’s are defined as before and

61o,=A,/lv. However, this is not enough to substantially
change the effective Hamiltonian as given by E2j7). In-
deed, proceeding as before, we obtain almost exactly the

To. this will immediately I_ead to terms proportional . same effective Hamiltonian, with the only difference being
These terms must be avoided since they make all the dynar‘ghat all theA,'s are replaced byd,'s and all theA,s's by

ics nonunitary and thus unphysical, which implies the breakA13S in all those(and only thosgterms which contanhg 2

ing of the canonical commutation relations, etc. We ca "Substantial changes are introduced toﬁhﬂ—ordercorrec—
avoid their appearance very easily by equalit@/dT,) 00 tion only; the operatorx is no longer T, independent:

the first four terms in Eq(25). The solution to the equation _ . )
produced in this way is obvious: ;E-erslél—é)inet)é?r[nsl g;zszle]y(TZ)’ wherey(Tz) can be ex

Now, the first four terms on the right-hand side of Eg.
(25) do not depend off,. Thus, if we try to integrate over

2 2
v(Tz)=exr{ (| msd (S~ 311)+| 14| (S4a—S19)

| 23|2 Im | Now we assume that we have almost exact internal
(S33=Sp2) + —— (Syq— 322)) } resonance: E;+w, is almost equal t&,+w,, so their dif-
ference is small even when compared wih| VN JN;. While u
(26)  andv are defined as before, we hasg=A,,u/(17). Again,

C. Case 3:6,—6,=0(€9)

. . . e=vlu.
gn\:vee (t:Orgganegg;?n;esﬂtewg?fi(é&?' 32%23&32 b;;k to The Hamiltonian(for the evolution in time7) is now
oy ) eff  given by
=iUy(dUp/dt), Uy=Wu,, we obtain
== 01(S11+ Sp)) — 63533
Her=:N; + ;N —i AiSi+ 9:4™N: |924|2N2>s
eff i 12 =1 e A1 AZ 4 +€i2j (mﬁSJ“*’miiji)‘FEZélzszz
2N 2N ’
+<|g]Z|13 1+ |92A3|23 2)833 :h0+ 6h1+€2h2. (29)
2 2
_ ( 1914 "Ns + 1914 Nl)sﬂ In the Hamiltonian above, the indéxakes the values 1,2
Az Ay while the indexj takes the values 3,4. The zeroth-order ap-
imation is given by
924 °N, |924|2N2 proxima
23

ug=exdi(81(S1+ +6 Tolv(Tq,T2). (30
If we setA;=0, g;,=0, we may compare the above effec- ° HI(21(Suat S22+ 2559 Tolo (T2, T2)- (30

tive Hamiltonian with that of Alexanian and Bo§6]. They

are completely different; our effective Hamiltonian in Eq. To obtain the first-order approximation we compute the
(27) is diagonal, which is a characteristic feature of purelyHamiltonianh, in the “interaction representation” with re-
dispersive interactions. We will see later that an effectivespect tohg:
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e'MoToh, e MoTo= (m*1<3313e—i513To+ My 3S;,€' 91370) Needless to say, having linearized both the total Hamiltonian
. . and all effective Hamiltonians, we could very easily obtain
+(m} Sye” 2170+ my Sy €' 22T0) an explicit expression for all effective time-evolution opera-
+(M3Spge™ ' 1270+ MysSyoe! 1270) fors:
+(M5,Spse 191704 My, S,,6'9170) . D. Case 4:6,— 6,=0(€?), 63=0(€?)
(31) Let us now consider the case of a very small energy gap

between the levelt3) and |4). We definew=min(|A],|A,]),
Because the right-hand side of E@1) is of the type v=max(|gij|\/(_Ni), S1=Aul(1P), 83=Msul(1P), e=vlu.
F(Ty), we havedv/dT,;=0 and henceju,/dT,=dx/dT,,  This case is quite interesting because we obtain an effective

whereuy, x, andu, are defined as for Case 1. coupling not only between the two lower levels, but also
We have to solve to the second order an expression simbetween the two upper ones. In fact, calculations of exactly
lar to Eq.(25): the same type as before lead to the effective Hamiltonian
Cdu, X v 1 ) 5
[ 5_To+| 5_T1+| a1, Heﬁ:_zi: AiﬁLA—l{'\|1[|913| (S35~ S10) 1914 %(Saa—S1)]
=e'oloh; e oo, + eMolohye Mooy +NaL 1924 *(Ssa~ S20) +1024*(Saa— 22)]
+ *Ng+ 5N +H.c.
| 13| (Sy—Syp)+ el Im | (Su—S1) [(913974N1+923954N2) Sz4 ]
—[(9¥a925+ 934920 VN1 VN, S+ H.C ]} (34
2 2
| 23' (S33— S0 + | 24' (Sys— 522)} As has been pointed out i), the effective interaction

between two lower levels is zero-photon: there is neither
ml*3m23 m# My gain nor loss of photons but any transition from one level to
- ( 5 + 5 another is connected by the exchange of photons between
3 ! modes. The Hamiltonian above shows that between the two
+ 81,50 +F1(To). (32 upper levels we have a zero-photon coupling in an even
stricter sense: there are Rabi oscillations in the subsystem
Note the presence of nondiagonal terms in the aboveonsisting of the statd8) and|4), but there is no exchange
expression.  We may put i(dx/dT;)=0 and of photons between the two modes.
i(du,/dTy)=F1(Ty). Then the solution fov is obvious and
we immediately find the effective Hamiltonian: E. Case 5:8,— 6,=0(1), 83=0(€)

812+ H.c.|v

Now u=min(|A,|,|A,|), and the other variables are defined
(533 Siy) as before. In this case we obtain an effective Hamiltonian
which contains just the effective interaction between the two

upper levels, without any coupling between the lower ones:

|913|

Her= w1N;+ w,Ny— E A+

914°N 9 |
+ 121 1(544_511)+ 2 (533 S

- [ ( 91d2sN1VN, | 9’1‘4924JN_1JN_2

A2I.3 AZI.

3
1
Heq= _El AiS;i+ A, [1913°N1(S33— S11)

Sip,tH.c..
1
(33) +1914°N1(Sgs— S0 1+ A_z [1923°Ny(Sz3— Sz0)

In this Hamiltonian one can recognize that obtainefbih +92No(Siu—S0)]
if we (a) restrict ourselves to the three-level system énd
let A; be equal toA, (this corresponds td\;=A; in the
notation of[6]) in the interaction terms of the Hamiltonian
obtained by Alexanian and Bose. This is not an essential
difference, since we have assumed that A, is very small. This Hamiltonian provides a two-mode generalization of

Our formal results achieved so far may be summarized athat proposed by16]. We will use it in the next section to
follows: they support those ¢6] in that our effective Hamil- produce a kind of Schinger-cat state in the cavity.
tonian contains intensity-dependent Stark shifts of all levels. In this section we have applied a variant of the method of
On the other hand, they support the assumption of Gerry anchultiple scales to extract effective interactions in &-"
Eberly that to study an effective interaction between thetype” four-level system with weak coupling. Theotation
states1) and|2) it is enough to restrict oneself to near reso- has been greatly simplified by the previous linearization of
nant cases, i.e., two detunings, andA,, which are equal or our system, but we would like to stress that MMS would
almost equal. If this is not the case, one can uskagonal work equally well even if we had no idea about how to
effective Hamiltonian and investigate the effective couplinglinearize the initial Hamiltonian. Let us also notice that it is
between the two lower levels only as a small correctionvery systematic and universal, and provides corrections to

(39

*N *N
N (913914 1+923924 2 SutHcl.

Ay Az
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the evolution operators defined by the effective Hamilto- Let us suppose that initially the cavity fields are in coher-
nians, and thus we believe that it is superior with respect t@nt states and the atom is in a coherent superposition of the
an adiabatic elimination or a Foldy-Wouthuysen transformaupper states:

i lied if6].
tion as applied 6] | ¥ (0))=(c3|3) +C4|4))| )| B)- (38)

Let us denote the time of flight of the atom through the
cavity by ty (we will identify this time with the time of the
atom-cavity interaction After a timety+t;, we perform a

In this section we consider the possib|e appearance gheasurement to project the wave functions onto one of the
some special states of the cavity fields from a superpositioftates(3| or (4|, because the atomic energies in these two
of the products of simple coherent states with large meastates are the same, we propose to use a Stern-Gerlach type
numbers of photons. By a turn of phrase, such states a@f experiment if the upper levels differ in thein; value—
called “Schralinger-cat” states. They are quite important atoms in the stat¢8) will fly to a different spatial region
from a fundamental point of view as their existence is a replyifom those in the stat¢4) and we can then measure the
to Einstein’s and Schrbinger’s objections against quantum atomic energy in an ionization chamber to project on the
theory, based on the fact that it is very difficult to find any States3) or [4). Let us suppose that we have found the atom
coherent superposition of quantum states on a macroscopie the staté4). Then the field in the cavity will be in the state
level. In fact, on the one hand, we can now produce SUCT N _
coherent superpositions in high-cavities and in optical | ¥ fiels= z€XA(—i(w1+ w2)(to+11))

IV. SCHRODINGER-CAT STATES AND POPULATION
DYNAMICS IN A RESTRICTED TWO-MODE
TWO-PHOTON INTERACTION

traps, but on the other, there is a satisfactory explanation of X exp(—i(w1n;+ woNy) (to+ 1)) (Ca—C3)| )| B)
the difficulty in observing such superpositions in terms of the _ A A
decoherence introduced by the coupling with the reservoir +(CqtCg)e” Mt rlo| gg2iNato)| ge2N2t0)],

which is always present. (39)
One of the most important nonclassical features of the

generalized Jaynes-Cummings models is the presence of the |5 e choose\; andt, appropriately, the expression in the
so-called collapses and revivals in the dynamics of the POPUsquare bracket above can be equal, e.g.,cto-Cs|a)|B)
lations of atomic states. Usually, however, one cannot find & (c,+cg)|— a)|— B), taking a shape characteristic to cav-
closed. formula to express these dynamics. Asymptotic anﬁy Schradinger cats. Let us note that, unlike in the usual
numerical methodse.g., seq1] and[17]) show that when gispersive interaction of the Jaynes-Cummings atom with a
time increases, collapses and revivals usually appear less aBQvity mode, it is not actually necessary to prepare the atom
less regularly and then finally in an erratic way, due to thein 5 'superposition of two states. It can be prepared in the
strong overlap between neighboring revivals. Phoenix a”@tate|3> or in the statd4), or in any superposition of these
Knight [16] have found a system which exhibits perfectly states(provided thatcs# ¢, andcs# —c,), and we can per-
regular dynamics of collapses and revivals. The system degym projection onto either of the stat¢3| or (4—in any
scribed by our effective Hamiltonian in Case 5 is anothercase, a Schidinger-cat state will arise, without any addi-
example with this feature. In this section we will assume—jonal 7/2 pulses applied to the atom before measurement.
without loss of generality—that thg;;’s are real. Let Us  op the other hand, if there is no degeneracy in the two upper
begin with Schrdinger-cat-type states. We will assume— |ayels and the interactions are purely dispersitie effective
just in order to obtain a cloged—form expression—thatysmiltonian is as in Case 1 of the previous sedtiove can
913= 0914 923=J2s @nd A;=0. This means that the upper prepare the atom in a superposition of, say, the two upper
levels are perfectly degenerate: not only are their energiefgyels before it enters the cavity and then apply an additional
(without interactiony equal; the Stark shifts are also the pulse after it leaves the cavity, as [8]. The subsequent

same. . o o _measurement of atomic energy will produce two-mode
Let us rewrite the Hamiltonian containing the effective gchrginger cats.
coupling between the leve|8) and |4) as Let us now consider the population dynamics for the case

of the exact degeneracy of the levéds and |4); that is, the

Hefr=E1t Bt (011 02) (Segt Sag) T 01Ny F wanp+H) assumptions abouw; are the same as above in this section.

(36) Let the system be initially prepared as
wheren,=a'a,, i=1,2, andH, is given b
Bk |15 e By ¥ (0))=4)| )| ).
2 2
H=— 2013 2923 Then by straightforward calculation we find that

A, N1S;— N, NSy,

1 .
_953 02 (Sas(t))= = {1+ Re(exf 2i (A 1+ \o)t+ny (21— 1)
N;+ N, 2

Vv

(Ssat Saat S34tSs3). (37)

+ny(e?M2 = 1))} (40)
Products of the excitation number operators & can
be written in terms of the photon number operators: Thus the population dynamics in our system can be ex-
N;iSk=(ni+1)S;, i=1,2, j,k=3,4. We will write \; in- pressed by a closed-form formula. Overlap between neigh-
stead ofg &/A, . boring revivals does not appear as a consequence of the fact
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that in our effective Hamiltonian the coupling contains theassociated with the complicated form of the dissipator for the
actual field intensities rather than their square roots. NevemMarkovian master equations, especially in the case of non-
theless the population dynamics are, in general, only quasiero temperature. We believe, however, that MMS combined
periodic in time, since in the time dependencé®f,) we get  with numerical calculations could give excellent results for
all frequencies of the typk\;+I\,, wherek,| are arbitrary = complicated systems like four-level atoms interacting with
integers. Contributions of various frequencies are weightedavity modes. In this section we will use yet another simpli-
by the products of Bessel and modified Bessel functionstied approach, restricting ourselves to the Wigner-Weisskopf
Thus, the behavior ofS,,(t)) can be both quite regular and approximation. That is to say, we will use the pure-state
also fairly bizarre, depending on the relation between\ike representation and adiabatically eliminate the reservoir de-
andn;’s, as well as on the scale of time of the observation.grees of freedom, thus allowing only one-photon transitions.
In a recent papdrl8], Zhu and Scully have shown that a

V. STABILIZATION PROPERTIES OF THE SYSTEM strong suppression of spontaneous emission and considerable
AND SPECTRA OF THE TRANSMITTED LIGHT modification of the spontaneous emission spectra can be ob-
AND SPONTANEOUS EMISSION served for a four-level atom in a vacuum, due to the quantum

) _ interference. The necessary ingredient for such an observa-
In the preceding sections we have analyzed the systeRipn is a particular relation between the transition dipole mo-

under the assumption that the cavity is perfect. Before Wenents for transitions from the highest and the second highest
start a simple analysis of the trapping and stabilization propreyels to the lowest one. Also, the system has to be coher-
erties of the system, let us first briefly discuss the possibilityantly pumped by an external classical field. In connection
of including losses in the present formalism—the method ofyith this, there arises the following question: Is it possible to
multiple scales. The following difficulties arise. The most gptain an analogous result for an atom interacting with a
rigorous approach would require taking into account bothOSSy cavity? That is, is it possible to suppress leakage of
our atom with the cavity and one or several reservoirs as ajnotons from the cavity? It is shown below that it is indeed
one closed system and then applying MMS. Unfortunatelypossible in a simple four-level system and a two-mode cav-
proceeding this way we encounter quite a fundamental proby the same as considered in the preceding section with the
lem: any realistic model of a reservoir will contain infinitely aqgition of cavity losses. We will first analyze the case
many quasiresonant modes for which we would not be ablgyhere only the field losses are taken into account and the
to even write down the solvability conditions in an unam-time of flight of the atom through the cavity is sufficiently
biguous way. This same problem has been recognized by thgna|l when compared with the inverse of the spontaneous
authors of{19], where an algorithm has been constructed t0decay rate so that the spontaneous emission can be ne-
perturbatively solve the Heigenberg equations of mOtiO”gIected.

based on the Lindstedt-Poincaperturbative method. One The system Hamiltonian is given by Ed). We add to it

might overcome this difficulty by giving up with the descrip- the Hamiltonians representing bath and system-bath cou-
tion via the time-evolution operator or the Heisenberg equap|ings:

tions of motion for the total system and applying a Markov- , ,
ian master equation for the density operator. In this case we
may proceed as beforgprovided, of course, that a small AH=2 > wkbljbkﬁz > (&l b+ & blay).
parameter exisjs Instead of operating with expih,Ty), =tk =tk (41)
etc., we would have to do this with an appropriate exponen-

tial of a zero-order Liouvillian, exp-ilyTy), where We assume that reservoirs for modes “1” and “2” are
[o(-)=[hg,(-)]. The main difficulty with this procedure is uncorrelated. The wave function of the system is

|W (1)) =AW (1)]4)a|0)1]0)5|0)r1|0) o+ AR (1)[3)]0)1]0)2| 0) 1| O)ro + AP (1)]2) A|0)1]1)2]0)r1| O) 2

+A(l)(t)|1>A|1>1|0>2|0>R1|0>R2+Ek: Bk|2>A|O>l|O>2|O>Rl|1k>R2+Ek Cl1)al0)1]0)5|1K)R1|0) Rz, (42)

where, e.g., the ketl)a|1);|0),|0)g1|0)r, represents the d — _ _ _

atom in the stat¢l), with one photon in the first mode and e A= — A AP + g, AP + g1 AW, (44)
zero photons in the second mode and both reservoirs. After

writing the Schrdinger equations and adiabatically eliminat- d — — _ — —

ing the bath variables, we obtain the following simple system i AP = —A,AP —iK,AP + g5 A+ gi AR,

of linear differential equations: (45)

d—
A A2 4 El) (43 ! dt A== 0 AT KA + g’{4A(4)+ gf3A(3),
=024 J1 ,

| o

o

t (46)
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where A = ADexp(—iE,t) and 10
Ki:ﬂ'zk | il 2S(wi— ;). 081
A very simple analysis of Eq943)—(46) leads to the .5 %97
following interesting conclusions. =
If the coupling constants satisfy the relations § 0.4+
913924~ 914923=0, 0.2

A=Ay, (47)

andK;=K,, the atom-field system will never reach the up-
per states, however strong the interactions, provided that ini-
tially the two upper_ states are not populated and that _ _ _
A(Z)(O):_(glj/gzj)A(l)(O), j=1 or 2. Let us recall that FIG_. 1. The time evolutlon of the popula_ltlo_ns of the two upper
A,=A, means thaE, + w;=E,+ w,. Then the transmitted levels is shown]4) (dashed ling and |3) (solid line). The param-

light possesses just one spectral lifiestead of fouy of ~ Sters arelin units of gip) A;=4,=0, K,=0.5,K,=0.4,9;3=08,
V\%dthpK —K J P L 4 023=1.6, g,4,=2.0, A;=0. Atrtificially large values ofK,; and K,
1=Ky,

. . have been chosen in order to make both the oscillations and the
On the other hand, if the relations .
approach to the stationary state transparent.

— =0,
124”10z have been plotted _for the case of the following initial
A4=0, (48  conditions: A¥=1,A0=0,i=1,23.

Let us now suppose that the relations in Ej7) are ap-
hold, the system can be trapped in the two upper levelsproximately fulfilled and that initially the atom is prepared as
provided that initially the lower ones are not populated andan arbitrary superposition of the upper levels. Again, let us
that A(4)(0): — (gi‘algIA)A(3)(0) Under these ConditionS, ha.sten to E_issert that in the SySt-em of EQS)—(46) there are
the system will not radiate through the walls at all and alscStill four different eigenvalues, i.ethere is no degeneracy
no photon will appear in the cavity, however strong the in-But one of.the e|genvect9rs—§hat corresponding to the ei-
teractions and however large the damping constants. genvalue—iA;—K;—has its third and fourth components

The last two effects depend very strongly on the initial equal to zero. This means that the system will oscillate with
conditions, and in particular the preparation of the system ifPnly three frequencies and three damping constants, hence
the lower levels with exactly one photon in each mode in the?nly three lines appear in both spectra of the transmitted
cavity seems to be rather unrealistic. However, the relation ifight. If the cavity is bad, the cancellation is fairly “stable”
Eq. (47) as well as that in Eq/48) leads to some interesting With respect to small deviations from E@7) [see Figs. &)

effects which are independent of the initial conditions. ~ @nd 3c)]. This effect is of an interference nature: if E¢47)
In fact, if Eq. (48) holds, one of the eigenvalues of the &€ valid, there are specific phase relations in the system
matrix of coefficients on the right-hand side of E¢43)— which do not allow one type of oscillation to be realized.

(46) is zero. In general, for arbitrargnot too small g;, , Eq. .In Figs. 2 and 3, we have plotted the spectra of the trans-
(48) does not introduce degeneracy into the linear system dfitted light. There are two spectra since we have assumed
Eqgs.(43)—(46)—there are four different eigenvalues. But the that the reservoirs of two cavity modes are independent.
eigenvector corresponding to the zeroth eigenvalue has itshus, Si() is the spectrum of transmitted light associated
first two components equal to zero, which causes the cancefvith the first mode whileSy(«w) is the spectrum associated
lation of one line from the spectrum of transmitted light, With the second mode. They are defined as

since the amplituded™ and A® will oscillate with just

three frequencies and three damping constants. They will

finally approach zero. On the other hand, the amplituAfés Ky

andA® will approach some stationary values which are not Si(w)~ el lim|C(wy,1)[?, (49)
zero. Thus, even for very slow atoms, there is a considerable kil tow

probability of finding them finally in one of the excited states

and with no photons in the cavity. This is completely inde-

pendent of either the strength of the atom-cavity K,

interactions—provided that the relation in E@8) is Sy(w)~ el lim [B(wy,t)]?. (50)
fulfiled—or of the strength of the cavity-reservoir interac- k2l toe

tions. However, the latter must, of course, be very small,

otherwise we could not perform the Wigner-Weisskopf In Figs. 2a) and 3a), there are shown four spectral lines
elimination. The stabilization effect is shown in Fig. 1, for the case if Eq(47) is not fulfilled. On the other hand, in
where we have plotted the populations of the two upper levFigs. 2b), 2(c), 3(b), and 3c), the spectra are plotted under
els as functions of time—as is clearly seen, the populationthe condition that Eq(47) holds approximately. We see the
approach their stationary values. This and all other figuresvident cancellation of one spectral line.
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FIG. 2. Spectra of the transmitted light associated with the first F!G- 3. This is the same as in Fig. 2, but the transmitted light is

mode in the absence of spontaneous emission are sk
units) are arbitrary units (a) A;=3.0,A,=1.0,K;=0.02,K,=0.01,
013=0.5,0,3=1.6,0,,=2.0,A;=0 [the condition in Eq(47) is not
mef]; (b) the same as irfa), but for A,=3.001, g,3=0.801 [the
condition in Eq.(47) is approximately fulfilled; (c) the same as in
(@), but for A,=2.9,9,3=0.81,K,=0.15,K,=0.1[there are larger
deviations from Eq(47), but the decay rates are also larger

dt

Let us now enrich the model by adding the possibility of
spontaneous emission, which is especially important in the
case of optical cavities. Again using the Wigner-Weisskopf
approach, after elimination of the reservoirs’ degrees of free-
dom we obtain

d —
N -
|th

now associated with the second mode.

924H2) + 914E1) —i(Fygt 1“42)K4)

— (Pl 4l 3+ pz\/l“42F32)E3>, (51)

AR = — A AR + go A + g AD =i (Dgy+ T3 A®)

—(pf VT 42l a1+ p} JF42F32)K4), (52

d — _ _ _ _
i at A2 = —AZA(Z)—iK2A<2)+g§4A(4)+g§3A(3), (53
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FIG. 4. Spectra of the transmitted light associated with the first ~ 4 g
mode but now in the presence of spontaneous emission are 5§ ©
shown: (@) the same as in Fig.(d), but withI';=1",=0.03,P=0; = 075
(b) the same as in Fig.(8), but with ['3=I",=0.03, P=0. 5
d o o o o 3;3\ 0.50
| g A= - AN I AT - gL AN+ gTA®),  (54) E
% 0.25
whereT’;; denotes thecavity-modified spontaneous decay
rates from levej to leveli, while p; = w% wai /(| 3l | £4i]) » ot o T 7 z 1
wherey;; are the transition dipole moments. In deriving Egs. (w — Ea)/gu
(51)—(54), we have had to assume thstis very small when
compared with botl,— E; andE;—E;, i=1,2 and we have 1.25
ignored the Lamb shift contribution. Under the same condi-
tions as befordEq. (47) and K;=K,], the system can be — 100
trapped in the lower levels and thus will not exhibit any =
spontaneous emission at all. On the other hand, if the relation z 0.754 @
in Eq. (48) is fulfilled together with 2
é 0.50
. 91 91 3
iAg—Ta+ —pr="p_T,, (55) S
14 913 % 0.25-
where P:pl\/r41r3_1+ P2VT 4L 35, F3:F31+r321 Iy=Ts
+I'4,, one can get rid of the leakage of cavity photons—the oL M 1 3 3 2
system will be “trapped” in the two decaying upper levels. (@ - Eu)/gu
One may also achieve complete inhibition of radiation of any
kind if additionally the following relation holds true: FIG. 5. Spectra of spontaneously emitted light from the cavity

. are shown: (a) The parameters are the same as in Fig);4b) the

R % P_T,l=0 (56) parameters are the same as in Fidp)4(c) this is the same as i),

933 o but with I';=I",=1.0, P=0; (d) this is the same as ift), but with
P=0.95.
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Again, these effects depend very strongly on a speciathown that the system is exactly solvable: an explicit expres-
type of preparation of the system. Let us point out, howeversion for the time-evolution operator can be given. In order to
that the cancellation effect in the spectra survives wherbtain a family of physically interesting effective Hamilto-
spontaneous decay is present and it is visible in both theians, the method of multiple scales has been applied. We
transmitted light and spontaneous emission spectra. In Fig. dave found that a particularly interesting example of the
we have plotted the spectrum of the transmitted light associfour-level A system arises if the two upper levels are degen-
ated with the first modéS,). When the relation in Eq47) is  erate. In fact, for this case, we have found an explicit, closed-
not fulfilled [see Fig. 4a)] we clearly see four lines. In Fig. form expression for the dynamics of the atomic populations,
4(b) there are only three lines, since we have chosen paranfrom which we infer that both regular and periodic, as well
eters such that Eq47) does hold approximately. In Fig. 5 as only quasiperiodic, collapses and revivals can appear in
we show the spontaneous emission spectra, denoted hblge system. Additionally, the system can be used to produce
S, o(w) (it has been assumed tHay, is large when compared the “Schralinger-cat” states in the two-mode cavity via an
with the detunings and coupling constants and hence onlgxperiment of the Stern-Gerlach type. We have also found
part of the spectrum neab=E,; is displayedl. It consists the remarkable trapping properties of the system which can
again of four lines if the condition in Eq. 47 is not nj€ig.  lead to the cancellation of radiation transmitted through the
5(a)] but only three linegFig. 5b)] if it is fulfilled. In Figs.  cavity walls, or the suppression of spontaneous emission, or
5(c) and 8d) the spontaneous emission spectra are shown fdooth of these effects if some special relations between the
large values of the spontaneous decay rates. In F@.vée  coupling constants hold and the system is prepared in the
have chose?=0, while in Fig. 5d) P=0.95. It is seen that appropriate initial conditions. Also, under some weaker and
the interference effects connected with the fact that there is more realistic initial conditions, the system should exhibit
common reservoir for all the atomic operators does influencéhe cancellation of one line in the transmitted light spectra
the spectra in our cavity case, t¢of. [18]). But we have and in spontaneous emission due to the interference effects.
found that these effects are actually important only for large In future work on the system, we plan to apply the method
values of the decay rates which are comparable with thef multiple scales to the case of strong couplings and small
coupling constants. detunings to obtain other families of effective Hamiltonians,

Thus, we have found quite a rich phenomenology of trap-and to investigate other nonclassical features like antibunch-
ping and interference effects in the four-levelsystem. To ing and squeezing as well as beating phenomena.
close this section let us note that if in the system of Egs.

(43)—(46) there were small parameters besides those associ-
ated with the damping constants, we could perform our ACKNOWLEDGMENTS
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