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Manifestations of atomic and core resonances in photoelectron energy spectra
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The manifestation of atomic and core resonances in photoelectron energy spectra of two-electron atoms is
discussed in detail. An approach to the general problem of elimination of strongly coupled continua is pre-
sented and quantitative requirements for the validity of the theory are obtained. The theory is applied to
calcium thus providing a theoretical interpretation of, and additional insight into, all features of an experiment
by Walkeret al. @Phys. Rev. Lett.75, 633 ~1995!#. @S1050-2947~97!07203-X#
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The excitation of two electrons above the first ionizati
threshold leads to manifolds of doubly excited states wh
dominant mode of decay is autoionization, with one elect
ejected and the ion left either in its ground or in one of
excited states, depending on the level~energy! of excitation.
The process of autoionization is a manifestation of electr
electron interaction and correlation, as is the process of t
electron excitation, especially when accomplished via sin
photon absorption. The end result, under weak excitatio
lowest nonvanishing order of perturbation theory, is irreve
ible decay into the ionization continuum. This is the conte
of studies of traditional autoionization@2–5# over the last
three decades.

The situation changes considerably under multipho
and/or coherent excitation by stronger electromagnetic fie
In the simplest generalization, even single-photon excita
of an autoionizing state~AIS! by a relatively strong field —
such that the strength of excitation is comparable to or lar
than the strength of autoionization — the coupling to t
continuum may not be necessarily irreversible and in f
part of the population may be trapped in a coherent supe
sition of the ground and the AIS. This trapping and stab
zation of AIS was first predicted@6# fifteen years ago but it is
only recently that it was observed experimentally@7#, while
its relevance to amplification without inversion and relat
nonlinear optics has also attracted theoretical interest@8#.
Excitation through few photon processes, in addition to
obvious advantage of accessing manifolds of higher ang
momenta, also offers the possibility of selective excitat
through the combination of more than one wavelength. T
latter has formed the basis of the so-called isolated core
citation technique, introduced and exploited extensively
Gallagher and collaborators@9#, and continues to provide
versatile tool for the study of highly excited autoionizatio
manifolds @10#. The combination of few-photon excitatio
— involving one or more wavelengths — with strong
fields can also be exploited to generate novel effects, som
which are the subject of this paper.

A most fundamental scheme of double electron excitat
in two electron atoms, such as the alkaline earth atoms,
raise one electron to a Rydberg state and either at the s
time or sequentially raise the other electron to the first
cited ionic state. With the ground state configuration of
551050-2947/97/55~3!/2232~13!/$10.00
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valence shell of alkaline earth atoms being of the fo
(ns)2 1S0, the resulting doubly excited configurations a
then of the form~n8lnp)1P1. If a single Rydberg staten8l is
excited via a single or few photon absorption, we have
typical case of an isolated core excitation scheme@9#. If, in
addition, the transitionns-np was driven strongly, we would
have ac Stark splitting and stabilization phenomena of
type discussed in Refs.@6–8#. If, on the other hand, instea
of exciting a single Rydberg staten8l 8, we were to excite a
group of them through an appropriately short, coher
pulse, a radial Rydberg wave packet would be created. N
the strong driving of the core transitionns-np, with a Rabi
period which may be of the magnitude of the Kepler peri
of the wave packet, can be expected to lead to novel eff
on the evolution of the wave packet as the timing can
such that, upon returning to the core, the wave packet m
find the other electron~i.e., the core! either in the ground or
the excited state@11–13#. An excited core would tend to
cause decay of the wave packet~through autoionization!
while a ground state core would simply lead to the us
dispersion. Much, however, will depend on the relative ma
nitudes of three important characteristic times, namely,
Kepler period, Rabi period of the core transition, and au
ionization lifetime. It is moreover possible to create e
tangled wave packet and core states@11#.

A further generalization of the above situation can be c
templated if instead of a superposition of bound Rydb
statesn8l we have a transition into the continuum~i.e., a
wave packet of positive energy states!, while at the same
time the photon frequency is such as to match the core t
sition. Now both steps occur simultaneously, because ot
wise the electron in the continuum will depart before an
teraction reflecting the excitation of the core can
manifested. This scenario can therefore be most easily r
ized under excitation and ionization by one radiation sou
whose frequency exactly matches the ionic corens-np tran-
sition. Again a strongly driven core transition would lead
ac Stark splitting whose manifestation would have to
sought in the photoelectron energy spectrum~PES!, since a
wave packet of positive energy states does not return to
core once the pulse is over. We discuss below in more de
the expected features of this effect, but for the moment
point to be kept in mind is the connection with the previo
2232 © 1997 The American Physical Society
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55 2233MANIFESTATIONS OF ATOMIC AND CORE . . .
effect on the wave packet, namely the manifestation on
electromagnetically driven core transition on a second e
tron, mediated by electron-electron interaction.

Although experimental implementations as well as
theoretical discussion of the two phenomena differ in det
their formal and conceptual aspects are very similar to
point of being parts of the same general formal structure.
bulk of this paper deals with the second problem, nam
the effect of a strongly driven core transition on the PES.
shall, however, begin the formal development in all its ge
erality encompassing both phenomena.

The strong driving of a resonant transition between t
discrete states causes, as noted above, an ac Stark spl
usually detected through another transition involving
same electron. Walkeret al. @1# have observed in Ca th
effect of ac Stark splitting of an ionic core transition on t
photoelectron energy spectrum~PES! of the atom. Their mo-
tivation came from theoretical predictions by Grobe a
Eberly @14# based on a one-dimensional model of a nega
ion. The nature of the splitting is always the same, but
process through which it is probed may vary. It can be re
nance fluorescence@15# from the upper to the lower level
probe absorption@16# from the upper level to a~higher! third
one~double optical resonance!, or the PES@17# if the driving
field is sufficiently strong to cause ionization. In fluorescen
and photoionization, no additional probe is necessary s
the energy splitting is manifested in the energy analysis o
transition from the upper state of the two-level system int
continuum; the photon continuum in fluorescence, the ato
continuum in ionization.

The new twist of interest here is that one electron und
goes Rabi oscillations, while a second is ionized carry
along the information on the splitting, because the electr
interact. Thus, although the splitting results from the stro
coupling between two discrete states of the ion, from
standpoint of the two-electron system it represents coup
between two states in the continuum~above the ionization
threshold!; hence the term continuum-continuum Autle
Townes splitting employed in@1#. We must, however, em
phasize that the coupling of these continua of the tw
electron system is not smooth, as they have the core disc
discrete transition embedded in them. Stark splitting in
transition between two smooth continua~such as those of the
hydrogen atom! is not possible.

The model was extended by Grobe and Haan@18# to ac-
count formally for a possible extra near-resonant atomic~au-
toionizing! state. The subtle interplay involving the ion
transition and the inevitably presentcorrespondingatomic
transition, differing only by the spectator electron, was n
included. In order for the theory to be applicable to the
terpretation of an experiment, however, the atomic transi
as well as other atomic or ionic states, depending on
atom, need to be included as we have shown in a short c
munication elsewhere@19#.

The purpose of this paper is to present first the neces
formal framework for a qualitative understanding and int
pretation of relevant experiments taking into account
above interwined effects. Given the existence of experim
tal results on Ca, we have chosen to address this spe
problem quantitatively and to compare our predictions w
the data. This understanding requires the reliable calcula
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of the necessary atomic parameters, which is a projec
itself. It has been accomplished through techniques and c
puter programs that we have developed in a broader con
over the last few years. The detailed comparison of theor
cal results with the experimental data has enabled us to
out the significant effects that lead to somewhat unexpec
features.

The formal treatment of this type of problem, in a realis
context, is rather intricate as it involves a number of int
wined effects. The successive approximations leading to
sets of parameters and equations necessary for the inte
tation of experiments within the appropriate range of la
intensities require careful examination and justification.
order to facilitate the reading of the paper, we have chose
relegate to Appendixes significant parts of the formal dev
opment, keeping in the main body of the paper the ba
theoretical structure that is necessary for at least a qualita
comprehension of the underlying physics.

I. FORMULATION

We adopt in the general formulation of the problem t
quantized form of the radiation field which, although n
necessary, makes the initial discussion more transparen
be specific, and in view of the detailed calculations in Ca t
we present later on, we consider the initial atomic state
~4s)2 1S0 in the presence of a monochromatic radiati
source of frequencyv andN photons in the initial state. The
excited atomic state 4s4p1S0 will also be of importance in
some problems, but it must be distinguished from the io
first excited Ca1(4p). We shall be interested in the case f
which \v is near resonance with the transitio
Ca1(4s-4p), which here means tunable aroun
25 340 cm21. The atomic energy difference Ca~4s4p!-
Ca~4s)2 is 23 652 cm21, which although displaced by al
most 2000 cm21 from the ionic resonance is neverthele
sufficiently close to require special attention above cert
intensities, as we show in the following sections. This is n
a feature of Ca only but is to be expected to varying deg
in all alkaline earth atoms. We define then two relevant s
tem ~atom plus field! states asug&5u Ca(4s)2 1 S0 ;N& and
uḡ&5u Ca(4s4p)1 P1 ;N21&. Two of the photons in this
frequency range are energetically sufficient to ionize
atom whose ionization threshold is at 49 305 cm21. Thus
system states of the formuc&5u Ca14s1eec

2 ;N22&, where

uc& implies atomic continuum of positive energyec , are also
to be included. Due to the near resonance of the pho
frequency with the 4s-4p ionic core transition, once one
electron is lifted into the continuum — or even to high R
dberg states—the state Ca1(4p) becomes strongly couple
via the absorption of one more photon, bringing thus in
play the statesuc̄&5u Ca14p1eec

2 ;N23& involving the

same atomic continuum as inuc& but an excited core state
The respective energies of the states defined above
Eg5E„ Ca(4s)2 1 S0…1N\v, Eḡ5E„Ca(4s4p) 1 P1…

1~N21!\v, Ec5E(Ca14s)1ec1(N22)\v, and Ec̄
5E( Ca14p)1ec1(N23)\v. Although uc̄& differs from
uc& by the excitation of the core electron with the continuu
state being the same, still technically speakinguc̄& is another
continuum~of higher energy! as far as the two-electron sys
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2234 55LARS G. HANSON, JIAN ZHANG, AND P. LAMBROPOULOS
tem is concerned. These two continua are coupled by a
pole transition which, however, is significantly differe
from the transition between two continuum states in ab
threshold ionization~ATI ! in a one-electron atom or mode
of an atom.

Leaving other states out for the moment, we have a s
space in which we can formulate the essential features o
problem. If we introduce the projection operato
P5ug&^gu, Qḡ5uḡ&^ḡu, Qj5*dcj ucj&^cj u, and Q̄j
5*dcj uc̄ j&^c̄ j u, where we have added an indexj in the con-
tinua to account for the possibility of the involvement
further continua, as will indeed be the case, the identity
erator can be written as

15P1Qḡ1(
j
Qj1(

j
Q̄ j . ~1!

The Hamiltonian is as usual of the form

H5HA1HR1D[H01D, ~2!

whereHA andHR are the free atom and free field Hamilto
nians, respectively, withD being the interaction between th
two, in the dipole approximation.

A. Square pulse

To establish the formal equations governing the dyna
ics, we assume for the moment~but relax later on! a constant
field amplitude~square pulse! so that we can make use of th
resolvent operatorG(z)[(z2H)21, with z being a complex
number, the variable of the Laplace transform of the ti
evolution operator from whichG(z) has resulted@20#.

The projection operators introduced above enable u
partition the Hamiltonian in a convenient way. Thus the p
jected Hamiltonian operatorsPHP, QḡHQḡ , QjHQj , and
Q̄jHQ̄j have as eigenstates the respective sets of state
troduced earlier, while the couplings between these set
states enter through matrix elements of nondiagonal op
tors such asPHQj , PHQḡ, andQjHQ̄j . The couplings
entering the first will be treated perturbatively to the app
priate order, while the coupling through the second and th
needs to be treated exactly between the states of conce

The procedure through which one obtains the coup
equations of the relevant matrix elements ofG, namely,
Ggg , Gḡg , Gcg , andGc̄g is well established@20# and need
not be reproduced here. The couplings between the var
subspaces areDg ḡ , which is the dipole operator betwee
two atomic states, the two-photon couplingDcg

(2) , which rep-
resents an effective two-photon~ionization! dipole matrix
element@21# given by

Dcg
~2!5(

n

DcnDng

En2Eg
~3!

with un& being system states of the form
uCa(4snp) 1P1 ;N21& wheren.4, including the respective
continuum, and similar self-explanatory couplings such
D ḡc , D ḡ c̄

(2) , and finally the coupling betweenuc& and uc̄&
entering through the matrix elements ofQjHQ̄j , which in
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the simplest approximation would be reduced toDc c̄ , a
point to be discussed later on.

The equations for the pertinent matrix elements ofG in
the most general form are

~z2Eg!Ggg2Dg ḡGḡg2(
j
E dcj^guPHQj ucj&Gcjg

51,

~4a!

2D ḡgGgg1~z2Eḡ !Gḡg2(
j
E dcj@^ḡuQḡHQ̄j uc̄ j&Gc̄ jg

1^ḡuQḡHQj ucj&Gcjg
#50, ~4b!

2^cj uQjHPug&Ggg2^cj uQjHQḡuḡ&Gḡg1~z2Ecj
!Gcjg

2(
j
E dcj8^cj uQjHQ̄j uc̄ j8&Gc̄

j8g
50, ~4c!

2^c̄ j uQ̄jHQḡuḡ&Gḡg2(
j
E dcj8^c̄ j uQ̄jHQj ucj8&Gc

j8g

1~z2Ec̄ j
!Gc̄ jg

50. ~4d!

First, observe that, since as noted earlier the coupling
tween the continuauc& and uc̄& reduces to the coupling be
tween the 4s and 4p ionic states, there is no change in th
angular momentum~partial wave! of the continuum wave
function. That is why only terms with the samej occur in
matrix elements couplinguc& with uc̄&. Using the definition
of the projection operators, it is straightforward to see th

^guPHQj ucj&5Dgcj
~2! and^ḡuQḡHQ̄j uc̄ j&5D ḡ c̄ j

~2! ,

which represent relatively weak two-photon transitions in
sense that they raise the electron into the continuum irrev
ibly, without an oscillation back to the bound state by t
same transition amplitude. This means that they can
treated perturbatively in dealing with the set of Eqs.~4a!–
~4d!. Since the initial state is~4s! 2, two-photon ionization
leads to two continua~partial waves! s andd, indexed byj
in the equations above. These two continua draw electr
from the ground state independently, and, as noted ear
the coupling matrix elements do not mix thej ’s. Thus the
two vertical parts of Fig. 1 can be thought of as separate
to a certain intensity beyond which higher order contrib
tions begin entering. We can therefore consider first
dominant continuum, namelyd, and develop the forma
treatment for that case. At the end, whenever we show
sults, we have always included the effect of continuums,
which is simply additive to the overall process. It also ha
pens in this case, to give much smaller contribution than
d continuum.

We consider then the right-hand vertical half of Fig.
which means that we drop the indexj and the summation in
Eqs.~4a!–~4d!, whereuc& denotes thed continuum. Taking
also into account the simplifications in the coupling mat
elements indicated above, the equations become

~z2Eg!Gg2Dg ḡGḡ2E dcDgc
~2!Gc51, ~5a!
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55 2235MANIFESTATIONS OF ATOMIC AND CORE . . .
2D ḡgGg1~z2Eḡ !Gḡ2E dc@D ḡcGc1D ḡ c̄
~2!Gc̄ #50,

~5b!

2Dcg
~2!Gg2Dc ḡGḡ1~z2Ec!Gc

2E dc8^cuQcHQ̄cuc̄8&Gc̄ 850, ~5c!

2D c̄ ḡ
~2!Gḡ2E dc8^c̄uQ̄cHQcuc8&Gc81~z2Ec̄ !Gc̄50,

~5d!

where in order to compress notation we have omitted
common right-hand indexg in the matrix elements ofG, and
to avoid confusion, we have renamed the projection ope
torsQj andQ̄j asQc andQ̄c , since we now have one con
tinuum c.

The most subtle part of these equations now is in
matrix elementŝ cuQcHQ̄cuc̄8& involving coupling of two
continua and integration over one of them. These are c
tinua of the two-electron system with one electron in a bou
state and the other in a continuum state. Qualitatively
represents a matrix element of the ty
^Ca1(4s)ur uCa1(4p)&^eue8& where the two continuum
states represent the same partial wave seeing different c
4s and 4p. It is often the case that couplings of continua
this type can be separated into two parts: one havin
smooth dependence on the energiese ande8, and the other a
delta functiond(e2e8), also referred to as off- and on-the
energy shell contributions. Depending on the problem,
d-function part may be the dominant one, in which case
simplification in the set of Eqs.~5a!–~5d! is evident, since
the integrals coupling the two continua are trivially pe
formed leaving only the integrals in Eqs.~5a! and ~5b! cou-
pling the continua with discrete states.

It does indeed turn out that this is the case here and th
a very good approximation it is only the resonant~on-the-
energy shell! part that is significant. The arguments justif
ing these statements are outlined in Appendix A. The
result, which allows us to continue with a more tractable
of equations, is that we can tak
*dc8^c̄uQ̄cHQcuc8&Gc85D c̄cGc and similarly

FIG. 1. Level scheme for Ca1 ~on axis! and Ca. Curved arrows
signify configuration interaction, while straight arrows are fie
couplings.
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*dc8^cuQcHQ̄cuc̄8&Gc̄ 85Dc c̄Gc̄ , which then substituted
into Eqs.~5a!–~5d! reduce them to the form

~z2Eg!Gg2Dg ḡGḡ2E dcDgc
~2!Gc51, ~6a!

2D ḡgGg1~z2Eḡ !Gḡ2E dc@D ḡcGc1D ḡ c̄
~2!Gc̄ #50,

~6b!

2Dcg
~2!Gg2Dc ḡGḡ1~z2Ec!Gc2Dc c̄Gc̄50, ~6c!

2D c̄ ḡ
~2!Gḡ2D c̄cGc1~z2Ec̄ !Gc̄50, ~6d!

where as shown in Appendix A the matrix elementsDc c̄ are
practically given by^4sudu4p& involving the ionic states
only.

A few further comments on the on-the-energy shell a
proximation may be relevant here. The dipole coupling
the statesuc& and uc̄& is, from a formal point of view, a
continuum-continuum coupling of the type that appears
above-threshold ionization~ATI !. But it is different in a cru-
cial way; the two coupled continua represent two-elect
states with one of the electrons in a discrete state. We
therefore not dealing with smooth continua as is the case
one-electron atom or in the so-called single active elect
approximation in a more complex atom. What we have h
are transitions between two-electron structured conti
which allow the resonance approximation while the sa
approximation would not be justified in a typical ATI conte
of continuum-continuum transitions of a single electron.

Solving forGc andGc̄ in Eqs.~5a!–~5d! yields

@z2Eg2I gg~z!#Gg2@Dg ḡ1I g ḡ~z!#Gḡ51, ~7a!

2@D ḡg1I ḡg~z!#Gg1@z2Eḡ2I ḡ ḡ~z!#Gḡ50, ~7b!

Gc5
@~z2Ec̄ !@Dcg

~2!Gg1Dc ḡGḡ#1Dc c̄D c̄ ḡ
~2!Gḡ#

~z2Ec!~z2Ec1Ec̄ !2uD c̄cu2
, ~7c!

Gc̄5
@D c̄c~Dcg

~2!Gg1Dc ḡGḡ !1~z2Ec!D c̄ ḡ
~2!Gḡ#

~z2Ec!~z2Ec1Ec̄ !2uD c̄cu2
.

~7d!

The shift-width integralsI gg(z), I ḡg(z), I g ḡ(z), and I ḡ ḡ(z)
are given in Appendix B and appear somewhat differ
from those normally encountered due to the strong coup
of continua. In that Appendix, we show that they neverth
less reduce to normal shifts and widths provided the c
tinuum couplings can be consideredconstantover a range
given by the Rabi frequency of the ionic transition. Th
requirement, which is more strict than the one required
doing the usual pole approximation, is satisfied below cert
intensity ~see Appendixes B and C!, and leaves us with the
following expressions:

I gg.E dEcr~Ec!
uDcg

~2!u2

Eg2Ec
[sg2

i

2
gg , ~8a!
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I ḡ ḡ.E dEcr~Ec!
uDc ḡu2

Eg2Ec
1E dEc̄ r̄~Ec̄ !

uD c̄ ḡ
~2! u2

Eg2Ec̄

[sḡ2
i

2
g ḡ , ~8b!

I g ḡ.E dEcr~Ec!
Dgc

~2!Dc ḡ

Eg2Ec
[sg ḡ2

i

2
gg ḡ , ~8c!

I ḡg.E dEcr~Ec!
D ḡcDcg

~2!

Eg2Ec
[sḡg2

i

2
g ḡg . ~8d!

In the integrals over states we have shown explicitly
densities of statesr and r̄, corresponding to the two con
tinua. In the last step the pole approximation is implied le
ing to shiftss and ionization widthsg involving two-photon
processes, as a result of which these shifts are not expe
to be very important quantitatively. Shifts will be dominate
by the first order contributions which we shall always inco
porate in the energies, and which thus become intensity
pendent. The matrix elementsD̃g ḡ[Dg ḡ1I g ḡ and
D̃ ḡg[D ḡg1I ḡg are defined so as to include the no
Hermitian coupling through the continuumuc&.

Using Eqs.~7c! and~7d! and the results from Appendix B
we are now in a good position to estimate the significance
the error made by assuming the continuum-continuum c
pling to be purely discrete, i.e., to estimate the validity of t
on-the-energy shell approximation. This is done in Appen
C by evaluating the integrals involving the couplings ignor
in assuming Eqs.~7c! and ~7d! to be valid. The calculation
reveals the limits of the range of parameters for which
theory applies, and for Ca is of the order of 1013 W/cm2.

We return now to the problem of determining the PE
Let zg

6 and zc
6 be the roots of the second-order algebr

equations,

~z2zg
1!~z2zg

2![S z2Eg1
i

2
ggD S z2Eg1Dg1

i

2
g ḡ D

2D̃g ḡD̃ ḡg , ~9a!

~z2zc
1!~z2zc

2![~z2Ec!~z2Ec1Dc!2uD c̄cu2 ~9b!

with detunings defined by

Dg[Eg2Eḡ5\v2E„Ca~4s4p! 1 P1…1E„ Ca~4s!2 1 S0…,
~10a!

Dc[Ec2Ec̄5\v2E~Ca14p!1E~Ca14s!. ~10b!

For use in what follows, we also define the generalized R
frequencies of the atomic and ionic core transiti
by Ṽg5A@Dg2 i /2 (gg2g ḡ)#

214D̃g ḡD̃ ḡg and Ṽc

5ADc
214uD c̄cu2, respectively. Note that, althoughDc does

not depend on the continuum electron energy, but only
the detuning of\v from the ionic core transition, for conve
nience we retain the labelc.

Introducing for brevity the quantity Q(z)5(z2
zg

1)(z2zg
2)(z2zc

1)(z2zc
2), we can write the solutions fo

Gc andGc̄ in the form
e

-

ted

-
e-

f
u-

x

e

.

bi

n

Gc5H ~z2Ec̄ !FDcg
~2!S z2Eḡ1

i

2
g ḡ D1Dc ḡD̃ ḡgG

1Dc c̄D c̄ ḡ
~2!D̃ ḡgJ Y Q~z!, ~11a!

Gc̄5HD c̄cFDcg
~2!S z2Eḡ1

i

2
g ḡ D1Dc ḡD̃ ḡgG

1~z2Ec!D c̄ ḡ
~2!D̃ ḡgJ Y Q~z!. ~11b!

From these expressions and the Laplace inversion integ
we obtain the time-dependent amplitudesUcg(t) and
U c̄g(t) for the transitions to the statesuc& and uc̄&. We re-
frain from exhibiting these expressions, but only note th
uUcg(t)u2 anduU c̄g(t)u2 represent the probabilities of findin
at time t a free electron and the core in either state 4s or
4p, respectively. The readily measurable quantity, howev
is the PES given byS(t,ec)5uU c̄g(t)u21uUcg(t)u2, which in
the long time limit ~meaning complete ionization! can be
shown to be time-independent, as also expected on phy
grounds. In this case only the real poleszc

6 of the resolvent
give nonvanishing contributions to the time evolution of t
amplitudes.

For a square pulse a four-peak spectrum is therefore
pected in general, with the peak separations given by
Rabi frequencies of the core and atomic transitions. Thi
easily understood from a dressed state picture~Fig. 2! @20#.
Each peak can be attributed to a transition from a dres
atomic state (ug1&, ug2&) to a dressed ionic continuum
(uc1&, uc2&).

A final comment concerning the meaning and implic
tions of Eqs.~6a!–~6d! may be useful before leaving thi
section. We have shown in Appendix A that the matrix e
mentDc c̄ coupling the two continua reduces, under the co
ditions of this problem, to the matrix element^4pur u4s& be-
tween the two discrete states of the core. In fact
mathematical derivation in that Appendix involves a rath
subtle procedure and almost counterintuitive result which
possible only because one of the electrons is in the c
tinuum, as it is the integration over the principal value pa

FIG. 2. The square-pulse spectrum is conveniently explaine
a dressed-state basis. The field coupling of the bound statesug&
and uḡ&) and of the continua (uc& and uc̄&) are diagonalized inde-
pendently providing dressed, uncoupled bound states (ug1& and
ug2&) and continua (uc1& anduc2&). Due to the mixing each bound
state is coupled to both continua and a four-peak spectrum is
pected.
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that leads to the cancellation reducing the expression to
core matrix element. Note that if the outer electron was
above the threshold but just below, in a high Rydberg st
the result would be different, in that it would involve a
overlap integral between Rydberg wave functions seein
ground and an excited core state. It is precisely that ove
that is reduced to unity through the principal value part in
grals which would be absent in the case of Rydberg e
trons. One might then be tempted to infer that electr
electron interaction and the concomitant correlation are
playing a role here. But that would be a misguided inferen
because correlation is already inherent in the fact that
energy of the core~ionic! resonance is displaced from that
the atomic resonance. As a result of that displacement,
have four poles in the expressions of Eqs.~11a! and ~11b!,
which give rise to four peaks in the PES. If there was
electron-electron interaction, the atomic and core resona
energies would coincide and the four peaks of the P
would collapse to only two.

There is, however, a further more fundamental implic
tion of that formal result. The two peaks obtained in that c
do not reflect the transfer of the coherence established in
Rabi oscillation of one electron to the other, but simply t
manifestation of the ac Stark splitting in the resonance tr
sition of one electron to the PES of the same electron. T
of course is to be expected since in that limit the electrons
not interact and therefore the PES consists of peaks orig
ing from the ionization of noncommunicating electrons. It
the same as what is expected and has in fact been obse
experimentally@17# in transitions where only one electron
active, as in the alkalies. It all seems naturally evident. W
is not that evident is that the converse is also true; nam
that if a model produces only two symmetric peaks, it do
not involve the transfer of the coherence from one stron
driven electron to the PES of the other, but simply the
Stark splitting in the PES of one electron strongly driv
between two of its own discrete states.

The above arguments might seem to not include the c
in which the two-electron system does not have the equ
lent of the atomic resonance, as is the case, for example,
H2, which has only one bound~the ground! state
1s2(1S0). In that case, however, the Rabi oscillation of o
electron between 1s and 2p of the core~neutral H! while the
other is in the continuum, is equivalent to the strong drivi
of the autodetaching resonance 2pe l , which is the same as
the Rabi oscillation of an autoionizing resonance hav
been discussed quite some time ago@6# and observed rathe
recently@7#. Care must then be taken in a theoretical mod
ing or experimental observation to distinguish it from the
Stark splitting of the one-electron core~H! PES as it ionizes
after detachment of one electron by single-photon abs
tion.

B. General pulse shape

In order to relate the theory to experiments, we must c
sider the effect of a realistic time-dependent pulse shape.
have shown in Ref.@19# that this is essential, since spect
depend critically on the intensity profile of the pulse. This
not surprising considering the time-dependent shifts and
ferent paths to the continua. Each continuum state can
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shifted through either of the four resonances~Fig. 2! several
times during the pulse duration. A square pulse calculat
has no chance of predicting the resulting interference~ana-
logs to Ramsey interference! since it does not occur for a
square pulse.

The square-pulse calculation is, however, quite help
even when proceeding to a time-dependent calculation s
the elimination of strongly coupled continua is carried o
more conveniently in the energy domain~Appendix B!.
Equations~6d!, ~7a!, and~7b! serve as a good starting poin
for a time-dependent calculation. It is straightforward
transform the equations back in the time domain, and
demonstrate the validity for time-dependent coupli
strengths. Using Eqs.~8a!–~8d! we obtain the differential
equations

i
dCg

dt
5~Eg1I gg!Cg1~Dg ḡ1I g ḡ!Cḡ , ~12a!

i
dCḡ

dt
5~Eḡ1I ḡ ḡ !Cḡ1~D ḡg1I ḡg!Cg , ~12b!

i
dCc

dt
5EcCc1Dcg

~2!Cg1Dc ḡCḡ1Dc c̄Cc̄ , ~12c!

i
dCc̄

dt
5Ec̄Cc̄1D c̄ ḡ

~2!Cḡ1D c̄cCc . ~12d!

This is just the Schro¨dinger equation providing the time evo
lution of the state vector uc&5Cgug&1Cḡuḡ&
1*dc(Ccuc&1Cc̄ uc̄&) in the relevant subspace with the co
rect coupling parameters. The equations can be solved
merically thus providing the expansion coefficients a
hence the PESS(t,ec)5uCcu21uCc̄ u2.

II. APPLICATION OF THE THEORY TO CALCIUM

The above calculation contains the minimum ingredie
necessary for calculating a realistic PES obtained at n
resonance. Besides the ionic and corresponding atomic t
sition, additional states might be important in specific cas
Near-resonant atomic states add to the number of interfe
paths to the continua resulting in shifts, additional splittin
and/or different interference structure in the spectra. Exc
ionic states are significant for the same as well as a
additional reasons.~a! They lead to photoelectron peaks co
responding to the respective ionic excited states.~b! The sub-
sequent ionization of the populations left in these states le
to additional photoelectron peaks. Whether atomic and io
states besideug&, uḡ&, uc&, anduc̄& need to be included in the
calculation can only be determined from detailed knowled
of the atomic and ionic structure, as well as of the pulse

The experiment on calcium by Walkeret al. @1# was per-
formed in a wavelength range from 380 to 405 nm~photon
energy 24 700 to 26 300 cm21) using intensities ranging
from 9 to 900 GW/cm2. The ionic two-photon 4s-5s tran-
sition is within this frequency range (52 167 cm21), and it
is therefore necessary to include the 5s state. The 6p state is
located another 22 300 cm21 higher in energy. The matrix
elements involving this state are sufficiently small to ens
that it need not be included explicitly in the calculation, b
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only through the linear Stark shift due to the multitude
nonresonant levels.

The modification of the above equations to include
effect of the ionic 5s state is straightforward both for th
analytic result and for the differential equations. There see
to be little point in exhibiting the expressions. Instead
turn to results of calculations obtained for the range of la
parameters employed in the experiments of Walkeret al. @1#.
Our results are shown in Figs. 3, 4, and 5, which corresp
to Figs. 2, 3, and 4 of Ref.@1#. Clearly all peaks observed i
the experiment are also found in ourab initio calculated
results. The relative heights are also the same in most ca
The analysis of the spectrum@Fig. 4~c!# reveals that the 4s
and 4p continua contribute to both of the peaks of Fig. 2~a!.
Thus, the spectra are indeed evidence of the electron co
lation being manifested in a Rabi splitting.

A disagreement with the interpretation given in Ref.@1# is

FIG. 3. Photoelectron energy spectra for several wavelength
two intensities. The parameters chosen as cited in Fig. 2 of Ref.@1#.
The pulse is Gaussian with full width durationt5180 fs at half
maximum intensity~FWHM!. ~a! Peak intensityI510 GW/cm2.
~b! I5300 GW/cm2. For the high field spectrum there is very goo
agreement except for the longest wavelength giving peaks clos
threshold, where our calculation is not expected to be precise.
low field should in principle be easier to calculate and yet the s
of one peak seems to be overestimated by our calculation.
measured spectrum is, however, consistent with a somewhat l
peak intensity~approximately half! than the one given in@1#. Since
intensity is very hard to measure precisely, this should not be
much concern.~c! The contributions from the various channels
the total spectrum at 383.9 nm in~b!. The splittings reflect three
level system dynamics at the peak intensity.
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that its authors had not recognized the importance of ion
tion from the populations deposited during the pulse in
excited states 4p and 5s. The most important implication o
this is that a doublet of peaks around a photoelectron ene
of 1.2 and 1.4 eV that could in principle be attributed to
Stark splittings of the two-photon ionic transition 4s-5s or
the one-photon 4p-5s turns out to be due to photoelectron
originating from these excited states. For the range of int
sities cited in Ref.@1#, the possibility of the above two a
Stark splittings can be safely ruled out. Any mixing of th
ionic states should clearly show up as splittings in the in
vidual channels@as in Fig. 4~c!#. Our Fig. 5~a! corresponding
to the low energy part of the spectrum of Fig. 4 in Ref.@1#,
shows that this is not the case even for the highest intens
cited in Ref.@1#.

On the other hand, population deposited in the ionic sta
during the pulse might subsequently be ionized. A fou
three-, or two-photon transition from the ionic 4s, 4p, or 5s
states, respectively, will each give rise to a peak in the P
Two peaks do indeed occur around 1.2 eV in the measu
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FIG. 4. Photoelectron energy spectra for several intensities
and off ionic resonance. The parameters are chosen as cited in
3 of Ref.@1#. The intensities are expressed in terms of the satura
intensity I s5300 GW/cm. The pulse is Gaussian witht5180 fs
~FWHM!. ~a! Wavelength l5393.5 nm ~on resonance!, ~b!
l5388.5 nm~off resonance!. The agreement to experiment is e
cellent in both graphs taking into account the expected additio
broadening due to spatial effects and possibly fine structure.~c! The
contributions from the various channels to the total spectrum
I5I s on ionic resonance. The splitting occurs in both the 4s and 4p
channel and is thus evidence of the continuum splitting in Fig.
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PES@1#, and we will now justify that they are due to ioniza
tion of ionic states.

It is relatively simple to test whether the calculated sp
tra in the low energy range of the spectrum are consis
with the observed double peak spectrum in the intermed
energy range. This can be done by calculating the popula
in each of the three ionic states after the pulse~by integration
over the continua!. The resulting numbers are taken as t
initial conditions for a second and otherwise independ
calculation of the response of a calcium ion to a simi
pulse.

The result of such a calculation is shown in Fig. 5~b!.
Two relatively large peaks due to four-photon ionization
the large 4s population and two-photon ionization from th
smaller 5s population are found. The nonresonant thre
photon ionization of the 4p population gives rise to a con
siderably smaller peak. When the two spectra are put
gether, we obtain a spectrum~Fig. 5! very similar to the one
presented in Fig. 4 of Ref.@1# for linearly polarized light.

FIG. 5. Photoelectron energy spectra corresponding to~a! low
and ~b! intermediate photoelectron energy range of Fig. 4 in R
@1#. Note the linear scaling on the abscissa in the first two grap
The wavelength isl5381.3 nm and the pulse Gaussian, durat
t5180 fs ~FWHM!. ~a! Even at an intensity ofI5800 GW/cm2,
each peak can be attributed to a single continuum, showing
mixing is negligible.~b! A calculation treating the first and secon
ionization independently reproduces the features of the experim
tal data in the intermediate energy range. The three structure
due to ionization from the ionic states 4p, 5s, and 4s, respectively.
~c! The results of the two calculations are combined producin
spectrum very similar to the experimental. The peak due to ion
tion from the 4p state is too small to appear on this scale@the
smallest peak in graph~b!#.
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The use of circularly polarized light should make thes
peaks disappear, as well as changing the Stark shifts. Th
in full agreement with the experimental results.

We must emphasize that the single and double ioniza
processes are in principle not separable, even though th
what we have assumed in the above discussed calculatio
the Ca21 spectrum. The difference from a complete calcu
tion is, however, expected to not be large in the present c
since the low energy part of the spectrum@Fig. 5~a!# shows
that coherence is not important. The heights of all peaks
the doubly ionized species are expected to be somew
overestimated by a common factor in the Ca21 spectrum,
while their positions should be more or less unaffected. T
most serious remaining doubt about an independent calc
tion is probably that the ions are created mostly at peak
tensity, rather than being present from the beginning of
pulse. In addition to influencing the peak heights as
scribed, this could have other implications. After performi
a calculation for a half Gaussian, however, we find that
picture does not change much, and therefore does not a
the conclusion: The two peaks observed are due to the
sequent ionization of the population deposited in ionic sta
by the first ionization step.

The question of the possible role of the fine structure
the core on the observed spectra needs to be addressed,
importance has been debated in the literature@22,23#. The
fine-structure splitting of the 4P3/2,1/2 doublet in Ca

1 is 226
cm21. Its chief influence on the physics of the process is t
the core-resonant field drives not a two- but a three-le
system which adds to the complexity of the overall behav
without enriching the basic effects under investigation.
the contrary, it may be argued that the presence of fi
structure in the core is a nuisance, in the present cont
detracting from the main line of the problem. But it is the
nevertheless and the importance of its influence should
assessed.

The main concern of course here is whether it must
included in order to interpret the data published in Ref.@1#.
A careful examination of the spectra in our Figs. 2, 3, an
provides the necessary clue. It is easy to verify by sim
inspection that the photoelectron energy peaks having ap
contribution are in general broader than the fine-struct
splitting. In addition, our spectra having been obtain
through equations that included only one 4p resonance are in
very good agreement with the data published in Ref.@1#. It is
thus reassuring that at least for the intensities employe
obtaining the data reported in Ref.@1#, the fine structure is
obscured by other effects that broaden the peaks. All s
effects are included in our calculations which reproduce
data quite well.

The extension of our theory through the inclusion of o
additional p state and the corresponding channels into
continuum presents no particular difficulty; it is in fa
straightforward. We see, however, no reason to undert
such a task at this point as its value to the interpretat
would be of secondary significance, and in connection to
effect of peripheral value to the issue at hand. This is rat
fortunate, but not accidental as it enables the quantita
analysis to focus on the main issue. That it is not acciden
can be verified almost at the outset by simply estimating
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2240 55LARS G. HANSON, JIAN ZHANG, AND P. LAMBROPOULOS
main broadening mechanisms. Whether experimental
extending to intensities lower than those reported in Ref.@1#
demand the inclusion of the fine structure of the core,
alluded to in Ref.@23#, remains to be seen and may in fact
likely. For the time being, we shall leave our calculatio
where they stand as they provide the interpretation of d
published thus far.

Finally, the exact position of the various peaks obtained
our calculation is somewhat displaced with respect to
experiment~typically by 10%!. Since they are found to b
quite sensitive to the intensity, one should not be too c
cerned about that. For a quantitative interpretation of all f
tures of the data, we would need to know the uncertainty
the intensity~in each case! as well as the spatial features
the interaction volume. Furthermore, we checked whet
our peak positions converge towards the zero field positi
as they should. They do, while this does not seem to be
for the experimental data.

III. CONCLUSION

We have discussed the basic theory and have provid
comprehensive realistic formalism for the process of co
resonant ionization, with specific emphasis on the alka
earth atoms. The main points of this theory are as follo
~a! The atomic core resonance is so close in energy to
core resonance transition that it must be included in the th
retical treatment, even if the field is in resonance with
core transition.~b! At the intensity required to produce ob
servable Stark splitting, additional photon absorption in
atomic system will lead to significant production of excit
ionic states.~c! These excited ionic states populated duri
the pulse ionize later on, producing further photoelect
peaks.~d! ac Stark shifts of magnitude varying in time du
ing the pulse will produce additional structure in the PES

A theoretical model and calculation aiming at predictio
for the expected PES, or the interpretation thereof, must
clude at least all of the above processes and states, as w
a realistic description of the temporal shape of the pulse

When put together in a complete calculation, these
pects produce a picture far more complex than a sim
symmetric doublet. And it is indeed such a complex pictu
that has emerged out of the recent experiments by Wa
et al. @1#. We demonstrated very good agreement betw
the calculations and all published experimental data. Furt
more, the calculations were shown to give additional insi
into the problem.

Last, we want to establish the close relation to anot
problem currently attracting much interest@11–13,24,25#. In
the present paper, we have studied the effect of a stro
driven core resonance on an electron during ionization. M
intricate effects are found when the electron leaving the c
is slightly bound, so that it returns to the core in the form
a wave packet after a classical orbit time. The subsequ
scatterings from the Rabi oscillating core has been show
affect the shape of the wave packet strongly throu
electron-electron interaction and the resulting autoionizat
The electron freed in this process leaves a Rabi oscilla
core behind as in the scheme described here. A compre
sive study of that situation, which has been reported in b
@19#, will be presented in a forthcoming paper.
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APPENDIX A: THE CONTINUUM-CONTINUUM
COUPLING STRENGTH

In this section, we show thatDc c̄ , which appeared in Eqs
~6!, can be approximated as^Ca14sudu Ca14p&.

In general, the continuum wave function has anN-fold
degeneracy corresponding to theN possible outgoing chan
nels at a given energy@3,2,4#. Each channelAi can be de-
fined by antisymmetrized direct products of an ionic co
stateF and an angular momentum eigenstatex of the out-
going ~ionizing! electron. Denoting the radius of the outg
ing electron byr , and the remaining coordinates byR, the
wave functionci has the following asymptotic behavior fo
large r :

^Rr uci&5(
j

^RuAj&
1

2r
@d i jf j e8

1
~r !2Si j

†f j e8
2

~r !#,

~A1!

wheref j e
6(r ).e6 ikr1d j , with d j the Coulomb phase shif

determined by the angular momentum quantum numbe
the outgoing electron@5#. TheSmatrix represents the inter
action between different channels due to the electr
electron Coulomb interaction.

Because of the indistinguishability of electrons, the dipo
moment between two-electron wave functions consists
four terms: the inner-inner, the inner-outer, the outer-inn
and the outer-outer electron transitions. However, near
core-resonance frequency, the coupling strength between
two channels is dominated by the inner-inner electron tr
sition, and can therefore be approximated as

^ci uQcHQ̄cuc̄i 88 &.(
j j 8

^Aj uduAj 8&
1

4E dr@d i jf j e
1~r !

2Si j
†f j e

2~r !#*

3@d i 8; j 8f j 8e8
1

~r !2Si 8; j 8
8† f j 8e8

2
~r !#

.(
j j 8

^Aj uduAj 8&Fd~e2e8!

3
1

2
~d i jd i 8 j 81Si jSi 8 j 8

8† !

1
i

2pAkjkj 8
S Pd i jd i 8 j 8

kj 82kj
2P

Si jSi 8 j 8
8†

kj 82kj
D G .
~A2!

Now, we are ready to evaluate*dc8^ c̄uQ̄cHQcuc8&Gc8. As-
suming that the coupling strengthsDcg

(2) andDc8g
(2) ~alsoDc ḡ

and Dc8ḡ) are approximately equal, and so areDc c̄ and
Dc8c̄, then from Eq. ~6c! we can derive
Gc8.Gc(z2Ec /z2Ec8). This leads to
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E dc8^c̄uQ̄cHQcuc8&Gc8.(
j j 8

^Aj uduAj 8&

3F12 ~d i jd i 8 j 81Si jSi 8 j 8
8† !

1
i

2p
~d i jd i 8 j 82Si jSi 8 j 8

8† !

3PE dc8
1

Akjkj 8~kj 82kj !

3
z2Ec

z2Ec8
GGc , ~A3!

whereEc5kj
2/2, dc85dEc85kj 8dkj 8. The subscript labeling

for c andc8 has been omitted, having in mind thatc corre-
sponds toAi54se l andc8 to Ai 854pe l channels.

The principal integral in the equation can be evaluated
the contour integral technique, and the result is sim
2 ip. Consequently, we obtain

E dc8^c̄uQ̄cHQcuc8&Gc8.^Ai uduAi 8&Gc . ~A4!

By definition, we have Dcc85^Ai uduAi 8&
5^F i uduF i8&^xux&5^F i uduF i8&dx,x8. For the specific sys-
tem we consider in the paper, we ha
Dc^cu5^Ca14sudu Ca14p&, for ux8&5ux&5us& or ud&. Note
that this conclusion is valid as long as the assumption
te
a
y
n

e

y
y

at

(z2Ec)Gc varies slowly holds. It is remarkable that comp
cated channel couplings represented byS matrices of the
continua do not manifest themselves in the core resona
coupling of the two continua.

APPENDIX B:
ELIMINATION OF STRONGLY COUPLED CONTINUA

The elimination of continua is a widely used method
determining the influence of a ‘‘bath’’ with infinite degree
of freedom on a system with just a few. In the present c
the ‘‘bath’’ is the electron continuum. It seems, howeve
that the elimination of strongly coupled continua has n
been discussed in the literature until now. This is despite
fact that it doesnot, in general, lead to ordinary shifts an
widths, which has apparently been taken for granted w
the strong coupling of continua was not simply neglected

Though we treat only a special case of this eliminatio
the methods are applicable in general. Comparing the eq
tions ~5a! and ~5b! with ~7a! and ~7b!, we have

I gg~z!Gg1I g ḡ~z!Gḡ5E dcDgc
~2!Gc ~B1a!

I ḡ ḡ~z!Gḡ1I ḡg~z!Gg5E dc~D ḡ c̄
~2!Gc̄1D ḡcGc!.

~B1b!

Using the expressions~7c! and~7d! for Gc andGc̄ we obtain
explicit expressions for the shift-width integrals in terms
integrals over coupled states (uc&, uc̄&).
I gg~z!5E dc
Dgc

~2!~z2Ec̄ !Dcg
~2!

~z2Ec!~z2Ec̄ !2uD c̄cu2
, ~B2a!

I g ḡ~z!5E dc
Dgc

~2!~z2Ec̄ !Dc ḡ1Dgc
~2!Dc c̄D c̄ ḡ

~2!

~z2Ec!~z2Ec̄ !2uD c̄cu2
, ~B2b!

I ḡg~z!5E dc
D ḡ c̄

~2!D c̄cDcg
~2!1D ḡc~z2Ec̄ !Dcg

~2!

~z2Ec!~z2Ec̄ !2uD c̄cu2
, ~B2c!

I ḡ ḡ~z!5E dc
D ḡc~z2Ec̄ !Dc ḡ1D ḡcDc c̄D c̄ ḡ

~2!1D ḡ c̄
~2!D c̄cDc ḡ1D ḡ c̄

~2! ~z2Ec!D c̄ ḡ
~2!

~z2Ec!~z2Ec̄ !2uD c̄cu2
. ~B2d!
ed
de-
These integrals are obviously different from the normal in
grals over continuum states encountered when continua
eliminated@20#, and only under certain conditions do the
reduce to the normal shifts and widths. It is useful to defi
the z-dependent solutionsEc

6 of the equation

~Ec
12Ec!~Ec

22Ec![~z2Ec!~z2Ec1Dc!2uD c̄cu2.
~B3!

Please note the similarity and difference to Eq.~9b! defining
the quantitieszc

6 . Unlike those,Ec
6 does not depend on th
-
re

e

pair of continuum states (uc&, uc̄&) since the coupling
strengthDc c̄ does not. The fractions are now expand
yielding rather lengthy expressions. For convenience we
fine normal shift-width integrals

Wgg~E![E dc
uDcg

~2!u2

E2Ec
, Wḡg~E![E dc

D ḡcDcg
~2!

E2Ec
,

Wgḡ~E![E dc
Dgc

~2!Dc ḡ

E2Ec
, Wḡ ḡ

c ~E![E dc
D ḡcDc ḡ

E2Ec
,
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Wḡ ḡ
c̄ ~E![E dc

D ḡ c̄
~2!D c̄ ḡ

~2!

E2Ec
,

and matrix elements

Tḡ ḡ
c c̄ ~E![E dc

D ḡcDc c̄D c̄ ḡ
~2!

E2Ec
,

Tḡ ḡ
c̄ c ~E![E dc

D ḡ c̄
~2!D c̄cDc ḡ

E2Ec
,

Tg ḡ
c c̄~E![E dc

Dgc
~2!Dc c̄D c̄ ḡ

~2!

E2Ec
,

Tḡg
c̄c~E![E dc

D ḡ c̄
~2!D c̄cDcg

~2!

E2Ec
.

Expressed in terms of these quantities, Eqs.~B2a!–~B2d!
become

I gg~z!5
21

Ec
12Ec

2 @~z2Ec
11Dc!Wgg~Ec

1!

2~z2Ec
21Dc!Wgg~Ec

2!#, ~B4a!

I g ḡ~z!5
21

Ec
12Ec

2 @~z2Ec
11Dc!Wgḡ~Ec

1!

2~z2Ec
21Dc!Wgḡ~Ec

2!

1Tg ḡ
c c̄~Ec

1!2Tg ḡ
c c̄~Ec

2!#, ~B4b!

I ḡg~z!5
21

Ec
12Ec

2 @~z2Ec
11Dc!Wḡg~Ec

1!

2~z2Ec
21Dc!Wḡg~Ec

2!

1Tḡg
c̄c~Ec

1!2Tḡg
c̄c~Ec

2!#, ~B4c!

I ḡ ḡ~z!5
21

Ec
12Ec

2 @~z2Ec
1!Wḡ ḡ

c̄ ~Ec
1!2~z2Ec

2!Wḡ ḡ
c̄ ~Ec

2!

1Tḡ ḡ
c̄ c ~Ec

1!2Tḡ ḡ
c̄ c ~Ec

2!1~z2Ec
11Dc!Wḡ ḡ

c ~Ec
1!

2~z2Ec
21Dc!Wḡ ḡ

c ~Ec
2!1Tḡ ḡ

c c̄ ~Ec
1!2Tḡ ḡ

c c̄ ~Ec
2!#.

~B4d!

From the definition~B3! of Ec
6 we have

Ec
65z1Dc/26Ṽc/2[Ec

06Ṽc/2 ~B5!

and therefore

I gg~z!5
21

2Ṽc
@~Dc2Ṽc!Wgg~Ec

1!2~Dc1Ṽc!Wgg~Ec
2!#,

~B6a!

I g ḡ~z!5
21

2Ṽc
$~Dc2Ṽc!Wgḡ~Ec

1!2~Dc1Ṽc!Wgḡ~Ec
2!
12@Tgḡ
cc̄~Ec

1!2Tgḡ
cc̄~Ec

2!#%, ~B6b!

I ḡg~z!5
21

2Ṽc
$~Dc2Ṽc!Wḡg~Ec

1!2~Dc1Ṽc!Wḡg~Ec
2!

12@Tḡg
c̄c~Ec

1!2Tḡg
c̄c~Ec

2!#%, ~B6c!

I ḡ ḡ~z!5
21

2Ṽc
$~Dc2Ṽc!Wḡ ḡ

c ~Ec
1!2~Dc1Ṽc!Wḡ ḡ

c ~Ec
2!

12@Tḡ ḡ
c c̄ ~Ec

1!2Tḡ ḡ
c c̄ ~Ec

2!#1~2Dc2Ṽc!Wḡ ḡ
c̄ ~Ec

1!

2~2Dc1Ṽc!Wḡ ḡ
c̄ ~Ec

2!

12@Tḡ ḡ
c̄ c ~Ec

1!2Tḡ ḡ
c̄ c ~Ec

2!#%. ~B6d!

Equations~B4a!–~B4d! now reduce to

I gg~z!5
2Dc@Wgg~Ec

1!2Wgg~Ec
2!#

2Ṽc

1
Wgg~Ec

1!1Wgg~Ec
2!

2
, ~B7a!

I g ḡ~z!5
2Dc@Wgḡ~Ec

1!2Wgḡ~Ec
2!#

2Ṽc

1
Wgḡ~Ec

1!1Wgḡ~Ec
2!

2
2
Tg ḡ
c c̄~Ec

1!2Tg ḡ
c c̄~Ec

2!

Ṽc

,

~B7b!

I ḡg~z!5
2Dc@Wḡg~Ec

1!2Wḡg~Ec
2!#

2Ṽc

1
Wḡg~Ec

1!1Wḡg~Ec
2!

2
2
Tḡg
c̄c~Ec

1!2Tḡg
c̄c~Ec

2!

Ṽc

,

~B7c!

I ḡ ḡ~z!

5
2Dc@Wḡ ḡ

c ~Ec
1!2Wḡ ḡ

c ~Ec
2!2Wḡ ḡ

c̄ ~Ec
1!1Wḡ ḡ

c̄ ~Ec
2!#

2Ṽc

1
Wḡ ḡ

c ~Ec
1!1Wḡ ḡ

c ~Ec
2!1Wḡ ḡ

c̄ ~Ec
1!1Wḡ ḡ

c̄ ~Ec
2!

2

2
Tḡ ḡ
c c̄ ~Ec

1!2Tḡ ḡ
c c̄ ~Ec

2!1Tḡ ḡ
c̄ c ~Ec

1!2Tḡ ḡ
c̄ c ~Ec

2!

Ṽc

. ~B7d!

We have gone this far without making any approximatio
The normal pole approximation can now be carried o
yielding shifts and widths for each of the integrals provid
the continua are smooth around the energy of each of
dressed bound states plus and minus half an ionic Rabi
quency. This happens if the continua are without struct
and if the energies are not too close to threshold. The res
ing expressions, nevertheless, do not reduce to the no
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shifts and widths unless certain conditions are fulfilled. T
expressions reduce significantly if the shifts and widths v
approximately linearly over an energy range given by
Rabi frequency

I gg~z!5Wgg~E0!2
Dc

2

dWgg

dE U
E5E0

, ~B8a!

I g ḡ~z!5Wgḡ~E0!2
Dc

2

dWgḡ

dE U
E5E0

2
dTg ḡ

c c̄

dE
U
E5E0

,

~B8b!

I ḡg~z!5Wḡg~E0!2
Dc

2

dWḡg

dE U
E5E0

2
dTḡg

c̄c

dE
U
E5E0

,

~B8c!

I ḡ ḡ~z!5Wḡ ḡ
c̄ ~E0!1Wḡ ḡ

c ~E0!2
Dc

2
S dWḡ ḡ

c

dE
2
dWc̄

dE ḡ ḡ D
E5E0

2S dTḡ ḡc c̄
dE

2
dTḡ ḡ

c̄ c

dE
D
E5E0

. ~B8d!

Note that even thoughEc
05z1Dc/2, the derivatives are in

tensity independent in the linear approximation, except
the trivial intensity dependence of the matrix elements.
can go one step further, if the coupling strengths can
considered constant over a range given by the Rabi
quency. In this case the derivatives vanish, and we are
with the normal shifts and widths, i.e., those that would
expected if the core coupling was neglected completely
the calculation of the shifts@strictly speaking, the coupling
strengths need only be equal at the four peak positi
~square pulse!, which in practice means constant over t
whole range#. This is exactly the assumption we have ma
in order to obtain the simple expressions~8a! and ~8b!. We
therefore do not expect to have good results if one or m
peaks during the pulse gets close to threshold. Note, h
ever, that we could go beyond this approximation — we o
need to calculate more coupling strengths.

APPENDIX C: LIMITATIONS ON THE VALIDITY
OF THE TREATMENT

Equations~7c! and ~7d! were derived under the assum
tion that the coupling of continua is purely discrete due to
discrete core transition. This requirement cannot be fulfil
unless the ignored integrals

E dc8Bc8 c̄ G c̄[Jc8gGg1Jc8 ḡ Gḡ , ~C1!

E dcBc̄ 8cGc[J c̄ 8gGg1J c̄ 8 ḡ Gḡ , ~C2!

are themselves small compared to other couplings in
approximation, with above equations serving as definitio
of Bc8c̄andBc̄ 8c .
e
y
e

r
e
e
e-
ft
e
n

s

e

re
-

y

e
d

is
s

By direct analogy to calculations done in Appendix B, w
obtain in the linear approximation

Jc8g~z!52
dSc8g
dE U

E5E0

, ~C3a!

Jc8 ḡ ~z!5Vc8 ḡ ~E0!1
Dc

2

dVc8 ḡ
dE U

E5E0

2
dSc8 ḡ
dE U

E5E0

,

~C3b!

J c̄ 8g~z!5Vc̄ 8g~E0!2
Dc

2

dVc̄ 8g

dE U
E5E0

, ~C3c!

J c̄ 8 ḡ ~z!5Vc̄ 8 ḡ ~E0!12
Dc

2

dVc̄ 8 ḡ

dE U
E5E0

2
Sc̄ 8 ḡ

dE U
E5E0

.

~C3d!

where

Vc8 ḡ ~E![E dc
Bc8 c̄ D c̄ ḡ

~2!

E2Ec
, Sc8g~E![E dc

Bc8 c̄ D c̄cDcg
~2!

E2Ec
,

Vc̄ 8g~E![E dc
Bc̄ 8cDcg

~2!

E2Ec
, Sc8ḡ~E![E dc

Bc8 c̄ D c̄cDc ḡ

E2Ec
,

Vc̄ 8 ḡ ~E![E dc
Bc̄ 8cDc ḡ

E2Ec
, Sc̄ 8g ~E![E dc

Bc̄ 8cDc c̄D c̄ ḡ
~2!

E2Ec
.

Assuming constant coupling strengths over an energy ra
given by the core transition Rabi frequency~see Appendix
B! makes the derivatives in Eqs.~C3a!–~C3d! vanish. The
resulting couplings, which were neglected in our treatme
must be small compared to the couplings which were
cluded, i.e.,

uJc ḡu.uVc ḡu!uDc ḡu, ~C4a!

uJ c̄gu.uVc̄gu.0, ~C4b!

uJ c̄ ḡu.uVc̄ ḡu!uD c̄ ḡ
~2! u. ~C4c!

The second of these conditions reflects that no other coup
between statesug& anduc̄& are present in Eq.~5d!. This cou-
pling therefore needs to be negligible compared to other c
plings to uc̄&.

Finally, we must consider when these conditions for
reliable treatment are fulfilled. The matrix elements ofB are
proportional to the core transition matrix element and thus
the field amplitude. The left-hand side of the first conditi
~C4a! is therefore third order in field amplitude while th
right-hand side is second order. Similarly, the left-hand s
of the second condition is third order in intensity while th
other couplings touc̄& are of lower order. Both requirement
are therefore expected to be fulfilled if the intensity is not t
high, which means here such that the Rabi frequency
smaller than the energy difference of the 4p from the 5p.
For Ca this implies less than 1013 W/cm2.

Both sides are second order in field amplitude in the l
condition ~C4c!. Both couplings must therefore be sma
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compared to other couplings to the stateuc̄&. This amounts to
requiring that the continuumuc̄& is mainly populated through
Rabi oscillation in the core or two-photon transitions fro
uḡ& involving the uc& continuum and the discrete part of th
D

y

,

uc&-uc̄& coupling. This is certainly the case, and we can co
clude that the treatment is expected to be valid in the pre
case. The validity can in any case be checked directly
calculating the integrals involved.
ys.
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