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Isotropic and squeezed colored pump noise effects on the degenerate parametric oscillator
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The degenerate parametric oscillator above threshold is studied with phenomenological stochastic colored
~nonwhite! pump noise for arbitrary pump to subharmonic relaxation rate. The current experimental limits of
large intracavity threshold photon numbers~very smallquantum noise! are considered, allowing for a semi-
classical treatment of the system dynamics. A comparison between the effects of isotropic and squeezed pump
noise on the internaltransientandsteady-statefluctuations is presented by simulation of the nonlinear semi-
classical stochastic Langevin equations in the Wigner quadrature representation. It is found that the transient
squeezing for the system starting in the unstable steady state~the vacuum! is not degraded by stochastic pump
noise. A damped oscillatory behavior of the noise levels~periodic exchange of fluctuations between the
squeezed quadrature of the signal and the pump! is observed for large damping of the signal in the turn on of
pump depletion. Finally, it is shown that the limited squeezing above threshold in the steady state (50%) due
to pump depletion can be enhanced if squeezed stochastic noise with sufficient significant spectral components
~broadband squeezing! is fed to the pump. The above-threshold steady-state squeezing has been calculated
analytically from the linearized stochastic equations and the effects of the time scale associated to the relax-
ation of the pump noise~the noise correlation time! compared to the dissipative time scale of the system and
the pump to subharmonic loss ratio are presented.@S1050-2947~96!03609-8#

PACS number~s!: 42.65.Ky, 42.50.Dv, 42.50.Lc, 42.65.Sf.
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I. INTRODUCTION

The degenerate parametric oscillator has been in re
years the subject of great interest as a nonlinear dissipa
system able to produce a large amount of squeezing@1#,
revealing classical or quantum-mechanical behavior, depe
ing on the chosen regime of operation. Classical treatm
of parametric oscillators were given by Bloembergen@2# and
Armstronget al. @3#. Quantum-mechanical treatments we
presented early by Graham and Haken@4#, Graham@5# using
the Wigner representation, and more recently by Drummo
McNeil, and Walls@6# using the positive-P representation
@7#.

The quantum-classical correspondence can be addre
on the ground of a description of the system’s evolution
terms of a system ‘‘size’’ parameter@8#. A natural choice for
the system size parameter is given by the parametricnonlin-
earity to cavity loss ratio~coupling constant scaled by th
geometric mean decay rate of the modes! defining the char-
acteristic undepleted intracavity pump photon number
threshold,nth

21[h2/(gagb), wherega ,gb are the signal and
pump mode relaxation rates, andh is the phenomenologica
nonlinear mode coupling. Semiclassical regimes are fo
for weak parametric nonlinearities~compared to the cavity
losses! h2!(gagb), i.e., largenth , usually referred to in the
literature as the smallg2 limit, the limit of small quantum
noise@g2[(2nth)

21#. In such regimes, the internal intera
tion time scaleh21 is much larger than the dissipative tim
scale and the effect of quantum noise is to perturb aro
classical solutions~diffusion approximation@5#!. This mode
of operation, characterized by very large photon number
threshold, corresponds to the majority of optical experime
551050-2947/97/55~3!/2245~9!/$10.00
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@1#. On the other hand, forh2@(gagb), nth is very small and
single quanta processes are significant, even in the pres
of high pump intensities~large intracavity photon numbers!.
For such regimes of strong coupling, reversible and irreve
ible dynamics cannot be separated anymore into a semic
sical evolution perturbed by small quantum fluctuations. T
is the case for microwave Josephson oscillators that h
high nonlinearities@9#. Such extreme nonlinear quantum d
vices characterized by a very small threshold photon num
~large quantum noise! have been the subject of recent intere
by the possibility they offer to produce quantum superpo
tion states~‘‘Schrödinger-cat’’ states! in dissipative environ-
ments@10#. Analytical solutions valid for arbitrary quantum
noise strength have been obtained using the positive-P rep-
resentation, in the adiabatic limit where the pump mode
cays much faster than the subharmonic, by Drummondet al.
@11# and by Wolinsky and Carmichael@12#.

In this paper, the process of subharmonic generation
studied, involving the nonlinear interaction of a quantiz
light field mode~the pumpb̂) at central frequency 2V with
its subharmonic~the signalâ) at central frequencyV in a
nonlinear cristal described by a second-order susceptib
x (2) placed inside an optical cavity. The second-order s
ceptibility is the nonlinear response of the material to t
application of two input optical fields@13#. An external clas-
sical pumpingEb is applied to drive the higher frequenc
mode b̂ and bring the system to a nonequilibrium stea
state. The coupling of the internal field modes to the exter
continuum of modes is modeled through the transmissiv
of the cavity mirror, leading to the relaxation of the pum
and the signal modes~relaxation ratesgb ,ga) @14#. Above
threshold, the system displays bistability, the signal becom
2245 © 1997 The American Physical Society
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excited and grows in amplitude with two possible pha
separated byp, while the below-threshold solution~zero co-
herent amplitude! becomes unstable. The potential use of
bistable behavior of the parametric oscillator as an opt
switch ~phase switching! has attracted several investigatio
@15#. Even in the absence of thermal fluctuations, the sys
may tunnel from one amplitude to the other due to the pr
ence of quantum noise as calculated by Kinsler and Dru
mond @16# in the small quantum noise limit.

The aim of this paper is to investigate the effects of
presence of phenomenological stochastic colored~nonwhite!
fluctuations of the external classical pumpingEb on the
squeezing produced above threshold. The cases of isotr
~phase unsensitive! and squeezed~phase sensitive! colored
pump noise are considered. Apart from a quantum treatm
of the nondegenerate parametric oscillator with squee
vacuum input to the pump mode@17# using the generalized
P representation, no study of this problem seems to h
been carried out. Attention is focused on the current exp
mental limits of large intracavity threshold optical photo
numbers,nth;1010 ~very smallquantum noise!, allowing for
a semiclassicaltreatment of the system dynamics in th
Wigner representation@18# ~symmetrically ordered opera
tors!. This approximation is valid at optical frequencies b
not for oscillators operating in the microwave region~micro-
cavity configurations!. Simulation of the nonlinear semiclas
sical stochastic Langevin equations in the Wigner quadra
representation~including spontaneous emission! with two
statistically independent addedcolored Gaussianpump
quadrature noise terms describing phenomenological
chastic fluctuations of the complex driving amplitudeEb ,
and analytical steady-state results obtained from the lin
ized equations are presented. Gaussian white and col
~nonwhite!, isotropic and squeezed~nonisotropic! stochastic-
ity in the Langevin equations is considered. Squeezing in
pump could be achieved by mixing a coherent amplitu
with a squeezed vacuum produced by a parametric amp
operated below threshold in a single-ended cavity@14#. The
effects of the time scales associated to the relaxation of
pump noise~the noise correlation time! compared to the dis
sipative time scalega

21 of the system and the pump to su
harmonic loss ratior[gb /ga are discussed within this
framework.

The remainder of the paper is organized as follows.
Sec. II, the description of the quantum-mechanical mo
Hamiltonian and the semiclassical Langevin equations in
Wigner quadrature representation are given. The stocha
pump field is introduced from a semiclassical point of vie
In Sec. III, steady states and their stability are revised. T
effects of stochastic pump on the linearized internal quad
ture variances are examined. In the case of squeezed sto
tic pumping, the effects of the finite squeezing bandwid
g of the noise fed to the pump~compared to the signal mod
bandwidthga) are analyzed. Results for the transient flu
tuations are presented from the numerical simulations of
nonlinear semiclassical equations in Sec. IV. A damped
cillatory behavior of the noise levels~periodic exchange o
fluctuations between the squeezed quadrature of the s
and the pump! is observed for large damping of the signal
the turn on of pump depletion. It is found that the transie
squeezing@19# for the system starting in the unstable stea
s
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state~the vacuum! is not degraded by stochastic pump nois
It is shown that the limited squeezing above threshold in
steady state (50%) due to pump depletion@20# can be en-
hanced if squeezed stochastic noise is fed to the pump i
appropriate quadrature, as one should expect. Sectio
gives a summary and conclusions.

II. THE MODEL SYSTEM

The interaction of a light field modeb̂ at frequency 2V
~the pump mode! with another degenerate field modeâ at
frequencyV ~the subharmonic mode! in a nonlinear crystal
placed inside a resonant optical ring cavity configurat
with only one port, used for both the input and the output
considered. The coupling of the internal harmonic and s
harmonic cavity modes to the external environment lead
the decay ratesga ,gb . The harmonic mode is pumped by
classical driving field. This process may be described by
following Hamiltonian in the Schro¨dinger picture@\51#:

Ĥ5ĤS1ĤR1ĤSR,

ĤS5Ĥ01Ĥ1 ,

Ĥ05Vâ†â12Vb̂†b̂,

Ĥ152 i
h

2
$â2b̂†2H.c.%1 iEb$b̂†exp~22iVt2 iu!2H.c.%,

~1!

ĤR5(
k

$vakr̂ ak
† r̂ ak1vbkr̂ bk

† r̂ bk%,

ĤSR5~ âĜa
†1H.c.!1~ b̂Ĝb

†1H.c.!,

whereĤS , ĤR , andĤSR represent, respectively, the syste
Hamiltonian, i.e, the harmonic and subharmonic free fie
plus the parametric intermode coupling and the driving
mode b̂, the two free baths, and the system-baths coup
Hamiltonians.Eb is proportional to the modulus of theco-
herentpart of the complex driving amplitude~whose phase is
u) and represents the rate at which pump photons are
jected into the fundamental~pump! mode. The nonlinear in-
teraction removes single photons from the pump mode
creates pairs of photons in the subharmonic at a rateh ~cho-
sen real and positive!. Ĝa ,Ĝb are independent bath mode o
erators~quantum white noise operators!,

Ĝz~ t !52 i(
k

xz,kr̂ z,k~0!exp$ i ~V2vz,k!t%, z5a,b

~2!

of zero mean value and white-noise delta correlations

^Ĝz~ t !Ĝz8
†

~ t8!&5gzdz,z8d~ t2t8!, ~3!

describing the coupling of the cavity modes to the vacu
fluctuations entering the cavity by the partially transmitti
mirror, leading to the loss of photons from the cavity at ra
ga ,gb ~fluctuation-dissipation theorem! @21# for the subhar-
monic and fundamental modes.
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The complex exponential in the parametric Hamiltoni
~1! can be easily removed by working in theinteraction pic-
ture defined by the transformationb̂exp(2iVt1iu)→b̂,
âexp(iVt1iu/2)→â. In this rotating frame, following the
standard theory of damping, nonlinear equations of mot
for the system and bath operators are derived. After elim
tion of the bath modes using the Wigner-Weisskopff a
proximation, the resulting nonlinear quantum Langev
equation for the system canonical operators can be expre
as @22#

ȧ̂5hâ†b̂2gaâ1Ĝa ,
~4!

b̂
˙

52hâ2/21Eb2gbb̂1Ĝb .

The Langevin equations~4! are written in scaled variables a

dâ/dt52â1h̃â†b̂1 ĵa~t!,
~5!

db̂/dt52rb̂2h̃â2/21 Ẽb1 ĵb~t!,

where we have defined

t5gat,

r5
gb

ga
,

h̃5h/ga , ~6!

Ẽb5Eb /ga ,

ĵa~t!5Ĝa~ t !/ga ,

ĵb~t!5Ĝb~ t !/ga .

Making use of the system size expansion@8# ~regime of
weak coupling! we can transform these nonlinear quantu
Langevin equations into complexnonlinearstochastic equa
tions for the process (a,b) expressed in the Wigner repre
sentation~associated with symmetric ordering of operator!:

da/dt52a1h̃a* b1ja ,
~7!

db/dt52rb2h̃a2/21 Ẽb1jb .

The derivation of Eqs.~7! from Eqs.~5! relies on the trun-
cation of third-order derivative terms in the correspond
Wigner Fokker-Planck equation. This approximation@5,23#
is justified in the present case of very largenth ~small g2

limit !.
Changing from the complex process (a,b) to the four-

component real process (xa ,ya ,xb ,yb) defined by

z5xz1 iyz , z5a,b, ~8!

wherexz andyz represent the two quadratures of the mo
and writingjz5jxz1 i jyz, we obtain the following nonlinea
stochastic equations:
n
a-
-

ed

,

ẋa52xa1h̃@xaxb1yayb#1jxa~t!,

ẏa52xa1h̃@xayb2yaxb#1jya~t!,

ẋb52rxb2h̃@xa
22ya

2#/21 Ẽb1jxb~t!, ~9!

ẏb52ryb2h̃xaya1jyb~t!,

where we have defined independent real white noi
jua(t),jub(t),u5x,y describing spontaneous emission wi
correlations

^juz~t!juz~t8!&5^ĵuz~t!ĵuz~t8!&sym,

5
1

2
d~t2t8! ifz5a,

5
r

2
d~t2t8! if z5b. ~10!

The contribution of thecoherentpart of the pump is as-
sumed to be also included in the white noise sourcesjub. In
order to describe the effects of a phenomenological ad
tional incoherentstochastic part of the classical pump, th
last equation in~7! is supplemented with a complex Gaussi
colorednoise term«b5«xb1 i«yb

, of zero mean value, i.e.

the replacementẼb→Ẽb1«b(t) is made, transforming~9!
into

ẋa52xa1h̃@xaxb1yayb#1jxa~t!,

ẏa52xa1h̃@xayb2yaxb#1jya~t!,

ẋb52rxb2h̃@xa
22ya

2#/21 Ẽb1«xb~t!1jxb~t!, ~11!

ẏb52ryb2h̃xaya1«yb
~t!1jyb~t!.

A comparison between the effects ofisotropic and
squeezedstochastic noise fed to the pump is considered. T
source of squeezing is taken to be a degenerate param
amplifier ~DPA! operating below threshold in a single-end
cavity of dampingg and resonant frequency 2V. In a frame
rotating at the carrier frequency 2V, the squeezed pump
noise contribution is described by the correlation functio
@14#

^«xb~t!«xb~t8!&5r H 2sin2~w!
d1

t1
e2ut2t8ut1

21

1cos2~w!
d2

t2
e2ut2t8ut2

21J ,
^«yb

~t!«yb
~t8!&5r H 2cos2~w!

d1

t1
e2ut2t8ut1

21

1sin2~w!
d2

t2
e2ut2t8ut2

21J , ~12!

where w controls the relative direction of squeezing~the
phase of the squeezed vacuum relative to the phase o
oscillator coherent driving field!. The intensities and normal
ized correlation times of the noise sources are given by
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d65m/~4l6
2 !, t65jl6

21 , ~13!

with l65(16m)/2 andj5ga /g. The scaled pump param
eterm (0<m,1) defines the strength of the squeezed pu
noise ~the external amplifier driving strength!. Strong
squeezing is achieved in one quadrature of the pump~the y
quadrature ifw50), over a finite bandwidth proportional t
j21, as threshold is approached, i.e., asm→1. In this limit,
fluctuations in the unsqueezed quadrature become very la
and their correlation timet2 approaches infinity. The isotro
pic stochastic pump noise contribution will be described
the correlation functions

^«ub~t!«ub~t8!&5
rd

tc
e2ut2t8utc

21
, u5x,y, ~14!

and the casesd5d6 ,t5t6 will be discussed. The pump t
subharmonic loss ratior is present in~12! and ~14! in order
to fulfill the fluctuation-dissipation theorem because t
above correlations are considered inside the cavity.

III. LINEARIZED STEADY-STATE ANALYSIS

A. Deterministic steady-state solutions and stability analysis

The deterministic steady-state mean value equations
low directly from ~7! ~without the noise terms! with the time
derivatives ofa andb set to zero, leading to

as5h̃as* bs ,
~15!

rbs52h̃as
2/21 Ẽb .

From Eqs.~15!, the following steady-state solutions arise:~i!
the trivial solution as50,bs5 Ẽb /r ; ~ii ! asÞ0. Writing
as5uasueif, Eqs.~15! yield

~ h̃2uasu2!/~2r !5l21 ~l.1!,

f50, 01p, ~16!

h̃bs51 .

The scaled pump parameterl[(h̃ Ẽb)/r characterizes the
pumping level,l51 corresponding to the critical pum
power required to push the system into oscillation~the
threshold for parametric oscillations!. Above threshold
(l.1), the semiclassical solutions~16! exhibit bistability.
Two amplitudes with a phase separation ofp are possible.

To establish the stability and fluctuations of the stea
state solutions, the stochastic Langevin equations~7! are lin-
earized around the steady states. This approximation rem
valid as long as the fluctuations are much smaller than
classical mean values, which is the essence of the smag2

limit ~very small quantum noise!. Writing the semiclassica
mode amplitudesa,b as the sum of the steady-state amp
tude and a small perturbation around the steady sta
a(t)5as1da(t), b(t)5bs1db(t), and substituting these
expressions into~7!, the following set of linearized equation
for the small perturbations~neglecting second- and highe
order terms inda anddb) is readily obtained:
p

ge,

y

l-

-

ins
e

s,

d~da!/dt52da1h̃~as* db1bsda* !1ja ,
~17!

d~db!/dt52rdb2h̃asda1«b1jb .

The linearization procedure decouples the quadrature c
ponents of the field and leads to

d

dt
dx~t!5Axdx1Lx ,

~18!
d

dt
dy~t!5Aydy1Ly ,

wherex5@xa ,xb#
T, y5@ya ,yb#

T, and the drift matrices are
given by

Ax5F h̃bs21 h̃as
2h̃as 2r G , Ay5F2h̃bs21 h̃as

2h̃as 2r G . ~19!

The real noisesLu , u5x,y are written as a sum of indepen
dent white and colored noise sources,

Lu5Luw1Luc ,

Luw5@jua,jub#
T, ~20!

Luc5@0,«ub#
T,

with the correlation properties

^Luw~t!Luw
T
~t8!&5Dwd~t2t8!,

Dw5 1
2 diag@1,r #, ~21!

^Luc~t!Luc
T
~t8!&5Du

c~ ut2t8u!,

Du
c~ ut2t8u!5diag@0,̂ «uc~t!«uc~t8!&#,

where the colored noise diffusion matrixDu
c is given by~12!

or ~14! depending on whether squeezed or isotropic colo
pump noise is considered.

The stability of the steady states is determined by inv
tigating the eigenvalues of the drift matricesAx , Ay . For the
solution ~i!, the drift matrices are diagonal,

Ax5diag@l21,2r #, Ay5diag@2l21,2r #, ~22!

and the eigenvalues are all negative providedl,1. For the
solution ~ii !, the drift matrices read

Ax5F 0 A2r ~l21!

2A2r ~l21! 2r
G ,

Ay5F 22 A2r ~l21!

2A2r ~l21! 2r
G , ~23!

and their eigenvalues are
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u6
x 52

r

2
6
1

2
Ar 228r ~l21!,

u6
y 52

~21r !

2
6
1

2
A~21r !228rl. ~24!

These eigenvalues may present a complex character w
finite negative real part, ensuring the stability of the solut
~ii !. At the pointl51, the eigenvalueu1

x becomes zero, and
the system undergoes a pitchfork bifurcation. The solution~i!
becomes unstable, and the system moves onto one of the
new stable branches given by the solution~ii !.

B. Fluctuations around the steady states

The fluctuations around the steady states are obtaine
integration of the stochastic equations~18!:

dx~t!5eAxtdx~0!1E
0

t

eAx~t2t8!Lx~t8!dt8,

dy~t!5eAytdy~0!1E
0

t

eAy~t2t8!Ly~t8!dt8. ~25!

The white noise caseLu5Luw ~coherent pumping! will be
considered first. Using standard results for linear multivari
Ornstein-Uhlenbeck processes@24#, the stationary correlation
matrix Su[ limt→`^du(t)duT(t)&, u5x,y is obtained by
solving the matrix equation

AuSu
w1Su

wAu
T52Dw, ~26!

whereSu
w denotes the correlation matrix averaged with

spect to the white noiseLuw and the isotropic white noise
correlation matrixDw is given in ~21!. Below threshold
f t

r
x-
a
n

wo

by

e

-

(l,1) the drift matrices are diagonal, yielding diagonal s
tionary covariance matrices with coefficients~normalized to
the shot noise level!

sxa
w 5

1

~12l!
, sxb

w 51 ,

~27!

sya
w 5

1

~11l!
, syb

w 51 .

Quadrature squeezing occurs when the fluctuations fall
low 1, the shot noise level. As found by Milburn and Wa
@20# squeezing in the subharmonic increases withl to a
maximumsya

w 51/2 at threshold. The squeezed state is, ho

ever, not minimal. The pump mode displays isotropic s
tionary vacuum fluctuations. Above the threshold for pa
metric oscillation (l.1), the intermode coupling leads t
nondiagonal stationary covariance matrices. The internal
tionary normalized variances are given in this case by

sxa
w 511

1

r
1

1

2~l21!
, sxb

w 511
1

r
,

~28!

sya
w 5

~2l21!r 212lr

2lr 214lr
, syb

w 5
lr1l11

l~21r !
.

It is found that the signal and pump phase compone
ya ,yb display both squeezing for arbitrary pump to subh
monic loss ratior .

We now proceed to investigate how the steady-state p
erties of the squeezed phasey components change by th
presence of nonwhite pump stochasticity. The phase qua
ture correlation matrixSy is written in terms of the memory
integral ~25! averaged over the total noise sourceLy
5Lyw1Lyc as
Sy5 lim
t→`

E
0

t

dt8E
0

t

dt9eAy~t2t8!^Ly~t8!LyT~t9!&eAy
T
~t2t9!,

5 lim
t→`

E
0

t

dt8E
0

t

dt9eAy~t2t8!@Dwd~t82t9!1Dy
c~ ut82t9u!#eAy

T
~t2t9!. ~29!
lly

it
es
Equation~29! allows us to decomposeSy into independent
white and colored noise parts:

Sy5Sy
w1Sy

c . ~30!

The first termSy
w represents thed-correlated contribution of

the phase quadrature noise, including the coherent part o
pump and is given by Eq.~26!, while the second termSy

c

gives the effect of colored pump fluctuations~12! or ~14!
~representing the incoherent part of the pump field!. The total
normalized phase quadrature variances averaged ove
white and theisotropic colored noise sources are then e
pressed as
he

the

syz
5syz

w1syz
c @d,tc#, z5a,b. ~31!

The case ofsqueezedcolored pump noise yields from~12!

syz
5syz

w2cos2~w!syz
c @d1 ,t1#1sin2~w!syz

c @d2 ,t2#.

~32!

In order to calculate the contribution of each exponentia

correlated noise term of the formrdtc
21e2ut82t9utc

21
in

Dy
c(ut82t9u), the exponentiated drift matrixAy is evaluated,

the double memory integral is performed, and the lim
t→` is taken. Below threshold the diagonal drift matric
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~22! decouple the field modes resulting in a nonvanish
contribution of the colored pump noise only on the harmo
mode fluctuations,

sya
c 50 , syb

c @d,tc#5
4d

r tc11
. ~33!

The effect of finite correlation time of the noise is seen in
product r tc appearing in~33!. The total normalized phas
quadrature variance is obtained according to~31! or ~32!
with syz

given by ~27!. Above threshold, diagonalization o
the exponentiated drift matrices leads to the following c
ored noise contributions to the stationary normalized sub
monic and harmonic quadrature variances:

sya
c @d,tc#5

rd

tc

8r ~l21!

~u2
y 2u1

y !2
@Fya1Gya#,

Fya5
1

~u2
y22tc

22!
H 11u2

y21
tc

212
2tc

21

~u1
y 1u2

y !
2

u2
y 2tc

21

u1
y 2tc

21 J ,
Gya5Fya@u1

y↔u2
y #,

syb
c @d,tc#5

rd

tc

4

~u2
y 2u1

y !2
@Fyb1Gyb#, ~34!

Fyb5
~21u2

y !

~u2
y22tc

22!
H ~11u2

y21
tc

21!~21u2
y !

2H 2tc
21

~u1
y 1u2

y !
1

u2
y 2tc

21

u1
y 2tc

21 J ~21u1
y !J ,

Gyb5Fyb@u1
y↔u2

y #.

When (21r )228rl,0, the phase eigenvaluesu6
y become

complex conjugate of each other, leading toGyz5Fyz* since

Gyz is obtained fromFyz by interchanging the eigenvalue
The total quadrature variances are given formally by~31! or
~32! with syz

w now given by Eqs.~28!. In the limit of small

pump to subharmonic loss ratior→0, the isotropic noise
description yields

lim
r→0

sya
5 1

25 lim
r→0

sya
w , ~35!

lim
r→0

syb
5F121

1

2l G1
4d

l
, ~36!

while for the case of squeezed pump noise

lim
r→0

sya
5 1

2 ,

~37!

lim
r→0

syb
5F121

1

2l G1
4

l
@2cos2~w!d11sin2~w!d2#.

From now on, a particular appropriate choice of pha
w50 for the squeezed vacuum fed to the pump is ma
corresponding to the same relative phase between the co
g
c

e

-
r-

e
e,
er-

ent part of the pump~determining the squeezing direction o
the oscillator! and the squeezed vacuum field. Such a cho
maximizes the steady-state internal phase quadrature squ
ing produced by the parametric oscillator with squeez
pump. It is seen that Eqs.~36! and~37! do not depend on the
noise correlation time proportional toj of the stochastic
squeezed pump noise, in particular the same fluctuation
els are found in this limit for broad- and narrow-band s
chastic squeezing entering the harmonic mode. In Figs.~a!
and 1~b!, the normalized intracavity subharmonic and pum
phase quadrature variances above threshold as given by
~32! are displayed as a function of the pump to subharmo
loss ratio r for l52. The external degenerate paramet
amplifier producing the squeezing in the pump is charac
ized by a driving strengthm50.9 ~large squeezing! and a
scaled squeezing bandwidth proportional toj21 given by Eq.
~13!, the limit j→0 corresponding to the squeezed wh
noise situation. Two different behaviors are observed c
cerning the steady-state subharmonic fluctuations: an in
play betweenr andj leads to an initial noise reduction be
low the value of 1/2 (50% phase quadrature squeezing! for
small r values until a minimum optimum noise level
reached, after which the fluctuations are increased. The
sition of this minimum moves to the right~bigger r values!
and down~lower noise levels! as j→0. Squeezing is also
observed for the pump phase quadrature in the presenc
normal coherent pumping. The addition of a squeezed c
ponent brings a further noise reduction by an amount eq
to 4d1 /l, according to~37! asr→0. The smallest degrada
tion of squeezing is found near thesqueezed whitenoise
limit j→0 asr increases both for the pump and subharmo

FIG. 1. Normalized intracavity stationary quadrature variance
~a! the subharmonic and~b! the pump field modes forl52 vs the
pump to subharmonic loss ratior . m50 refers to the case of coher
ent pumping and the differentj values to the correlation times o
the stochastic squeezed vacuum noise fed to the pump mode
characterized by a high squeezing strengthm50.9 @see Eq.~13!#.
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fields. It follows that a region of steady-state squeez
stronger than 50% exists for the intracavity harmonic a
subharmonic phase quadratures of the parametric oscil
when stochastic squeezed vacuum fluctuations are fed to
pump mode. These results are in contrast to those found
the normal case of coherent driving field@20#. The enhance-
ment of squeezing given by Eqs.~34! is, however, in genera
much less than the squeezing fed to the pump due to p
depletion. This will be clearly seen from the simulations
the next section, comparing the steady-state noise leve
Fig. 2~a! and the transient squeezing level in the pump
Fig. 2~b!, for example.

IV. STOCHASTIC SIMULATION
OF THE NONLINEAR EQUATIONS

In previous studies of the degenerate parametric osc
tor, the technique of numerical simulation was successf
applied to establish the transient behavior of the system
ing the positive-P representation@19#. As discussed in the
Introduction, we shall adopt here a semiclassical point
view based on a small quantum noise limit allowing for
treatment in the Wigner representation. We shall choose
intracavity pump photon number at thresholdnth
5gagb /h

25r /h̃2 equal to 1010 ~i.e., g255310211). The
stochastic equations~11! are simulated using the traditiona
Euler algorithm of stochastic integration. The noise sour
are constructed by summation of appropriately weigh
Gaussian distributed random numbers. To simulate Gaus
exponentially correlated colored noise, the algorithm of R
@25# has been adopted. The negative correlations chara
izing squeezing require the use of complex random numb
This enables the quadratures to develop imaginary parts

FIG. 2. Time evolution of the normalized intracavity quadratu
variance of~a! the subharmonic and~b! the pump field modes for
l52 andr51. m50.9 characterizes the squeezing strength of
stochastic squeezed vacuum injected into the pump mode.
g
d
tor
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er-
rs.
ut

these average to zero after a sufficient number of trajecto
All averages have been computed from 23104 trajectories
and the integration time step taken wasDt51023.

Wolinsky and Carmichael@26# in their treatment of para-
metric oscillation above threshold neglecting pump deplet
suggested that the predicted intracavity field squeezing
degenerate parametric oscillator operated below threshol
given by Eq.~27!, should be extended above threshold d
ing an initial transient time interval if the system starts in t
unstable vacuum steady state while fluctuations in the am
fiedxa quadrature diverge. This corresponds to the lineari
analysis~22! about the unstable steady state~i!. When the
pump exhibits squeezed stochasticity, thetransientsqueez-
ing level is obtained according to~32!, i.e., replacingd,tc in
~31! by 2d1 ,t1 , leading to

sya
5sya

w 5
1

11l
, syb

512
m

l1~l11jr !
, ~38!

in terms of the squeezing parameters defined in~13!. It is
thus apparent that theincoherentstochastic component of th
pump field does not alter the transient intracavity subh
monic squeezing, which depends only on the driving pow
l. Perfect transient squeezing is still achieved in the lim
l→` without pump depletion@26# for the system beginning
in the unstable state. The level of transient noise in the h
monic field is fixed from~33! by the product of the noise
correlation timetc and the pump to subharmonic loss rat
r ~for fixed noise intensity!, i.e., for the squeezed pump cas
by the productjr as seen in~38!.

Our aim is to confirm these basic results by numeri
simulation of thenonlinearequations~11! and to analyze the
effect of stochastic pump noise on the turn on of pum
depletion, i.e., once the system senses the nonlinearity o
mode coupling causing bistability. The oscillator has be
chosen to operate at driving strengthl52 and when dealing
with squeezed pump, the valuem50.9 will characterize the
squeezing strength in all simulations. The initial state of
cavity corresponds to the unstablevacuumstate for both
modes. Figure 2 provides a comparison between the t
evolution of the squeezing attained with normal coher
pump and squeezed pump for equal pump and subharm
decay rates (r51). The initial decay of the fluctuations gov
erned by the eigenvalesu6

y reaches a transient constant min
mum squeezing level given by Eqs.~38!,

sya
51/3, syb

;121/~11jr !, ~39!

before the unstable state starts decaying. Once the nonlin
ity associated to pump depletion becomes important, the
tem evolves to one of the two possible steady states, re
ing in the degradation of the transient squeezing. The us
a squeezed pump reduces this degradation depending o
squeezing bandwidth proportional toj21 of the noise in-
jected into the pump. On the other hand, for the pump mo
the effect of pump depletion is to reduce fluctuations bel
the shot noise level in the case of coherent pumping bu
enhance in general the intracavity squeezed fluctuations
sociated with the squeezed vacuum entering the pump ca
mode in the case of squeezed pumping. Both for the sub
monic and harmonic fields, maximum steady-state intrac

e
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ity squeezing is obtained near the white noise limitj→0 as
shown forj51 and 1022. We note that the linearized sta
tionary fluctuations given by Eqs.~28! and~34! are in agree-
ment with the steady-state values obtained from the num
cal simulation of Eqs.~11!, demonstrating thereby the
validity of our semiclassical treatment of the system dyna
ics. The case of isotropic stochastic noise fed to the pump
given by~14! is investigated in Fig. 3. We consider the nois
parameters of the previous figure,m50.9,j51 giving
d1;1/4,d2590 and t1;1,t2520. The isotropic noise
characterized by the parametersd,tc is compared to the
squeezed noise description by equalingd to d6 and tc to
t6 ; i.e., the noises are compared at equal intensity and c
relation time. We see that the duration of the transie

FIG. 3. Time evolution of the normalized intracavity subha
monic quadrature variance forl52 andr51 when isotropic noise
is fed to the coherent pump field.m50 denotes the coherent pump
case. The isotropic noise parametersd,tc are equal to the squeezed
noise parametersd6 ,t6 given by Eq. ~13! with m50.9 and
j51, i.e.,d1;1/4,t1;1, d2590,t2520.

FIG. 4. Time evolution of the normalized intracavity quadratu
variance of~a! the subharmonic and~b! the pump field modes for
l52 andr50.1.m50.9 characterizes the squeezing strength of t
stochastic squeezed vacuum injected into the pump mode.
ri-

-
as

r-
t

squeezing is nearly not affected by the presence of isotro
pump noise. Only whend,tc are equal to the noise param
etersd2 ,t2 do we observe a slightly faster decay of th
unstable state bringing the subharmonic amplitude to
steady-state value. This feature is present only in the cas
large isotropic pump fluctuations varying on a very slo
time scale~as the unsqueezed amplitude quadrature fluc
tions of the pump in the case of strong squeezed pumpi!.
The steady-state subharmonic noise level is given by E
~28! and~33!. We note the different sign of the colored nois
term compared to the case of squeezed pump, leadin
excess noise. In Fig. 4 are plotted simulations for sm
pump to subharmonic loss ratio,r50.1 with coherent and
squeezed pumping. The slow time scale associated to

e

FIG. 5. Time evolution of the normalized intracavity subha
monic quadrature variance forl52 and r50.1 when isotropic
noise is fed to the coherent pump field.m50 denotes the coheren
pump case. The isotropic noise parametersd,tc are equal to the
squeezed noise parametersd5d1 ,tc5t1 given by Eq.~13! with
m50.9 andj51,1023, i.e.,d;1/4,tc;1,1023.

FIG. 6. Time evolution of the normalized intracavity subha
monic quadrature variance forl52 andr510. m50.9 character-
izes the squeezing strength of the stochastic squeezed vacuu
jected into the pump mode.
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overall dynamical evolution of the fluctuations~governed es-
sentially by the eigenvalues of the associated drift matrix! as
a consequence of the smallr value chosen does not display
constant transient squeezing level. When the unstable
starts decaying due to the nonlinearity associated to
depletion of the pump mode, an interesting damped osc
tory behavior of the fluctuations acompanying the growth
amplitude of the subharmonic field is observed~periodic ex-
change of noise between the phase quadrature of the c
modes!. The minimum subharmonic and harmonic transie
squeezing levels are given by Eqs.~39!. A comparison with
the case of isotropic stochastic pump characterized by n
parametersd5d1 ,tc5t1 is presented in Fig. 5. The sam
global evolution pattern as in the previous figure is foun
the incoherent isotropic pump noise exhibiting excess no
in contrast to the reduced fluctuations of the previous ca
The maximum noise level in the pump field before the de
of the fluctuations due to pump depletion is given by with

syb
;111/~11jr !. ~40!

Finally, the overdamped regime (r@1) is displayed in Fig. 6
for r510 and other parameters as given in Fig. 2. The us
a broadband squeezed pump brings in this case the ste
state fluctuations below the constant transient level.
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V. CONCLUSION

This paper has investigated the effects of stochastic
ored pump noise on the dynamical intracavity squeezing p
duced in parametric oscillators operated above threshold
semiclassical treatment in the Wigner representation foun
on the grounds of a very small quantum noise limit has b
used. Comparison between stochastic colored squeezed
isotropic pump noises has shown that the transient squee
predicted by Wolinsky and Carmichael@26# for the system
starting in the unstable state is not degraded by the stoc
ticity of the driving field. In the limit of large signal cavity
mode decay (r!1), damped oscillations of the fluctuation
have been found on the turn on of the nonlinearity associa
to the depletion of the pump mode. Finally, we have a
shown that the interplay between the correlation time of
noise injected into the driving field and the pump to subh
monic loss ratior allows the steady-state subharmonic a
harmonic noise levels to lie below the limit value of 50%
squeezing found in the subharmonic field in the case of n
mal coherent pumping.
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