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Resonance fluorescence spectrum of a two-level atom driven by a bichromatic field
in a squeezed vacuum
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The steady-state resonance fluorescence spectrum of a two-level atom driven by a bichromatic field in a
broadband squeezed vacuum is studied. When the carrier frequency of the squeezed vacuum is tuned to the
frequency of the central spectral line, anomalous spectral features, such as hole burning and dispersive profiles,
can occur at the central line. We show that these features appear for wider, and experimentally more conve-
nient, ranges of the parameters than in the case of monochromatic excitation. The absence of a coherent
spectral component at the central line makes any experimental attempt to observe these features much easier.
We also discuss the general features of the spectrum. When the carrier frequency of the squeezed vacuum is
tuned to the first odd or even sidebands, the spectrum is asymmetric and only the sidebands are sensitive to
phase. For appropriate choices of the phase the linewidths of only the odd or even sidebands can be reduced.
A dressed-state interpretation is provided.@S1050-2947~97!07302-2#

PACS number~s!: 42.50.Ct, 42.50.Dv, 32.80.2t, 32.30.2r
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I. INTRODUCTION

The radiative properties of atomic systems in a squee
vacuum have been the subject of intense investigation o
the past decade@1#. The most well known is the fluorescenc
spectrum of a two-level atom which, for a strong drivin
field, is a triplet with peak heights and linewidths depend
on the relative phase between the driving field and
squeezed vacuum@2#. A number of other interesting modifi
cations of the fluorescence spectrum have also been repo
such as asymmetries@3# and even suppression of the spect
lines @4#. However, the most distinctive features of the flu
rescence spectrum are the hole-burning and dispersive
files, which are qualitatively different from any features pr
dicted before for the spectrum@5#. Asymmetries of the
spectral lines can appear in the fluorescence field of a t
level atom damped by a thermal field@6#, whereas the hole
burning and dispersive profiles appear only in a squee
vacuum.

It has been shown@5# that these unusual features appe
only at the central line of the incoherent component of
spectrum and occur alongside a significant reduction of
spontaneous emission from the system. They provide
most striking and unusual consequences of the interactio
atomic systems with squeezed light, and their experime
observation would be a powerful demonstration of the abi
of the squeezed vacuum to modify atomic responses
fundamental way. It has been pointed out, however, t
these unusual features might be difficult to observe exp
mentally, as they occur at parameter values where the co
ent component dominates the spectrum. Moreover, they
evident for only a highly restricted range of the paramet
involved. In experiments, both the coherent and incohe
components contribute to the measured field@7#. In this pa-
per, we show that the anomalous features also arise in
bichromatic case, but for a wider range of parameters—
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particular, for a weak squeezed vacuum and large intens
of the bichromatic field—which makes the experimental o
servation much easier. Furthermore, there is no cohere
scattered component in the bichromatic case to interfere w
the observation of the incoherent spectrum@8#.

We also briefly discuss the general properties of the re
nance fluorescence spectrum in a bichromatic field, pay
particular attention to the phase dependence of the spec
when the squeezed vacuum is tuned respectively to the
tral line, the first odd, and the first even sidebands.
dressed-state interpretation of the principal features is p
vided.

In the absence of the squeezed vacuum, the incohe
fluorescence spectrum in an intense bichromatic field
been shown@9# to be qualitatively different from the charac
teristic triplet spectrum that is observed for the case of str
monochromatic excitation. Under a bichromatic excitati
the spectrum consists of a series of symmetric sideba
separated by half of the frequency difference between
two components of the driving field. The separation betwe
the sidebands is independent of the Rabi frequency of
driving field, but the number of sidebands in the spectr
increases as the Rabi frequency increases. When the co
nents of the bichromatic field have unequal amplitudes,
spectrum is asymmetric and the central peak and even s
bands split into doublets@10#. As a result, the spectrum con
tains more peaks. The effect of a bichromatic laser field
the Autler-Townes spectrum has also been discussed and
served experimentally@11#.

II. OPTICAL BLOCH EQUATIONS

The model is composed of a two-level atom with grou
stateug& and excited stateue& and transition frequencyvA .
The atom is driven by a bichromatic laser field with fr
quency componentsv15vA2d1 and v25vA1d2, sepa-
rated by 2d5d11d2. In general, the frequency componen
2340 © 1997 The American Physical Society
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55 2341RESONANCE FLUORESCENCE SPECTRUM OF A TWO- . . .
can be nonsymmetrically located about the atomic freque
vA , with the average frequencyvs5(v11v2)/2 detuned
from vA by D5vA2vs . The system~atom1 bichromatic
driving field! is coupled to the vacuum field, all the modes
which are assumed to be in a squeezed vacuum state.

The time evolution of the system can be described by
reduced density operatorr, which in a frame oscillating with
the frequencyvs obeys the master equation@2,12#

dr

dt
52 i @H,r#2

g

2
~N11!~s1s2r1rs1s222s2rs1!

2
g

2
N~s2s1r1rs2s122s1rs2!

2gMeifse22i ~vsv2vs!ts1rs1

2gMe2 ifse2i ~vsv2vs!ts2rs2 , ~1!

where s15ue&^gu and s25ug&^eu are the atomic raising
and lowering operators, respectively,g is the spontaneou
decay rate, and

H5 1
2 Dsz1V~s1e

ifLcosdt1H.c.!, ~2!

with V and fL being the Rabi frequency and the phas
respectively, of the driving field.~For simplicity, we have
assumed that the bichromatic field components have e
amplitudes, i.e., the field is 100% amplitude modulated.! The
parametersN, M , andfs , which appear in Eq.~1!, describe
the squeezing of the vacuum modes.N is the squeezing pho
ton number,M measures the strength of the two-photon c
relations of the vacuum modes around the carrier freque
vsv , andfsv is the phase of the squeezed vacuum. We h
the condition

M5hAN~N11!, where 0<h<1 ~3!

is called the degree of correlation.
The master equation~1! leads to a closed set of thre

equations of motion for the expectation values of the ato
operators~the optical Bloch equations!, which can be written
in matrix form as

d

dt
X~ t !5DX~ t !1LX . ~4!

The Bloch vector is of the form

X~ t !5F ^s2~ t !&

^s1~ t !&

^sz~ t !&
G ,

the inhomogeneous term is

LX5F 0

0

2g
G

andD is the 333 matrix
y
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D5F 2~G1 iD! 2j* e22ikdt iVcosdt

2je2ikdt 2~G2 iD! 2 iVcosdt

i2Vcosdt 2 i2Vcosdt 22G
G , ~5!

with

G5g~N1 1
2 !, j5gMeiF, F52fL2fsv ,

and kd5vsv2vs . ~6!

The parameterk indicates a detuning of the carrier frequen
vsv from the central frequencyvs : the choicek50 indi-
cates that the squeezed vacuum is centered on the ce
frequency, whereask51 indicates that the squeezed vacuu
is centered on the first odd harmonic, andk52 indicates that
it is centered on the first even harmonic, ofd.

In order to solve the system of equations~4!, we decom-
pose the componentsXl(t) of the vector~5! into slowly vary-
ing amplitudes oscillating at the frequenciesnd

Xl~ t !5 (
n52`

1`

Xl
~n!~ t !eindt, ~ l51, 2, 3!, ~7!

whereX1(t)5^s2&, X2(t)5^s1&, andX3(t)5^sz&.
Substituting Eq.~7! into Eq. ~4!, and taking the Laplace

transform, we find that the transformsXl
(n)(z)5L„Xl

(n)(t)…,
wherez is the Laplace transform parameter, satisfy the v
tor recurrence relation

AnX
~n22k!~z!1BnX

~n21!~z!1~Cn1ZnI !X~n!~z!

1BnX
~n11!~z!1DnX

~n12k!~z!5X~n!~0!, ~8!

whereZn[z1 ind, theX(n) are column vectors

X~n!~z!5F X1
~n!~z!

X2
~n!~z!

X3
~n!~z!

G , X~n!~0!5F X1
~n!~0!

X2
~n!~0!

X3
~n!~0!2

g

z
dn,0

G ,
~9!

andAn ,Bn ,Cn , andDn are matrices

An5F 0 0 0

j 0 0

0 0 0
G , Bn5 i 1

2 VF 0 0 21

0 0 1

22 2 0
G ,

Cn5F G1 iD 0 0

0 G2 iD 0

0 0 2G
G , Dn5F 0 j* 0

0 0 0

0 0 0
G .

~10!

In Sec. III we will solve Eq. ~10! numerically by a
continued-fraction technique@13# for the steady-state value
of the componentsXl

(n) and the fluorescence spectrum.
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III. RESONANCE FLUORESCENCE SPECTRUM

The steady-state resonance fluorescence spectrum ca
expressed in terms of the two-time correlation of the atom
operators as

L~v!5ReE
0

`

lim
t→`

^s1~ t1t!s2~ t !&e2 i ~v2vs!tdt.

~11!

The correlation function limt→`^s1(t1t)s2(t)& can be
calculated from the Bloch equation~4! by using the quantum
regression theorem. It is not difficult to show that Eq.~1! for
the two-time averages leads to the same equations as
~10!, but with the componentsXl

(n) replaced byYl
(n) which

are defined as

Y1~ t1t!5^s2~ t1t!s2~ t !&,

Y2~ t1t!5^s1~ t1t!s2~ t !&,

Y3~ t1t!5^sz~ t1t!s2~ t !&, ~12!

andXl
(n)(0) replaced by

Y1~0!50,

Y2~0!5 1
2 @11^sz~ t !&#, Y3~0!52^s2~ t !&. ~13!

The steady-state resonance fluorescence spectrum can
be found from

L~v!5Re@Y2
~0!~z!#z5 i ~v2vs!

. ~14!

In the following, we plot the fluorescence spectrum fo
strong driving field (V@g) with the central frequency reso
nant with the atomic frequency, i.e.,D50, and three differ-
ent values ofk: k50, 1, and 2.

A. The case ofk50

First, we consider the case when the carrier frequenc
the squeezed vacuum is tuned to the central spectral
quency,vsv5v (k50). Figure 1 shows the fluorescenc
spectrum of a two-level atom driven by a bichromatic la
field with V55g, d510g, in a squeezed vacuum wit
N50.1, and with the two phasesF50 andp. We see that
the general spectral structures in the presence of a sque
vacuum are qualitatively similar to those in the stand
vacuum with the central component located atvs and the
sidebands located atvs6nd, wheren is an integer. How-
ever, the central component is dramatically modified by
squeezed vacuum. ForF50 the central component i
greatly suppressed, whereas forF5p it dominates the spec
trum and is very narrow. On the other hand, the sideba
vary slowly with the phase and exhibit a slight broaden
whenF increases from 0 top.

Although not very evident in Fig. 1, the reduction of th
amplitude of the central line forF50 leads to the appear
ance of shallow dip at line center.~The dip is obvious in
Figs. 4–6.! The observation of this dip would be a matter
some importance, since it only arises in the presence of
squeezed vacuum. As we know, such dips can also appe
be
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a two-level system driven by a monochromatic laser fi
@5#. However, there are marked differences between
monochromatic and bichromatic cases. These differen
will become apparent as we present more plots, but we s
marize the major points here. In the former case, the
becomes more pronounced as the squeezed photon nu
N increases, whereas in the bichromatic case, we find
the dip is clearly present for very small values ofN, and in
fact is most pronounced for smallN. ~It actually disappears
for largeN values, unlike the monochromatic case.! For the
monochromatic case, the dip occurs for small driving inte
sities, V.g. This has the disadvantage that the coher
scattering present in this case is strong, and may obscure
observation of the dip in the incoherent part of the spectru
In the case of a bichromatic driving field the dip may occ
for large intensities of the driving field, and there is no c
herent scattering. We also have an extra parameter,d, in the
bichromatic case, and we may choose this quantity so a
maximize the effects we are investigating. Finally, in t
monochromatic case, the dip is very sensitive to the value
h—it has to be very close to one—whereas in the bich
matic case we can find parameter values such that the d
relatively insensitive to the value ofh. All these factors
contribute to making the observation of the dip much eas
in the bichromatic case than the monochromatic case.

In the monochromatic case, the anomalous features
curred when the incoherent intensity at line center,L(0),
was a minimum@5#. To investigate whether this propert
also holds for bichromatic excitation, we plot the value of t
resonance fluorescence at the line center as a function o
Rabi frequencyV for various small values ofN in Fig. 2,
with d510g and F50. In the absence of the squeezin
N50, shown in the frame Fig. 2~a!, the quantityL(0) in-
creases from zero monotonically then oscillates withV.
However, if a squeezed vacuum is applied, as shown in
remaining frames, the quantityL(0) is non-zero atV50,
decreases to a minimum then increases asV increases, and
finally oscillates with increasing Rabi frequency. The exi
ence of the first minimum is due to the presence of

FIG. 1. The resonance fluorescence spectrum of a two-le
atom driven by a bichromatic field in a squeezed vacuum wh
carrier frequency is tuned to the central spectral frequency, a
function of v, with the parameters:V55g,d510g, andN50.1.
The solid curves are forF50, the dash lines forF5p, and the
dotted lines give the corresponding spectrum in the absence o
squeezed vacuum. In all our figures, frequencies are measure
units ofg.



m
s
st
m

r

l a
p

it
r

d
ol
ng

ng

m
n

ing
of
ffect
ce
o-

a-
pid
e of
e
of

lowly

es
p-
tic
d to

ures
c-
ith
ne

ears

trum
r

55 2343RESONANCE FLUORESCENCE SPECTRUM OF A TWO- . . .
squeezed vacuum. Hereafter, we shall call it thesqueezing-
induced minimum. It is at the squeezing-induced minimu
that we would expect to see distinctive spectral feature
the resonance fluorescence spectrum, as found for the sy
driven by a monochromatic laser. The higher-order mini
do not give rise to anomalous features.

In the bichromatic case, we have the extra parameted.
Figure 3 presents a three-dimensional plot ofL(0) against
d andV, and shows that the value ofV at which the first
minimum occurs increases steadily withd. Note however
that the absolute value of the first minima remains smal
d increases, showing that the anomalous features should
sist for large as well as smalld values.

Figure 4 shows the fluorescence spectrum in the vicin
of the squeezing-induced minimum, with the paramete
d510g,F50, andN50.005, corresponding to frame~b! of
Fig. 2. A hole with subnatural linewidth is clearly exhibite
at line center. By numerical calculation, we find that the h
burning can only occur when the value of the squeezi
induced minimum is very small~close to zero!. It is also
essential for the squeezed vacuum to be weak. For stro
squeezed vacua, for example,N50.2 ~the graph is not shown
here!, no dip occurs at all, although there is a minimu
induced by the squeezed vacuum at line center, as show
Fig. 2~d!.

FIG. 2. The resonance fluorescence at line center,v5vs , as a
function ofV, for d510, F50, and~a! N50, ~b! N50.005,~c!
N50.1, ~d! N50.2.

FIG. 3. The resonance fluorescence at line center,v5vs , as a
function ofV andd for F50 andN50.1.
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In Fig. 5 we assume a large Rabi frequency for the driv
field (V510g) and plot the spectrum for different values
d. In this case also the dip is pronounced, the greatest e
occurring at quite a large value of the frequency differen
d. In Fig. 6 we show the dips of Figs. 4 and 5 in a tw
dimensional plot, for greater clarity.

Another factor which makes observation of the anom
lous features difficult in the monochromatic case is the ra
disappearance of the anomalous features as the degre
correlationh decreases from its ideal value of unity. Th
disappearance is particularly rapid for the larger values
N. In Fig. 7 we plot the spectrumL(v) for N50.005,
F50, andV52.4g for the valuesh51,0.9 and 0.8. It can
be seen that the anomalous features disappear rather s
with h in the bichromatic case.

Now we consider the effect of choosing phase valu
other thanF50. We find that the anomalous features disa
pear asF increases much more rapidly in the bichroma
case than in the monochromatic case. In fact, we nee
restrict our attention to valuesuFu<p/8 in the former situa-
tion, whereas in the monochromatic case, anomalous feat
occurred forF.p/2. Figure 8 shows the fluorescence spe
trum for the same parameters as in Fig. 5, but w
F5p/10. In this case there is a dispersive profile at li
center. As pointed out in Ref.@5# , the dispersive profile in
the fluorescence is another distinctive feature, which app

FIG. 4. The three-dimensional resonance fluorescence spec
in the vicinity of the squeezing-induced minimum, fo
d510g, F50 , andN50.005.

FIG. 5. Same as Fig. 3, but withV510g andd varying.
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2344 55PENG ZHOU, S. SWAIN, AND Z. FICEK
only in the squeezed vacuum. Again, in the bichromatic fi
the dispersive profiles appear for a weak squeezed vac
and large Rabi frequencies of the driving field.

We have emphasized that the anomalous spectral fea
in the incoherent spectrum would be very difficult to obse
in the monochromatic case, since for the low driving inte
sities at which they arise, coherent fluorescence at line ce
dominates. However, in the bichromatic case, the cohe
fluorescence component is given by@8#

Lcoh~v!5ReE
0

`

lim
t→`

^s1~ t1t!&^s2~ t !&e2 i ~v2vs!tdt

5 (
n52`

1`

uX1
~n!u2d~v2vs1nd!, ~15!

and occurs at frequenciesv5vs6nd, wheren is an odd

FIG. 6. The resonance fluorescence spectrum near
squeezing-induced minimum forF50, N50.005 and ~a!
V52.5g, d510g, ~solid line! and ~b! V510g, d540g ~dashed
line!.

FIG. 7. The resonance fluorescence spectrum with the pa
eters:V52.5g, F50, d510g, andN50.005, for different val-
ues of the degree of correlation:~a! h51 ~solid line!, ~b! h50.9
~dashed line!, and~c! h50.8 ~dotted line!.
d
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number. Therefore, there is no coherent component at
center to interfere with the experimental observation
anomalous spectra.

B. The case ofkÞ0

The recurrence relation~10! permits us to calculate the
fluorescence spectrum for a squeezed vacuum tuned to
of the spectral sidebands. The case ofk51 corresponds to
the squeezed vacuum tuned to the first odd sideban
v2vs5d. Figure 9 shows the spectrum fork51, d510g,
V515g and different phases. The spectrum is qualitativ
unchanged, but in contrast to the casek50, the central com-
ponent of the spectrum exhibits a small variation with t
phase. However, the odd sidebands broaden whereas
even sidebands narrow as the phase varies from 0 top.
Moreover, for the latter value of the phase, the amplitudes
the odd sidebands are asymmetric aroundv2vs50.

The phase properties of the spectral sidebands are q
different when the squeezed vacuum is tuned to the first e
sideband. This is shown in Fig. 10, where we plot the sp
trum for the same parameters as in Fig. 9, but withk52. In
this case the squeezed vacuum is tuned to the even side

he

m-

FIG. 8. Same as Fig. 5, but forF5p/10.

FIG. 9. The resonance fluorescence spectrum for the sque
vacuum tuned to the first odd sideband, wi
k51, d510g, V515g, N51, and different phases. The soli
curves are forF50, and the dashed lines forF5p.
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55 2345RESONANCE FLUORESCENCE SPECTRUM OF A TWO- . . .
at v2vs52d. Again, the spectrum is qualitatively un
changed, but now the odd sidebands narrow and the e
sidebands broaden when the phase varies from 0 top.

IV. DRESSED-STATE INTERPRETATION

We may gain a qualitative understanding of the ph
dependence of the width and height of the central peak
considering the spectra for the special casesD50, k50, and
F50,p. It is convenient to rewrite the two-time correlatio
function ^s1(t1t)s2(t)&, and the Bloch equation in term
of the in-phase and out-phase quadratures of the atomic
pole,sx5(s21s1) andsy5 i (s22s1):

^s1~ t1t!s2~ t !&5^sx~ t1t!sx~ t !&1^sy~ t1t!sy~ t !&

2 i ^sx~ t1t!sy~ t !&1 i ^sy~ t1t!sx~ t !&

~16!

and

^ṡx&52gx^sx&, ^ṡy&52gy^sy&22Vcosdt^sz&,

^ṡz&52gz^sz&12Vcosdt^sy&2g, ~17!

with

gx5G1gMcosF ~F50,p!,

gy5G2gMcosF ~F50,p!,

gz5gx1gy . ~18!

It is evident that the motion of thex-polarized quadrature
^sx& is decoupled from that of they-polarized quadrature
^sy& and the inversion̂ sz& which are entangled by th
bichromatic field. As a consequence, the atomic correla
function @^sx(t1t)sx(t)&2 i ^sx(t1t)sy(t)&#, which by
the quantum regression theorem follows the free decay of
x-polarized quadrature at rategx , makes a contribution only
to the central peak of the resonance fluorescence spect
However, the correlation function @^sy(t1t)sy(t)&
1 i ^sy(t1t)sx(t)&# , which is determined by the remainin
coupled Bloch equations, also makes a contribution to
central component as well as to the sidebands. Nume

FIG. 10. Same as Fig. 9, but for the squeezed vacuum tune
the first even sideband, i.e.,k52.
en
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calculations show that the contribution of this correlati
function to the central component is zero forN50, the stan-
dard vacuum, and is negative for a weak squeezed vac
(N!1), resulting in a dip at line center. However, for almo
all parameter values, the magnitude of the negative com
nent is very small compared to the positive contribution, a
the central component is well approximated by

Lcenter~v!5
2gxI tot

ss

gx
21~v2vA!2

, ~19!

where I tot
ss5(11X3

(0))/2 is the steady-state fluorescence
tensity.

An exception occurs near the squeezing-induced m
mum, when the overall magnitude of the central line
greatly reduced, enabling the negative dip to become sig
cant and giving rise to the anomalous features described
lier ~Figs. 4–8!. The negative contribution from the final pa
of the Eqs.~17! actually has two components: one, a bro
negative peak, acts to reduce the overall intensity of the fl
rescence near line center, as can be seen in Fig. 2, while
other, a sharp negative peak, acts to produce the dip at
center.

Away from the squeezing-induced minimum, the cent
spectral component clearly has a linewidth 2gx
52(G1gMcosF) (F50,p), which is dependent on the
squeezed phase. The linewidth forF50 is much greater
than that forF5p when the squeezed photon numb
N@1. The phase sensitivity of the central spectral linewid
is similar to that of the case of a monochromatic field ex
tation @2#.

On the other hand, the height of the central peak,

Hcenter5
2I tot

ss

gx
, ~20!

is strongly sensitive to the squeezed photon numberN and
phaseF, and is proportional to the steady-state fluoresce
intensity I tot

ss that oscillates with the Rabi frequencyV @10#.
In a standard vacuum, the height is extremely small for v
low Rabi frequencies. However, in the presence of
squeezed vacuum, the height may be larger, even for a
small value ofV, due to the saturating effect of the squeez
vacuum on the total fluorescence intensityI tot

ss . In general,
for fixed V andN, the heightHcenter for F5p is higher
than that forF50. However, for a given Rabi frequenc
V, the height decreases as the photon number increase
F50. All these features result from the phase-sensitive
cays of the atomic dipole induced by the squeezed vacu

The spectral features are a direct signature of the ene
structures of the atom-field interaction. In the system o
two-level atom with the ground and excited states,ug& and
ue&, interacting with a bichromatic laser at frequenci
vA6d ~assumingvA@d), for a total excitation quantum
numberN5n11n21na ~wheren1 ,n2 are the photon num-
bers of the two frequency components of the bichroma
field, andna5(0,1) represents the atom in the ground
excited states, respectively!, the product states of the bar
atom and field, un,N2n,g&, (n50, 1, 2, . . . ,N) and
un,N2n21,e&, (n50, 1, 2, . . . ,N21) are all nearly de-
generate and are strongly mixed by the atom-field inter

to
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tion: they form theNth state manifold which has degenera
2N11. For example, in the ground-state manifold of t
atom-field interaction,N50, the only state isu0, 0,g&, where
the atom is in its ground state with no photons in eith
mode, while the first excited-state manifold,N51, consists
of the atom in the excited state with no photons in eith
field, u0, 0,e&, or in the ground state with 1 photon in eith
mode,u1, 0,g& and u0, 1,g&.

It is well known that in the dressed-atom picture t
Nth manifold is composed of 2N11 equally spaced dresse
states with separationd, which are linear combinations of th
bare states@9,10,16,14#. See Fig. 11, where the energy lev
structure of the dressed atom is exhibited.

The resonance fluorescence is described by a casca
population down the quantum ladder of the dressed s
manifold. The nature of the dipole coupling allows tran
tions only from the manifoldN to the manifoldN21, with
no spontaneous transitions within each sublevel@15#.

At very small Rabi frequenciesV, the atom-bichromatic
field interaction can only populate the lowest two dress
state manifolds,N50 and 1. Therefore, only three spont
neous emissions are probable, from theN51 manifold with
three components to theN50 manifold consisting of a
single dressed level. Accordingly, the resonance fluoresce
spectrum consists of three components located at frequen
vA ,vA6d. As the Rabi frequency increases, the interact
of the atom with the field is likely to populate highe
dressed-state manifolds, leading for example to transiti
from theN52 manifold consisting of five dressed states
the N51 manifold, then to the ground state, so that t
number of lines present in the resonance fluorescence s
trum increases. The positions of the spectral lines are de
mined by the splitting of the dressed states,d, which is in-
dependent on the Rabi frequency. However, the height
the spectra are proportional to the populations of the co
sponding dressed states. It is well known that the dres
state populations in such a system are associated with B
functions of argumentd/V @9,10,16,17#, which oscillate. For
certain values ofV, the Bessel functions may be zero, resu
ing in the vanishing of populations and the resulting dis
pearance of the corresponding spectral lines. Because o
symmetric distribution of the dressed-state populations ab

FIG. 11. The energy level structure of the dressed-atom sta
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the central dressed state in each manifold@10,17#, the reso-
nance fluorescence spectrum is symmetric about the ato
frequencyvA .

If the bichromatic field components have unequal amp
tudes, or if the center frequency is detuned fromvA (D
Þ0), the symmetric distribution of populations is destroy
and dressed state levels are shifted strongly depending o
ratio of the amplitudes andD. As a result, the spectra ar
asymmetric@10#. For certain situations, some of the dress
states may be trapped. Accordingly, the spontaneous e
sion from these trapped levels will be quenched and the
responding spectral lines will disappear@4#.

V. SUMMARY

We have calculated the resonance fluorescence spec
of a two-level atom driven by a bichromatic laser in
frequency-tunable squeezed vacuum by using continu
fraction methods. We have evaluated the spectrum num
cally in the three cases where the carrier frequency of
squeezed vacuum is tuned close to the central spectral
and the first-odd and first-even sideband, respectively. A
from the anomalous feature which may arise at line cen
the general spectral structures are qualitatively similar
those in the normal vacuum: the sidebands are place
vs6nd wheren is an integer, and the number of the sid
bands increases as the driving intensity increases. Howe
they are, in general, phase sensitive. We have indicated
the dressed-state picture may be used to understand
features.

We have been particularly interested in the occurrence
the anomalous spectral features at the central line, suc
hole-burning and dispersive profiles. We have shown tha
the case of the squeezed vacuum coupled to the central c
ponent these features can occur for a wide range of
parameters—in particular, for a weak squeezed vacuum
high intensities of the bichromatic laser field. The absence
coherent scattering at line center provides the major adv
tage of bichromatic excitation for observing the anomalo
spectral features as compared with the monochromatic c
A number of other features, such as the relatively slow
cline of the anomalous features with decreasingh, combine
to make the bichromatic situation more favorable to expe
ment.

In the case of the squeezed vacuum coupled to the fi
odd or first-even sidebands, the spectrum is asymmetric
only the sidebands are sensitive to the phase.

We note that Polzik, Carri, and Kimble@18# have recently
developed a frequency-tunable source of squeezed light
able for spectroscopic applications over a broad range. It
been successfully applied to exploring the modification
atomic radiative properties in the presence of squeezed
in a recent landmark experiment@19#, where they observed
that the two-photon excitation of atoms by a squeez
vacuum possesses a component linear in the squeezed
ton number, as predicted theoretically@20#. This experimen-
tal progress could make it possible to observe the anoma
features in the resonance fluorescence spectrum in the
future.

s.



C
n

.
nk
to

55 2347RESONANCE FLUORESCENCE SPECTRUM OF A TWO- . . .
ACKNOWLEDGMENTS

This work is supported by the United Kingdom EPSR
by the EC, and by a NATO collaborative research gra
et

m

, J
.

ke

.

s-
,
t.

We would like to thank Dr. B. J. Dalton and Dr. T. A. B
Kennedy for helpful conversations. P.Z. wishes to tha
Queen’s University for financial support. S.S. would like
thank the University of Queensland for financial support.
Jr.,

s.
.

J.

nd
@1# See, for example, A. S. Parkins, inModern Nonlinear Optics,
Part 2, edited by M. Evans and S. Kielich~Wiley, New York,
1993!, p. 607.

@2# H. J. Carmichael, A. S. Lane, and D. F. Walls, Phys. Rev. L
58, 2539~1987!; J. Mod. Opt.34, 821 ~1987!.

@3# S. Smart and S. Swain, Quantum Opt.5, 75 ~1993!.
@4# J. M. Courty and S. Reynaud, Europhys. Lett.10, 237 ~1989!;

C. Cabrillo, W. S. Smyth, S. Swain, and P. Zhou, Opt. Co
mun.114 , 344 ~1995!.

@5# S. Smart and S. Swain, Phys. Rev. A48, R50 ~1993!; S.
Swain, Phys. Rev. Lett.73, 1493 ~1994!; S. Swain and P.
Zhou, Phys. Rev. A52, 4845~1995!.

@6# G. P. Hildred, S. S. Hassan, R. R. Puri, and R. K. Bullough
Phys. B16, 1703~1983!; S. S. Hassan, G. P. Hildred and R. K
Bullough, ibid. 21, 981 ~1983!.

@7# F. Y. Wu, R. E. Grove, and S. Ezekiel, Phys. Rev. Lett.35 ,
1426 ~1977!; J. D. Cresser, J. Hager, G. Leuchs, M. Ratei
and H. Walther, inDissipative System in Quantum Optics, ed-
ited by R. Bonifacio~Springer-Verlag, Berlin, 1982!, p. 21.

@8# B. Blind, P. R. Fontana, and P. Thomann, J. Phys. B13, 2717
~1980!; G. S. Agarwal, Y. Zhu, D. J. Gauthier, and T. W
Mosserg, J. Opt. Soc. Am. B8, 1163~1991!.

@9# Y. Zhu, Q. Wu, A. Lezama, D. J. Gauthier, and T. W. Mos
berg, Phys. Rev. A41, R6574~1990!; H. S. Freedhoff and Z.
Chen,ibid. 41, 6013~1990!; S. P. Tewari and M. K. Kumari,
ibid. 41, R5273~1990!.
t.

-

.

,

@10# Z. Ficek and H. S. Freedhoff, Phys. Rev. A48, 3092~1993!;
Phys. Rev. A53, 4275~1996!.

@11# M. F. Van Leeuwen, S. Papademetriou, and C. R. Stroud,
Phys. Rev. A53, 990 ~1996!; S. Papademetriou, M. F. Van
Leeuwen, and C. R. Stroud, Jr.,ibid. 53, 997 ~1996!.

@12# C. W. Gardiner, Phys. Rev. Lett.56, 1917~1986!.
@13# H. Risken, inThe Fokker-Planck Equation~Springer-Verlag,

Berlin, 1984!, Chap. 9; S. Swain, Adv. At. Mol. Phys.22, 387
~1986!.

@14# P. M. Alsing, D. A. Cardimona, and H. J. Carmichael, Phy
Rev. A 45, 1793 ~1992!; G. S. Agarwal, W. Lange, and H
Walther, ibid. 51, 721 ~1995!.

@15# M. A. Newblod and G. J. Salamo, Phys. Rev. A22, 2098
~1980!; S. P. Tewari and M. K. Kumari,ibid. 41, R5273
~1990!.

@16# G. S. Agarwal, Y. Zhu, D. J. Gauthier, and T. W. Mosserg,
Opt. Soc. Am. B8, 1163~1991!.

@17# H. S. Freedhoff and Z. Chen, Phys. Rev. A41, 6013 ~1990!;
46, 7328~E! ~1992!.

@18# E. S. Polzik, J. Carri, and H. J. Kimble, Phys. Rev. Lett.68,
3020 ~1992!.

@19# N. Ph. Georgiades, E. S. Polzik, K. Edamtsu, H. J. Kimble, a
A. S. Parkins, Phys. Rev. Lett.75, 3426~1995!.

@20# J. Gea-Banacloche, Phys. Rev. Lett.62, 1603 ~1989!; J. Jav-
anainen and P. L. Gould, Phys. Rev. A41, 5088 ~1990!; Z.
Ficek and P. D. Drummond, Phys. Rev. A44, 6247~1991!; 44,
6258~1991!; C. W. Gardiner and A. S. Parkins,ibid. 50, 1792
~1994!; P. Zhou and S. Swain,ibid. 54, 4275~1996!.


