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Isotropic and squeezed colored pump noise effects on the degenerate parametric oscillator
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The degenerate parametric oscillator above threshold is studied with phenomenological stochastic colored
(nonwhite pump noise for arbitrary pump to subharmonic relaxation rate. The current experimental limits of
large intracavity threshold photon numbévery smallquantum noiseare considered, allowing for a semi-
classical treatment of the system dynamics. A comparison between the effects of isotropic and squeezed pump
noise on the internakansientand steady-statdluctuations is presented by simulation of the nonlinear semi-
classical stochastic Langevin equations in the Wigner quadrature representation. It is found that the transient
squeezing for the system starting in the unstable steady(ft@teacuunmis not degraded by stochastic pump
noise. A damped oscillatory behavior of the noise levglsriodic exchange of fluctuations between the
squeezed quadrature of the signal and the pumpbserved for large damping of the signal in the turn on of
pump depletion. Finally, it is shown that the limited squeezing above threshold in the steady state (50%) due
to pump depletion can be enhanced if squeezed stochastic noise with sufficient significant spectral components
(broadband squeezings fed to the pump. The above-threshold steady-state squeezing has been calculated
analytically from the linearized stochastic equations and the effects of the time scale associated to the relax-
ation of the pump noisé&he noise correlation timecompared to the dissipative time scale of the system and
the pump to subharmonic loss ratio are preseri8#050-294{@6)03609-9

PACS numbe(s): 42.65.Ky, 42.50.Dv, 42.50.Lc, 42.65.Sf.

. INTRODUCTION [1]. On the other hand, fon?> (y,vy), N is very small and
) ) ) single quanta processes are significant, even in the presence
The degenerate parametric oscillator has been in recegf high pump intensitieglarge intracavity photon numbers
years the subject of great interest as a nonlinear dissipativieor such regimes of strong coupling, reversible and irrevers-
system able to produce a large amount of squeefllg jple dynamics cannot be separated anymore into a semiclas-
revealing classical or quantum-mechanical behavior, depend;ca| evolution perturbed by small quantum fluctuations. This
ing on the chosen regime of operation. Classical treatmentg the case for microwave Josephson oscillators that have
of parametric oscillators were given by Bloember¢2hand  high nonlinearitieg9]. Such extreme nonlinear quantum de-
Armstrong et al. [3]. Quantum-mechanical treatments wereyjces characterized by a very small threshold photon number
presented early by Graham and Hakébh Grahan{5] using (jarge quantum noigéhave been the subject of recent interest
the Wigner representation, and more recently by Drummondyy, the possibility they offer to produce quantum superposi-
McNeil, and Walls[6] using the positive® representation tjon stateg“Schrodinger-cat” statesin dissipative environ-
[7]. ments[10]. Analytical solutions valid for arbitrary quantum
The quantum-classical correspondence can be addressggise strength have been obtained using the posRivep-
on the ground of a description of the system’s evolution inresentation, in the adiabatic limit where the pump mode de-
terms of a system “size” parametf8]. A natural choice for  cays much faster than the subharmonic, by Drummetrel.
the system size parameter is given by the paramatidin-  [11] and by Wolinsky and Carmichagl2].
earity to cavity loss ratiolcoupling constant scaled by the In this paper, the process of subharmonic generation is
geometric mean decay rate of the modesfining the char-  studied, involving the nonlinear interaction of a quantized
acteristic undepleted intracavity pump photon number atight field mode(the pumpb) at central frequency Q with
threshold,nt;lz 7°1(vays), Wherey, ,y, are the signal and its subharmonidthe signala) at central frequency) in a
pump mode relaxation rates, amdis the phenomenological nonlinear cristal described by a second-order susceptibility
nonlinear mode coupling. Semiclassical regimes are found((z) placed inside an optical cavity. The second-order sus-
for weak parametric nonlinearitiggompared to the cavity ceptibility is the nonlinear response of the material to the
losse$ 7°<(ya71), i-€., largeny,, usually referred to in the application of two input optical fieldsL3]. An external clas-
literature as the smath? limit, the limit of small quantum  sical pumpingé&, is applied to drive the higher frequency
noise[g?=(2ny,) ~]. In such regimes, the internal interac- mode b and bring the system to a nonequilibrium steady
tion time scale~ ! is much larger than the dissipative time state. The coupling of the internal field modes to the external
scale and the effect of quantum noise is to perturb aroundontinuum of modes is modeled through the transmissivity
classical solutiongdiffusion approximatior{5]). This mode of the cavity mirror, leading to the relaxation of the pump
of operation, characterized by very large photon numbers and the signal modeGelaxation ratesyy,y,) [14]. Above
threshold, corresponds to the majority of optical experimentshreshold, the system displays bistability, the signal becomes
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excited and grows in amplitude with two possible phasestate(the vacuumis not degraded by stochastic pump noise.
separated byr, while the below-threshold solutioizero co- It is shown that the limited squeezing above threshold in the
herent amplitudebecomes unstable. The potential use of thesteady state (50%) due to pump depletj@d] can be en-
bistable behavior of the parametric oscillator as an opticahanced if squeezed stochastic noise is fed to the pump in an
switch (phase switchinghas attracted several investigations appropriate quadrature, as one should expect. Section V
[15]. Even in the absence of thermal fluctuations, the systerflives a summary and conclusions.
may tunnel from one amplitude to the other due to the pres-
ence of quantum noise as calculated by Kinsler and Drum- Il. THE MODEL SYSTEM
mond[16] in the small quantum noise limit. . ) ) ) A
The aim of this paper is to investigate the effects of the  11€ interaction of a light field modb at frequency 2)
presence of phenomenological stochastic coléresiwhite  (th€ pump modewith another degenerate field modeat
fluctuations of the external classical pumpidg on the frequency() (the subharmonic mogien a nonlinear crystal
squeezing produced above threshold. The cases of isotroptiaced inside a resonant optical ring cavity configuration
(phase unsensitiyeand squeezedphase sensitiyecolored ~ With only one port, used for both the input and the output, is
pump noise are considered. Apart from a quantum treatmerfonSidered. The coupling of the internal harmonic and sub-
of the nondegenerate parametric oscillator with squeezef@monic cavity modes to the external environment leads to
vacuum input to the pump modé7] using the generalized- (e decay rateya,y,. The harmonic mode is pumped by a
P representation, no study of this problem seems to hav&lassical driving field. This process may be described by the
been carried out. Attention is focused on the current experitollowing Hamiltonian in the Schidinger picture{# =1]:
mental limits of large intracavity threshold optical photon ~
numbersny,~ 10'° (very smallquantum noisg allowing for
a semiclassicaltreatment of the system dynamics in the N o0
Wigner representatiofl8] (symmetrically ordered opera-
tors). This approximation is valid at optical frequencies but
not for oscillators operating in the microwave regionicro-
cavity configurations Simulation of the nonlinear semiclas-
sical stocha_stic_ Lang_evin equations in the Wigne_r quadraturqql: —j Z{ézf)*r_ H.cl+ ié’b{BTexp( —2i0t—if)—H.cl,
representation(including spontaneous emissjowith two 2
statistically independent addedolored Gaussianpump (1)
quadrature noise terms describing phenomenological sto-
chastic fluctuations of the complex driving amplitudg,
and analytical steady-state results obtained from the linear-
ized equations are presented. Gaussian white and colored A A .
(nonwhite, isotropic and squeezd&donisotropi¢ stochastic- Hgr= (ar;+ H.c)+ (bl“g+ H.c),
ity in the Langevin equations is considered. Squeezing in the A A A
pump could be achieved by mixing a coherent amplitudavhereHs, Hg, andHggrepresent, respectively, the system
with a squeezed vacuum produced by a parametric amplifigiamiltonian, i.e, the harmonic and subharmonic free fields
operated below threshold in a single-ended cali#l. The  plus the parametric intermode coupling and the driving of
effects of the time scales associated to the relaxation of thgodeb, the two free baths, and the system-baths coupling
pump noise(the noise correlation timecompared to the dis-  Hamiltonians.&, is proportional to the modulus of theo-
sipative time scaley, * of the system and the pump to sub- herentpart of the complex driving amplitudevhose phase is
harmonic loss ratior=yy/y, are discussed within this ¢) and represents the rate at which pump photons are in-
framework. jected into the fundamentgbump mode. The nonlinear in-
The remainder of the paper is organized as follows. Interaction removes single photons from the pump mode and
Sec. II, the description of the quantum-mechanical modetreates pairs of photons in the subharmonic at a #7ateho-

Hamiltonian and the semiclassical Langevin equations in thggp, real and positivel’,, I, are independent bath mode op-
Wigner quadrature representation are given. The StOChaSt@rators(quantum Whitear’wise operators

pump field is introduced from a semiclassical point of view.

In Sec. lll, steady states and their stability are revised. The . R

effects of stochastic pump on the linearized internal quadra- I'At)= —i% Xz il zk(0)expli(Q—w )},  z=a,b

ture variances are examined. In the case of squeezed stochas-

" : iy . . 2

ic pumping, the effects of the finite squeezing bandwidth

v of the noise fed to the pumgompared to the signal mode of zero mean value and white-noise delta correlations
bandwidthy,) are analyzed. Results for the transient fluc- L

tuations are presented from the numerical simulations of the (Fz(t)l“;r,(t’)>= V207,71 O(t—1"), 3
nonlinear semiclassical equations in Sec. IV. A damped os-

cillatory behavior of the noise levelgperiodic exchange of describing the coupling of the cavity modes to the vacuum
fluctuations between the squeezed quadrature of the signBilictuations entering the cavity by the partially transmitting
and the pumpis observed for large damping of the signal in mirror, leading to the loss of photons from the cavity at rates
the turn on of pump depletion. It is found that the transienty,,y, (fluctuation-dissipation theoreni21] for the subhar-
squeezing19] for the system starting in the unstable steadymonic and fundamental modes.

Ho=0a'a+20b'b,

Hr= Ek: {waif 1 akt 0ol il bid
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The complex exponential in the parametric Hamiltonian Xa=—Xa+ W[ XaXp+ YaYp] T+ &x (7),
(1) can be easily removed by working in tieeraction pic- 2
ture defined by the transformatiorbexp(2Qt+if)—b, Ya= —Xat M XaYp— YaXol + & (7),
aexp(Qt+igi2)—a. In this rotating frame, following the _
standard theory of damping, nonlinear equations of motion Xo=—IXp— [ X2—y2]/2+ &+ &, (1), 9
for the system and bath operators are derived. After elimina-
tion of the bath modes using the Wigner-Weisskopff ap- Vo= —TYp— 7XaYa+ gyb(q-),

proximation, the resulting nonlinear quantum Langevin
equation for the system canonical operators can be expressatiere we have defined independent real white noises
as[22] §ua(7-),§ub(7-),u=x,y describing spontaneous emission with
. . R correlations
A ay A
a=na'b—ya+ly,, , - - ,
e @ (Eu(DETN=(Eu(DEL(T ) sym:

b=—77<::12/2+5b—7bb+rb- 235(7— ') ifz=a
2 1

The Langevin equation@) are written in scaled variables as

r .
da/dr=—a+7ao+ &,(7), =5d(r=7) if z=b. (10

(5) o .
™ D ~r0i T The contribution of thecoherentpart of the pump is as-
=—rb— + &+ ; ; i i
db/dr=—rb=na’/2+ &+ &(7), sumed to be also included in the white noise souggesin
where we have defined order to describe the effects of a phenomenological addi-
tional incoherentstochastic part of the classical pump, the
= 7y,t, last equation ir{7) is supplemented with a complex Gaussian
colored noise termsbzsxb+isyb, of zero mean value, i.e.,
_ Y the replacement,— &,+e,(7) is made, transforming9)
- 'ya' into
’;']: 2 Ya, (6) Xa= = Xa T 7[XaXp T YaYp]+ fxa( 7),

~ Ya= —Xa+ 7[XaYp— YaXp] + &y (7),
gbng/Ya, a a aYb j b Ya

. . Xo=—Xp— 7Xa—Yall2+ Ept oy (1) (1), (1D)
Ea(m)=Ta(V)] va, ) _
Y= —IYp— 77Xay<a1‘|'8yb( )+ gyb( 7).

Eo(7)=Tp(t) va.
sl oD/ s A comparison between the effects d$otropic and

Making use of the system size expans|@&h (regime of squeezedtochastic noise fed to the pump is considered. The
weak coupling we can transform these nonlinear quantumsource of squeezing is taken to be a degenerate parametric
Langevin equations into compleonlinearstochastic equa- amplifier (DPA) operating below threshold in a single-ended
tions for the processa(b) expressed in the Wigner repre- cavity of dampingy and resonant frequency2 In a frame
sentation(associated with symmetric ordering of operators rotating at the carrier frequency(2 the squeezed pump

noise contribution is described by the correlation functions
da/dr=—a+7a*b+&,, [14]
(7

~ ~ d -
db/dT=—rb—na2/2+5b+§b. <8Xb(7-)gxb(7-’)>:r —Sir]2(¢)_+e_|7—7"7'+1

T+

The derivation of Egs(7) from Egs.(5) relies on the trun- d_ -

cation of third-order derivative terms in the corresponding +cod(g)—e Il }

Wigner Fokker-Planck equation. This approximat{@n23] T

is justified in the present case of very largg (small g2

limit). (ey (T)ey (T')=T1
Changing from the complex procesa,) to the four-

component real procesg{,Y,.Xp.Yp) defined by

d -1
—co(p)—e Il
T+

+sin2(<p)d—e|TT'|TlJ, (12)
z=x,+iy,, z=a,b, (8) -

where ¢ controls the relative direction of squeezirthe
wherex, andy, represent the two quadratures of the modephase of the squeezed vacuum relative to the phase of the
and writing£,= £, +1, , we obtain the following nonlinear  gscillator coherent driving field The intensities and normal-
stochastic equations: ized correlation times of the noise sources are given by
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d.=ul(4\2), 7.=6\.1, (13 d(sa)/dr=— sa+7(al sb+bgda* )+ &,,
1

with A= (1% w)/2 andé=y,/y. The scaled pump param- d(sb)/dr=—rsb—aba+ep+ &, . (17
eteru (0= u<1) defines the strength of the squeezed pump
noise (the external amplifier driving strength Strong The linearization procedure decouples the quadrature com-
squeezing is achieved in one quadrature of the p(mgy ponents of the field and leads to
guadrature ifp=0), over a finite bandwidth proportional to
&1, as threshold is approached, i.e., as>1. In this limit,

d
fluctuations in the unsqueezed quadrature become very large, dr OX(7) = A OX+ Ly,

and their correlation time_ approaches infinity. The isotro- (18)
pic stochastic pump noise contribution will be described by d
the correlation functions d—Tay( 7)=Ay0y+ Ly,

<8ub(T)Sub(T/)>=Ee_‘T_T/‘T;1, u=x,y, (14  wherex=[Xs,X,]", y=[Ya.yp]', and the drift matrices are
Tc given by

and the cas:eei=di T=Ta will be Qiscussed. Thg pump to Th—1 7ag ~7b—1 7ag
subharmonic loss ratip is present in(12) and (14) in order A= = , = ~ . (19
to fulfill the fluctuation-dissipation theorem because the A —nas T

above correlations are considered inside the cavity. ) , ,
The real noise«,,, u=x,y are written as a sum of indepen-

dent white and colored noise sources,
Ill. LINEARIZED STEADY-STATE ANALYSIS
A. Deterministic steady-state solutions and stability analysis L,= 5‘3’+ Eﬁ ,

The deterministic steady-state mean value equations fol- w_ T
low directly from (7) (without the noise termawith the time Ly=[&u8u,]
derivatives ofa andb set to zero, leading to

(20)

a,=7a%b Euloey ]
S S ~Ms»
_ - (19 with the correlation properties
rbg=—7a22+&,.
EW £WT ! :DW5 - ,
From Eqs.(15), the following steady-state solutions arige: (La(n) Ly (7)) (r=7)
the trivial solution ag=0bs=&,/r; (ii) as#0. Writing D"=1idiag1r] (21)
a;=|age'?, Egs.(15) yield 2 n

T
(Pagd?i2r)=x—-1 (\>1), (LT LE (7)) =DE(|r— 7)),
$=0, O+, (16) Dy(| 7= ') =diad 0 ey (T)ey (7)1,
7bs=1. where the colored noise diffusion matfX; is given by(12)

_ or (14) depending on whether squeezed or isotropic colored

The scaled pump parametar=(7&,)/r characterizes the Pump noise is considered.
pumping level,\=1 corresponding to the critical pump The stability of the steady states is determined by inves-
power required to push the system into oscillatitthe tigating the eigenvalues of the drift matricdg, A, . For the
threshold for parametric oscillations Above threshold solution (i), the drift matrices are diagonal,
(A>1), the semiclassical solutior(86) exhibit bistability.
Two amplitudes with a phase separationmfre possible. Ac=diag\—1,-r], Ay=diad -N-1-r], (22

To establish the stability and fluctuations of the steady-
state solutions, the stochastic Langevin equati@hsre lin- ~ and the eigenvalues are all negative providedl. For the
earized around the steady states. This approximation remaig8lution i), the drift matrices read
valid as long as the fluctuations are much smaller than the

classical mean values, which is the essence of the syRall B 0 V2r(x—1)]

limit (very small quantum noigeWriting the semiclassical O 2r(h—1) —r '

mode amplitudes,b as the sum of the steady-state ampli-

tude and a small perturbation around the steady states, _ —

a(r)=a.+ 8a(r), b(r)=b.+ db(7), and substituting these _ 2 v2r(x=1) 23
expressions int¢7), the following set of linearized equations Yl =VJ2r(x—-1) -r |

for the small perturbationéneglecting second- and higher-
order terms inda and 8b) is readily obtained: and their eigenvalues are
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. ro1 (A<1) the drift matrices are diagonal, yielding diagonal sta-
0= —5EoNre—8r(A— 1), tionary covariance matrices with coefficierftormalized to
the shot noise levgl
2+r) 1
02/::—( )i—\/(2+l‘)2—8l’7\. (29 oV = 1 oV =1

2 2 )(a (1_ )\) ’ Xb 1
These eigenvalues may present a complex character with a 1 (27
finite negative real part, ensuring the stability of the solution oy =——=, oy=1.
(ii). At the pointA =1, the eigenvalu@’, becomes zero, and a (1+\) b

the system undergoes a pitchfork bifurcation. The soluipn
becomes unstable, and the system moves onto one of the t
new stable branches given by the soluti@n

uadrature squeezing occurs when the fluctuations fall be-
1, the shot noise level. As found by Milburn and Walls
[20] squeezing in the subharmonic increases witho a
maximumo‘)’,va= 1/2 at threshold. The squeezed state is, how-

_ . ever, not minimal. The pump mode displays isotropic sta-
The fluctuations around the steady states are obtained Rlpnary vacuum fluctuations. Above the threshold for para-

B. Fluctuations around the steady states

integration of the stochastic equatiofisB): metric oscillation §>1), the intermode coupling leads to
T nondiagonal stationary covariance matrices. The internal sta-
SX( 7')=eAX75X(0)+J’ e (7)d 7, tionary normalized variances are given in this case by
0
e=1+ ! + ! v =1+ !
T Ty 20— T T

Sy(7)=eM78y(0) + f ‘e L, (rhdr . (25) 29
° W (A =Dr2e2ar L AreA+l

The white noise cas&,= L)) (coherent pumpingwill be Tya~ T onrZanr 0 T N(2+1)
considered first. Using standard results for linear multivariate )
Ornstein-Uhlenbeck procesded], the stationary correlation It is found that the signal and pump phase components

matrix 3,=lim, .(8u(7)8u’(7)), u=x,y is obtained by Ya:¥b display both squeezing for arbitrary pump to subhar-

solving the matrix equation monic loss ratiar. _ .
We now proceed to investigate how the steady-state prop-
ASWASWAl=—DY, (26)  erties of the squeezed phagecomponents change by the

presence of nonwhite pump stochasticity. The phase quadra-
whereX ] denotes the correlation matrix averaged with re-ture correlation matrix., is written in terms of the memory
spect to the white nois€}] and the isotropic white noise integral (25 averaged over the total noise sourdg,
correlation matrixD% is given in (21). Below threshold =/J‘)’,"+/Jf, as

. T T o , , T’T— 4
S,=lim Jodr'fodwef‘y” Ly (T Ly(7)yeN T,

T—

=IimJ dr'j d%’eAy(T_T/)[D""é(T’—7J’)+D)C,(|T’—7"'|)]9A;(T_7ﬂ)- (29
— 0

Equation(29) allows us to decomposE, into independent oy ZU;VJFU; [d,7.], z=a,b. (32
white and colored noise parts: z z z

The case obqueezedolored pump noise yields froifi2
S, =W (30 a PHmP NoIse Y a3

. o cryzza")’,v—cosz(@)a'; [d+,7'+]+sin2(<p)o'§ [d_,7_].
The first termXJ represents thé-correlated contribution of z z z 32)
the phase quadrature noise, including the coherent part of the

L . c

SK/Z]S t?]r;d ;:fegcltv i? fglolfgf %hggllﬁutcrlﬁa?ii%%g)d ;?r(rig In order to calculate the contribution of eachl e)spgr;entially
(representing the incoherent part of the pump jieTthe total ~ correlated noise term of the formdr, te™I” 717" in
normalized phase quadrature variances averaged over t&(|7' —7"[), the exponentiated drift matri{, is evaluated,
white and theisotropic colored noise sources are then ex-the double memory integral is performed, and the limit

pressed as T— is taken. Below threshold the diagonal drift matrices
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(22) decouple the field modes resulting in a nonvanishing
contribution of the colored pump noise only on the harmonic 0.70

mode fluctuations, 0.65
c _ c __ = = 0.60—

0'ya—0 , Gyb[d,rc]—rTc+1. (33 5
0.55-

The effect of finite correlation time of the noise is seen in the
productr 7, appearing in(33). The total normalized phase
qguadrature variance is obtained according(3d) or (32

with oy, given by (27). Above threshold, diagonalization of  (q)

the exponentiated drift matrices leads to the following col-

0.50

ored noise contributions to the stationary normalized subhar- 0.9
monic and harmonic quadrature variances: 0.8
. rd 8r(\—1) 2%
a-ya[daTC]:T_C(ay _ay )Z[fya+gya]1 0»0_6_
- 0.5+
4 27t ¢y — 7t 0.4
]:y =7 5 1+6Y Tgl_ y YN oY =1 (> 0.3
T 1Y) (G3+6%) 61— T T T | T 1
0 2 4 6 8 10
(b) v

Gy, = fya[ 0 6],

FIG. 1. Normalized intracavity stationary quadrature variance of
Of,b[d,Tc]: rT_d 4 [F +gyb]’ (34) (a) the subharmonic antb) the pump field modes fax=2 vs the

c (6Y — 03_1)2 pump to subharmonic loss ratio =0 refers to the case of coher-
ent pumping and the differert values to the correlation times of
(2+6Y) -1y the stochastic squeezed vacuum noise fed to the pump mode and
yb:(ﬁyz—r_z) (1+6% 7.7 (2+6Y) characterized by a high squeezing strength0.9 [see Eq(13)].
- Cc
27-51 0¥ — Tgl y ent part of the pumgdetermining the squeezing direction of
BICEYS + = (2+6%) ¢, the oscillatoy and the squeezed vacuum field. Such a choice

maximizes the steady-state internal phase quadrature squeez-
ing produced by the parametric oscillator with squeezed
pump. It is seen that Eqé36) and(37) do not depend on the
When (2+r)2—8r7\<0, the phase eigenvalu#¥ become noise correlation time propor_tional t6 of the stocha_stic

. . - _ squeezed pump noise, in particular the same fluctuation lev-
complex conjugate of each other, leadingdp="7) since o5 are found in this limit for broad- and narrow-band sto-
gy is obtained fromF, by interchanging the eigenvalues. chastic squeezing entering the harmonic mode. In Figs. 1
The total quadrature variances are given formally®$) or  and Xb), the normalized intracavity subharmonic and pump

(32) with ¢\ now given by Eqgs(29). In the limit of small ~phase quadrature variances above threshold as given by Eq.

Yz . . .
pump to subharmonic loss ratio—0, the isotropic noise (32) are displayed as a function of the pump to subharmonic
loss ratior for A\=2. The external degenerate parametric

description yields
pron yi amplifier producing the squeezing in the pump is character-

lima, =1=Ilim 0‘9’ , (35) ized by a driving strengthu=0.9 (large squeezingand a
r—o % r—o 2 scaled squeezing bandwidth proportionaftd given by Eq.
(13), the limit £—~0 corresponding to the squeezed white
im o — 1+ i + ﬂ (36) noisg situation. Two different behav?ors are qbserved con-
o Yoo |2 T 2N N cerning the steady-state subharmonic fluctuations: an inter-
play betweerr and ¢ leads to an initial noise reduction be-
while for the case of squeezed pump noise low the value of 1/2 (50% phase quadrature sque¢Zing
small r values until a minimum optimum noise level is
lim oy.= 1 reached, after which the fluctuations are increased. The po-
r—0 sition of this minimum moves to the rigiibiggerr values
4 (37 and down(lower noise levelsas é—0. Squeezing is also
; B Bl ST : observed for the pump phase quadrature in the presence of
:LTTZ)be 2 * 2\ * )\[ cosi(¢)d. +sir(¢)d-]. normal coherent pumping. The addition of a squeezed com-

ponent brings a further noise reduction by an amount equal
From now on, a particular appropriate choice of phasdo 4d, /A, according to(37) asr—0. The smallest degrada-
¢=0 for the squeezed vacuum fed to the pump is madefjon of squeezing is found near thegjueezed whit@oise
corresponding to the same relative phase between the cohdimit £—0 asr increases both for the pump and subharmonic
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1.0+ these average to zero after a sufficient number of trajectories.

0.9 : All averages have been computed fronx 20* trajectories

and the integration time step taken was=10"3.

0-87 Wolinsky and CarmichadR6] in their treatment of para-
2079 metric oscillation above threshold neglecting pump depletion
~ 0.6 suggested that the predicted intracavity field squeezing in a

0.5 degenerate parametric oscillator operated below threshold, as

0.4 given by Eq.(27), should be extended above threshold dur-

‘ e ing an initial transient time interval if the system starts in the
0 ; unstable vacuum steady state while fluctuations in the ampli-

@) T fied x, quadrature diverge. This corresponds to the linearized
analysis(22) about the unstable steady stdtg When the
pump exhibits squeezed stochasticity, thensientsqueez-
ing level is obtained according {82), i.e., replacingd, 7 in

(31 by —d, ,7,, leading to

1 M
= W:_ = — ————
A R W W (38)

in terms of the squeezing parameters defined1®). It is
0 5 10 15 20 25 thus apparent that thecoherentstochastic component of the
() T pump field does not alter the transient intracavity subhar-
monic squeezing, which depends only on the driving power
FIG. 2. Time evolution of the normalized intracavity quadrature \ . Perfect transient squeezing is still achieved in the limit
variance of(a) the subharmonic an¢b) the pump field modes for ) _, «» without pump depletiofi26] for the system beginning
A=2 andr=1. x=0.9 characterizes the squeezing strength of thein the unstable state. The level of transient noise in the har-
stochastic squeezed vacuum injected into the pump mode. monic field is fixed from(33) by the product of the noise
correlation timer, and the pump to subharmonic loss ratio
fields. It follows that a region of steady-state squeezing (for fixed noise intensity i.e., for the squeezed pump case,
stronger than 50% exists for the intracavity harmonic andby the productr as seen in(38).
subharmonic phase quadratures of the parametric oscillator Our aim is to confirm these basic results by numerical
when stochastic squeezed vacuum fluctuations are fed to thgmulation of thenonlinearequationg11) and to analyze the
pump mode. These results are in contrast to those found fasffect of stochastic pump noise on the turn on of pump
the normal case of coherent driving figl20]. The enhance- depletion, i.e., once the system senses the nonlinearity of the
ment of squeezing given by Eq&4) is, however, in general mode coupling causing bistability. The oscillator has been
much less than the squeezing fed to the pump due to pumghosen to operate at driving strengtk 2 and when dealing
depletion. This will be clearly seen from the simulations inwith squeezed pump, the valye=0.9 will characterize the
the next section, comparing the steady-state noise levels @yueezing strength in all simulations. The initial state of the
Fig. 2@ and the transient squeezing level in the pump incavity corresponds to the unstablacuumstate for both
Fig. 2(b), for example. modes. Figure 2 provides a comparison between the time
evolution of the squeezing attained with normal coherent
pump and squeezed pump for equal pump and subharmonic
decay ratesr(=1). The initial decay of the fluctuations gov-
erned by the eigenvale®. reaches a transient constant mini-
In previous studies of the degenerate parametric oscillamum squeezing level given by Eq88),
tor, the technique of numerical simulation was successfully
applied to establish the transient behavior of the system us- oy =13, oy ~1-1(1+¢r), (39
ing the positiveP representatioi19]. As discussed in the
Introduction, we shall adopt here a semiclassical point obefore the unstable state starts decaying. Once the nonlinear-
view based on a small quantum noise limit allowing for aity associated to pump depletion becomes important, the sys-
treatment in the Wigner representation. We shall choose theem evolves to one of the two possible steady states, result-
intracavity pump photon number at threshold;, ing in the degradation of the transient squeezing. The use of
=v.yp! 7°=r17? equal to 16° (i.e., g?=5%10"1Y). The a squeezed pump reduces this degradation depending on the
stochastic equationd 1) are simulated using the traditional squeezing bandwidth proportional & ! of the noise in-
Euler algorithm of stochastic integration. The noise sourcegected into the pump. On the other hand, for the pump mode,
are constructed by summation of appropriately weightedhe effect of pump depletion is to reduce fluctuations below
Gaussian distributed random numbers. To simulate Gaussidhe shot noise level in the case of coherent pumping but to
exponentially correlated colored noise, the algorithm of Refenhance in general the intracavity squeezed fluctuations as-
[25] has been adopted. The negative correlations characteseciated with the squeezed vacuum entering the pump cavity
izing squeezing require the use of complex random numbersnode in the case of squeezed pumping. Both for the subhar-
This enables the quadratures to develop imaginary parts, baonic and harmonic fields, maximum steady-state intracav-

IV. STOCHASTIC SIMULATION
OF THE NONLINEAR EQUATIONS
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FIG. 3. Time evolution of the normalized intracavity subhar-
monic quadrature variance far=2 andr =1 when isotropic noise
is fed to the coherent pump fielg.=0 denotes the coherent pump
case. The isotropic noise parametdrs, are equal to the squeezed
noise parametersl. ,7. given by Eq.(13) with ©=0.9 and
¢&=1,ie.,d,~1/4,7,~1,d_=90,r_=20.

ity squeezing is obtained near the white noise ligit0 as
shown foré=1 and 10 2. We note that the linearized sta-
tionary fluctuations given by Eq&28) and(34) are in agree-
ment with the steady-state values obtained from the numeri-
cal simulation of Egs.(11), demonstrating thereby the
validity of our semiclassical treatment of the system dynam'nois,e is fed to the coherent pump fiejd=0 denotes the coherent
ics. The case of isotropic stochastic noise fed to the pump 8Sump case. The isotropic noise parametdys, are equal to the
given by(14) is investigated in Fig. 3. We consider the noise sqyeezed noise parametersd. , 7= r. given by Eq.(13) with
parameters of the previous figur4=0.9,£=1 giving  ,=0.9 andé=1,103, i.e.,d~1/4,7,~1,10 3.
d,~1/4d_=90 and r,~1,7_=20. The isotropic noise
characterized by the parametedisr; is compared to the squeezing is nearly not affected by the presence of isotropic
squeezed noise description by equalthdo d. and 7; t0  pump noise. Only whenl, 7, are equal to the noise param-
7. ; i.e., the noises are compared at equal intensity and cogtersd_,~_ do we observe a slightly faster decay of the
relation time. We see that the duration of the tranSienhnstatﬂe state bringing the subharmonic amp]itude to a
steady-state value. This feature is present only in the case of

(b) T

FIG. 5. Time evolution of the normalized intracavity subhar-
monic quadrature variance for=2 andr=0.1 when isotropic

1.0+ large isotropic pump fluctuations varying on a very slow
0.9 time scale(as the unsqueezed amplitude quadrature fluctua-
tions of the pump in the case of strong squeezed pumping
0.84 . . . .
The steady-state subharmonic noise level is given by Egs.
& 07 (28) and(33). We note the different sign of the colored noise
0.6 term compared to the case of squeezed pump, leading to
0.5 excess noise. In Fig. 4 are plotted simulations for small
pump to subharmonic loss ratio=0.1 with coherent and
0.4 . . .
| : : , | squeezed pumping. The slow time scale associated to the
0 20 40 60 80 100
(a) T
1.0 1.0
0.9
0.8 084
0.6+ 0.7+
5 © 0.6

0.4+

0.2

(b)

FIG. 4. Time evolution of the normalized intracavity quadrature  FIG. 6. Time evolution of the normalized intracavity subhar-
variance of(a) the subharmonic antb) the pump field modes for monic quadrature variance far=2 andr=10. u=0.9 character-
A=2 andr=0.1. 4= 0.9 characterizes the squeezing strength of thezes the squeezing strength of the stochastic squeezed vacuum in-
stochastic squeezed vacuum injected into the pump mode. jected into the pump mode.
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overall dynamical evolution of the fluctuatiofgoverned es- V. CONCLUSION

sentially by the eigenvalues of the associated drift mpgix This paper has investigated the effects of stochastic col-

a consequence of the sma]ilalue chosen does not display a red pump noise on the dynamical intracavity squeezing pro-
constant transient squeezing level. When the unstable staj, .o in parametric oscillators operated above threshold. A
starts decaying due to the nonlinearity associated 10 thgomiciassical treatment in the Wigner representation founded
depletion of the pump mode, an interesting damped oscillagp, the grounds of a very small quantum noise limit has been
tory behavior of the fluctuations acompanying the growth inysed. Comparison between stochastic colored squeezed and
amplitude of the subharmonic field is obserVgeriodic ex-  jsotropic pump noises has shown that the transient squeezing
change of noise between the phase quadrature of the cavifitedicted by Wolinsky and Carmichag6] for the system
modeg. The minimum subharmonic and harmonic transientstarting in the unstable state is not degraded by the stochas-
squeezing levels are given by E¢89). A comparison with ticity of the driving field. In the limit of large signal cavity
the case of isotropic stochastic pump characterized by nois@ode decay (<1), damped oscillations of the fluctuations
parametersl=d, ,7.= 7, is presented in Fig. 5. The same have been found on the turn on of the nonlinearity associated
global evolution pattern as in the previous figure is found,\to the depletion of the pump mode. Finally, we have also
the incoherent isotropic pump noise exhibiting excess noisehown that the interplay between the correlation time of the
in contrast to the reduced fluctuations of the previous casdloise injected into the driving field and the pump to subhar-
The maximum noise level in the pump field before the decaymnonic loss ratior allows the steady-state subharmonic and
Of the ﬂuctuations due to pump dep'etion is given by W|th harmonlc noise IeVeIS to I|e beIOW the ||m|t Value Of 50%
squeezing found in the subharmonic field in the case of nor-
mal coherent pumping.
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