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Dynamics of the four-levelL system in a two-mode cavity
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In this paper we investigate the properties of a four-level atomic system interacting with two modes of the
electromagnetic field in a cavity. By linearization of the Hamiltonian we show that the corresponding math-
ematical model is exactly solvable. To obtain simpler effective Hamiltonians the method of multiple scales is
applied. It is shown that under some special values of the detunings and coupling constants, exactly predictable
collapses and revivals in the atomic populations appear. Also, due to the specific interactions of the atom with
the cavity modes and the ensuing measurement of energy or angular momentum and energy, two-mode
Schrödinger-cat states arise in the cavity. Finally, the stabilization and trapping properties of the system are
demonstrated in a lossy cavity within the Wigner-Weisskopf approximation. The existence of stationary states
is shown and it is also shown that interference effects can cause cancellation of one line in both transmitted
light and spontaneous emission spectra.@S1050-2947~97!08002-5#

PACS number~s!: 42.50.2p, 32.90.1a, 02.90.1p
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I. INTRODUCTION

There exists a constant interest in simple quantum e
trodynamical systems, consisting of an atom—approxima
by taking into account just two, three, or four levels—a
one or only a few cavity electromagnetic modes. This
because in such a system one observes very interesting
fundamental effects such as collapses and revivals in ato
inversion @1#, squeezing, vacuum Rabi splitting@2#, anti-
bunching of photons, and the production of Schro¨dinger-cat-
type states@3#. These effects demonstrate the quant
‘‘grainlike’’ nature of light in a much more explicit way than
spontaneous emission or resonance fluorescence.

Simple quantum electrodynamical systems are also v
interesting from a formal point of view since they are oft
exactly integrable if one neglects losses. In an important
cent paper@4#, it has been shown that the exact solvability
the Jaynes-Cummings model is connected to the fact tha
Jaynes-Cummings Hamiltonian can be expressed in term
the generators of the Lie algebra su~2!. This discovery pro-
duces the possibility to exactly solve few-level and fe
mode generalizations of the Jaynes-Cummings model.

The purpose of this communication is twofold. On a fo
mal level, we show quite a complicated system which we
prove is exactly integrable, in the sense that the tim
evolution operator can be written in an explicit form. This
done via the appropriate linearization of the Hamiltonian.
a sense, our model is a maximal one which possesses
property. However, since the structure of the exact tim
evolution operator is very complicated and unmanagea
we use the method of multiple scales~MMS! and apply it on

*Permanent address: Institute of Physics, Nicholas Copern
University, Grudzia¸dzka 5, Torun´ 87-100, Poland.
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the level of the Schro¨dinger equation for the time-evolutio
operator to extract effective Hamiltonians which are use
from a physical point of view. Our system is a four-lev
generalization of the three-level nonresonant ‘‘L system’’
considered, e.g., in@5,6#. There has been some discrepan
between the authors of@5# and@6# regarding the structure o
the effective Hamiltonian which describes the coupling b
tween two lower levels. We believe that the method of m
tiple scales, since it is universal and efficient, brings reso
tion to this discrepancy. It also provides several oth
interesting effective Hamiltonians not considered in@5# and
@6#.

On a physical level, we find a two-mode system whi
can exhibit regular and predictable collapses and revival
this is a special type of the four-levelL system with two
degenerate upper levels. Unlike in the similar one-mo
case, however, the dynamics of inversion, though descri
by a closed-form expression, can also be only quasiperio
and thus quite erratic. Furthermore, we propose a St
Gerlach type of experiment to produce a Schro¨dinger-cat-
type state in the cavity. Again, the best candidate for such
experiment is the degenerate~in the two upper levels! system
if the coupling constants are such that the Stark shifts
identical. Also, the trapping properties of the system are a
lyzed within the Wigner-Weisskopf approximation.

The rest of the paper is organized as follows. In Sec.
we present the model and attempt to solve it exactly. In S
III, we apply the method of multiple scales to extract a fa
ily of effective Hamiltonians for a generalizedL system.
Section IV is devoted to analyzing the production
Schrödinger-cat states of the cavity modes and the two-m
regular collapse-and-revival pattern. In Sec. V, we anal
the stabilization properties and spectra of transmitted
spontaneously emitted radiation under the Wign
Weisskopf approximation and Sec. VI contains some fi
remarks.

us
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55 2349DYNAMICS OF THE FOUR-LEVELL SYSTEM IN A . . .
II. THE MODEL AND ITS SOLVABILITY

Let us consider a model system consisting of a four-le
atom interacting with two modes of the electromagne
field. We will assume a very specific coupling between
modes which is a direct generalization of theL system con-
sidered, e.g., in@5#. More precisely, the system is defined b
the following Hamiltonian:

H5(
ı51

4

Eis i i1 (
i51,2

v iai
†ai

1 (
j53,4

~g1 ja1s j11g2 ja2s j21H.c.!. ~1!

Thus, the first~lowest! level is coupled to the third and
fourth only via the first mode of the cavity field, while th
second level is coupled to the upper ones only via the sec
mode. So far, we have not assumed any relationship betw
the atomic energies and the mode frequencies; we will tr
solve the problem exactly. By ‘‘exact solution’’ we mean a
explicit expression for the time-evolution operator. With th
aim in mind, we start by linearizing the Hamiltonian. This
simplified by the observation that for some givenm photons
in the first mode andn photons in the second, the followin
states of the system can be populated:u4,m,n&, u3,m,n&,
u1,m11,n&, andu2,m,n11&. This suggests that the proble
can be reduced to the four-level system in an external ti
independent~within the rotating-wave approximation! field
if we find appropriate constants of motion. Let us furth
observe that, besides the Hamiltonian itself, the system
deed possesses at least two further constants of motion~the
excitation number operators! which turn out to be very use
ful:

N15a1
†a11s221s331s44 ~2!

and

N25a2
†a21s111s331s44. ~3!

The operatorsN1 andN2 commute not only with the Hamil-
tonian ~and with one another! but also with the free part o
the Hamiltonian and with all products of the typeaıs j i ,
i51,2; j53,4, as well asai

†ajs i j , i , j51,2. Let us define the
new operators as

S315
1

AN1

a1s31, S415
1

AN1

a1s41,

S325
1

AN2

a2s32, S425
1

AN2

a2s42,

Sii5s i i , i51,2,3,4, S345s34. ~4!

These operators, together with their Hermitian conjuga
and the operatorS125S13S325S14S42 ~and its conjugate!
span the Lie algebra su~4! ~cf. @4#! with the usual commuta
tor as the Lie product. Actually, of even more importance
l
c
e

nd
en
o

e-

r
n-

s

s

the fact that they form an associative matrix algebra, isom
phic to that spanned by the operatorssi j . Let us for instance
calculate the productS12S24:

S12S245S13S32S24

5
1

AN1

a1
†s13

1

AN2

a2s32

1

AN2

a2
†s24

5
1

AN1

a1
†s13

1

N2
~a2

†a211!s34.

But

1

N2
~a2

†a211!s342
1

N2
N2s34

5
1

N2
~a2

†a2112N2!s34

5
1

N2
~a2

†a2112a2
†a22s112s332s44!s3450,

henceS12S245(1/AN1)a1
†s145S14.

One can now write the Hamiltonian in terms of the ope
torsSi j :

H5(
i51

4

EiSii1 (
i51,2

v iai
†ai1 (

i51,2
(
j53,4

~gi j Sji1H.c.!.

~5!

By applying the unitary transformation

W5exp@2 i ~v1N11v2N2!t#, ~6!

we get the following ‘‘interaction’’ Hamiltonian which only
contains the operatorsSi j andNi without the explicit pres-
ence of the free field terms:

H85~E12v2!S111~E22v1!S221~E32v12v2!S33

1~E42v12v2!S441 (
i51,2

(
j53,4

ANi~gi j Sji1gi j*Si j !.

~7!

If we choose the zero of energy in such a way th
E45v11v2, we obtain

H852(
i51

3

D iSıi1 (
i51,2

(
j53,4

ANi~gi j*Si j1gi j Sji !, ~8!

where D15(E42E1)2v1, D25(E42E2)2v2,
D35(E42E3).

The matrix representation of the Hamiltonian is given

S 2D1

0
g13

g14

0
2D2

g23

g24

g13*

g23*
2D3

0

g14*

g24*
0
0
D , ~9!

whereg i j5gi jANi .
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Thus, the problem of the exact solution for our model h
been reduced to the problem of the diagonalization of a q
dratic matrix of the fourth degree. This can always be p
formed, but the necessary intermediate step—the comp
tion of the eigenvalues and eigenvectors—introduces
terrible algebraic mess which obscures both the formal st
ture of the Hamiltonian and the underlying physics. The
fore, despite the fact that the system admits an exact s
tion, in the next section we will apply an efficien
perturbation scheme—the method of multiple scales—to
tract the physical information contained in the Hamiltoni
H8, provided that a natural small parameter exists in it.
conclude this section, however, let us~with aesthetical rea-
sons in mind! obtain an exact solution for a simpler cas
Namely, let us suppose that we may restrict ourselves to
three-level model ~with energies E1 ,E2 ,E3! such that
D15D25D andgi j are real. This is the model considered
ly
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Gerry and Eberly@5#, but ourD is still arbitrary and we can
consider both strongly resonant and dispersive interactio
In this case, it is more convenient to choose the zero
energy such thatE15v2. Then the Hamiltonian in matrix
form is given by

S 0
0

g13

0
0

g23

g13

g23

D
D . ~10!

Let e1 ,e2 denote two nonzero eigenvalues~which are of
course still operators containing the excitation number ope
tors! of the above matrix with inverse sign,e15(1/2)@D
2AD214(g13

2 1g23
2 )], e25(1/2)@D1AD214(g13

2 1g23
2 )#.

Also let the square root term be denoted byf . It is then
possible to perform the exponentiation of the matrix~2i tH 8!
to obtain
U85exp~2 iH 8t !5Fg13
2 @e2exp~2 ie1t !2e1exp~2 ie2t !#

f ~g13
2 1g23

2 !
1

g23
2

g13
2 1g23

2 GS11
1Fg23

2 @e2exp~2 ie1t !2e1exp~2 ie2t !#

f ~g13
2 1g23

2 !
1

g13
2

g13
2 1g23

2 GS221 e2exp~2 ie2t !2e1exp~2 ie1t !

f
S33

1Fg13g23@e2exp~2 ie1t !2e1 exp~2 ie2t !2 f #

f ~g13
2 1g23

2 ! G~S121S21!1
exp~2 iDt !

f

3@exp~ ie1t !2exp~ ie2t !#~g13S131g23S23!1
1

f
@exp~2 ie1t !1exp~2 ie2t !#~g13S311g23S32!. ~11!
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The total time-evolution operator results if we multip
the above expression byW from the left ~we have to set
s4450 in N1 andN2 contained inW!.

As we can see, althoughU8 has a structure fairly simila
to the time-evolution operator for the usual Jayn
Cummings model@4#, it is actually too complicated to be
useful in practice. It is a well-known fact in nonlinear m
chanics that in many cases a perturbative treatment shou
applied even if the exact solution is available.

III. APPLICATION OF THE METHOD
OF MULTIPLE SCALES

As mentioned in the Introduction, the method of multip
scales ~MMS! @7,8# belongs ~together with the Krylov-
Bogoliubov-Mitropolskii method@9,10#! among the most
successful techniques of dealing with a nonlinear system
particular, it is widely used in nonlinear mechanics. In t
context of quantum-dynamical problems it has been app
in @11# to describe the spontaneous emission from both
atom and from a collection of many atoms, and in@12# to
study the dynamics of atoms and molecules in laser fields
@13# it has been used to investigate the dynamics of both
internal and external degrees of freedom of an atom exc
by a standing wave, in@14# to obtain the dynamics of sys
tems having both classical and quantum degrees of freed
-

be

In

d
e

in
e
d

m,

and finally in @15# to approximately solve the Heisenbe
equations of motion and the Schro¨dinger equation for the
wave function for the case of an anharmonic oscillator. Af
some preparatory work with MMS applied to the Heisenbe
equations of motion for the Jaynes-Cummings model,
have decided to apply it rather on the level of the Sch¨-
dinger equation for the time-evolution operator. The reas
for this strategy is the following. On the one hand, the tim
evolution operator provides, together with some initia
given state, the most general information available ab
quantum systems. On the other hand, due to the linearity,
whole procedure possesses a very transparent structure
believe that in many cases the method considered her
much superior with respect to the usual Dyson’s expans
since it does not contain terms proportional to powers
time and it preserves the unitarity of the evolution up to t
required order. We will see that MMS provides correctio
to the unperturbed Hamiltonian, therefore giving some eff
tive Hamiltonians.

From now on, in the following subsections, we will a
sume that there is at least one small parameter containe
the Hamiltonian in Eq.~1!. Our general procedure will be a
follows. We will define a dimensionless timet and write a
Hamiltonian which will generate the dynamics in the timet.
This Hamiltonian will also contain a dimensionless sm
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55 2351DYNAMICS OF THE FOUR-LEVELL SYSTEM IN A . . .
parameter in an explicit form and will thus separate into t
parts, a free part and a perturbation. Then we will expand
time-evolution operator~still in time t! into a power series in
terms of the small parameter and will use the solvabi
conditions to eliminate the possible secular terms. The wh
procedure is described in detail in Sec. III A.

In this paper it will be assumed that the absolute value
at least two ofDi , i51,2,3, are much larger than a
ugi j uAN̄i , where N̄i denotes mean excitation numbers. W
will investigate the case of strongly resonant interactio
elsewhere. Despite this assumption, several internal r
nances are possible in the system and hence we have to
sider several cases; in some of these we will obtain inter
ing effective Hamiltonians to be compared with those
@5,6#. We will also assume that the photon number distrib
tion functions remain well localized near their mean valu

We will first outline the general procedure assuming t
all threeDi are of the same order and that they are mu
larger than allgi jAN̄i . The effective coupling constants a
also assumed to be of the same order.
m5min~uD1u,uD2u,uD3u! and n5max(ugij uAN̄i). We define a
small dimensionless parametere as

e5
n

m
.

Let d i5D i /m andmi j5gi jANı/n. We introduce a dimen-
sionless timet5mt. The dynamics int are governed by the
Hamiltonian

h52(
i51

3

d iSii1e (
i51,2

(
j53,4

mi jSi j5h01eh1 . ~12!

There are two natural time scales of the evolution: o
connected with the part of the Hamiltonian containing det
ings, the other connected with the coupling constants. Th
fore, it is quite natural to look for an approximate~asymp-
totic! solution as a function of at least two different time
which are ‘‘faster’’ and ‘‘slower.’’ Actually, it is more con-
venient and systematic to work from the very beginning w
many dimensionless time variables and to keep some of t
according to the needs of a particular problem. Let us the
fore introduce some new time variables:

T05t, T15et, T25e2t. ~13!

An approximate time-evolution operator is assumed to
pend on all these time scales separately.

Thus we have

d

dt
5

]

]T0
1e

]

]T1
1e2

]

]T2
1••• . ~14!

Before proceeding further, let us introduce some ‘‘blanke
notation. Namely, in all the formulas below,F(T0), F1(T0),
F8(T0), . . . denote operators which contain exponent
functions ofT0 such that the factors multiplyingT0 in the
exponents areO~1!. Such operators can be safely integrat
overT0 without any danger of obtaining small~or zero! de-
nominators. Letu denote the time-evolution operator„with
e

le

f

s
o-
on-
t-

-
.
t
h

t

e
-
e-

,

m
e-

-

’

l

d

exp@2i (v1N11v2N2)t# already factored out… as a function
of time t. To obtain an asymptotic expression foru we ex-
pand it as

u5u01eu11e2u21••• . ~15!

Taking into account Eqs.~12! and ~14! we get

i
]u0
]T0

5h0u0 , ~16!

i
]u1
]T0

1
]u0
]T1

5h0u11h1u0 , ~17!

i
]u2
]T0

1
]u1
]T1

1
]u0
]T2

5h0u21h1u11h2u0 ~18!

@in Eq. ~12! we have, of course, thath250#.
Even in the case of purely dispersive interactions we

have internal resonances, the appearance of which c
pletely changes the physical situation. In order to anal
them, we must consider several subcases.

A. Case 1:d i2d j5O„1…

We therefore have to consider the case in which the
ferences between thed ’s are of the same order as thed’s
themselves. Equation~16! can easily be solved:

u05exp@2 ih0T0#v~T1 ,T2!

5exp†i ~d1S111 id2S221 id3S33!T0‡v~T1 ,T2!. ~19!

To solve Eq.~17! we write

u15exp@2 ih0T0#ū1~T0 ,T1 ,T2!, ~20!

and Eq.~17! takes the form

i
]ū1
]T0

1 i
]v
]T1

5eih0T0h1e
2 ih0T0v~T1 ,T2!. ~21!

The Hamiltonianh1 in the ‘‘interaction representation’
with respect toh0 is

eih0T0h1e
2 ih0T05~m13* S13e

2 id13T01m13S31e
id13T0!

1~m14* S14e
2 id1T01m4S41e

id1T0!

1~m23* S23e
2 id23T01m23S32e

id23T0!

1~m24* S24e
2 id2T01m24S42e

id2T0!,

~22!

whered i j5d i2d j .
We see that, in the first order, all the terms on the rig

hand side of Eq.~21! are of the type ofF(T0) and hence can
be integrated without the appearance of secular terms. Th
fore we put

]v
]T1

50,
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and integrate Eq.~21!; let x(T1 ,T2) denote a solution to the
homogeneous equationi (]ū1/]T0)50.

To solve Eq.~18! we again write

u25e2 ih0T0ū2~T0 ,T1 ,T2!. ~23!

Then Eq.~18! becomes

i
]ū2
]T0

1 i
]ū1
]T1

1 i
]v
]T2

5eih0T0h1e
2 ih0T0ū1 . ~24!

Here]ū1/]T15]x/]T1 sincev does not depend onT1. Tak-
ing into account Eq.~22! we find the right-hand side of Eq
~24!:

eih0T0h1e
2 ih0T0ū15F um13u2

d13
~S332S11!1

um14u2

d1
~S442S11!

1
um23u2

d23
~S332S22!

1
um24u2

d2
~S442S22!Gv1F~T0!. ~25!

Now, the first four terms on the right-hand side of E
~25! do not depend onT0. Thus, if we try to integrate ove
T0, this will immediately lead to terms proportional toT0.
These terms must be avoided since they make all the dyn
ics nonunitary and thus unphysical, which implies the bre
ing of the canonical commutation relations, etc. We c
avoid their appearance very easily by equatingi (]v/]T2) to
the first four terms in Eq.~25!. The solution to the equation
produced in this way is obvious:

v~T2!5expF2 i S um13u2

d13
~S332S11!1

um14u2

d1
~S442S11!

1
um23u2

d23
~S332S22!1

um24u2

d2
~S442S22! DT2G .

~26!

If we combine this result with Eq.~19!, and then go back to
time t and define the effective Hamiltonian asHeff

5iU0
†(dU0 /dt), U05Wu0 , we obtain

Heff5v1N11v1N22(
i51

3

D iSii1S ug14u2N1

D1
1

ug24u2N2

D2
DS44

1S ug13u2N1

D13
1

ug23u2N2

D23
DS33

2S ug13u2N1

D13
1

ug14u2N1

D1
DS11

2S ug23u2N2

D23
1

ug24u2N2

D2
DS22. ~27!

If we setD350, gi450, we may compare the above effe
tive Hamiltonian with that of Alexanian and Bose@6#. They
are completely different; our effective Hamiltonian in E
~27! is diagonal, which is a characteristic feature of pure
dispersive interactions. We will see later that an effect
.

m-
-
n

e

Hamiltonian of a form which is almost identical to that in@6#
will arise if an internal resonance is present in the system

B. Case 2:d12d25O„e…

Let us now assume that, although all theD’s are much
larger than the effective coupling constants, one of their d
ferences,D12D2, is a small quantity, comparable with thes
effective couplings. In this case we writeD25D12~D12D2!

and definem as min~uD1u,uD3u!, andn as max(uD12u,gi jAN̄i).
The dimensionless small parameter is defined as bef
e5n/m andt5mt. The Hamiltonian which generates the d
namics in timet is now given by

h52d1~S111S22!2d3S33

1eS d12S221(
i51

2

(
j53

4

~mi j*Si j1mi jSji !D
5h01eh1 , ~28!

where lower cased and mi j ’s are defined as before an
d125D12/n. However, this is not enough to substantia
change the effective Hamiltonian as given by Eq.~27!. In-
deed, proceeding as before, we obtain almost exactly
same effective Hamiltonian, with the only difference bei
that all theD2’s are replaced byD1’s and all theD23’s by
D13’s in all those~and only those! terms which containugi j u

2.
Substantial changes are introduced to thefirst-order correc-
tion only; the operatorx is no longer T1 independent:
x(T1 ,T2)5exp[2 id12S22T1]y(T2), wherey(T2) can be ex-
pressed in terms ofv.

C. Case 3:d12d25O„e2…

Now we assume that we have almost exact inter
resonance: E11v1 is almost equal toE21v2, so their dif-
ference is small even when compared withugi j uANi . Whilem
andn are defined as before, we haved125D12m/~n

2!. Again,
e5n/m.

The Hamiltonian~for the evolution in timet! is now
given by

h52d1~S111S22!2d3S33

1e(
i , j

~mi j*Si j1mi jSji !1e2d12S22

5h01eh11e2h2 . ~29!

In the Hamiltonian above, the indexi takes the values 1,2
while the indexj takes the values 3,4. The zeroth-order a
proximation is given by

u05exp@ i ~d1~S111S22!1d3S33!T0#v~T1 ,T2!. ~30!

To obtain the first-order approximation we compute t
Hamiltonianh1 in the ‘‘interaction representation’’ with re
spect toh0:
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eih0T0h1e
2 ih0T05~m13* S13e

2 id13T01m13S31e
id13T0!

1~m4*S14e
2 id1T01m14S41e

id1T0!

1~m23* S23e
2 id13T01m23S32e

id13T0!

1~m24* S24e
2 id1T01m24S42e

id1T0!.

~31!

Because the right-hand side of Eq.~31! is of the type
F(T0), we have]v/]T150 and hence]ū1/]T15]x/]T1 ,
whereū1, x, andū2 are defined as for Case 1.

We have to solve to the second order an expression s
lar to Eq.~25!:

i
]ū2
]T0

1 i
]x

]T1
1 i

]v
]T2

5eih0T0h1e
2 ih0T0ū11eih0T0h2e

2 ih0T0v

5F um13u2

d13
~S332S11!1

um14u2

d1
~S442S11!

1
um23u2

d13
~S332S22!1

um24u2

d1
~S442S22!Gv

2F Sm13* m23

d13
1
m14* m24

d1
DS121H.c.Gv

1d12S22v1F1~T0!. ~32!

Note the presence of nondiagonal terms in the ab
expression. We may put i (]x/]T1)50 and
i (]ū2/]T0)5F1(T0). Then the solution forv is obvious and
we immediately find the effective Hamiltonian:

Heff5v1N11v2N22(
i51

3

D i1
ug13u2N1

D13
~S332S11!

1
ug14u2N1

D1
~S442S11!1

ug23u2N2

D13
~S332S22!

2F S g13* g23AN1AN2

D13
1
g14* g24AN1AN2

D1
DS121H.c.G .

~33!

In this Hamiltonian one can recognize that obtained in@6#
if we ~a! restrict ourselves to the three-level system and~b!
let D1 be equal toD2 ~this corresponds toD15D3 in the
notation of @6#! in the interaction terms of the Hamiltonia
obtained by Alexanian and Bose. This is not an essen
difference, since we have assumed thatD12D2 is very small.

Our formal results achieved so far may be summarized
follows: they support those of@6# in that our effective Hamil-
tonian contains intensity-dependent Stark shifts of all lev
On the other hand, they support the assumption of Gerry
Eberly that to study an effective interaction between
statesu1& and u2& it is enough to restrict oneself to near res
nant cases, i.e., two detunings,D1 andD2, which are equal or
almost equal. If this is not the case, one can use adiagonal
effective Hamiltonian and investigate the effective coupli
between the two lower levels only as a small correcti
i-

e

al

s

s.
nd
e

.

Needless to say, having linearized both the total Hamilton
and all effective Hamiltonians, we could very easily obta
an explicit expression for all effective time-evolution oper
tors.

D. Case 4:d12d25O„e2…, d35O„e2…

Let us now consider the case of a very small energy
between the levelsu3& and u4&. We definem5min~uD1u,uD2u!,
n5max(ugi j uA(Ni), d125D12m/~n

2!, d35D3m/~n
2!, e5n/m.

This case is quite interesting because we obtain an effec
coupling not only between the two lower levels, but al
between the two upper ones. In fact, calculations of exa
the same type as before lead to the effective Hamiltonia

Heff52(
i

Di1
1

D1
$N1@ ug13u2~S332S11!1ug14u2~S442S11!#

1N2@ ug23u2~S332S22!1ug24u2~S442S22!#

1@~g13g14* N11g23g24* N2!S341H.c.#

2@~g13* g231g14* g24!AN1AN2S121H.c.#%. ~34!

As has been pointed out in@5#, the effective interaction
between two lower levels is zero-photon: there is neit
gain nor loss of photons but any transition from one level
another is connected by the exchange of photons betw
modes. The Hamiltonian above shows that between the
upper levels we have a zero-photon coupling in an e
stricter sense: there are Rabi oscillations in the subsys
consisting of the statesu3& and u4&, but there is no exchang
of photons between the two modes.

E. Case 5:d12d25O„1…, d35O„e2…

Now m5min~uD1u,uD2u!, and the other variables are define
as before. In this case we obtain an effective Hamilton
which contains just the effective interaction between the t
upper levels, without any coupling between the lower on

Heff52(
i51

3

D iSii1
1

D1
@ ug13u2N1~S332S11!

1ug14u2N1~S442S11!#1
1

D2
@ ug23u2N2~S332S22!

1g24
2 N2~S442S22!#

1F S g13g14* N1

D1
1
g23g24* N2

D2
DS341H.c.G . ~35!

This Hamiltonian provides a two-mode generalization
that proposed by@16#. We will use it in the next section to
produce a kind of Schro¨dinger-cat state in the cavity.

In this section we have applied a variant of the method
multiple scales to extract effective interactions in a ‘‘L-
type’’ four-level system with weak coupling. Thenotation
has been greatly simplified by the previous linearization
our system, but we would like to stress that MMS wou
work equally well even if we had no idea about how
linearize the initial Hamiltonian. Let us also notice that it
very systematic and universal, and provides corrections
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the evolution operators defined by the effective Hamil
nians, and thus we believe that it is superior with respec
an adiabatic elimination or a Foldy-Wouthuysen transform
tion as applied in@6#.

IV. SCHRÖDINGER-CAT STATES AND POPULATION
DYNAMICS IN A RESTRICTED TWO-MODE

TWO-PHOTON INTERACTION

In this section we consider the possible appearance
some special states of the cavity fields from a superposi
of the products of simple coherent states with large m
numbers of photons. By a turn of phrase, such states
called ‘‘Schrödinger-cat’’ states. They are quite importa
from a fundamental point of view as their existence is a re
to Einstein’s and Schro¨dinger’s objections against quantu
theory, based on the fact that it is very difficult to find a
coherent superposition of quantum states on a macrosc
level. In fact, on the one hand, we can now produce s
coherent superpositions in high-Q cavities and in optical
traps, but on the other, there is a satisfactory explanatio
the difficulty in observing such superpositions in terms of
decoherence introduced by the coupling with the reser
which is always present.

One of the most important nonclassical features of
generalized Jaynes-Cummings models is the presence o
so-called collapses and revivals in the dynamics of the po
lations of atomic states. Usually, however, one cannot fin
closed formula to express these dynamics. Asymptotic
numerical methods~e.g., see@1# and @17#! show that when
time increases, collapses and revivals usually appear less
less regularly and then finally in an erratic way, due to
strong overlap between neighboring revivals. Phoenix
Knight @16# have found a system which exhibits perfec
regular dynamics of collapses and revivals. The system
scribed by our effective Hamiltonian in Case 5 is anoth
example with this feature. In this section we will assume
without loss of generality—that thegi j ’s are real. Let us
begin with Schro¨dinger-cat-type states. We will assume
just in order to obtain a closed-form expression—th
g135g14, g235g24, and D350. This means that the uppe
levels are perfectly degenerate: not only are their ener
~without interactions! equal; the Stark shifts are also th
same.

Let us rewrite the Hamiltonian containing the effecti
coupling between the levelsu3& and u4& as

Heff5E11E21~v11v2!~S331S44!1v1n11v2n21HI ,
~36!

whereni5ai
†ai , i51,2, andHI is given by

HI52
2g13

2

D1
N1S112

2g23
2

D2
N2S22

1S g132D1
N11

g23
2

D2
N2D ~S331S441S341S43!. ~37!

Products of the excitation number operators andSjk’s can
be written in terms of the photon number operato
NiSjk5(ni11)Sjk , i51,2, j ,k53,4. We will write li in-
stead ofg i3

2 /D i .
-
to
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:

Let us suppose that initially the cavity fields are in coh
ent states and the atom is in a coherent superposition o
upper states:

uC~0!&5~c3u3&1c4u4&)ua&ub&. ~38!

Let us denote the time of flight of the atom through t
cavity by t0 ~we will identify this time with the time of the
atom-cavity interaction!. After a time t01t1 , we perform a
measurement to project the wave functions onto one of
states^3u or ^4u; because the atomic energies in these t
states are the same, we propose to use a Stern-Gerlach
of experiment if the upper levels differ in theirmJ value—
atoms in the stateu3& will fly to a different spatial region
from those in the stateu4& and we can then measure th
atomic energy in an ionization chamber to project on
statesu3& or u4&. Let us suppose that we have found the ato
in the stateu4&. Then the field in the cavity will be in the stat

uC&field5
1
2 exp„2 i ~v11v2!~ t01t1!…

3exp„2 i ~v1n11v2n2!~ t01t1!…@~c42c3!ua&ub&

1~c41c3!e
22i ~l11l2!t0uae22il1t0&ube22il2t0&].

~39!

If we chooseli andt0 appropriately, the expression in th
square bracket above can be equal, e.g., to (c42c3ua&ub&
1(c41c3)u2a&u2b&, taking a shape characteristic to ca
ity Schrödinger cats. Let us note that, unlike in the usu
dispersive interaction of the Jaynes-Cummings atom wit
cavity mode, it is not actually necessary to prepare the a
in a superposition of two states. It can be prepared in
stateu3& or in the stateu4&, or in any superposition of thes
states~provided thatc3Þc4 andc3Þ2c4!, and we can per-
form projection onto either of the states^3u or ^4u—in any
case, a Schro¨dinger-cat state will arise, without any add
tional p/2 pulses applied to the atom before measurem
On the other hand, if there is no degeneracy in the two up
levels and the interactions are purely dispersive~the effective
Hamiltonian is as in Case 1 of the previous section!, we can
prepare the atom in a superposition of, say, the two up
levels before it enters the cavity and then apply an additio
pulse after it leaves the cavity, as in@3#. The subsequen
measurement of atomic energy will produce two-mo
Schrödinger cats.

Let us now consider the population dynamics for the c
of the exact degeneracy of the levelsu3& and u4&; that is, the
assumptions aboutgi j are the same as above in this sectio
Let the system be initially prepared as

uC~0!&5u4&ua&ub&.

Then by straightforward calculation we find that

^S44~ t !&5
1

2
$11Re„exp@2i ~l11l2!t1n̄1~e

2il1t21!

1n̄2~e
2il2t21!#…%. ~40!

Thus the population dynamics in our system can be
pressed by a closed-form formula. Overlap between ne
boring revivals does not appear as a consequence of the
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that in our effective Hamiltonian the coupling contains t
actual field intensities rather than their square roots. Ne
theless the population dynamics are, in general, only qu
periodic in time, since in the time dependence of^S44& we get
all frequencies of the typekl11 ll2 , wherek,l are arbitrary
integers. Contributions of various frequencies are weigh
by the products of Bessel and modified Bessel functio
Thus, the behavior of̂S44(t)& can be both quite regular an
also fairly bizarre, depending on the relation between thel’s
andni ’s, as well as on the scale of time of the observatio

V. STABILIZATION PROPERTIES OF THE SYSTEM
AND SPECTRA OF THE TRANSMITTED LIGHT

AND SPONTANEOUS EMISSION

In the preceding sections we have analyzed the sys
under the assumption that the cavity is perfect. Before
start a simple analysis of the trapping and stabilization pr
erties of the system, let us first briefly discuss the possib
of including losses in the present formalism—the method
multiple scales. The following difficulties arise. The mo
rigorous approach would require taking into account b
our atom with the cavity and one or several reservoirs as
one closed system and then applying MMS. Unfortunate
proceeding this way we encounter quite a fundamental p
lem: any realistic model of a reservoir will contain infinite
many quasiresonant modes for which we would not be a
to even write down the solvability conditions in an unam
biguous way. This same problem has been recognized by
authors of@19#, where an algorithm has been constructed
perturbatively solve the Heisenberg equations of moti
based on the Lindstedt-Poincare´ perturbative method. One
might overcome this difficulty by giving up with the descrip
tion via the time-evolution operator or the Heisenberg eq
tions of motion for the total system and applying a Marko
ian master equation for the density operator. In this case
may proceed as before~provided, of course, that a sma
parameter exists!. Instead of operating with exp~2ih0T0!,
etc., we would have to do this with an appropriate expon
tial of a zero-order Liouvillian, exp~2i l 0T0!, where
l 0(•)5[h0 ,(•)]. The main difficulty with this procedure is
d
ft
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em
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associated with the complicated form of the dissipator for
Markovian master equations, especially in the case of n
zero temperature. We believe, however, that MMS combin
with numerical calculations could give excellent results
complicated systems like four-level atoms interacting w
cavity modes. In this section we will use yet another simp
fied approach, restricting ourselves to the Wigner-Weissk
approximation. That is to say, we will use the pure-st
representation and adiabatically eliminate the reservoir
grees of freedom, thus allowing only one-photon transitio

In a recent paper@18#, Zhu and Scully have shown that
strong suppression of spontaneous emission and conside
modification of the spontaneous emission spectra can be
served for a four-level atom in a vacuum, due to the quant
interference. The necessary ingredient for such an obse
tion is a particular relation between the transition dipole m
ments for transitions from the highest and the second hig
levels to the lowest one. Also, the system has to be co
ently pumped by an external classical field. In connect
with this, there arises the following question: Is it possible
obtain an analogous result for an atom interacting with
lossy cavity? That is, is it possible to suppress leakage
photons from the cavity? It is shown below that it is inde
possible in a simple four-level system and a two-mode c
ity, the same as considered in the preceding section with
addition of cavity losses. We will first analyze the ca
where only the field losses are taken into account and
time of flight of the atom through the cavity is sufficient
small when compared with the inverse of the spontane
decay rate so that the spontaneous emission can be
glected.

The system Hamiltonian is given by Eq.~1!. We add to it
the Hamiltonians representing bath and system-bath c
plings:

DH5(
j51

2

(
k

vkbk j
† bk j1(

j51

2

(
k

~jk jaj
†bk j1jk j* bk j

† aj !.

~41!

We assume that reservoirs for modes ‘‘1’’ and ‘‘2’’ ar
uncorrelated. The wave function of the system is
uC~ t !&5A~4!~ t !u4&Au0&1u0&2u0&R1u0&R21A~3!~ t !u3&Au0&1u0&2u0&R1u0&R21A~2!~ t !u2&Au0&1u1&2u0&R1u0&R2

1A~1!~ t !u1&Au1&1u0&2u0&R1u0&R21(
k
Bku2&Au0&1u0&2u0&R1u1k&R21(

k
Cku1&Au0&1u0&2u1k&R1u0&R2 , ~42!
where, e.g., the ketu1&Au1&1u0&2u0&R1u0&R2 represents the
atom in the stateu1&, with one photon in the first mode an
zero photons in the second mode and both reservoirs. A
writing the Schro¨dinger equations and adiabatically elimina
ing the bath variables, we obtain the following simple syst
of linear differential equations:

i
d

dt
Ā~4!5g24Ā

~2!1g14Ā
~1!, ~43!
er
i
d

dt
Ā~3!52D3Ā

~3!1g23Ā
~2!1g13Ā

~1!, ~44!

i
d

dt
Ā~2!52D2Ā

~2!2 iK 2Ā
~2!1g24* Ā

~4!1g23* Ā
~3!,

~45!

i
d

dt
Ā~1!52D1Ā

~1!2 iK 1Ā
~1!1g14* Ā

~4!1g13* Ā
~3!,

~46!
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whereĀ( i )5A( i )exp~2iE4t! and

Ki5p(
k

ujkiu2d~vk2v i !.

A very simple analysis of Eqs.~43!–~46! leads to the
following interesting conclusions.

If the coupling constants satisfy the relations

g13g242g14g2350,

D15D2 , ~47!

andK15K2 , the atom-field system will never reach the u
per states, however strong the interactions, provided that
tially the two upper states are not populated and t
Ā(2)(0)52(g1 j /g2 j )Ā

(1)(0), j51 or 2. Let us recall that
D15D2 means thatE11v15E21v2 . Then the transmitted
light possesses just one spectral line~instead of four! of
width K15K2 .

On the other hand, if the relations

g13g242g14g2350,

D350, ~48!

hold, the system can be trapped in the two upper lev
provided that initially the lower ones are not populated a
that Ā(4)(0)52(g13* /g14* )Ā

(3)(0). Under these conditions
the system will not radiate through the walls at all and a
no photon will appear in the cavity, however strong the
teractions and however large the damping constants.

The last two effects depend very strongly on the init
conditions, and in particular the preparation of the system
the lower levels with exactly one photon in each mode in
cavity seems to be rather unrealistic. However, the relatio
Eq. ~47! as well as that in Eq.~48! leads to some interestin
effects which are independent of the initial conditions.

In fact, if Eq. ~48! holds, one of the eigenvalues of th
matrix of coefficients on the right-hand side of Eqs.~43!–
~46! is zero. In general, for arbitrary~not too small! gi  , Eq.
~48! does not introduce degeneracy into the linear system
Eqs.~43!–~46!—there are four different eigenvalues. But th
eigenvector corresponding to the zeroth eigenvalue ha
first two components equal to zero, which causes the can
lation of one line from the spectrum of transmitted ligh
since the amplitudesĀ~1! and Ā~2! will oscillate with just
three frequencies and three damping constants. They
finally approach zero. On the other hand, the amplitudesĀ~3!

andĀ~4! will approach some stationary values which are n
zero. Thus, even for very slow atoms, there is a consider
probability of finding them finally in one of the excited stat
and with no photons in the cavity. This is completely ind
pendent of either the strength of the atom-cav
interactions—provided that the relation in Eq.~48! is
fulfilled—or of the strength of the cavity-reservoir intera
tions. However, the latter must, of course, be very sm
otherwise we could not perform the Wigner-Weissko
elimination. The stabilization effect is shown in Fig.
where we have plotted the populations of the two upper l
els as functions of time—as is clearly seen, the populati
approach their stationary values. This and all other figu
i-
t
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have been plotted for the case of the following initi
conditions: Ā~4!51, Ā( i )50, i51,2,3.

Let us now suppose that the relations in Eq.~47! are ap-
proximately fulfilled and that initially the atom is prepared
an arbitrary superposition of the upper levels. Again, let
hasten to assert that in the system of Eqs.~43!–~46! there are
still four different eigenvalues, i.e.,there is no degeneracy.
But one of the eigenvectors—that corresponding to the
genvalue2iD12K1—has its third and fourth componen
equal to zero. This means that the system will oscillate w
only three frequencies and three damping constants, he
only three lines appear in both spectra of the transmit
light. If the cavity is bad, the cancellation is fairly ‘‘stable
with respect to small deviations from Eq.~47! @see Figs. 2~c!
and 3~c!#. This effect is of an interference nature: if Eqs.~47!
are valid, there are specific phase relations in the sys
which do not allow one type of oscillation to be realized.

In Figs. 2 and 3, we have plotted the spectra of the tra
mitted light. There are two spectra since we have assum
that the reservoirs of two cavity modes are independe
Thus,S1~v! is the spectrum of transmitted light associat
with the first mode whileS2~v! is the spectrum associate
with the second mode. They are defined as

S1~v!;
K1

pujk1u2
lim
t→`

uC~vk ,t !u2, ~49!

S2~v!;
K2

pujk2u2
lim
t→`

uB~vk ,t !u2. ~50!

In Figs. 2~a! and 3~a!, there are shown four spectral line
for the case if Eq.~47! is not fulfilled. On the other hand, in
Figs. 2~b!, 2~c!, 3~b!, and 3~c!, the spectra are plotted unde
the condition that Eq.~47! holds approximately. We see th
evident cancellation of one spectral line.

FIG. 1. The time evolution of the populations of the two upp
levels is shown:u4& ~dashed line! and u3& ~solid line!. The param-
eters are~in units of g14! D15D250, K150.5, K250.4, g1350.8,
g2351.6, g2452.0, D350. Artificially large values ofK1 and K2
have been chosen in order to make both the oscillations and
approach to the stationary state transparent.
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Let us now enrich the model by adding the possibility
spontaneous emission, which is especially important in
case of optical cavities. Again using the Wigner-Weissko
approach, after elimination of the reservoirs’ degrees of fr
dom we obtain

FIG. 2. Spectra of the transmitted light associated with the fi
mode in the absence of spontaneous emission are shown@~arb.
units! are arbitrary units#: ~a! D153.0,D251.0,K150.02,K250.01,
g1350.5,g2351.6,g2452.0,D350 @the condition in Eq.~47! is not
met#; ~b! the same as in~a!, but for D253.001, g1350.801 @the
condition in Eq.~47! is approximately fulfilled#; ~c! the same as in
~a!, but forD252.9, g1350.81,K150.15,K250.1 @there are larger
deviations from Eq.~47!, but the decay rates are also larger#.
f
e
f
-

i
d

dt
Ā~4!5g24Ā

~2!1g14Ā
~1!2 i ~G411G42!Ā

~4!

2~p1AG41G311p2AG42G32!Ā
~3!, ~51!

i
d

dt
Ā~3!52D3Ā

~3!1g23Ā
~2!1g13Ā

~1!2 i ~G311G32!Ā
~3!

2~p1*AG41G311p2*AG42G32!Ā
~4!, ~52!

i
d

dt
Ā~2!52D2Ā

~2!2 iK 2Ā
~2!1g24* Ā

~4!1g23* Ā
~3!, ~53!

t FIG. 3. This is the same as in Fig. 2, but the transmitted ligh
now associated with the second mode.



y

s

d

ny
tio

th
s.
n

rs
a

ity

2358 55MACIEJ W. JANOWICZ AND J. M. A. ASHBOURN
i
d

dt
Ā~1!52D1Ā

~1!2 iK 1Ā
~1!1g14* Ā

~4!1g13* Ā
~3!, ~54!

whereGj i denotes the~cavity-modified! spontaneous deca
rates from levelj to level i , while pi5m3i* m4i /(um3i uum4i u),
wheremj i are the transition dipole moments. In deriving Eq
~51!–~54!, we have had to assume thatD3 is very small when
compared with bothE42Ei andE32Ei , i51,2 and we have
ignored the Lamb shift contribution. Under the same con
tions as before@Eq. ~47! and K15K2#, the system can be
trapped in the lower levels and thus will not exhibit a
spontaneous emission at all. On the other hand, if the rela
in Eq. ~48! is fulfilled together with

iD32G31
g13*

g14*
P*5

g14*

g13*
P2G4 , ~55!

where P5p1AG41G311p2AG42G32, G35G311G32, G45G41
1G42, one can get rid of the leakage of cavity photons—
system will be ‘‘trapped’’ in the two decaying upper level
One may also achieve complete inhibition of radiation of a
kind if additionally the following relation holds true:

ReS g14*g13* P2G4D 50. ~56!

FIG. 4. Spectra of the transmitted light associated with the fi
mode but now in the presence of spontaneous emission
shown: ~a! the same as in Fig. 2~a!, but withG35G450.03,P50;
~b! the same as in Fig. 2~b!, but with G35G450.03,P50.
.

i-

n

e

y

t
re

FIG. 5. Spectra of spontaneously emitted light from the cav
are shown: ~a! The parameters are the same as in Fig. 4~a!; ~b! the
parameters are the same as in Fig. 4~b!; ~c! this is the same as in~b!,
but with G35G451.0,P50; ~d! this is the same as in~c!, but with
P50.95.
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Again, these effects depend very strongly on a spe
type of preparation of the system. Let us point out, howev
that the cancellation effect in the spectra survives wh
spontaneous decay is present and it is visible in both
transmitted light and spontaneous emission spectra. In F
we have plotted the spectrum of the transmitted light ass
ated with the first mode~S1!. When the relation in Eq.~47! is
not fulfilled @see Fig. 4~a!# we clearly see four lines. In Fig
4~b! there are only three lines, since we have chosen par
eters such that Eq.~47! does hold approximately. In Fig.
we show the spontaneous emission spectra, denoted
Ss.e.~v! ~it has been assumed thatE21 is large when compared
with the detunings and coupling constants and hence o
part of the spectrum nearv5E41 is displayed!. It consists
again of four lines if the condition in Eq. 47 is not met@Fig.
5~a!# but only three lines@Fig. 5~b!# if it is fulfilled. In Figs.
5~c! and 5~d! the spontaneous emission spectra are shown
large values of the spontaneous decay rates. In Fig. 5~c! we
have chosenP50, while in Fig. 5~d! P50.95. It is seen tha
the interference effects connected with the fact that there
common reservoir for all the atomic operators does influe
the spectra in our cavity case, too~cf. @18#!. But we have
found that these effects are actually important only for la
values of the decay rates which are comparable with
coupling constants.

Thus, we have found quite a rich phenomenology of tr
ping and interference effects in the four-levelL system. To
close this section let us note that if in the system of E
~43!–~46! there were small parameters besides those ass
ated with the damping constants, we could perform
MMS analysis to predict the location and strength of ea
line. We would like to address this point in some futu
work.

VI. FINAL REMARKS

In this work we have analyzed a four-levelL system con-
sisting of four atomic levels and two modes of the elect
magnetic field with special constraints imposed on the c
pling constants. By linearizing the Hamiltonian, it has be
rl
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shown that the system is exactly solvable: an explicit expr
sion for the time-evolution operator can be given. In order
obtain a family of physically interesting effective Hamilto
nians, the method of multiple scales has been applied.
have found that a particularly interesting example of t
four-levelL system arises if the two upper levels are deg
erate. In fact, for this case, we have found an explicit, clos
form expression for the dynamics of the atomic populatio
from which we infer that both regular and periodic, as w
as only quasiperiodic, collapses and revivals can appea
the system. Additionally, the system can be used to prod
the ‘‘Schrödinger-cat’’ states in the two-mode cavity via a
experiment of the Stern-Gerlach type. We have also fou
the remarkable trapping properties of the system which
lead to the cancellation of radiation transmitted through
cavity walls, or the suppression of spontaneous emission
both of these effects if some special relations between
coupling constants hold and the system is prepared in
appropriate initial conditions. Also, under some weaker a
more realistic initial conditions, the system should exhi
the cancellation of one line in the transmitted light spec
and in spontaneous emission due to the interference effe

In future work on the system, we plan to apply the meth
of multiple scales to the case of strong couplings and sm
detunings to obtain other families of effective Hamiltonian
and to investigate other nonclassical features like antibun
ing and squeezing as well as beating phenomena.
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@19# J. Ackerhalt and K. Rza¸żewski, Phys. Rev. A12, 2549~1975!.


