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Nonperturbative decay of an atomic system in a cavity

B. M. Garraway
Optics Section, The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom

~Received 24 July 1996!

Atoms can nowadays be placed in increasingly exotic environments such as microscopic cavities and
materials with photonic band gaps. High-Q cavities can now easily result in a strong coupling between an atom
and its environment where perturbation theory should no longer be appropriate. The purpose of this paper is to
describe the dynamics of a multilevelV-type atomic system~including the case of a two-level system! which
interacts with a reservoir modeled by a generalized density of states. A theoretical construct, the pseudomode,
is utilized to develop general methods for solution. Without using perturbation theory the equivalent master
equation is developed and the relationship between the master equation, the pseudomodes, and the generalized
density of states function is explored with examples. Utilizing a straightforward definition of the pseudomode,
it is found that many functions for the density of states lead to problematic non-Lindblad master equations.
Several examples are given, and it is shown how to convert the non-Lindblad master equations into a Lindblad
form in these cases. The examples include a non-Lorentzian resonance and a simple model of a photonic band
gap.@S1050-2947~97!04102-4#

PACS number~s!: 42.50.Md, 31.70.Hq, 42.50.Lc
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I. INTRODUCTION

The decay of excited atomic systems has been of inte
since the time of the pioneering work of Weisskopf a
Wigner@1#. It has long been known that the decay of an at
is not an intrinsic property of that atom, but depends stron
on the nature of the environment of that atom@2#. Recently,
this has been of much interest~see, for example, Refs
@3–16#! in part because of the development of microlas
~see, for example,@17–19#!. The nonperturbative features o
the interaction between an atom and its environment are
pecially apparent if there is such a strong coupling that
ergy leaving the atom can later return@20,21#. Changing the
environment often means placing the atom in a cavity
some kind, but nowadays the atom may instead be an e
ton, and the environment that of a quantum well. For brev
we will refer to a cavity throughout most of this paper.

The dynamics of the atom-environment interactions h
long been described by master equations derived from
turbation theory@22,23#, which is an approach that work
well in two regimes: it works in the low-Q cavity, where the
cavity field can be eliminated in favor of atomic dynamic
and it works in the high-Q regime where we consider th
atomic system coupled to a damped cavity mode.

A central purpose of this paper is to provide a gene
description of the atom-environment interaction which do
not rely on perturbation theory at all. Furthermore, one of
tasks is to compose the appropriate master equation to
scribe the decay of the atomic system for a given type
environment. In achieving this a particular difficulty
exposed—that a direct approach generates pathological
ter equations which do not have an acceptable physica
terpretation. However, examples are given in this paper
procedure to correct this problem and return to an accept
form for the master equation. The acceptable form is
Lindblad form @24#

d

dt
r̂52 i @H0 ,r̂ #2(

l
S 12L̂ l†L̂ l r̂2L̂ l r̂L̂ l

†1
1

2
r̂L̂ l

†L̂ l D , ~1!
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where the Lindblad operators are theL̂ l , H0 is the system
Hamiltonian, andr̂ is the density matrix. This form of mas
ter equation arises very naturally from time-dependent p
turbation theory applied to the interaction of the system w
a zero-temperature heat bath. The Lindblad terms then o
nate from the double commutator of the system-bath inte
tion evaluated to second order@22,23#. However, when the
coupling of the system to the environment is very stron
perturbation theory cannot be expected to yield the cor
result. In this paper we will see that for many decayi
cavity-atom systems a form of the Lindblad master equat
~1! is still appropriate.

In Sec. II we will formulate the problem. Then in Sec. I
we will see how the time evolution can be solved in terms
a finite set of coupled differential equations, and how tho
equations can be formulated in terms of a nonperturba
master equation. Some straightforward examples are
given in Sec. IV. In Sec. V we identify some problems wi
some of the master equations that would be generated by
methods of Sec. III. A procedure for correcting the defec
shown and then the more general master equation is foun
Sec. VI. Examples of this type of master equation are th
given in Sec. VII. The Laplace transform method of soluti
is summarized in Sec. VIII. Some concluding remarks
then provided in Sec. IX.

II. MATHEMATICAL DESCRIPTION

In this paper we consider multilevelV-type atomic sys-
tems, including systems with only two levels, as illustrated
Fig. 1. Thus the atomic system comprises a single grou
state level, labeled 0, coupled to a number of excited st
which have the labelsi ~or j ) for i ( j )51,2,3, . . . and an
energy difference~measured from the ground state! of v i .
The labelsi and j will be used for only the atomic system
The number of excited levels is not specified, but may be
or more. The multilevel system is coupled to a bath of os
lators and the creation and annihilation operators for e
2290 © 1997 The American Physical Society
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55 2291NONPERTURBATIVE DECAY OF AN ATOMIC SYSTEM . . .
oscillator areal
† and al , where the oscillator, which ha

frequencyvl , is labeled here by the indexl. Then, within
the rotating wave approximation and with only dipole inte
actions, the Hamiltonian for the system can be written as

H5(
l

vlal
†al1(

i
v i u i &aa^ i u

1(
i ,l

gl
~ i !~al

†u0&aa^ i u1alu i &aa^0u!, ~2!

wheregl
( i ) is the frequency-dependent coupling between

transitioni20 and the mode labeledl. For specific cavity-
atom geometries, these couplings will be taken to include
the necessary spatial factors. For convenience in later p
of this paper, the basis for the states is chosen so tha
couplingsgl

( i ) are real.
The sum over modesl is taken to include polarizations

and in the limit of a continuous distribution this sum can
converted into an integral by including the density of sta
rl ,

(
l
→E dvlrl . ~3!

For the development in the next sections of this paper
will not have to assume any specific form for the density
states function, but ultimately the form plays an importa
role. To reflect this, we can extract the shape of the den
of states function into a normalized density of sta
D(vl) such that

rl~gl
~ i !!25

V i
2

2p
D~vl! ~4!

FIG. 1. The type of multilevel atomic system considered in t
paper. The ground state 0 is coupled to the upper states 1,2,3, . . .
by transitions with frequenciesv1,v2,v3 , . . . . The examples in
the text are given for a two-level system, when only levels 0 an
are present.
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so each transition couples to the same density of states f
tion, but with different strengthsV i . The functionD(vl) is
then a generalized density of states which contains
frequency-dependent elements of both the density of st
and the couplings. In the continuous limit, and wi
vl→v, the normalization ofD(v) is given by

E
2`

`

dv D~v!52p, ~5!

which is a normalization in terms of natural, rather than a
gular, frequency. This choice is simply for convenience. T
extension of the integral to2` is very useful to the physica
interpretation, though not essential. The main requiremen
that the integral over the density of states and the frequen
dependent couplings should be a good approximation in
region of interest. This is true for optical cavities, though w
note that for other physical systems it may not be true a
we can then obtain ‘‘threshold’’ effects@25#. The strengths
V i are defined from the weight of the density of states,

V i
25(

l
~gl

~ i !!2, ~6!

and we will define a total strength for all the transitions a

V0
25(

i
V i

2. ~7!

We may split the Hamiltonian Eq.~2! into two pieces
comprising the interacting part and the noninteracting~bare!
part so that

H5HB1HI ,

HB5(
l

vlal
†al1(

i
v i u i &aa^ i u,

HI5(
l,i

gl
~ i !~al

†u0&aa^ i u1alu i &aa^0u!. ~8!

The interaction HamiltonianHI will only connect certain
combinations of atomic states and field states. For a sin
excitation of the total system these states are

c i5u i &a^ u000 . . . . . . 000&,

cl5u0&a^ u000 . . . . . . 010 . . . . . . 000&, ~9!

where the ketu000 . . . . . . 000& indicates the field state
where all the radiation modes are in a vacuum state, and
ket u000 . . . . . . 010 . . . . . . 000& in Eq. ~9! indicates a state
of the radiation field where all of the modes are in a vacu
state apart from model which is in the first excited state
The unexcited state

c05u0&a^ u000 . . . . . . 000& ~10!

is not coupled to any other state.

1
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2292 55B. M. GARRAWAY
Now for the noninteracting part of the Hamiltonian w
will trivially obtain

HBc i5v ic i , HBcl5vlcl , ~11!

while for the interacting part of the Hamiltonian

HIc i5(
l

gl
~ i !cl , HIcl5(

i
gl

~ i !c i . ~12!

It is clear from these equations that we have a closed sys
of equations for the time evolution. We will now expand
general state vector of the system as

C~ t !5c0c01(
i
ci~ t !c i1(

l
cl~ t !cl ~13!

in terms of the states~9! and insert this into the Schro¨dinger
equationi (d/dt)C5HC to obtain the following~infinite!
set of coupled equations:

i
d

dt
ci5v ici1(

l
gl

~ i !cl , i
d

dt
cl5vlcl1(

i
gl

~ i !ci .

~14!

The coefficientc0 is constant in time. It is convenient t
move to an interaction representation by means of the
lowing time-dependent transformations:

c̃i~ t !5eiv i tci~ t !, c̃l~ t !5eivltcl~ t !, ~15!

so that we obtain the following coupled equations:

i
d

dt
c̃i5(

l
gl

~ i !e2 iDl
i tc̃l , ~16!

i
d

dt
c̃l5(

i
gl

~ i !eiDl
i tc̃i , ~17!

with the detunings from the model defined by

Dl
i 5vl2v i . ~18!

Now we can eliminate the coefficientsc̃l by integrating Eq.
~17! ~in time! and substituting the resulting expression f
c̃l into Eq. ~16!. The integration of Eq.~17! yields

c̃l~ t !52 i E
0

t

dt8(
i
gl

~ i !eiDl
i t8c̃i~ t8!, ~19!

where the initial condition assumed is

c̃l~0!5cl~0!50, ~20!

which simply means that there are no photons in the exte
bath ~or cavity!. We thus obtain a finite set of couple
integro-differential equations

d

dt
c̃i~ t !52E

0

t

dt8(
j
G̃i j ~ t,t8!c̃ j~ t8!, ~21!

where the functionsG̃i j (t,t8) are defined by
m

l-

al

G̃i j ~ t,t8!5(
l

gl
~ i !gl

~ j !exp@ i ~Dl
j t82Dl

i t !# ~22!

for a pair of transitionsi , j . In writing down Eq.~21! we have
exchanged the order of summation overl and integration
over time. This then allows us to write down the expressio
~22! which can be evaluated analytically for a specific e
pression of the coupling given in Eq.~4!.

If we transfer the equations~21! back into the original
basis we obtain

d

dt
ci~ t !52 iv ici~ t !2E

0

t

dt8(
j
Gi j ~ t2t8!cj~ t8!, ~23!

where the difference kernelGi j (t2t8) is

Gi j ~ t2t8!5exp~2 iv i t1 iv j t8!G̃i j ~ t,t8!

5(
l

gl
~ i !gl

~ j !exp@2 ivl~ t2t8!#. ~24!

Then when the sum overl becomes a continuous integral w
obtain the kernels as integrals, which can be regarded
Fourier transforms ofD(v),

Gi j ~ t2t8!5
V iV j

2p E
2`

`

dvD~v!e2 iv~ t2t8! ~25!

5
V iV j

A2p
D̄~ t2t8!. ~26!

In the following sections we will examine some of the wa
we can solve the integrodifferential equations~23! for differ-
ent forms ofD(v).

III. METHOD OF POLES

A. Pseudomodes

It proves very useful to be able to calculate the integ
~25! from a contour in the complexv plane. In this case the
functionD(v) should be analytic and the poles of that fun
tion will correspond to resonances. The contour is closed
the lower half plane, where the exponential part of Eq.~25!
causes the integrand to vanish@becauset>t8 in Eq. ~21!#.
There are functionsD(v) which cannot have contour
closed in the lower half plane, and then other methods h
to be used. An example of an alternative approach is give
Sec. VIII.

So we take a contour in the lower half plane and we w
assume that the contribution to the contour integral from
semicircle is negligible. Then we will have

Gi j ~ t2t8!52
V iV j

2p R
C
dzD~z!e2 iz~ t2t8!. ~27!

Now we will suppose that the functionD(z) has poles in the
lower half plane atz5z1 ,z2 , . . . ,zl , . . . . ~The indexl will
be reserved for the positions of poles hereafter.! And we will
denote the residues ofD(z) at these poles byr l . Then by the
theorem of residues,
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55 2293NONPERTURBATIVE DECAY OF AN ATOMIC SYSTEM . . .
Gi j ~ t2t8!52 iV iV j(
l
r le

2 izl ~ t2t8!. ~28!

We note that this is now the case of a separable kernel
we have excluded any possibility of interfering branch c
in the lower half plane. However, we do not need to ha
only simple poles. With this result inserted into Eq.~23! we
will find that

i
d

dt
ci~ t !5v ici~ t !2(

l
V i r l(

j
V je

2 izl tE
0

t

dt8eizl t8cj~ t8!.

~29!

On the basis of Eq.~29! we can now define a fictiona
pseudomodeamplitude as@16#

bl~ t !52 i(
i

V iA2 ir le
2 izl tE

0

t

dt8eizl t8ci~ t8!. ~30!

This pseudomode amplitude is chosen to be associated
the pole atzl so that Eqs.~23! become

i
d

dt
ci~ t !5v ici~ t !1(

l
gil bl~ t !, ~31!

i
d

dt
bl~ t !5zlbl~ t !1(

i
gil ci~ t !, ~32!

where Eq.~32! follows from the differentiation of Eq.~30!.
Note that we now have afinite set of coupled differentia
equations instead of the infinite set found in Eq.~14!. The
coupling between the pseudomodel and the atomic leveli is

gil5V iA2 ir l , ~33!

which is, in general, a complex quantity. Note thatgil ap-
pears in both Eq.~31! and Eq.~32! rather thangil and its
complex conjugate. The ramifications of this will be di
cussed further in Sec. V. To proceed we will assume h
that the couplingsgil are real. Indeed, we note that this is t
case for Lorentzian resonances. In the general case the
duesr l all sum toi and have nonet real part. This is becaus
of the normalization~5! which means thatGi j (0)5V iV j ,
and thus from Eq.~28! we always have

(
l

~2 ir l !51. ~34!

The case of a two-level system interacting with a sim
Lorentzian resonance is considered further in Sec. IV A.

If we now review the problem in hand we note that w
have converted the original problem, which consisted of
infinite set of ordinary differential equations@Eq. ~14!#, into
a finite set of ordinary differential equations, Eqs.~31! and
~32!. These equations can now be solved by well kno
analytic, or numerical methods. The restriction onD(v) is
that it is analytic in the lower half plane, and contains on
poles there. The number of coupled differential equation
the number of poles added to the number of upper ato
levels. If there are an infinite number of poles, then we
nd
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e
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e
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again obtain an infinite number of coupled differential equ
tions, though with discrete frequencies corresponding to
positions of the poles.

B. Equivalent master equation

We have seen that if we know the positions and resid
of the poles ofD(z) we can compute the time evolution o
the atomic system from the straightforward equations~31!
and ~32!. However, it is possible to gain insight into th
atom-field dynamics by examining the equations of mot
of a specially constructed density matrix. This takes the fo
of a master equation. The equations are more complex,
they provide more convincing evidence that the amplitud
bl are connected to the amplitude of a mode.

We start by constructing a state vector and a basis fo
system comprising the pseudomode and the atom. The~un-
normalized! state vector is

uc̃~ t !&5c0u0&a)
l

u0& l1c1~ t !u1&a)
l

u0& l

1c2~ t !u2&a)
l

u0& l1•••1b1~ t !u0&au1&1)
lÞ1

u0& l

1b2~ t !u0&au1&2)
lÞ2

u0& l1b3~ t !u0&au1&3)
lÞ3

u0& l

1•••, ~35!

whereu i &a are the basis states of the atomic system@as in Eq.
~2!# andunl& l ~wherenl50,1) are the newly introduced state
for the pseudomodel . The fact that the state vectoruc̃(t)& is
not normalized is emphasized by the tilde. We will refer
the set of states

u0&au0&1u0&2u0&3 . . . ,
u1&au0&1u0&2u0&3 . . . ,
u2&au0&1u0&2u0&3 . . . ,
A
u0&au1&1u0&2u0&3 . . . ,
u0&au0&1u1&2u0&3 . . . ,
u0&au0&1u0&2u1&3 . . .
•

•

~36!

@used in Eq.~35! above# as the pseudomode basis. We
should stress that this basis is a mathematical construc
and, strictly, does not exist physically. The lowest energy
vacuum, state will be denoted by the symbolu0& so that

u0&5u0&au0&1u0&2u0&3 . . . . ~37!

By using the basis~36! we can define an effective non
Hermitian evolution operator which replicates the equatio
~31! and ~32! with the unnormalized state vector~35!:

Heff5(
l
zl âl

†âl1(
i

v i u i &aa^ i u1(
i l

gil ~ âl
†ŝ2

~ i !1âl ŝ1
~ i !!,

~38!
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2294 55B. M. GARRAWAY
where the atomic raising and lowering operators betw
levels 0 andi areŝ1

( i )5u i &a a^0u andŝ2
( i )5u0&a a^ i u. We will

also have (ŝz
( i )11)/25u i &a a^ i u. The operatorsâl andâl

† are
the annihilation and creation operators for excitations of
fictional mode l . For example, âl u1& l5u0& l , and

@ âl
† ,âm#5d lm . Thenuc̃(t)& satisfies the equation

d

dt
uc̃~ t !&52 iH effuc̃~ t !&. ~39!

The effective HamiltonianHeff can be split into a Hermitian
part and an anti-Hermitian part in the form

Heff5H02
i

2(l L̂ l
†L̂ l , ~40!

where we have the Hermitian Hamiltonian

H05(
l
Re~zl !âl

†âl1(
i

v i u i &aa^ i u

1(
i l

gil ~ âl
†ŝ2

~ i !1âl ŝ1
~ i !!, ~41!

and Lindblad operators involving the pseudomode,

L̂ l5A22 Im~zl !âl . ~42!

The Lindblad~42! requires that Im(zl),0, i.e., we closed
the contour~27! in the lower half plane. We see now th
because we consider the poles ofD(z) in the lower half
complex plane the LindbladsL̂ l have real coefficients. The
sign of the energy of the pseudomodel depends on whethe
the pole atzl is to the right or left of the imaginary axis. Th
particular form of splitting in Eqs.~40!–~42! depends on the
coefficientsgil being real. The complications of comple
gil are considered in Secs. V and VI.

Thus we may determine the dynamics of the upper ato
energy levels from Eqs.~31! and~32! or the equivalent equa
tion ~39!. However, to obtain the dynamics of the atom
ground-state population we need more than just these di
ential equations because there are contributions from b
the initial ground-state population and from each exci
field state ~which would have the atomic system in th
ground state!. Thus there cannot be a description in terms
a pure state. If we start from the fundamental equation~13!
and denote the atomic ground-state population byP0, we
have

P05uc0u21(
l

uclu2 ~43!

in terms of the original modes of the system. Now we obt
a differential equation for the population by differentiatin
and using Eq.~17! so that

d

dt
P052(

i

d

dt
uci u2, ~44!

which simply expresses conservation of probability. But n
we use the pseudomode equations~31! to find that
n

e

ic

r-
th
d

f

n

d

dt
P05(

i l
~ ic i* gil bl2 ic igil* bl* ! ~45!

and we compare this to the total population growth of t
pseudomodes from Eq.~32!,

(
l

d

dt
ubl u252(

l
Im~zl !ubl u21(

i l
~ ic i* gil* bl2 ic igil bl* !

~46!

so that~in the case thatgil is real!

d

dt
P05(

l

d

dt
ubl u222(

l
Im~zl !ubl u2

5(
l

d

dt
ubl u21(

l
^c̃uL̂ l

†L̂ l uc̃&, ~47!

where the last line follows from Eqs.~35! and~42!. Clearly,
in the pseudomode system, the rise inP0 is not given by just
the increase in the pseudomode population, because
pseudomodes arelossyand lose population.

We will now proceed to a density matrix description
the system by combining the results of both Eqs.~39! and
~47! in the spirit of master equation unraveling@26# ~though
the process performed here is master equation composit!.
We know that all the atomic coherences and populati
~with the exception of the ground-state population! are de-
scribed by

r̂n j5uc̃&^c̃u ~48!

from Eq. ~35!. And from Eq.~39! we know thatr̂n j obeys
the differential equation

d

dt
r̂n j52 i @Heff ,r̂n j#. ~49!

Then to complete the density matrix we must include
additional term to account for the behavior of the groun
state population which is described by Eq.~47!. Thus the
additional term belongs to the pseudomode vacuum state
is of the form

r̂ j5P j~ t !u0&^0u. ~50!

Then the total population of the pseudomode vacuum co
prises two pieces: the new component fromr̂ j , and a con-
tribution from r̂n j , the time-independentuc0u2. Thus

Pvac~ t !5P j~ t !1uc0u2, ~51!

wherePvac(t) is simply the population of the pseudomod
vacuum. Now by analogy with Eq.~43! ~for the original
system!, the atomic ground-state population will be given b
the sum of population of the pseudomode vacuum and
populations of all of the pseudomodes so that

P05Pvac1(
l

ubl u2. ~52!

Then by considering Eq.~47! and Eq.~51! we have
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55 2295NONPERTURBATIVE DECAY OF AN ATOMIC SYSTEM . . .
d

dt
P j5(

l
^c̃uL̂ l

†L̂ l uc̃&5(
l

^0uL̂ l uc̃&^c̃uL̂ l
†u0&, ~53!

where the last line follows because the action of any of
Lindblads @Eq. ~42!# is to project the pseudomode syste
@Eq. ~35!# onto the vacuum. Then by utilizing this result
Eq. ~50! we can write a differential equation forr̂ j in the
form

d

dt
r̂ j5(

l
L̂ l r̂n jL̂ l

† . ~54!

Now, we note that

L̂ l r̂ j L̂ l
†50 ~55!

and that

@Heff ,r̂ j #50 ~56!

so that we can easily combine our equations forr̂ j and r̂n j
into an equation for the complete density matrix,

d

dt
r̂52 i @Heff ,r̂ #1(

l
L̂ l r̂L̂ l

† , ~57!

where

r̂5 r̂n j1 r̂ j ~58!

forms the complete composed density matrix. If we sub
tute Eq.~40! for Heff we obtain a master equation which is
the exact form of Eq.~1! and thus the process of constructin
a master equation for the system is complete.

The solution of the master equation is given by Eq.~58!
and is clearly in the form of a statistical mixture of th
vacuum state and the state vectorc̃,

r̂~ t !5P j~ t !u0&^0u1uc̃~ t !&^c̃~ t !u. ~59!

We can then use Eqs.~47!, ~51!, and ~52!, and the initial
conditions for thebl andP j ~all zero! to determineP j (t)
from the integral,

P j~ t !522(
l
Im~zl !E

0

t

ubl~ t8!u2dt8. ~60!

IV. APPLICATIONS TO SIMPLE SYSTEMS

A. Master equation for a single pseudomode

As a simple example of a master equation generated
the nonperturbative behavior of the atom-field coupling
consider a two-level atom, and let it interact with a density
states functionD(v) which has a single pole in the lowe
half plane which is located at

z1[vc2 iG/2. ~61!

Because there is only one pole it follows from the norm
ization property~34! that the single pseudomode coupling
simply the real quantity
e

i-

y
e
f

-

g115V0. ~62!

Now to proceed to a master equation we simply use E
~41!, ~42!, and~1! to find that

d

dt
r̂52 i @H0 ,r̂ #2

G

2
~ â†âr̂22âr̂â†1 r̂â†â!,

H05v0~ ŝz11!/21vcâ
†â1V0~ â

†ŝ21âŝ1!. ~63!

This master equation is the well known equation for t
damped Jaynes-Cummings model@27# describing the quan-
tum coupling of a two-level atom to a damped mode. Ho
ever, this master equation is usually derived using pertur
tion theory.

The master equation iscompletely independentof the
function D(v), for a single simple pole and within the re
strictions described above~i.e., with no branch cuts and in
tegrable through the lower half plane contour!. This result is
strongly suggestive of the wide applicability of the damp
Jaynes-Cummings model, Eq.~63!.

The most straightforward example of a single pseu
mode is given by the Lorentzian resonance,

D~v!5
G

~v2vc!
21~G/2!2

. ~64!

The coupling of this type of resonance to three-~and two-!
level systems has been considered in detail in Ref.@16#, but
here we note first that for a very narrow cavity resonan
G→0 in Eq. ~61!, we will be able to neglect the dissipativ
part of Eq.~63! and we then simply obtain the master equ
tion for a two-level system coupled to a single mode. S
ondly, in the case that the cavity resonance is very broad,
the coupling strengthV0 weak, it is well known that for the
master equation~63! we can perform an adiabatic elimina
tion of the field variable~for simplicity we consider the cas
of cavity-atom resonance whereâ'22iV0s2 /G). This is
done in exactly the same way as the atomic variable is eli
nated in the semiclassical theory of the laser~see, e.g., Ref.
@23#!. This then leads to the well known low-Q master equa-
tion for the atomic density matrix alone:

d

dt
r̂A52 i @H,r̂A#2

g

2
~ ŝ1ŝ2r̂A22ŝ2r̂Aŝ11 r̂Aŝ1ŝ2!,

~65!

whereH5v0(ŝz11)/2 and the spontaneous emission ra
g is

g54V0
2/G0. ~66!

This is, of course, exactly the peturbative result we obtain
applying Fermi’s golden rule to the system~2! with gl de-
termined by Eqs.~64! and ~4!. The dependence ofg on
1/G is exactly as expected from the Purcell formula whe
g(Q)}Q, with Q5v0 /G0 @2#. We can also obtain the sam
limiting result from the pseudomode equations~31! and~32!
@16#. In the case of the Lorentzian resonance~64!, and a
resonant two-level system, Eqs.~31! and ~32! take the form
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i
d

dt
c1~ t !5v0c1~ t !1V0b1~ t !, ~67!

i
d

dt
b1~ t !5~v02 iG/2!b1~ t !1V0c1~ t !, ~68!

where the only time-dependent variables arec1 andb1. For
the low-Q cavity, Eq. ~68! yields b1(t)'22iV0c1(t)/G
which can be substituted back into Eq.~67! to yield the same
low-Q, approximate, decay rate as in Eq.~66!.

B. Example with two Lorentzian modes

We will now give a very simple example of an atom
system coupled to two pseudomodes. In this case we
sider a density of states function which is simply a sum
two Lorentzian functions,

D~v!5W1

G1

~v2vc
~1!!21~G1/2!2

1W2

G2

~v2vc
~2!!21~G2/2!2

, ~69!

where the weights of the two Lorentzians are such t
W11W251. The two cavity resonances are located at
different frequenciesvc

(1) andvc
(2). This time the poles are

located at

z15vc
~1!2 iG1/2, z25vc

~2!2 iG2/2, ~70!

and the squares of the couplings (gil
252 ir lV i

2) are

g11
2 5W1V0

2 , g12
2 5W2V0

2 .

Then if we follow the procedure of Eqs.~41!, ~42!, and Eq.
~1! we simply obtain the master equation

d

dt
r̂52 i @H0 ,r̂ #2

G1

2
~ â1

†â1r̂22â1r̂â1
†1 r̂â1

†â1!

2
G2

2
~ â2

†â2r̂22â2r̂â2
†1 r̂â2

†â2!, ~71!

with the Hamiltonian

H05v0~ ŝz11!/21vc
~1!â1

†â11vc
~2!â2

†â21V0AW1~ â1
†ŝ2

1â1ŝ1!1V0AW2~ â2
†ŝ21â2ŝ1!. ~72!

We see that this time we find a two-mode damped Jayn
Cummings model with the atomic system coupled to t
decaying pseudomodes. This result generalizes straigh
wardly to multiple Lorentzian resonances and multip
atomic levels of the form given in Fig. 1.

V. COUPLED PSEUDOMODES

A. The non-Lindblad problems associated with complexgil

When we consider more complex functions than Lore
zians for the generalized density of states, we can quic
run into serious difficulties because the couplingsgil would
n-
f

t
e

s-

r-

-
ly

no longer be real.~Some examples will be given in Sec. VII!
We can then no longer use the results given in Eqs.~41!,
~42!, and~1!. This is a general problem which arises only
we consider more than one pseudomode, and when we
density of states functions which are more complex th
Lorentzian functions.

There are at least two types of difficulty. First, we c
start withHeff in the form given in Eq.~38! and splitting
gil into real and imaginary parts so that

gil5gil
~r !1 igil

~ i ! ~73!

we can splitHeff into Hermitian and anti-Hermitian parts a
we have done in Eq.~40!. Then we find for the Hermitian
piece

H05(
l
Re~zl !âl

†âl1(
i

v i u i &aa^ i u

1(
i l

gil
~r !~ âl

†ŝ2
~ i !1âl ŝ1

~ i !!, ~74!

and the anti-Hermitian piece leads to the requirement for
following sum over general Lindblad operatorsL̂m :

(
m

L̂m
† L̂m[22(

l
Im~zl !âl

†âl22(
i l

gil
~ i !~ âl

†ŝ2
~ i !1âl ŝ1

~ i !!,

~75!

which cannot be satisfied. The first sum on the right ha
side is not a problem and can be treated using the Lindb
of Eq. ~42!. The second sum cannot, apparently, be facto
into theL̂m

† L̂m form. For example, we can rewrite Eq.~75! in
the form

(
m

L̂m
† L̂m[22(

l
Im~zl !âl

†âl22(
i l

gil
~ i !~a f âl

†1aaŝ1
~ i !!

3~a f âl1aaŝ2
~ i !!12(

i l
gil

~ i !a f
2âl

†âl

12(
i l

gil
~ i !aa

2ŝ1
~ i !ŝ2

~ i !, ~76!

where a faa51. The right hand side of this equation
nearly in the required form, but in fact the equivalence c
never be satisfied. The reason is that whatever choic
made over the signs ofgil

( i ), some of the terms in the sum
will have positive coefficients and some will have negati
coefficients. The terms with negative coefficients cannot s
isfy the equivalence in Eq.~76!.

The second difficulty arises over the identification of t
connection between the rate of change of the ground-s
population, Eq.~45!, with the rate of change of the pseud
mode populations in Eq.~46!. This is because the couplin
gil appears with the wrong phase factors. However, we
still calculate the rate of change ofPvac, which from Eq.
~52! is given by the rate of change of the difference in t
ground-state population and total population of the pseu
modes. For the rate of change of the ground-state popula
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we can use Eq.~45!, and for the rate of change of th
pseudomode populations we have Eq.~46!. The difference is
found to be

d

dt
Pvac522(

l
Im~zl !ubl u222(

i l
gil

~ i !~ci* bl1cibl* !.

~77!

The right hand side of this equation is identical to the exp
tation value of the right hand side of Eq.~75! evaluated with
uc̃(t)& as found in Eq.~35!. This means that although w
cannot, in this general case write a master equation in
form of Eq. ~1!, we can write an equation based on the ge
eral form

d

dt
r̂52 i @H0 ,r̂ #2(

m
smS 12L̂m† L̂mr̂2L̂mr̂L̂m

† 1
1

2
r̂L̂m

† L̂mD ,
~78!

where sm561 controls the signs of the Lindblad term
Then by using Eq.~76! we can identify four types of ‘‘Lind-
blad’’ as

Ll
~1!5A22 Im~zl !âl , Lil

~2!5A2ugil
~ i !u~a f âl1aaŝ2

~ i !!,

Lil
~3!5A2ugil

~ i !ua f âl , Lil
~4!5A2ugil

~ i !uaaŝ2
~ i !, ~79!

where

sil
~2!5s~2gil

~ i !!, sil
~3!5s~gil

~ i !!, sil
~4!5s~gil

~ i !!, ~80!

and where the functions(x) is used to indicate the sig
of x.

This approach is not, however, satisfactory from a phy
cal point of view. In a different context@28,29# a master
equation of the more general form~78! has been found to be
defective because positive probabilities cannot be assigne
component processes. This fact is illustrated clearly by
process of master equation unraveling@26#. The master equa
tion ~1! can be unraveled into stochastic processes for a
malized state vectoruC& by the statement that over an infin
tesimally short time Dt there is a probability

^CuL̂ l
†L̂ l uC&Dt for the transition

uC&→
L̂ l uC&

A^CuL̂ l
†L̂ l uC&

~81!

and there is a probability 12( l^CuL̂ l
†L̂ l uC&Dt for the tran-

sition

uC&→
S 12 iH 0Dt2~Dt/2!(

l
L̂ l
†L̂ l D uC&

A12(
l

^CuL̂ l
†L̂ l uC&Dt

. ~82!

The statements~81! and ~82! are exactly equivalent to th
master equation~1! when used as part of a stochastic sim
lation @26#. These kinds of simulations correspond to re
physical processes for detecting system excitations. H
ever, the problem with the master equation~78! is that it
-

e
-

i-

to
e

r-

-
l
-

cannot be simulated in the manner of Eqs.~81! and ~82!
because the probabilities of some of the processes wil
negative according to the signssm given in Eq.~80!.

Thus we have seen that although the equations~31! and
~32! yield the correct results for the atomic system amp
tudesci(t), the behavior of the amplitudesbl can be clearly
unphysical in the case when thegil are complex. Especially
when the coupling is strong and the dissipation is weak
can find that the pseudomode amplitudes of Eq.~30! can
exceed unity for complexgil . We will correct this problem
in the remaining part of this paper~by means of an adjust
ment to the pseudomodes!, but here we would like to point
out the close affinity between this problem, complex co
plingsgil , and the pathological master equations~78!.

B. Lindblad formulation for two pseudomodes

We will now resolve the problems discussed in the p
ceding section by means of a rotation of the pseudom
basis. We will consider the case of a single atomic transit
coupled to two pseudomodes. The coupled equations~31!
and ~32! are then

i
d

dt
c~ t !5vc~ t !1g1b1~ t !1g2b2~ t !, ~83!

i
d

dt
b1~ t !5z1b1~ t !1g1c~ t !,

i
d

dt
b2~ t !5z2b2~ t !1g2c~ t !, ~84!

wherec ([c1) now stands for the amplitude of the sing
atomic transition andb1 andb2 are the amplitudes of the two
pseudomodes as defined in Eq.~30!. The couplings
gl5A2 ir lV0 may now be complex, but they are constrain
by the addition rule of Eq.~34! so that( lgl

25V0
2, where

V0
2 ([V1

2) is the strength of the single atomic transition
in Eq. ~6!.

Equations~83! and ~84! can be placed in a matrix form

i
d

dt
c5v0c1g̃b, i

d

dt
b5Zb1gc, ~85!

where

Z5Fz1 0

0 z2
G , g5S g1g2D , b5S b1b2D ~86!

are all complex quantities.
Now we apply to the pseudomodesb the complex rotation

matrix

R~b0!5F cosb0 sinb0

2sinb0 cosb0
G , ~87!

whereb0 may be complex. Clearly,R(b0) is not, in general,
unitary, but is always orthogonal in the sense th
R(b0)R̃(b0)51. The transformation will not affect any o
the atomic dynamics. The transformed modes will be
noted
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b85R~b0!b. ~88!

The effect onZ is in the form of a similarity transformation
so that

Z85R~b0!ZR̃~b0!5
z11z2
2

1
Dz

2 F2cos2b0 sin2b0

sin2b0 cos2b0
G ,
~89!

where the difference in the complex locations of the t
pseudomodes is simply

Dz5z22z1 . ~90!

We will parametrize the complex couplingsgl by acomplex
anglebg such that

g5V0S cosbg

sinbg
D , ~91!

which means that the two complex pseudomode coupli
are characterized by a complex ratiom where

m5tanbg5g2 /g1 . ~92!

The complex rotation of the pseudomode basis means
we obtain the new couplings

g85R~b0!g5V0R~b02bg!S 10D , ~93!

where we have used the addition formula to combine t
rotations on the right hand side. As in Eq.~91!
( lgl

25g̃g5g̃8g85V0
2 is preserved during the rotations.

We have now set up the basic definitions required, so
the rotated pseudomode equations become

i
d

dt
c5vc1g̃8b, ~94!

i
d

dt
b85Z8b81g8c, ~95!

wherec and the time evolution ofc are unaffected by the
transformation. Now the angle of rotationb0 is determined
by the two important constraints on the physical form of E
~94! and ~95!. First, the off-diagonal parts ofZ8 must be
Hermitian. If they are not Hermitian we still have the sam
kinds of problems as discussed in Sec. VA. Inspection of
transformed matrix, Eq.~89!, shows that the two off-
diagonal elements are equal and hence must be real. De
ing the off-diagonal element by the real parame
V12(5V21) we have the restriction

V125
Dzsin2b0

2
. ~96!
s

at

o

at

.

e

ot-
r

The second condition arises because the transformed a
mode couplingsg8 and g̃8 must, in general, be Hermitian
conjugates. Because the rotation matrix we are using is
unitary, we will have

g85R~b0!g5@ g̃R̃~b0!#
†5@R~b0!g#*5@g8#* ~97!

and we are constrained to haveg8 real. This means thatg8
can be described by areal rotation in the form

g85V0R~ug!S 10D . ~98!

Now if we compare this definition ofg8 with Eq. ~93! we
obtain the second condition as

R~b02bg!5R~ug! ~99!

or on using the addition formula for rotations,

ug5b02bg . ~100!

The task now is to determine the transformed matri
Z8 andg8 with the imposed constraints~96! and~100!. This
becomes an algebraic problem. We will separateb0 andbg

into their real and imaginary parts:b0
(r ) , b0

( i ) andbg
(r ), bg

( i ).
Then we have from the imaginary part of Eq.~100!

b0
~ i !5bg

~ i !, ~101!

and if we also separate the modulus and phase ofDz so that

Dz5uDzuexp~ iuz!, ~102!

and utilize Eq.~101!, we can rewrite Eq.~96! in the form

V125
uDzueiuz

2
~sin2b0

~r !cosh2bg
~ i !1 i cos2b0

~r !sinh2bg
~ i !!.

~103!

Then by considering the real and imaginary parts of E
~103!, which must be real, we obtain

tan2b0
~r !52

tanh2bg
~ i !

tanuz
~104!

and

V125
uDzu
2

sinh2bg
~ i !

Asin2uz1cos2uztanh
22bg

~ i !
, ~105!

where we have chosen the angleb0
(r ) to lie in the quadrant

after uz for bg
( i ).0. This will ensure thatV12 is positive

unlessbg
( i ),0 in which case it is possible, if preferred, t

ensureV12 is positive by exchanging the labels of the tw
pseudomodes. Thus we have determined, in principle,V12
@from Eq. ~105!# andb0 ~from Eqs.~104! and ~101!#.
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To obtain the diagonal elements ofZ8 ~i.e., z18 ,z28) we
need cos2b0 in Eq. ~89!. We can expand cos2b0 in terms of
the real and imaginary parts of 2b0 and then use Eqs.~101!
and ~104! to obtain

Dz85z282z185Dzcos2b0 ~106!

52Dzcosh2bg
~ i !

sinuz1 i cosuztanh
22bg

~ i !

Asin2uz1cos2uztanh
22bg

~ i !
.

~107!

Then to obtaing8 @Eq. ~93!# i.e.,

g185V0cosug , g2852V0sinug , ~108!

we can use a similar approach. Becauseug is real, we have
from Eq. ~101! ug5b0

(r )2bg
(r ), and so by expanding cos2ug

in terms ofb0
(r ) andbg

(r ) and using Eq.~104! we may obtain

cos2ug5
sin2bg

~r !cosuztanh2bg
~ i !2cos2bg

~r !sinuz

Asin2uz1cos2uztanh
22bg

~ i !
~109!

from which the two couplings can be determined by the
of half-angle formulas.

In practice, it may be preferable to determineV12, Z8 and
g8 in terms ofz1 ,z2 ~or Dz and uz) and the coupling ratio
q
e
s
li-
be

ve

of
e-

11m
e

m5m (r )1 im ( i ) @Eq. ~92!#. To this end we first consider th
real and imaginary parts ofbg , and we find from Eq.~92!

sin2bg
~r !5

2m~r !

u11m2u
, cos2bg

~r !5
12umu2

u11m2u
,

sinh2bg
~ i !5

2m~ i !

u11m2u
, cosh2bg

~ i !5
11umu2

u11m2u
. ~110!

This also shows thatm ( i ) is responsible for the sign change
in V12 in Eq. ~105! for the given choice ofb0

(r ) . By utilizing
these equations in Eqs.~105!, ~107!, and~109! we obtain the
following results:

V1252
uDzum~ i !

u11m2u
11umu2

Asin2uz~11umu2!21~2m~ i !cosuz!
2
,

~111!

Dz85
2Dz

u11m2u
~11umu2!2sinuz1 i ~2m~ i !!2cosuz
A~11umu2!2sin2uz1~2m~ i !cosuz!

2
,

~112!

and
~g18!25
V0

2

2 F12
~12umu4!sinuz24m~r !m~ i !cosuz

u11m2uA~11umu2!2sin2uz1~2m~ i !cosuz!
2G ,

~g28!25
V0

2

2 F11
~12umu4!sinuz24m~r !m~ i !cosuz

u11m2uA~11umu2!2sin2uz1~2m~ i !cosuz!
2G . ~113!
n

C. Parallel poles

1. RealDz

In this section we consider some special cases of E
~111!–~113! above, namely, for the situations that arise wh
the poles are parallel with either the real or imaginary axe
the complexv plane. These results will be useful for app
cation to some particular examples in Sec. VII and will
given in terms of both the coupling ratiom and the couplings
g1, g2. If the poles are parallel to the real axis, we will ha
Dz real (uz50,p), and we find for the coupling

V125U Dz~11umu2!
2~11m2!

Us~m~r !!

5
uDzu
2

@~ ug1u21ug2u2!/V0
2#s~m~r !!, ~114!

where the functions(x) is again used to indicate the sign
x: s(x)561. Then for the new difference in diagonal el
ments,

Dz8522iU Dzm~ i !

2 U522i uDz Im~g1* g2!u/V0
2, ~115!
s.
n
in

and for the squares of the new couplings,

~g18!25
V0

2

2 F11
2m~r !

u11m2u
s~m~ i !!s~Dz!G

5
V0

2

2 F11
1

2
~g1* g21g1g2* !/V0

2s~m~ i !!s~Dz!G ,
~g28!25

V0
2

2 F12
2m~r !

u11m2u
s~m~ i !!s~Dz!G

5
V0

2

2 F12
1

2
~g1* g21g1g2* !/V0

2s~m~ i !!s~Dz!G .
~116!

If the two couplingsg1 andg2 are equal in magnitude the
we may let

m5exp~2if! ~117!

and Eqs.~114!–~116! may be simplified to
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V125U Dz

2cos2f Us~m~r !!5uDzuug1u2/V0
2s„2Im~g1

2!…,

Dz852 i uDztan2fu522i uDz~g2
22g1

2!u/V0
2 ,

~g18!25
V0

2

2
@11s~m~ i !!s~Dz!#,

~g28!25
V0

2

2
@12s~m~ i !!s~Dz!#. ~118!

2. ImaginaryDz

If the poles are parallel to the imaginary axis, we w
haveDz imaginary (uz56p/2) and we find that

V125U Dz

11m2 Um~ i !5uDzuIm~g1* g2!/V0
2 ,

Dz852 iU Dz~11umu2!
11m2 U52 i uDzu~ ug1u21ug2u2!/V0

2 ,

~g18!25
V0

2

2 F12
11umu2

u11m2u
s„Im~Dz!…G

5
V0

2

2
$12~ ug1u22ug2u2!/V0

2s„Im~Dz!…%,

~g28!25
V0

2

2 F11
12umu2

u11m2u
s„Im~Dz!…G

5
V0

2

2
$11~ ug1u22ug2u2!/V0

2s„Im~Dz!…%.

~119!

Again, if the two couplingsg1 andg2 are equal in mag-
nitude ~complex conjugates! then

V125
uDzutan2f

2
s~cos2f!5

uDzu
2

~g2
22g1

2!/V0
2 ,

Dz852 iU Dz

cos2f U522i uDzuug1u2/V0
2 ,

g185V0 /A2,g285V0 /A2. ~120!

VI. COUPLED PSEUDOMODE MASTER EQUATION

We will now generate the master equation correspond
to Eqs.~94! and~95!, and we return to a general notation f
multiple levels and pseudomodes as in Sec. III. The pro
dure given in the preceding section easily extends to mult
levels, but extends less readily to multiple pseudomod
This time, then, Eqs.~94! and ~95! can be represented by
state vectoruc̃8(t)& @in the basis~36!# and an effective non-
Hermitian Hamiltonian which takes the form
g

e-
le
s.

Heff5(
l
zl8âl

†âl1(
i

v i u i &a a^ i u1(
i l

gil8 ~ âl
†ŝ2

~ i !1âl ŝ1
~ i !!

1(
l l 8

Vll 8~ âl
†âl 81âl 8

† âl !. ~121!

For the treatment of the preceding sectionl ,l 851,2. This is
quite analogous to Eq.~38!, but with the addition of the
mode-mode coupling term. Then Eqs.~94! and ~95! are re-
produced by the equation

d

dt
uc̃8~ t !&52 iH effuc̃8~ t !& ~122!

as in Eq.~39!. The effective HamiltonianHeff is again split
into a Hermitian part and an anti-Hermitian part in the for

Heff5H02
i

2(l L̂ l
†L̂ l ~123!

and now the Hamiltonian is

H05(
l
Re~zl8!âl

†âl1(
i

v i u i &a a^ i u1(
i l

gil8 ~ âl
†ŝ2

~ i !

1âl ŝ1
~ i !!1(

l l 8
Vll 8~ âl

†âl 81âl 8
† âl !, ~124!

where the new term is the mode-mode couplingVll 8. The
Lindblad operators for the pseudo-modes are

L̂ l5A22Im~zl8!âl . ~125!

To obtain the appropriate master equation we now sim
insert the Hamiltonian and Lindblad operator into Eq.~1!.
The justification for this is that the introduction of the co
pling Vll 8 does not change the differential equation for t
ground-state population, Eq.~45!, and thus Eq.~47! is un-
changed as is the master equation~57! and the solution~59!
with the substitution ofuc̃8(t)& for uc̃(t)&.

VII. EXAMPLES OF COUPLED PSEUDOMODES

A. Master equation for a non-Lorentzian density of states

We will now apply the theory given above to a density
states functionD(v) which is not Lorentzian and contain
two poles in the lower half plane. The normalized function

D~v!5
4G3/A2

~v2vc!
41G4 , ~126!

wherevc is the center frequency of the resonance, andG is
the width of the resonance. In this case we find four poles
which two are located in the lower half plane at

z15vc2
G

A2
~11 i !, z25vc1

G

A2
~12 i !. ~127!

We note thatDz5z22z15A2G is real. We now evaluate the
residues atz1 andz2 we obtain the squares of the coupling
(gil

252 ir lV0
2) which are
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g11
2 5

1

2
~12 i !V0

2 , g12
2 5

1

2
~11 i !V0

2 .

It follows that the pseudomode couplings to the atom
complex, and they are complex conjugates with equal m
nitude. BecauseDz is real we can use Eqs.~118! with
f5p/8. Then if we follow the pseudomode coupling proc
dure we obtain

V125G, z185vc2 iA2G, z285vc ,

g118 50, g128 5V0 . ~128!

Thus we see that in the proper pseudomode basis the
does not couple to the first pseudomode at all. In fact it o
couples to the second pseudomode which is in turn cou
to the first pseudomode. Also, only the first pseudomode
show any decay—the mode which is directly coupled to
atom does not decay in this model.

We now proceed to the master equation by following
procedure of Eqs.~124!, ~125!, and Eq.~1! to obtain

d

dt
r̂52 i @H0 ,r̂ #2A2G~ â1

†â1r̂22â1r̂â1
†1 r̂â1

†â1!,

~129!

with the Hamiltonian

H05v0~ ŝz11!/21vcâ1
†â11vcâ2

†â21G~ â1
†â21â1â2

†!

1V0~ â2
†ŝ21â2ŝ1!. ~130!

B. Example of a band-gap model

We have already seen in Sec. IVB and Eqs.~71! and~72!
how a combination of two Lorentzians results in a mas
equation involving two pseudomodes. In that case all
coupling coefficients were positive. However, in this sect
we consider an idealized model of a band gap~or photon
density of states gap! in which both Lorentzians are centere
at the same frequency, and one of them is given a nega
weighting so that

D~v!5W1

G1

~v2vc!
21~G1/2!2

2W2

G2

~v2vc!
21~G2/2!2

,

~131!

where now the weights of the two Lorentzians are such
W12W251. The effect of the Lorentzian with negativ
weight is to introduce a dip into the density of states funct
D(v) where the coupling of the atom will be inhibited. W
note that this type of density of states function is not ea
expressed as a sum of positive Lorentzians, which makes
non-Markovian approach of Ref.@30# difficult to apply. The
time evolution for a related problem~with G1→`) has been
solved in Ref.@6# by using a Laplace technique similar to th
simple version described in this paper in Sec. VIII. Lapla
transforms have also been used in the study of band gap
Refs.@9,10#, but the pseudomodes were not identified.

The focus here is to identify the master equation ass
ated with the density of states gap in Eq.~131!. Because the
density of states function must be positive we ha
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W1G1.W2G2 @condition for D(v) to be positive at large
v#, andW1 /G1.W2 /G2 @condition forD(v) to be positive
at the center of the resonance#. Combining these two rela
tions we also have the conditionG1.G2, which is also the
condition for a localized dip. We now determine the loc
tions of the poles at

z15vc2 iG1/2, z25vc2 iG2/2, ~132!

and the squares of the couplings (gil
252 ir lV0

2) are

g11
2 5W1V0

2 , g12
2 52W2V0

2 . ~133!

In this case we haveDz imaginary and the coupling ratio
is m5 iAW2 /W1. If we now apply Eqs.~119! with the un-
derstanding thatG1.G2 we find

V125
AW1W2~G12G2!

2
,

Dz852 i
G12G2

2
~W11W2!,

g1850,

g285V0. ~134!

Then if we follow the procedure of Eqs.~124!, ~125!, and
Eq. ~1! we obtain the master equation

d

dt
r̂52 i @H0 ,r̂ #2

G18

2
~ â1

†â1r̂22â1r̂â1
†1 r̂â1

†â1!

2
G28

2
~ â2

†â2r̂22â2r̂â2
†1 r̂â2

†â2!, ~135!

with the Hamiltonian

H05v0~ ŝz11!/21vcâ1
†â11vcâ2

†â2

1
AW1W2~G12G2!

2
~ â1

†â21â1â2
†!

1V0~ â2
†ŝ21â2ŝ1!. ~136!

The new decay rates of the two pseudomodes
G l8522 Im(zl8),

G185G1G2SW1

G1
2
W2

G2
D , G285W1G12W2G2, ~137!

which are both positive given the constraints onG1 andG2

above. The decay rateG18 is proportional to the center heigh
of the density of states and thus the first pseudomode, w
is not directly coupled to the atom, may be associated wit
band-gap mode. The decay rateG28 appears in the largev
behavior ofD(v) and may be associated with the decay o
background mode. If the density of states is reduced to z
at the center of the gap, the decay rate of the band-gap m
which is only coupled to the background mode, will be ze
This leads to population trapping because there is the
superposition of the atomic state and band-gap mode w
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does not decay~provided the atomic transition is resona
with the band-gap center!. If the density of states does no
quite reduce to zero at the band-gap center, there is s
leakage from the band-gap mode which allows the ste
removal of the initially trapped population.

Finally, the master equation~135! is entirely consistent
~in the limit G1→`) with the Laplace transform solution fo
the upper state amplitude found in the band-gap mode
Nabievet al. @6#. They considered a perfect gap in a unifor
~background! density of states. The limit is found if we en
sure that the mode density at the band-gap center is ex
zero,W15G1 /(G12G2),W25G2 /(G12G2), and is easily
confirmed by comparing their Laplace transform solution
the upper atomic state amplitude with the general Lapl
transform solution~142! given below. The parameterszl and
g1l are determined by Eqs.~132! and~133! and we will then
find ~for a ‘‘resonant’’ gap!

c̄~p2 ivc!5
p1G2/2

p~p1G2/2!1V0
22~V0

2G1/2!/~p1G1/2!
.

~138!

This corresponds to the solution of Nabievet al. @6# when we
consider the limitG1→`, and insert the decay rate to th
G1 pseudomodeg54V0

2/G1 @as in Eq.~66!#:

c̄~p2 ivc!→
p1G2/2

p~p1G2/2!1gp/2
~139!

~though to conform with the notation of Ref.@6# we should
let G2/2→G). This is now easily inverted to obtain@6#

c~ t !5$c`1~12c`!exp@2~G21g!t/2#%e2 ivct, ~140!

with c`5G2 /(G21g). This result provides a clear examp
of the population trapping described above.

VIII. THE LAPLACE METHOD OF SOLUTION

In this section we briefly summarize the Laplace appro
to the solution of the analytic equations~31! and~32!. In fact
we can directly Laplace transform the integro-different
equation~29! to obtain the coupled linear equations

~ ip2v i !c̄i~p!5 ic i~0!2V i(
j l

r l
p1 izl

V j c̄ j~p!, ~141!

which can, in principle be solved for the transformed amp
tudesc̄i(p). The time dependence can then be found if
Laplace transform can be inverted. In the case of a sin
atomic transition the problem becomes that of Laplace
verting

c̄~p!5Fp1 iv11(
l

g1l
2

p1 izl
G21

. ~142!

IX. CONCLUSION

In this paper we have seen the development of a v
general, exact, and nonperturbative approach to the deca
an atomic system coupled to a nonuniform density of sta
e
y
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tly

r
e

h

l
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le
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ry
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s

describing the environment. The theoretical treatment co
apply to many situations, such as atoms in cavities or e
tons in quantum wells and is especially appropriate
strongly coupled systems. The first result is the derivation
the coupled, linear, first order equations~31! and~32!. These
allow a straightforward numerical solution of many pro
lems. The second result is the derivation of an associa
master equation defined by an effective Hamiltonian~41!
and Lindblad operators~42!. This development allows us to
have many of the insights acquired in the study of mas
equations in quantum optics. It also allows a physical int
pretation of the differential equations. That physical interp
tation is in terms of the coupling of the atomic system
pseudomodes. These pseudomodes are strongly allied
poles in the density of states function which are located
the lower half complex plane. The decay of the pseudomo
leads to master equations which are relatives of the dam
Jaynes-Cummings model with a single excitation. Furth
we have seen that a universal feature of systems containi
single simple density of states pole, or pseudomode, is
realization of the Jaynes-Cummings model with appropri
parameters@Eq. ~63!#.

The third result is the removal of difficulties present
some systems with multiple pseudomodes. We find tha
the pseudomode is defined in a straightforward way by
~30! we can obtain a pathological master equation. Althou
the atomic dynamics is correctly described by the differen
equations~31! and~32!, the pseudomodes can develop pop
lations that are greater than unity in the strong-coupling
gime, and then the associated master equation is not in
form of Eq.~1!, but in the form of Eq.~78!. These difficulties
have been removed by utilizing an appropriate~nonunitary!
transformation in Sec. V which couples the pseudomode
a basis where each pseudomode has its own decay cha

The theoretical predictions of this paper have been tes
using numerical models for two- and three-level syste
coupled to various types of continuum. The fundamen
Hamiltonian ~2! can be modeled by a discrete bath with
large, but finite number of reservoir modes. Then the num
cal solution of the problem amounts to integrating Eqs.~16!
and ~17! with a large but finite number of modesl. This is
then the same approach as that taken in the work of Sw
@31#, except that here we use a frequency-dependent c
pling and a sufficiently dense set of modes to represen
continuum and prevent spurious revivals. The results for
atomic dynamics~populations, or coherences! from this bath
model can then be compared to the integration of the m
simpler pseudomode equations~31! and~32! or the appropri-
ate master equation such as Eqs.~63!, ~129!, or ~135!. With
an appropriately dense set of reservoir modes the agree
between all three numerical methods is excellent.

It is appropriate to mention here some of the weaknes
of the approach taken in this paper. Certainly, the restrict
to analytic functions forD(v), where a contour can be take
in the lower half plane, is restrictive, though it also allow
some considerable insight into the atomic decay. The ex
sion of branch cuts in the lower half plane is a restriction t
cannot be avoided. Against this, the method provided sho
be very appropriate for handling polynomial approximatio
to the density of states, of the formP(v)/Q(v).

The master equations that have been derived are e
results, but of course, in the systems that have been stud
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there are no elements of driving fields or pumping. The
fects of strong, classical driving, would almost certainly ha
to be treated by perturbation theory, but it seems plaus
that master equations of the type derived in this paper sh
provide a better framework for the expressions of pertur
tion theory close to, or in, the strong-coupling regime.
ni

v

Re

Y

s-
h

ys

.

a,
f-
e
le
ld
-

ACKNOWLEDGMENTS

This work was supported by the United Kingdom Eng
neering and Physical Sciences Research Council and by
European Union. I would like to thank Peter Knight for rea
ing the manuscript.
-

us

0

-

-

ed-
l

.W.

ys-
-
.

@1# V. Weisskopf and E. Wigner, Z. Phys.63, 54 ~1930!.
@2# E.M. Purcell, Phys. Rev.69, 681 ~1946!.
@3# See, for example, E.A. Hinds, Adv. At. Mol. Opt. Phys.28,

237 ~1991!, and references therein.
@4# F. De Martini, G. Innocenti, G.R. Jacobovitz, and P. Matalo

Phys. Rev. Lett.59, 2955~1987!.
@5# G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Re

A 44, 669 ~1991!.
@6# R.F. Nabiev, P. Yeh, and J.J. Sanchez-Mondragon, Phys.

A 47, 3380~1993!.
@7# K. Ujihara, Opt. Commun.103, 265 ~1993!.
@8# S.-T. Ho, S.L. McCall, and R.E. Slusher, Opt. Lett.18, 909

~1993!.
@9# S. John and T. Quang, Phys. Rev. A50, 1764~1994!.

@10# A.G. Kofman, G. Kurizki, and B. Sherman, J. Mod. Opt.41,
353 ~1994!.

@11# H. Freedhoff and T. Quang, Phys. Rev. Lett.72, 474 ~1994!.
@12# K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi,

Lee, and T. Ishihara, Phys. Rev. Lett.74, 3380~1995!.
@13# S.M. Dutra and P.L. Knight, Opt. Commun.117, 256 ~1995!;

Phys. Rev. A53, 3567~1996!.
@14# M. Rippin and P.L. Knight, J. Mod. Opt.43, 807 ~1996!.
@15# See, for example,Confined Electrons and Photons: New Phy

ics and Applications, edited by E. Burstein and C. Weisbuc
~Plenum Press, New York, 1995!, and references therein.

@16# B.M. Garraway and P.L. Knight, Phys. Rev. A54, 3592
~1996!.

@17# Y. Yamamoto, S. Machida, and G. Bjo¨rk, Phys. Rev. A44,
657 ~1991!.

@18# F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, Ph
Rev. A 46, 4220~1992!.

@19# F. De Martini, M. Marrocco, P. Mataloni, D. Murra, and R
Loudon, J. Opt. Soc. Am. B10, 360 ~1993!.

@20# C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakaw
,

.

v.

.

.

Phys. Rev. Lett.69, 3314~1992!.
@21# T.B. Norris, J.-K. Rhee, C.-Y. Sung, Y. Arakawa, M. Nish

ioka, and C. Weisbuch, Phys. Rev.B 50, 14663~1994!.
@22# G.S. Agarwal, inQuantum Statistical Theories of Spontaneo

Emission and their Relation to Other Approaches, edited by G.
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