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Nonperturbative decay of an atomic system in a cavity
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Atoms can nowadays be placed in increasingly exotic environments such as microscopic cavities and
materials with photonic band gaps. Hi@heavities can now easily result in a strong coupling between an atom
and its environment where perturbation theory should no longer be appropriate. The purpose of this paper is to
describe the dynamics of a multilevéttype atomic systeniincluding the case of a two-level systgmhich
interacts with a reservoir modeled by a generalized density of states. A theoretical construct, the pseudomode,
is utilized to develop general methods for solution. Without using perturbation theory the equivalent master
equation is developed and the relationship between the master equation, the pseudomodes, and the generalized
density of states function is explored with examples. Utilizing a straightforward definition of the pseudomode,
it is found that many functions for the density of states lead to problematic non-Lindblad master equations.
Several examples are given, and it is shown how to convert the non-Lindblad master equations into a Lindblad
form in these cases. The examples include a non-Lorentzian resonance and a simple model of a photonic band
gap.[S1050-294{P7)04102-4

PACS numbse(s): 42.50.Md, 31.70.Hq, 42.50.Lc

. INTRODUCTION where the Lindblad operators are tEle, Hy is the system

The d ¢ ited atomi ¢ has b fint Hamiltonian, andp is the density matrix. This form of mas-
e decay of excited atomic systems has been of Interegf, equation arises very naturally from time-dependent per-

since the time of the pioneering work of Weisskopf and : : : : :
. turbation theory applied to the interaction of the system with
Wigner[1]. It has long been known that the decay of an atom zero-temperature heat bath. The Lindblad terms then origi-

is not an intrinsic property of that atom, but depends stronglyfi :
on the nature of the environment of that atf2j Recently, nate from the double commutator of the system-bath interac-

this has been of much interessee, for example, Refs. tion eyaluated to second ord&Z,Zfﬂ‘_. However, when the
[3-16) in part because of the development of microlaser<£0UPling of the system to the environment is very strong,
(see, for exampld;17—19). The nonperturbative features of perturbatlon_theory cannot 'be expected to yield the cor.rect
the interaction between an atom and its environment are egesult. In this paper we will see that for many decaying
pecially apparent if there is such a strong coupling that encavity-atom systems a form of the Lindblad master equation
ergy leaving the atom can later retJi20,21]. Changing the (1) is still appropriate.
environment often means placing the atom in a cavity of In Sec. Il we will formulate the problem. Then in Sec. Il
some kind, but nowadays the atom may instead be an excwe will see how the time evolution can be solved in terms of
ton, and the environment that of a quantum well. For brevitya finite set of coupled differential equations, and how those
we will refer to a cavity throughout most of this paper. equations can be formulated in terms of a nonperturbative
The dynamics of the atom-environment interactions havenaster equation. Some straightforward examples are then
long been described by master equations derived from pegiven in Sec. IV. In Sec. V we identify some problems with
turbation theory[22,23, which is an approach that works some of the master equations that would be generated by the
well in two regimes: it works in the lov@ cavity, where the  methods of Sec. IIl. A procedure for correcting the defect is
cavity field can be eliminated in favor of atomic dynamics, shown and then the more general master equation is found in
and it works in the higlQ regime where we consider the Sec. VI. Examples of this type of master equation are then
atomic system coupled to a damped cavity mode. given in Sec. VII. The Laplace transform method of solution

A central purpose of this paper is to provide a generals summarized in Sec. VIIIl. Some concluding remarks are
description of the atom-environment interaction which doeshen provided in Sec. IX.

not rely on perturbation theory at all. Furthermore, one of the

tas!<s is to compose the appr_opriate master equation to de- Il. MATHEMATICAL DESCRIPTION

scribe the decay of the atomic system for a given type of

environment. In achieving this a particular difficulty is  In this paper we consider multilev&-type atomic sys-
exposed—that a direct approach generates pathological maems, including systems with only two levels, as illustrated in
ter equations which do not have an acceptable physical inFig. 1. Thus the atomic system comprises a single ground-
terpretation. However, examples are given in this paper of atate level, labeled 0, coupled to a number of excited states

procedure to correct this problem and return to an acceptabl&hich have the labels (or j) fori (j)=1,2,3,... and an
form for the master equation. The acceptable form is theenergy differencémeasured from the ground statef w; .
Lindblad form[24] The labelsi andj will be used for only the atomic system.

q 1 1 The number of excited levels is not specified, but may be one
—5=—i[Hg,p]— U p—LpLi+ =0t |, 1 or more. The multilevel system is coupled to a bath of oscil-
dt” [Ho.p] §|: 2 1 HIPTRIPRIT P @ lators and the creation and annihilation operators for each
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n so each transition couples to the same density of states func-
tion, but with different strengthQ; . The functionD (w,) is
then a generalized density of states which contains the
frequency-dependent elements of both the density of states
and the couplings. In the continuous limit, and with
w),— w, the normalization oD (w) is given by

J_:de(w)=2w, (5)

which is a normalization in terms of natural, rather than an-
gular, frequency. This choice is simply for convenience. The
extension of the integral te- o is very useful to the physical
interpretation, though not essential. The main requirement is
that the integral over the density of states and the frequency-
dependent couplings should be a good approximation in the
region of interest. This is true for optical cavities, though we
note that for other physical systems it may not be true and
we can then obtain “threshold” effec{®25]. The strengths

. , . . 0, are defined from the weight of the density of states,
FIG. 1. The type of multilevel atomic system considered in this

paper. The ground state O is coupled to the upper states 1,2,3 .

by transitions with frequencie®;,w,,w3, ... . The examples in 02=2, (g\"?, (6)
the text are given for a two-level system, when only levels 0 and 1 A

are present.

0

and we will define a total strength for all the transitions as

oscillator area! and a,, where the oscillator, which has
frequencyw, , is labeled here by the index. Then, within 92:2 02 @)
. . . . . . 0 - i
the rotating wave approximation and with only dipole inter- i
actions, the Hamiltonian for the system can be written as
We may split the Hamiltonian Eqg2) into two pieces

) ) comprising the interacting part and the noninteractioare
H=; wxa;[ax"'Ei i1 )ai| part so that

i H=Hg+H,,
+2 gV @0)aa(il +ayli)aal0), o

. Ho— t 4 T .
whereg!" is the frequency-dependent coupling between the B 2}\: A Z @ilacfil.

transitioni —0 and the mode labeled. For specific cavity-

atom geometries, these couplings will be taken to include all .

the necessary spatial factors. For convenience in later parts Hi=2 9\(al]0)aa(i|+ay]i)aa(0)). (8)
of this paper, the basis for the states is chosen so that the M

i ()
couplingsg,” are real. The interaction HamiltoniarH, will only connect certain

ghe t?]unl]. oxerfmodeli. IS takedn. t;)_anil_udethpolarlzatlonséj combinations of atomic states and field states. For a single
and in the imit of-:a continuous aIStribution this sum can beqy -iatinn of the total system these states are

converted into an integral by including the density of states
- i=1i),®]000... ... 009,

; . f dw, py . (3) Y =]0),®]000. .. ... 010... ... 000 (9)

] ) . where the ket|000...... 009 indicates the field state
For the development in the next sections of this paper W§here all the radiation modes are in a vacuum state, and the
will not have to assume any specific form for the density ofy ot |000...... 010 ...... 000in Eq. (9) indicates a state
states function, but ultimately the form plays an importantof the ragiation field where all of the modes are in a vacuum

role. To reflect this, we can extract the shape of the densityiaie apart from mode which is in the first excited state.
of states function into a normalized density of stateSthe unexcited state

D(w,) such that
) Wo=0),®|000... ... 00D (10
2_

. Q
(ny2__"1
PG ) =5 Do) @ s not coupled to any other state.
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Now for the noninteracting part of the Hamiltonian we

will trivially obtain

Heyi=widi, Hph =\, (11

while for the interacting part of the Hamiltonian

Hllﬂi:; 9V, lefEi 9\ . (12)
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Gyj(tt)=2 gloVexi(Alt' ~A0] (22
for a pair of transitions, j. In writing down Eq.(21) we have
exchanged the order of summation owverand integration
over time. This then allows us to write down the expressions
(22) which can be evaluated analytically for a specific ex-
pression of the coupling given in E¢).

If we transfer the equation@1) back into the original

It is clear from these equations that we have a closed systeRfsis we obtain

of equations for the time evolution. We will now expand a

general state vector of the system as

~1f<t>=cwo+2i c<t>¢i+§ oy, (13

in terms of the state®) and insert this into the Schdmger
equationi(d/dt)¥=HW¥ to obtain the following(infinite)
set of coupled equations:

=w)C\ Tt E Ox Vg, .
(14

d .d
D)
5 Ci wc+Eg e g

The coefficientcy is constant in time. It is convenient to
move to an interaction representation by means of the fol-

lowing time-dependent transformations:
Ti(t)=e€'“i'i(t), Ty(t)=€e'Ne,\ (1), (15

so that we obtain the following coupled equations:

d_ N
FrCRPIN (16)
A
d (1) |A
IGio= 2 0, (17)

with the detunings from the mode defined by

Ai)\=w)\—wi . (18

Now we can eliminate the coefficients by integrating Eq.

d t
aci(t):—iwici(t)—jodt’zj: Gij(t—t")c;(t"), (23

where the difference kern@;;(t—t’) is

Gij(t—t") =exp( —iwit+iwt" )Gy (t,t")

=2 gl'oVext—ioy(t-t)]. (24

Then when the sum overbecomes a continuous integral we
obtain the kernels as integrals, which can be regarded as
Fourier transforms ob (w),

0,0 (= o
Gij(t—t')zﬁﬁ dwD(w)e @t (25

ﬁD_(t—t'). (26)

Ry
_\/ﬂ

In the following sections we will examine some of the ways
we can solve the integrodifferential equatid@8) for differ-
ent forms ofD(w).

IIl. METHOD OF POLES
A. Pseudomodes

It proves very useful to be able to calculate the integral
(25) from a contour in the complew plane. In this case the
functionD(w) should be analytic and the poles of that func-
tion will correspond to resonances. The contour is closed in

(17) (in time) and substituting the resulting expression for the lower half plane, where the exponential part of &%)

C, into Eq.(16). The integration of Eq(17) yields

’E)\(t)Z—IJ dt’ 2 gl g (1), (19)

where the initial condition assumed is

€\(0)=c,(0)=0, (20

which simply means that there are no photons in the external
bath (or cavity). We thus obtain a finite set of coupled

integro-differential equations

d""' t ! ~ AT !
aci(t)=—J0dt 2 Gij(t,t')g(t"), (21)

where the functionéij(t,t’) are defined by

causes the integrand to vanifirecause=t’ in Eq. (21)].
There are functionsD(w) which cannot have contours
closed in the lower half plane, and then other methods have
to be used. An example of an alternative approach is given in
Sec. VIII.

So we take a contour in the lower half plane and we will
assume that the contribution to the contour integral from the
semicircle is negligible. Then we will have

G__ t_t! :_% d *iZ(t*t’) (27)
j(t-t)=- 5" ¢ dzD(z)e 1.

Now we will suppose that the functidd(z) has poles in the
lower half plane at=z,,z,, ... ,z, ... .(The index! will
be reserved for the positions of poles hereafténd we will
denote the residues 8f(z) at these poles bg;. Then by the
theorem of residues,
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_ it again obtain an infinite number of coupled differential equa-
Gij(t—=t")= —IQinZ re 't (28)  tions, though with discrete frequencies corresponding to the
positions of the poles.

We note that this is now the case of a separable kernel and
we have excluded any possibility of interfering branch cuts B. Equivalent master equation

in the lower half plane. However, we do not need to have \ye have seen that if we know the positions and residues
only simple poles. With this result inserted into Eg3) we ¢ yhe poles ofd(z) we can compute the time evolution of
will find that the atomic system from the straightforward equati¢8®

d . and (3_2). Howevgr, it is poss_iblle to gain ins_ight into the
i—ci(t)=wici(t)— > Qir, > Qje*iZHJ' dt’eizlt'cj(t’). atom-field dynamics by examining the equations of motion

dt [ i 0 of a specially constructed density matrix. This takes the form

(29 of a master equation. The equations are more complex, but

they provide more convincing evidence that the amplitudes
b, are connected to the amplitude of a mode.

We start by constructing a state vector and a basis for a
system comprising the pseudomode and the atom.(Tihe

b|(t)=—i2 Q; —ir|e‘iZ|tf(:dt/eiZ|t’ci(t')_ (300  nhormalized state vector is
I

On the basis of Eq(29) we can now define a fictional
pseudomodamplitude ag16]

This pseudomode amplitude is chosen to be associated with ’Mt)>:c0|o>a1:[ |0>'+C1(t)|1>al_|[ 10)y
the pole atz; so that Eqs(23) become

d +ca(D)[2)al] 10)i+ -+ +by()]0)a|1)]1 [0}
igts =)+ gibi(v), (31) ! 1

g +b2(0)[0)a| 1) 1 10)i+b3(D]0)a[1):] 1 [0),
. 1#2 I#3
|&b|(t):Z|b|(t)+El g”Ci(t), (32)

+, (35)

where Eq.(32) follows from the differentiation of Eq(30).
Note that we now have éinite set of coupled differential
equations instead of the infinite set found in E&4). The
coupling between the pseudomddand the atomic leval is

where|i), are the basis states of the atomic sysfamin Eq.
(2] and|n;), (wheren,;=0,1) are the newly introduced states
for the pseudomodke The fact that the state vectpg(t)) is
not normalized is emphasized by the tilde. We will refer to

gy = —ir,, (33) the set of states
which is, in general, a complex quantity. Note tlggt ap- 10)2/0)110)2|0)s . - -
pears in both Eq(31) and Eq.(32) rather thang;, and its 11)al0)4/0)2/0)3 . . ..,
complex conjugate. The ramifications of this will be dis- 12)al0)1]0)2[0)5 - - .,
cussed further in Sec. V. To proceed we will assume here :
that the couplingg;, are real. Indeed, we note that this is the [0)4]1)1]0)5|0)5 . . ., (36)
case for Lorentzian resonances. In the general case the resi- 0)4]0)1/1)5/0)5 . . .,
duesr, all sum toi and have naetreal part. This is because 10Y4/0)4]0),]1)5
of the normalization(5) which means thaG;;(0)=Q;(;, . é
and thus from Eq(28) we always have
El (—irp=1. (34  [used in Eq.(35 abovd as the pseudomode basisNe

should stress that this basis is a mathematical construction

The case of a two-level system interacting with a simpleand' strictly, does not exist physically. The lowest energy, or

Lorentzian resonance is considered further in Sec. IV A. vacuum, state will be denoted by the symb@i so that
If we now review the problem in hand we note that we

have converted the original problem, which consisted of an |0)=10)al0)1/0)2[0)s ... . - (37
infinite set of ordinary differential equatiof&q. (14)], into . ) . .
a finite set of ordinary differential equations, E¢31) and By using the basi¢36) we can define an effective non-

(32). These equations can now be solved by well knowrf1€rmitian evolution operator which replicates the equations
analytic, or numerical methods. The restriction Dfiw) is (31 @nd(32) with the unnormalized state vect(5):

that it is analytic in the lower half plane, and contains only

poles there. The number of coupled differential equations isy ' S 23 | 1i i+ afe 4550

the number of poles added to the number of upper atomic " 2| e Z @il )aall ; Gu(ajo=+aos),
levels. If there are an infinite number of poles, then we do (38
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where the atomic raising and lowering operators between d

levels 0 and areaV=i), ,(0| andaV=|0), .(i|. We will
also have §{"+1)/2=|i), (i|. The operators, anda/ are
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&Ho:; (icigiyb—icigiibf) (49

the annihilation and creation operators for excitations of theétnd we compare this to the total population growth of the

fictional mode I. For example, a|1),=/0),, and
[a],am]=im. Then|y(t)) satisfies the equation
d ~ .
a|¢(t)>:_|Heﬁ|¢(t)>- (39

The effective HamiltoniarH . can be split into a Hermitian
part and an anti-Hermitian part in the form

(40)
where we have the Hermitian Hamiltonian

Ho=20 Re(z)afa+ 2 ili)ail

+; gi(a’oV+aal), (41)

and Lindblad operators involving the pseudomode,

|:|: V—2 |m(Z|)é.|.

The Lindblad(42) requires that Im#)<O0, i.e., we closed

(42

the contour(27) in the lower half plane. We see now that

because we consider the poles @fz) in the lower half

complex plane the Lindblads, have real coefficients. The
sign of the energy of the pseudomdddepends on whether
the pole atz, is to the right or left of the imaginary axis. The

particular form of splitting in Eqs40)—(42) depends on the

coefficientsg;, being real. The complications of complex

0; are considered in Secs. V and VI.

pseudomodes from E@32),

d
2| &|bl|2:22| Im(z|)|b||2+; (icigiib—icigybf)

(46)
so that(in the case thag;, is rea)
d d
gillo=2 Gilbi?=22 Im(z)[by|?
d _~ o~
=2 glol+ 2 Gititly), @D

where the last line follows from Eq$35) and(42). Clearly,
in the pseudomode system, the risdligis not given by just
the increase in the pseudomode population, because the
pseudomodes aflessyand lose population.
We will now proceed to a density matrix description of

the system by combining the results of both E(®) and
(47) in the spirit of master equation unravelifgg] (though
the process performed here is master equation compaosition
We know that all the atomic coherences and populations
(with the exception of the ground-state populajieme de-
scribed by

pnj:|¢><¢| (48)
from Eq. (35). And from Eq.(39) we know thatp,; obeys
the differential equation

d. ) -
apnj:_|[Heﬁ1Pnj]- (49

Thus we may determine the dynamics of the upper atomighen to complete the density matrix we must include an
energy levels from Eqs31) and(32) or the equivalent equa- aqditional term to account for the behavior of the ground-
tion (39). However, to obtain the dynamics of the atomic gi5te population which is described by Hd47). Thus the

ground-state population we need more than just these diffetyqgitional term belongs to the pseudomode vacuum state and
ential equations because there are contributions from botfg of the form

the initial ground-state population and from each excited

field state (which would have the atomic system in the

p;=T1;(1)[0)(0). (50)

ground state Thus there cannot be a description in terms of

a pure state. If we start from the fundamental equati8)
and denote the atomic ground-state populationlhy we
have

H0=|Co|2+; [NE (43

Then the total population of the pseudomode vacuum com-
prises two pieces: the new component frém and a con-

tribution from [)nj , the time-independent,|?. Thus
ITod ) =TI;(t) +|col?, (51)

wherell,{t) is simply the population of the pseudomode

in terms of the original modes of the system. Now we obtainvacuum. Now by analogy with Eq43) (for the original
a differential equation for the population by differentiating system, the atomic ground-state population will be given by

and using Eq(17) so that

d
dt

d
Mo=—2 glail? (44
1

the sum of population of the pseudomode vacuum and the
populations of all of the pseudomodes so that

=11+ 2 |by|2. (52)

which simply expresses conservation of probability. But now

we use the pseudomode equati@®$) to find that

Then by considering Eq47) and Eqg.(51) we have
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911= Q. (62)

Now to proceed to a master equation we simply use Eqs.

where the last line follows because the action of any of thd41), (42, and(1) to find that

Lindblads[Eq. (42)] is to project the pseudomode system

[Eq. (35)] onto the vacuum. Then by utilizing this result in

Eqg. (50) we can write a differential equation f(frj in the
form

oS Tl 54
Now, we note that
LipiL/=0 (55)
and that
[Herr.pj1=0 (56)

so that we can easily combine our equationsffpand;)nj
into an equation for the complete density matrix,

d. . L
giP= " ilHenpl+ 2 Lipk, (57)
where

P=Pnjtpj (58)

forms the complete composed density matrix. If we substi

tute Eq.(40) for H¢ we obtain a master equation which is in

the exact form of Eq(1) and thus the process of constructing

a master equation for the system is complete.
The solution of the master equation is given by Egf)
and is clearly in the form of a statistical mixture of the

vacuum state and the state vectgr

p(O)=T1,()|0)(0] + [ () (t). (59

We can then use Eq$47), (51), and (52), and the initial
conditions for theb, andII; (all zerg to determinell;(t)
from the integral,

t
Hj(t)=—2§|: Im(z|)Jo|b|(t’)|2dt’. (60)

IV. APPLICATIONS TO SIMPLE SYSTEMS

A. Master equation for a single pseudomode

As a simple example of a master equation generated by
the nonperturbative behavior of the atom-field coupling we
consider a two-level atom, and let it interact with a density of.

states functiorD(w) which has a single pole in the lower
half plane which is located at

2= w,—iT/2. (61)

- ; P P o
gt~ ~[Ho.pl— 5 (a'ap—2apa’+pa‘a),

Ho=wo(0o,+1)2+ w.a’a+Qqa’o_+aoc,). (63

This master equation is the well known equation for the
damped Jaynes-Cummings modl2¥] describing the guan-
tum coupling of a two-level atom to a damped mode. How-
ever, this master equation is usually derived using perturba-
tion theory.

The master equation isompletely independeraf the
function D(w), for a single simple pole and within the re-
strictions described abov&e., with no branch cuts and in-
tegrable through the lower half plane contpdrhis result is
strongly suggestive of the wide applicability of the damped
Jaynes-Cummings model, E@3).

The most straightforward example of a single pseudo-
mode is given by the Lorentzian resonance,

r
(w—w)?+(T/2)%

D(w)= (64)

The coupling of this type of resonance to thréand two)
level systems has been considered in detail in R], but
here we note first that for a very narrow cavity resonance,

I'—0 in Eq.(61), we will be able to neglect the dissipative
part of Eq.(63) and we then simply obtain the master equa-
tion for a two-level system coupled to a single mode. Sec-
ondly, in the case that the cavity resonance is very broad, and
the coupling strengtli), weak, it is well known that for the
master equatiori63) we can perform an adiabatic elimina-
tion of the field variabldgfor simplicity we consider the case
of cavity-atom resonance wheﬁew—ZiQoa_ IT"). This is
done in exactly the same way as the atomic variable is elimi-
nated in the semiclassical theory of the lagsre, e.g., Ref.
[23]). This then leads to the well known lo@-master equa-
tion for the atomic density matrix alone:

d. A Y on oA oA A A oa A A A
apA:_l[H-pA]_E(U+O'7PA_20-7PAO'++PA0'+0'7)1
(65

whereH=w0(<}Z+ 1)/2 and the spontaneous emission rate
vis

y=4Q3T,. (66)
This is, of course, exactly the peturbative result we obtain by
applying Fermi’'s golden rule to the syste®) with g, de-
termined by Eqs(64) and (4). The dependence of on

1T is exactly as expected from the Purcell formula where
v(Q)=Q, with Q= wy/T' [2]. We can also obtain the same

Because there is only one pole it follows from the normal-limiting result from the pseudomode equatidB4) and(32)
ization property(34) that the single pseudomode coupling is[16]. In the case of the Lorentzian resonar(éd), and a
simply the real quantity resonant two-level system, Eq81) and(32) take the form
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no longer be realSome examples will be given in Sec. VII.
gt (D) = woCa () + Qoby (1), (67)  We can then no longer use the results given in E4$),
(42), and(1). This is a general problem which arises only if
we consider more than one pseudomode, and when we have
—by(t)=(wo—iT'/2)by(t) + QC(1), (68)  density of states functions which are more complex than
Lorentzian functions.
There are at least two types of difficulty. First, we can
start with H.; in the form given in Eq.(38) and splitting
g; into real and imaginary parts so that

where the only time-dependent variables efeandb,. For
the lowQ cavity, Eq. (68) yields b,(t)~—2iQqc.(t)/T
which can be substituted back into E§7) to yield the same
low-Q, approximate, decay rate as in EG6).

gi=0y +ig|’ (73
B. Example with two Lorentzian modes we can splitH o into Hermitian and anti-Hermitian parts as

We will now give a very simple example of an atomic We have done in Eq40). Then we find for the Hermitian
system coupled to two pseudomodes. In this case we coiftece
sider a density of states function which is simply a sum of

two Lorentzian functions, ~ga . .
Ho=2 Re(z)a/a + 2 ili)a(il
D(w)=W Ly
W)=W1——"1)\2 2 g
(w (O ) +(F1/2) +2 g T (I +a|0_(+l—))’ (74)
+W. & (69)
2(w—w0@)2+(I,2)% and the anti-Hermitian piece leads to the requirement for the

following sum over general Lindblad operatdr
where the weights of the two Lorentzians are such that g g P P

W;+W,=1. The two cavity resonances are located at the _ o o
different frequencieso(™) and w?). This time the poles are >, LIL,=—22 Im(z)aja -2 g (@' +a0?),
located at m ! i 75

= — — (2 _;
n=o0g)—il/2, z=0f—ilM2 (70 which cannot be satisfied. The first sum on the right hand

side is not a problem and can be treated using the Lindblads
of Eq. (42). The second sum cannot, apparently, be factored
035,=W,03, gZ=W,032. into theL [ L, form. For example, we can rewrite E5) in

the form

and the squares of the couplinggi & —ir,Q?) are

Then if we follow the procedure of Eq#41), (42), and Eq.
(1) we simply obtain the master equation

2 Lhfn=—-22 Im(z)afa-22% g (asa/+ asol)
| RN m
dt —i[Ho.p]- (azalp_zalpal'i'l)a{al)
- i NPT
X(afa|+aaa'(,'))+22 gi(|')afa| a
2 min A A A il
7(a§azp—2a2pa£+pa£az), (77)
+22 o azeV ol (76)
with the Hamiltonian
Ho=wo(0,+1)/2+ 0 Pala, + 0P ala, + QoW (alo where a;a,=1. The right hand side of this equation is
nearly in the required form, but in fact the equivalence can
+a,0,)+ Qo VWy(ajo_+a,0,). (72)  never be satisfied. The reason is that whatever choice is

made over the signs af{’, some of the terms in the sums
We see that this time we find a two-mode damped Jaynesyill have positive coefficients and some will have negative
Cummings model with the atomic system coupled to twocoefficients. The terms with negative coefficients cannot sat-
decaying pseudomodes. This result generalizes straightfoisfy the equivalence in Eq76).
wardly to multiple Lorentzian resonances and multiple The second difficulty arises over the identification of the

atomic levels of the form given in Fig. 1. connection between the rate of change of the ground-state
population, Eq(45), with the rate of change of the pseudo-
V. COUPLED PSEUDOMODES mode populations in Eq46). This is because the coupling

0; appears with the wrong phase factors. However, we can
still calculate the rate of change &f,,., which from Eq.
When we consider more complex functions than Lorent{52) is given by the rate of change of the difference in the
zians for the generalized density of states, we can quicklground-state population and total population of the pseudo-
run into serious difficulties because the coupliggswould  modes. For the rate of change of the ground-state population

A. The non-Lindblad problems associated with complexg;,
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we can use Eq(45), and for the rate of change of the cannot be simulated in the manner of E¢81) and (82)
pseudomode populations we have Ef). The difference is because the probabilities of some of the processes will be

found to be negative according to the sigsg, given in Eq.(80).
q Thus we have seen that although the equati@is and
“ __ 2 (i) % ok (32) yield the correct results for the atomic system ampli-
at Tvae 22| Im(z)lb| 2; g (cTby+eiby). tudesc;(t), the behavior of the amplitudds can be clearly

(77 unphysical in the case when tigg are complex. Especially
) ) ) o ] when the coupling is strong and the dissipation is weak we
The right hand side of this equation is identical to the expeceyan find that the pseudomode amplitudes of Bf) can
tation value of the right hand side of E5) evaluated with  gyceed unity for complex;, . We will correct this problem
ly(t)) as found in Eq(35. This means that although we in the remaining part of this papéby means of an adjust-
cannot, in this general case write a master equation in thgent to the pseudomode$ut here we would like to point
form of Eq. (1), we can write an equation based on the genout the close affinity between this problem, complex cou-

eral form plingsg;;, and the pathological master equatidis).
d. “ 1., ~ . - 1aaia . .
T ~i[Hg,p]— %: Sm EL;‘me_ meLTm+ > LTmLm , B. Lindblad formulation for two pseudomodes
(79) We will now resolve the problems discussed in the pre-

ceding section by means of a rotation of the pseudomode
where s,,= =1 controls the signs of the Lindblad terms. basis. We will consider the case of a single atomic transition
Then by using Eq(76) we can identify four types of “Lind- coupled to two pseudomodes. The coupled equatiBis
blad” as and (32) are then

W_ = 5 @) _ TR ~(0) d
HT=VmzIm@)a, L= V2 (at aaos), C=0C() +gby (D + 0o (), (83
Li(la):\/2|gi(li)|afélr Li(|4):\/2|gi(li)|aaa'(j)v (79 d
where 157 P1(U=2101() +g0(V),
SP=o(-g) sP=o@l) sP=o(ol), (€0 ;
[ &bz(t) =2Z,b,(t) +9g,c(1), (84)

and where the functiorr(x) is used to indicate the sign

of x. . .
This approach is not, however, satisfactory from a physi\Wherec (=c1) now stands for the amplitude of the single

cal point of view. In a different contex28,29 a master atomic transition ant; a_ndbz are the amplitudes of thg two
equation of the more general forf8) has been found to be PSeudomodes as defined in E@30). The couplings
defective because positive probabilities cannot be assigned #= vV~ 1{2o may now be complex, but theg arezconstralned
component processes. This fact is illustrated clearly by th®y the addition rule of Eq(34) so thatX,gi'=();, where
process of master equation unraveliag]. The master equa- Q5 (=Q%) is the strength of the single atomic transition as
tion (1) can be unraveled into stochastic processes for a noin Eq. (6).

malized state vectdi’) by the statement that over an infini- ~ Equations(83) and (84) can be placed in a matrix form
tesimally short time At there is a probability

~in . d d
(¥|L[L,|w)At for the transition I C=woc+Tb, i b=Zb+ge, (85)
v
)t 8y where
(WILIL|w)
z; O

91) (bl)

. g= , b= (86)
g (92 b,

are all complex quantities.

Now we apply to the pseudomodeshe complex rotation
matrix

and there is a probability (W |L[L,|W)At for the tran-
sition

0 2z

(1—iH0At—(At/2)E LIC, | |w)
|
V) — . (82
\/1—2I (W|L[L|w)At R(Bo) =

cosBy SinBg
—sinBy, C€oBy

. 87

The statement$81) and (82) are exactly equivalent to the Whereg, may be complex. ClearlyR(,) is not, in general,
master equatioil) when used as part of a stochastic simu-unitary, but is always orthogonal in the sense that
lation [26]. These kinds of simulations correspond to realR(Bo)R(Bo)=1. The transformation will not affect any of
physical processes for detecting system excitations. Howthe atomic dynamics. The transformed modes will be de-
ever, the problem with the master equatigt8) is that it  noted
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b’=R(By)b. (88)  The second condition arises because the transformed atom-
mode couplingsy’ and g’ must, in general, be Hermitian

The effect onZ is in the form of a similarity transformation conjugates. Because the rotation matrix we are using is not
so that unitary, we will have

~ —cos28, sin2 = =[9R(By) 1= *=[g']*
Z,:R(BO)ZR(BO):Zl—'Z—ZZ'*_% . 2Bo Bo | 9'=R(B0)9=[9R(B)]'=[R(Bo)a]* =[g']* (97
sin2By  €0SZ2B,
and we are constrained to hagé real. This means thal’
can be described by r@al rotation in the form
where the difference in the complex locations of the two
pseudomodes is simply

1
Az=2,—7,. (90) g'=QoR( 99)(0)- (98

We will parametrize the complex couplings by acomplex

Now if we compare this definition of’ with Eq. (93) we
angle B4 such that

obtain the second condition as

g=90< COSGQ) , ©1) R(Bo—Bg)=R(0y) (99)

SinBy
or on using the addition formula for rotations,

which means that the two complex pseudomode couplings
are characterized by a complex ragiowhere 09=Bo— Bqg- (100

The task now is to determine the transformed matrices
p=tanB,=9,/9;. (92) Z' andg’ with the imposed constraint®6) and (100). This
becomes an algebraic problem. We will sepayg¢eand 8,
into their real and imaginary partgy’, g’ and,Bg), Bg).
The complex rotation of the pseudomode basis means thdthen we have from the imaginary part of E400)
we obtain the new couplings _ _
0'=8y, (101

' (93 and if we also separate the modulus and phastzo$o that

1
9'=R(B0)9=QoR(Bo— Bg)( 0

where we have used the addition formula to combine two Az=|Az|ex(if,), (102

rotations on the right hand side. As in Eq9l)

$,92=Tg=0'g’'= Q2 is preserved during the rotations. and utilize Eq.(101), we can rewrite Eq(96) in the form

We have now set up the basic definitions required, so that |AZ|el % _ .
the rotated pseudomode equations become V= > (sinZBg”coshae(g')H Cos%g’)sinhzﬁg)).
d (103
iac=wc+"g"’b, (99

Then by considering the real and imaginary parts of Eq.
(103, which must be real, we obtain

d
'ﬁb =Z'b'+d'c, (95 o tanh?,Bg)
tan2B8y’= T (104
wherec and the time evolution ot are unaffected by the ‘
transformation. Now the angle of rotatig@8y is determined gngd
by the two important constraints on the physical form of Egs.
(94) and (95). First, the off-diagonal parts aZ’ must be Az Sinhzﬂ(i)
Hermitian. If they are not Hermitian we still have the same Vo= _ 2 =, (105
kinds of problems as discussed in Sec. V A. Inspection of the 2 \sirP6,+cog 0,tantf28y’

transformed matrix, Eq.89), shows that the two off-

diagonal elements are equal and hence must be real. Denathere we have chosen the anglf’ to lie in the quadrant
ing the off-diagonal element by the real parameterafter ¢, for ,88)>0. This will ensure that/,, is positive
Vi=V31) we have the restriction unlessB{’<0 in which case it is possible, if preferred, to
ensureV, is positive by exchanging the labels of the two
pseudomodes. Thus we have determined, in princiglg,
[from Eqg.(105] and B, (from Egs.(104) and (101)].

Azsin2B
v12=T°. (96)
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To obtain the diagonal elements &f (i.e., z;,z;) we
need cosB, in Eqg. (89). We can expand cog in terms of
the real and imaginary parts of3g and then use Eq$101)
and(104) to obtain

Az'=2z)—2z;=Azcos2B, (106

sind,+i cosd,tantt28)’

=—Azcosh! _
By \sir?6,+ cog g tantt2 8.}
(107
Then to obtaing’ [Eq. (93] i.e.,
91=Q0C09;, gs=—Qgsinb,, (108

we can use a similar approach. Becadgés real, we have
from Eq. (101) 65= 5"~ B, and so by expanding cog2
in terms of 857 and 8’ and using Eq(104 we may obtain
sin2B'cosd,tanh28,’ — cos28{'sing,
\sir?6,+ cod g tantf2 8

Cos20y= (109

from which the two couplings can be determined by the use
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w=pu"+iu® [Eq. (92)]. To this end we first consider the
real and imaginary parts @4, and we find from Eq(92)

o
|1+ p?]”

1—|ul?
|1+

sin2gy = cos2By'=

()

0 2w 1+|ul?
smh2,8§l')=ﬁ|l+,u i

(i —
COSh%g m (110)
This also shows that( is responsible for the sign changes
in V4, in Eq. (105 for the given choice oBg) . By utilizing
these equations in Eg€L05), (107), and(109) we obtain the
following results:

Ve Az 1+|ul?
Y 1+ sirte(1+ | w22+ (2uTcoss,)?
(111
—Az  (1+]|u|?)?sing,+i(2u")?cosh,

!

Z = T 1
|1+ 1% J(1+ | p[D)2%sire6,+ (2 coss,)2

of half-angle formulas. (112
In practice, it may be preferable to determig, Z’ and
g’ in terms ofz;,z, (or Az and 6,) and the coupling ratio and
|
( ,)Z_Q% . (1—|ul*)sing,—4u" ucosp,
W T i A [P s o,+ (e oo 2
02 1—|u|*sing,— 4u" ucosh
(2= 1 (2 |M|)22-MM b | (113
2 |1+ w?[V(L+]|u]®)sin?6,+ (21 cosh,)

C. Parallel poles

and for the squares of the new couplings,

1. RealAz ) "
. . . . Q r _
In this section we consider some special cases of Egs. (91)2:_0 1+ 2“_20(M<|))U(AZ)
(111)—(113 above, namely, for the situations that arise when 2 |1+ p|
the poles are parallel with either the real or imaginary axes in 02 1
the complexw plane. These results will be useful for appli- =91+ (9% g+ 9:195)/Q%0 (M) a(AZ) |,
cation to some particular examples in Sec. VII and will be 2 2
given in terms of both the coupling rato and the couplings
01, . If the poles are parallel to the real axis, we will have 032 24, ‘
: . 1\2 0 (i)
Az real (§,=0,m), and we find for the coupling (92)°=—"|1— mﬂ(ﬂ )o(Az)
| Az(1+|u?) o) o3 1 ez
127 | (1) |7 = — | 1= 5(910:+ 0193/ Q5o () o (A2) .
|AzZ| (116

—L(lg1?+1g2lH/QGo(n™), (114

If the two couplingsg; andg, are equal in magnitude then

where the functiorr(x) is again used to indicate the sign of we may let

x: o(x)==1. Then for the new difference in diagonal ele-
ments,

T 2|” 2 |AzIm(g7 g2)/Q5, (115

Az’=—2i‘

p=exp2i¢) (117

and Eqgs(114—(116) may be simplified to
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Az ~~n ) ] L oagal) A A
V12:’mU(M(r)):|AZ||91|2/Q§U(—|m(9§)), Heﬁ:Z Z|’a|*a|+2i ‘Ui||>aa<||+; gi(ale”+aa))
Az’ =—i|Aztan2¢| = - 2i|Az(g3—g?)|/Q3, +> Vi (aa+ala). (121)
'

For the treatment of the preceding sectloi =1,2. This is
quite analogous to Eq38), but with the addition of the
mode-mode coupling term. Then Ed94) and (95) are re-
2 produced by the equation

Q .
(92)*=5 (1~ o(u")o(A2)]. (118

0K _
(9= [1+a(uV)o(AD)],

d ~ ) -

gt ()= —Hed ' () (122
2. Imaginary Az

as in Eq.(39). The effective HamiltoniarH o is again split

If the poles are parallel to the imaginary axis, we will - _ o ¢
into a Hermitian part and an anti-Hermitian part in the form

haveAz imaginary (0,= = w/2) and we find that

i apn
Az | Heg=Ho— =>, LIL (123
v12=‘1+—;ﬁ pV=[AZ]Im(g} g,)/ 03, U 2q
and now the Hamiltonian is
Az(1+|ul?)
AZ’=—i’—z =—i[a2|(|gal*+]g21%105, ~in L L oatai
1ru Ho=2 Raz)alai+ 2 wili)alil+ 2 gi(afo?
N2 _ S 1 1+|M|2 Im(A =~ Q) Agn Ata
(gl) _7 - |1T/.L2_|a-( m( Z)) +a|0'+ )+E V||r(a.| a|r+al,a|), (124)
"
2
=%{1—(|gllz—|gz|2)/Qza(Im(Az))} where the new term is the mode-mode couplWig. The
2 0 ’ Lindblad operators for the pseudo-modes are
0 1—|M|2 |:|:\_2|m(2|’)é.|. (125)
(92)*=—~| 1+ 7527 o(Im(A2))
|1+ 4 To obtain the appropriate master equation we now simply

02 insert the Hamiltonian and Lindblad operator into Ef).
= 7{1+(|gl|2_|gz|2)/Qg(r(|m(Az))}_ The justification for this is that the introduction of the cou-
pling V. does not change the differential equation for the

(119  ground-state population, E¢45), and thus Eq(47) is un-

changed as is the master equatiéi) and the solutior{59)

Again, if the two couplinggy; andg, are equal in mag- with the substitution of ' (t)) for |y(t)).
nitude (complex conjugateshen
VIl. EXAMPLES OF COUPLED PSEUDOMODES

|Az|tan2¢ Az, L, _ . .
VlZZTU(COSZd’) = T(gz— gn/Qg, A. Master equation for a non-Lorentzian density of states
We will now apply the theory given above to a density of
Az states functiorD (w) which is not Lorentzian and contains
Az =—i % =—2i|AzZ||g,|2/Q3, two poles in the lower half plane. The normalized function is
cos
D ——4F3/\/§ 126
9= 00/\2,gp= 0o/ V2. (120 ()= o T (126

wherew, is the center frequency of the resonance, Bnid
VI. COUPLED PSEUDOMODE MASTER EQUATION the width of the resonance. In this case we find four poles, of

We will now generate the master equation corresponding/Nich two are located in the lower half plane at

to Egs.(94) and(95), and we return to a general notation for

multipl_e Iev_els and pseL_Jdomod_es as ir_1 Sec. lll. The proce- 7= w,— L(1+i), Z,=w,+ L(l—i). (127
dure given in the preceding section easily extends to multiple \/E \/E

levels, but extends less readily to multiple pseudomodes.

This time, then, Eqs(94) and (95) can be represented by a We note that\z=2z,—z, = V2T is real. We now evaluate the
state vectot ' (t)) [in the basig36)] and an effective non- residues az; andz, we obtain the squares of the couplings
Hermitian Hamiltonian which takes the form (g3=—ir,Q3) which are
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, 1 o , 1 o W,I';>W,I", [condition for D(w) to be positive at large
911=5 (1= 0o, 91=5(1+1) Q. ], andW, /T';>W, /T, [condition forD(w) to be positive
at the center of the resonafjc€ombining these two rela-
It follows that the pseudomode couplings to the atom ardions we also have the conditidry >T',, which is also the
complex, and they are complex conjugates with equal magcondition for a localized dip. We now determine the loca-
nitude. Because\z is real we can use Eqg118 with  tions of the poles at
((furew\//\?é ?I;?anirllf we follow the pseudomode coupling proce 2= 0o—iTy/2,  Zy=we—iT /2, (132

V=T, Zj=w.—iV2I, zy=ow, and the squares of the couplingsi& —ir,Q3) are

2 2 2 2
=W,Qg, =-W,Qg. 133
9l=0, gl=0. (128 911= Wy O12 2400 (133
In this case we havAz imaginary and the coupling ratio

Thus we see that in the proper pseudomode basis the atoi@M:i\/w_ If we now apply Egs(119 with the un-
does not couple to the first pseudomode at all. In fact it Onlyderstanding thab ;>T', we find

couples to the second pseudomode which is in turn coupled

to the first pseudomode. Also, o_nly t_he first pseudomode will VW W(T,—T5)
show any decay—the mode which is directly coupled to the 12= 2
atom does not decay in this model.
We now proceed to the master equation by following the T —T
procedure of Eqs(124), (125, and Eq.(1) to obtain Az =—i 12 2(W1+W2),
d. ; - 2A N oA AT, ~ATA
gip=~i[Ho.p]— V2I'(ajaip—2a;pa] + paijay), g,=0,
(129 :
with the Hamiltonian .
Then if we follow the procedure of Eq$124), (125, and
Ho= wo(0,+ 1)/2+ wc?ﬂéﬁwcégéﬁr(é{éﬁéléz) Eqg. (1) we obtain the master equation
+ alo_+a,o.). d. - ~ Losgn o o oanp aogs
Qo(azo—+2z0) (130 FT [Ho,p]— 7(aialp_231PaI+PaIa1)
B. Example of a band-gap model T
— 2(ala,p—2a,pal+ palay) (139
We have already seen in Sec. IVB and EF4) and(72) o \dad2p 2paz™ pdada),

how a combination of two Lorentzians results in a master
equation involving two pseudomodes. In that case all thevith the Hamiltonian
coupling coefficients were positive. However, in this section

we consider an idealized model of a band dap photon Ho=wo(t}z+ 12+ wcéJ{éﬁ wcégéz
density of states gapn which both Lorentzians are centered

at the same frequency, and one of them is given a negative i VWiW,(I', —T'5) (ala,+a,al)
weighting so that 2 192 7 91%2

Iy T, +Qo(alo_+ay0,). (136)

D) =W =TT (19127 V2 (o w2+ (1527
(13D The new decay rates of the two pseudomodes are
T|'=—2 |m(Z|’),
where now the weights of the two Lorentzians are such that W W
W;—W,=1. The effect of the Lorentzian with negative I = (_1__2 ' _
weight is to introduce a dip into the density of states function 1 =Tl r, T,) Fa=Wil'y=Wol'a, (137

D(w) where the coupling of the atom will be inhibited. We
note that this type of density of states function is not easilywhich are both positive given the constraintsIdpandI’,
expressed as a sum of positive Lorentzians, which makes trbove. The decay rale is proportional to the center height
non-Markovian approach of Rdf30] difficult to apply. The  of the density of states and thus the first pseudomode, which
time evolution for a related problefwith I';—) has been is not directly coupled to the atom, may be associated with a
solved in Ref[6] by using a Laplace technique similar to the band-gap mode. The decay rdtg¢ appears in the large
simple version described in this paper in Sec. VIII. Laplacebehavior ofD (w) and may be associated with the decay of a
transforms have also been used in the study of band gaps background mode. If the density of states is reduced to zero
Refs.[9,10], but the pseudomodes were not identified. at the center of the gap, the decay rate of the band-gap mode,
The focus here is to identify the master equation associwhich is only coupled to the background mode, will be zero.
ated with the density of states gap in E§j31). Because the This leads to population trapping because there is then a
density of states function must be positive we havesuperposition of the atomic state and band-gap mode which
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does not decayprovided the atomic transition is resonant describing the environment. The theoretical treatment could
with the band-gap centerlf the density of states does not apply to many situations, such as atoms in cavities or exci-
quite reduce to zero at the band-gap center, there is soniens in quantum wells and is especially appropriate to
leakage from the band-gap mode which allows the steadgtrongly coupled systems. The first result is the derivation of
removal of the initially trapped population. the coupled,_linear, first order e_quatio(m)_ and(32). These
Finally, the master equatiofi35) is entirely consistent allow a straightforward numerical solution of many prob-
(in the limit T;—o) with the Laplace transform solution for ems. The second result is the derivation of an associated
the upper state amplitude found in the band-gap model off@ster equation defined by an effective Hamiltoniad)
Nabievet al. [6]. They considered a perfect gap in a uniform and Lindblad operator62). This development allows us to
(background density of states. The limit is found if we en- have many of the insights acquired in the study of master

sure that the mode density at the band-gap center is exactffiUations in quantum optics. It also allows a physical inter-
2610, W, =T, /(T —T,)W,=T,/(T;—T), and is easily retation of the differential equations. That physical interpre-

firmed b N4 their Laol ¢ f lution f tation is in terms of the coupling of the atomic system to
confirmed by comparing their Laplace transtorm Solution 101, sq,qomodesThese pseudomodes are strongly allied to
the upper atomic state amplitude with the general Laplac%

) | oles in the density of states function which are located in
transform solutior(142) given below. The parametezsand g |gyer half complex plane. The decay of the pseudomodes
gy are determined by Eqé132) and(133 and we will then o545 1o master equations which are relatives of the damped

find (for a “resonant” gap Jaynes-Cummings model with a single excitation. Further,
- p+1,/2 we have seen that a universal feature of systems containing a
c(p~iwe)= 202 ' single simple density of states pole, or pseudomode, is the
P(p+T5/2)+ 02— (Q2T1/2)/(p+T1/2) gle simp y pole, or p ,

(139 realization of the Jaynes-Cummings model with appropriate

. . . parameter$Eq. (63)].

Igr';i%(gﬁi%omﬁt;o iisoiﬂgo&ggyiﬁga;g:] V;I:tznt\clnvethe The third result is the removal of difficulties present in

I d d —éllﬂzlf [as in Eq.(60)]: y some systems with multiple pseudomodes. We find that if
1 pseudomodey=4Q/T', [as in Eq.(66)]: the pseudomode is defined in a straightforward way by Eg.

p+T,/2 (30) we can obtain a pathological master equation. Although

p(p+T,/2)+ ypl2 (139 the atomic dynamics is correctly described by the differential

(though to conform with the notation of Rd6] we should equationd31) and(32), the pseudomodes can develop popu-

L S lations that are greater than unity in the strong-coupling re-
let I'z/2—T). This is now easily inverted to obta(] gime, and then the associated master equation is not in the

_ form of Eq.(1), but in the form of Eq(78). These difficulties
c(t)={c.+(1—c.)exd —(I'+y)t/i2]}e" ', (140  have been removed by utilizing an appropri@tenunitary
_ _ ) transformation in Sec. V which couples the pseudomodes in
with c..=I'2/(I'o+ y). This result provides a clear example a hasis where each pseudomode has its own decay channel.
of the population trapping described above. The theoretical predictions of this paper have been tested
using numerical models for two- and three-level systems
coupled to various types of continuum. The fundamental
VIIl. THE LAPLACE METHOD OF SOLUTION Hamiltonian (2) can be modeled by a discrete bath with a

. . . . large, but finite number of reservoir modes. Then the numeri-
In this section we briefly summarize the Laplace approacl&al solution of the problem amounts to integrating EA$)

to the SOICL;.tionthf :_he ?naly:ic eqfuatiofi;l) gntd(32).dl_?ffact i Iand(l?) with a large but finite number of modeas This is
we can directly Laplace transtorm the integro-aiterentialy, o, the same approach as that taken in the work of Swain
equation(29) to obtain the coupled linear equations [31], except that here we use a frequency-dependent cou-
r pling and a sufficiently dense set of modes to represent a
(ip— wi)c_i(p):ici(O)—QiZ +—'iZQ§( P), (149 continuum anc_i prevent s_purious revivals. The res_ults for the
i Pz atomic dynamicgpopulations, or coherengefsom this bath
. . . . model can then be compared to the integration of the much
which can, in pr|nIC|pIe be solved for the transformed amp“'simpler pseudomode equatiof®d) and(32) or the appropri-
tudesc;(p). The time dependence can then be found if the,;o ' aster equation such as E@S), (129), or (135. With

Laplace transform can be inverted. In the case of a single, 5noropriately dense set of reservoir modes the agreement
atomic transition the problem becomes that of Laplace inyonveen all three numerical methods is excellent.

verting

C_(p_iwc)_’

It is appropriate to mention here some of the weaknesses

g2 11 of the approach taken in this paper. Certainly, the restriction
c(p)=|p+io+> 4 _ (142  toanalytic functions foD(w), where a contour can be taken
T pTtiz in the lower half plane, is restrictive, though it also allows

some considerable insight into the atomic decay. The exclu-

sion of branch cuts in the lower half plane is a restriction that

cannot be avoided. Against this, the method provided should

be very appropriate for handling polynomial approximations
In this paper we have seen the development of a veryo the density of states, of the forPw)/Q(w).

general, exact, and nonperturbative approach to the decay of The master equations that have been derived are exact

an atomic system coupled to a nonuniform density of statesesults, but of course, in the systems that have been studied,

IX. CONCLUSION
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