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Coherent states in a Rydberg atom: Quantum mechanics
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We present the quantal dynamics of electronic wave packets in the hydrogen atom in the presence of
circularly polarized microwave and magnetic fields in regions of classical stability. Whereas wave packets may
disperse without the stabilizing influence of a magnetic field, in its presence stable motion can be maintained
for wave packets that are localized either at global equilibria that are either a maximum or minimum in a
zero-velocity surface. Because these extrema are locally harmonic their vacuum states are truly coherent states
in the original sense of Schro¨dinger.@S1050-2947~97!07303-4#

PACS number~s!: 32.80.Rm, 05.451b, 42.50.Hz
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I. INTRODUCTION

Almost from that fateful day when wave mechanics d
stroyed the concept of an infinitely sharply localizable p
ticle, physicists have been seeking paths from quantum
classical mechanics. Seventy years later, the quest contin
The Herculean task of reviewing the resulting literature
certainly beyond the scope of this publication: suffice it
say that one of the founding fathers of quantum mechan
Schrödinger, was among the first to consider this daunt
problem, and his thoughts on this matter are collected in
remarkably farsighted essay ‘‘Der Uebergang von Mikro-z
Makromechanik’’ ~‘‘The transition from microscopic to
macroscopic mechanics’’! @1#, which, among other insights
anticipates the existence of ‘‘scars,’’ vestiges of classi
mechanics in eigenstates@2#. Schrödinger’s efforts were,
however, not confined to philosophical speculation, sin
they resulted in the coherent states of the harmonic oscill
@3#.

The concept of a coherent state can be summarized q
simply by following Schro¨dinger’s own line of reasoning
Having found the stationary states of the harmonic oscilla
he realized that they could not represent a harmonically
cillating classical particle, being smeared out over the av
able position space. He proceeded to ask whether a supe
sition of these eigenstates could produce a wave packet
~i! suffered from minimal dispersion,~ii ! evolved in time
harmonically, and~iii ! retained its minimal dispersion durin
this motion, just like a classical particle would. The we
known coherent states of the harmonic oscillator that he c
structed represent the closest approximation, within the l
of quantum mechanics, to a classical particle and its mo
under the influence of a Hooke’s law force. In addition
being a striking illustration of the sought-after transitio
from quantum to classical mechanics, these states are
the mainstay of much of laser physics and quantum opt
mainly due to the pioneering efforts of Glauber@4#.

Buoyed by his success, Schro¨dinger announced his dis
covery of the harmonic oscillator coherent states to Planc
a letter dated May 31, 1926@5#, and concluded: ‘‘ . . . I be-
lieve that it is only a question of computational skill to a
complish the same thing for the electron in a hydrog
551050-2947/97/55~3!/2222~10!/$10.00
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atom.’’ As before, he sought to superpose stationary state
the hydrogen atom into nondispersing wave packets
moved on the elliptic orbits generic to the Kepler-Coulom
problem, thereby creating as classical an atomic electro
quantum mechanics allows. Sadly, history shows that
optimistic expectation was never fulfilled. Before the end
the year, he wrote to Lorentz@5# that the ‘‘ . . . technical
difficulties in the calculation were greater’’ than in the ha
monic oscillator case. The energy level structure of the
drogen atom offers a revealing clue to his failure: In contr
to the harmonic oscillator spectrum, the energy levels of
hydrogen atom are not equally spaced and therefore the
lution frequencies of the eigenstates are not simply overto
of a fundamental frequency.

Schrödinger seems to have abandoned this proble
which then took its place among the arcana of mathemat
physics. This publication is not the appropriate place to d
cuss the various group-theoretical arguments for and aga
the feasibility of constructing the coherent states of the b
Coulomb problem@6–18#. Instead, in this and the companio
publication @19# we adopt a practical stance, namely, w
search for the external field configurations that are likely
lead to new global equilibria in the effective potential sin
they may assist in localizing the electron in all three spa
dimensions especially if the effective potential is locally ha
monic over a region large enough compared with the wa
length of the electron.

Recent advances in laser technology and Rydberg a
spectroscopy@20# have brought the classical limit of an ato
within experimental reach mainly through the pioneering e
periments of Yeazell and Stroud@21,14# and Stroud and co-
workers @13,22–26#. In the process, classical concepts li
orbits and turning points have enjoyed a revival@27#. Again,
the literature of this field is much too extensive to revie
here and therefore, in the interest of space, we will mer
summarize the findings of the last decade and then o
when they concern our work: it is certainly possible, bo
theoretically and experimentally, to construct a wave pac
that rides on an elliptic Kepler orbit@11,12# as well as circu-
lar orbits that correspond to maximal orbital angular mom
tum @28#. A common experimental strategy@29–33# is to
work at very high quantum numbers, possibly~but not nec-
2222 © 1997 The American Physical Society
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55 2223COHERENT STATES IN A RYDBERG ATOM: QUANTUM . . .
essarily! in the presence of an external electric field, to cre
regimes in which the local energy spacings are appro
mately constant. The electric field helps by splitting t
states of a given principal quantum number manifold in
equally spaced Stark states~to first order!. Laser excitation is
then used to form a spatially localized superposition of s
atomic states@29#. However, while this wave packet can b
localized in a plane and, within that plane, in the radial
rection, it cannot be localized angularly. As a result
spreads along the elliptic orbit and interferes with itse
leading to experimentally detectable recurrences@27#. Em-
pirically, the symmetry breaking due to multiple extern
fields must be used in order to achieve complete localiza
@30,31#, but even under favorable circumstances, this tri
localization ~planar, radial, and angular! does not last very
long—a brief encounter with the core is sufficient to undo
@30#.

The close analogy between a Rydberg atom in a circul
polarized microwave field~CP! @34–38# and the restricted
three-body problem~RTBP! @39# led us@40# and Bialynicki-
Birula, Kalinski, and Eberly~BKE! @41# to discover indepen-
dently that in the CP problem, stable equilibrium points ex
that are analogous to the Lagrangian equilibrium points
celestial mechanics@39#. This analogy led BKE to expec
that wave packets launched from the equilibrium points~ana-
logs of the so-called Lagrange pointsL4 andL5! would orbit
the nucleus without spreading. The Lagrange equilibri
points are stable maxima that support the Trojan asteroid
Jupiter, making the term ‘‘Trojan’’ wave packet appropria
for these states. However, the analogy between Rydber
oms and planetary systems turns out to be fruitful but
perfect since the finite size of Planck’s constant imposes
absolute scale on the atomic problem@42,43#. The atomic
analogs of these points are stable only over a limited rang
parameters, and placing a finite-size minimum uncerta
wave packet at such an equilibrium point becomes a deli
balancing act.

The announcement of the feasibility of nonstationa
nondispersive wave packets in the CP problem was gre
with a flurry of activity. For example, BKE showed that
curved wave packet@44# suffers very little, if any, of the
dispersion that plagued their original wave packet becaus
nestles inside the effective potential of the CP field. Follo
ing the earlier discovery of similar Floquet states anchore
stable islands in the classical phase space of the linearly
larized microwave problem@45,46#, Zakrzewski, Delande
and Buchleitner@47,48# have shown that it is possible to fin
eigenstates of the problem in a rotating frame that, be
eigenstates, are immune to spreading. In the laboratory fr
such eigenstates indeed orbit the nucleus without spread
These states are neither wave packets nor coherent sta
the sense of Schro¨dinger and will not mimic the harmonic
oscillator coherent states; i.e., they are not minimum unc
tainty wave packets since locally the equilibria in the C
problem are not harmonic@43#. Suggestions for the exper
mental preparation of these states can be found in the lit
ture @48#.

Our approach is substantially different and relies on m
nipulating the nature and stability of the equilibria by use
an additional magnetic field@42,49,50#. Classically we have
shown that it is possible, using experimentally access
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fields, to create states that are extremely good approxi
tions to the long sought for coherent states. Of course, a
the work of BKE these states are not free-atom states, b
dressed now by the microwave and magnetic fields. Nev
theless, the classical simulations suggest that we now h
the means to place an electron in a coherent state rem
from the core.

Not only can the addition of a constant magnetic fie
perpendicular to the plane of polarization of the microwa
field stabilize the localized states of this system but, m
strikingly, a stable outer potential well can be created
using a slightly different field configuration@49,50#. This
well is locally harmonic in a region of space that also e
cludes the nucleus, thereby allowing the wave packet
circle the nucleus safe from its detrimental influence on
calization. Our prescription is most effective when the pa
magnetic term is eliminated by a magnetic field, the Larm
procession of which compensates for the precession indu
by the CP microwave field. Thereby, all velocity-depende
forces in the system are canceled and the equilibrium
question becomes a true potential minimum. Because
locally harmonic to an excellent approximation, and inde
both integrable and separable in elliptic coordinates@51,52#,
its vacuum state is a coherent state in the sense of Sc¨-
dinger to the same excellent approximation. The details
our prescriptions can be found in the companion paper@19#
where modern methods of nonlinear dynamics are use
arrange the field configurations that support these states
to analyze their stability. The purpose of the present work
the fully quantum-mechanical investigation of these config
rations. In particular, we demonstrate the superb accurac
those classical predictions, which are based on the conce
a zero-velocity surface from celestial mechanics@39,42#.

This paper is organized as follows: In Sec. II we give t
Hamiltonian for the various field configurations and sho
their mapping onto the cranked oscillator, a well-know
model in nuclear theory@53–56#. The computational details
of the spectral grid method appear in Sec. III. Numeri
results are presented in Sec. IV and a discussion of th
results are presented in the last section.

II. HAMILTONIANS AND INITIAL WAVE FUNCTIONS

The Lagrangian for a hydrogen atom~in atomic units
a05\5e5m51 and assuming an infinite nuclear mas!
subjected simultaneously to a CP microwave field~field
strengthF and frequencyv f! and a static magnetic field
perpendicular to the plane of polarization of the CP field

L5
ẋ21 ẏ21 ż2

2
1
1

r
2

6vc

2
~xẏ2yẋ!

6F~x cosv f t1y sinv f t !, ~1!

wherevc is the cyclotron frequency~sometimes denoted a
the reduced magnetic field strengthg, where,
g5B/2.353105 T in atomic units! and the choice of sign is
determined by the direction of the magnetic field in the ca
of the paramagnetic term. The sign ofF is immaterial but
our convention, consistent with the companion paper@19#, is
to choose this sign such that global equilibria correspond
to maxima or minima will turn out to lie along the positivex
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2224 55CERJAN, LEE, FARRELLY, AND UZER
axis ~note that this convention differs from the one used
BKE!. The time dependence in Eq.~1! may be eliminated by
going to a frame that rotates at the constant angular velo
v f , which finally leads to the Hamiltonian

H5K5
px
21py

21pz
2

2
2
1

r
2v~xpy2ypx!7Fx

1
vc
2

8
~x21y2!. ~2!

whereK is analogous to the Jacobi constant in the RT
@39# andv5(v f7vc/2). As was explained in the compan
ion paper@19#, when the Hamiltonian contains a nonco
served paramagnetic term, a type of potential—in the l
guage of celestial mechanics, i.e., a zero-velocity surf
~ZVS!—can be constructed and provides an excellent gu
to the dynamics@39#. The ZVS is given by rewriting the
Hamiltonian in terms of velocities instead of momenta and

V5H2
ẋ21 ẏ21 ż2

2
52

1

r
7Fx2

v f~v f7vc!

2
~x21y2!.

~3!

The equilibria that result from the two possible signs in t
coefficient of the paramagnetic term and their stability fo
a major ingredient of the companion publication@19#. There-
fore, for concisenessx0 is used to refer simply to an equilib
rium point.

While the most common situation in atomic physics
stable motion at a potential energy minimum the problem
hand does not meet this criterion because of the presenc
the paramagnetic term; i.e., one cannot identify separate
netic and potential parts of the Hamiltonian. A key point
our configuration of fields is the latitude it provides to va
or even eliminate the paramagnetic term. When it is allow
to be present, the paramagnetic term complicates the com
tation of the frequencies associated with the coherent s
since there is no ‘‘potential’’ about which to expand. How
ever, for both the maximum and the minimum configuratio
the strategy to be described is used to compute frequenci
the initial coherent state. The steps involved are~a! a trans-
formation to a barycentric system of Cartesian coordinate
the equilibrium,~b! expansion of the ZVS in a power serie
to second order—this produces what is known in nucl
physics as acranked oscillator, which is separable and ha
monic at once, albeit in rotated coordinates,~c! determina-
tion of the locally harmonic frequencies of these oscillato
and ~d! computation of the vacuum state of the cranked
cillator. For future reference, we will give the derivation
the initial wave packet in some detail since phase factors
essential in obtaining fully coherent wave packets.

A. Relation to the restricted three-body problem

We will begin by relating the atomic Hamiltonians d
scribed above to the RTBP, the canonical form of which
given by @39,57,58#

H5
1

2
~px

21py
2!2~xpy2ypx!2

12m

r1
2

m

r2
, ~4!
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with m being the mass ratio and

r15A~x1m!21y2,
~5!

r25A~x1m21!21y2,

g5122m.

The stability of motion at the equilibria is solved genera
by shifting the origin of the initial coordinate system bas
on the center of mass to another, synodical coordinate
tem centered around the Lagrangian pointL4 given by

x5
1

2
g, y5

A3
2
, px5

A3
2
, py52g/2 ~6!

by the conservative, completely canonical diffeomorphism

x5
1

2
g1j, px5

A3
2

1pj ,

~7!

y5
A3
2

1h, py52
1

2
g1ph .

The RTBP Hamiltonian is thereby converted to

H5 1
2 ~pj

21ph
2 !2~jph2hpj!2V, ~8!

where

V5
1

2
gj1

A3
2

h1
1

2 S 11g

r1
1
12g

r2
D . ~9!

When this last quantity is expanded around the equilibri
point, a cranked oscillator is obtained.

B. Mapping onto the cranked oscillator

The Hamiltonian~8! is similar to the cranked anisotropi
oscillator model that has been used in nuclear physics
generate basis vectors for self-consistent calculations
model collective rotations@53–56#. The derivation of a simi-
lar cranked oscillator, albeit in three dimensions, was o
lined in the companion paper. The mapping begins with
expansion of the ZVS around the equilibrium point corr
sponding to a maximum,Lmax: The transformation from the
original rotating~synodic! center of mass coordinates to th
equilibrium configurationLb is accomplished through the ca
nonical transformation

x5x01j, px5pj ,

y5h, py5vx01ph , ~10!

z5z, pz5pz ,

which transforms the Hamiltonian~2! into the form

H5
pj
21ph

21pz
2

2
2v~jph2hpj!1Q. ~11!

where the ‘‘force function’’@57# is given by
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Q52
1

r
7F~j1x01

v
c
2

8 ~j21h2!2
1
2 v2x

0
21

1
8 v

c
2x

0
2

1S v
c
2

4 2v2D x0j, ~12!

which may be expanded around~j,h,z!5~0,0,0! to produce
an approximate Hamiltonian describing librations arou
Lb ,

H5H1Hc ,

where

H5
pj
21ph

21pz
2

2
1

v2

2
~aj21bh21cz2!

2v~jph2hpj!1Hc , ~13!

with

a5
1

v2 S vc
2

4
2

2

x0
3D , b5

1

v2 S vc
2

4
1

1

x0
3D , c5

1

v2x0
3 ,

~14!

and the part of the Hamiltonian containing only consta
terms is given by

Hc52
1

2
v2x0

27Fx01
1

8
vc
2x0

22
1

x0
. ~15!

From Cauchy’s uniqueness theorem it follows that a part
starting out in the plane of polarization, with an initial velo
ity contained in that plane, will never leave the plane@59#.
The linear stability at the equilibrium point~for both the
maximum and minimum! was derived in detail in the com
panion paper@19#. Briefly, the approximation to the Hamil
tonian describing librations around the equilibrium po
shows the motion in thez ~or z! direction to be stable, har
monic, and decoupled from the planar motion. Therefore,
initial conditions in thejh plane, the motion can be treate
as being restricted to that plane. Rewriting this operato
the planez50 reduces it to the two-dimensional form used
our numerical calculations.

After a rotation in phase space~described in detail in
Refs.@53–56#!

j85Aj1Bph ,

h85Ah1Bpj ,
~16!

pj85pj1Ch,

ph85ph1Cj,

with A2BC51 ~to preserve the commutation relations b
tween coordinates and momenta! H can be reduced to th
following separable form@55#:

H5
1

2mj
pj8

21
1

2
mjVj

2j821
1

2mh
ph8

21
1

2
mhVh

2h82,

~17!

where
d

t

e

t

r

n

-

mj5
Vj

22Vh
2

Vj
22av21v2

and

mh5
Vh

22Vj
2

Vh
22bv21v2 . ~18!

The locally harmonic frequencies are given by

Vh
25 1

2 ~vj
21vh

2 !1v22 1
2S, ~19!

Vj
25 1

2 ~vj
21vh

2 !1v21 1
2S, ~20!

where

S5sgn~vh2vj!A~vj
22vh

2 !218v2~vj
21vh

2 !, ~21!

with vj5uvuAa, vh5uvuAb, andvz5uvuAc.
In what follows, we will assume thatvh.vj . However,

the needed changes are obvious if this is not the case.
cranked oscillator has not been explicitly derived for the c
of inclusion of a magnetic field before and, therefore,
give the expressions for the frequencies explicitly in terms
the dimensionless quantities

q5
1

v2x0
3 , ~22!

vs5vc /v. ~23!

The auxiliary quantityS becomes

S5v2A9q228q14vs
2, ~24!

which turns the locally harmonic frequencies into

Vh
25v2~ 1

4vs
2112 1

2q2 1
2A9q228q14vs

2!, ~25!

Vj
25v2~ 1

4vs
2112 1

2q1 1
2A9q228q14vs

2! ~26!

and the masses into

mj5
A9q228q14vs

2

~21 3
2q!1 1

2A9q228q14vs
2

~27!

and

mh5
2A9q228q14vs

2

~22 3
2q!2 1

2A9q228q14vs
2
. ~28!

The resulting masses may be positive or negative. Ther
no bound motion if both masses are negative. In the cas
motion at a maximum, the masses have opposite si
Based on the zero-velocity surface, this case occurs w
v2.vj

2 ,vh
2 . When both masses are positive, stable motion

a minimum is indicated. In order to cover the two possib
ties for stable motion, we define the index
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L5
mjmh

umjmhu
, ~29!

which is 1 for a minimum and21 for a maximum.
The energy eigenvalues are given by

E5
mj

umju
S nj1

1

2D\uVju1
mh

umhu S nh1
1

2D\uVhu. ~30!

The magnitude of the ground-state energy is defined in te
of an average frequencyV through

E5
\

2
~ uVju1LuVhu!5\V ~31!

with this frequency explicitly given by

V5
uvu
2

A22q1 1
2vs

212Ls~q,vs!, ~32!

where

s~q,vs!5A~112q2 1
4vs

2!~12q2 1
4vs

2!. ~33!

C. The initial wave packet

We express the ground-state wave function of our thr
dimensional electronic Hamiltonian as

C000~j,h,z!5NcC~j,h!expS 2
vz

2
z2D , ~34!

wherecC(j,h) is the normalized ground-state wave fun
tion of the cranked oscillator and is given by

cC~j,h!5S ab

p2 D 1/4 expS 2
a

2
j22

b

2
h22 igjh D . ~35!

In order to determine the parametersa,b,g the quantityQ is
needed:

Q5
~a2b!v2

4~V22v2!
, ~36!

which is explicitly

Q5
21q12Ls~q,vs!2 1

2vs
2

3q
. ~37!

The parametersa,b,g are given by

a5V~11Q!/\, ~38!

i.e.,

a5S v

3q\ D ~112q2 1
4vs

21Ls!A22q1 1
2vs

212Ls~q,vs!,

~39!

b5V~12Q!/\, ~40!

i.e.,
s

e-

b5S v

3q\ D ~q211 1
4vs

22Ls!A22q1 1
2vs

212Ls~q,vs!,

~41!

g5vQ/\, ~42!

i.e.,

g5S v

3q\ D ~21q2 1
2vs

212Ls!. ~43!

When the stabilizing magnetic field is absent (vs50), these
parameters reduce to the ones used by BKE@41# ~after inter-
changingx andy and reversing the sign ofv to account for
differences in our conventions.!

D. Phase factors

The transformation to barycentric synodical coordina
requires two shifts, one in coordinate and another in mom
tum, to reach the equilibrium point from the center of ma
The quantum mechanical consequence of these shifts ca
described by a translation operator

T~x0!5exp~2 ix0pj /\! ~44!

and a boost operator

B~vx0!5exp~ ivx0h/\!. ~45!

If uC& is the ket that is represented bycC(j,h), then the ket
uI & that we need to use as the initial state in the barycen
coordinates is related to it by

uI &5T~x0!B~vx0!uC& ~46!

and therefore the wave functions are related by

cC~x,y!5S ab

p2 D 1/4 exp~ inx0y!expF2
a

2
~x2x0!

22
b

2
y2

2 ig~x2x0!yG , ~47!

wheren5v/\.
In the simulations that follow, the procedure describ

above was used to generate a coherent state, either class
or quantum mechanically, as given by Eq.~47!. The same
procedure is valid both at the maximum and at the minimu

III. COMPUTATIONAL DETAILS

It is convenient for numerical manipulations to scale t
spatial coordinates by the square root of the frequen
x→x8/Avc and y→y8/Avc. This scaling produces the op
erator~we have dropped the primes for convenience!

H5
1

2
~px

21py
2!2

1

AvcAx21y2
2S v f

vc
6
1

2D ~xpy2ypx!

7
Fx

vc
3/21

~x21y2!

8
, ~48!
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where the energy is in units ofvc and the time in units of
inverse frequency. For the case of no magnetic field d
cussed below, the analogous scaling may be applied usinv f
in place of the cyclotron frequency so that the operator
comes

H5
1

2
~px

21py
2!2

1

Av fAx21y2
2~xpy2ypx!1

Fx

v f
3/2.

~49!

The time-independent Schro¨dinger equation was solve
for these two-dimensional operators by applying a ps
dospectral grid method for the spatial representation of
derivatives and a Chebyshev time advancement algori
@60#. The initial wave packet was selected as in Eq.~47! with
the factorn chosen to be (v f /vc60.5) for a nonzero mag
netic field and 1 otherwise. This time-independent initializ
tion was adopted on the basis of the zero-velocity surf
initial conditions needed to maintain localization of the cla
sical trajectories@40#. Numerical stability was checked b
grid parameter variation for all cases. It was found that gr
of 2563256 were sufficient for the magnetic field cases. N
merical contamination was always present in the zero m
netic field calculations, probably due to the unbounded
ture of the potential, so larger grids of 5123512 were used to
verify the results, although we do not present our comp
sons with the BKE results@41#. The numerical procedure
was also validated by comparing to the exact results kno
for the cranked oscillator system.

We present our results as a progression from somew
dispersive cases to the culmination of our efforts, namel
coherent state in the sense of Schro¨dinger. The choice of the
physically relevant parameters follows from previous clas
cal @42# and quantal propagation studies@49#. Case 1 corre-
sponds to classically stable behavior at a maximum of
zero-velocity surface. Then, reversing the direction of
magnetic field, we arrive at case 2: There, the initial con
tions are selected at a minimum of the zero-velocity surf
where the frequencies due to the CP and external magn
fields are opposed but do not cancel the paramagnetic t
In such a case, our calculations show that the dynamics a
higher energies inside the well are chaotic@50#. Finally, in
case 3, the paramagnetic term is canceled and the in
wave packet circles the nucleus without dispersion: a t
coherent state.

We use two measures to diagnose quantum-mecha
state localization. One is the autocorrelation function, wh
is defined as

sa~ t !5E
2`

`

c* ~x,y,t ! initc~x,y,t !dx dy, ~50!

wherec(x,y,t) init is the initial wave packet. Another pos
sible measure of the deviation from stationary behavior is
time dependence of the virial commutator,

sv~ t !5E
2`

`

c* ~x,y,t !@H~x,y!,pxx1pyy#c~x,y,t !dx dy.

~51!
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The classical virial theorem states that if the motion
damped or periodic then the time average of the virial
pression establishes a relation between the kinetic and po
tial energy contributions@61#. The quantal analog is provide
by the Heisenberg equations of motion. As is well known
a stationary state is used for the averaging then the v
expression vanishes, again providing a relation between
different energy contributions. For the specific case of
Hamiltonian operators above, the commutator of the vir
operator,pxx1pyy, with the Hamiltonian operator, produce

@H,pxx1pyy#5~px
21py

2!2V~x2x0!. ~52!

Thus if the expectation value of the right-hand side is co
stant or periodic, the quantal motion is localized.

IV. RESULTS

The results of the calculations are summarized in Fi
1–3. The first set of figures corresponds to case 1, where
initial wave packet is placed at a maximum of the ZV
which has been ‘‘flattened’’ with an external magnetic fie
@42#. The time is in units ofvc with a total time of 12 field
cycles for this calculation and corresponds to 362 ps. Thi
a somewhat counterintuitive arrangement for those who
used to thinking of stable motions as being confined
minima of a potential. But as argued before, the initial pha
conditions ensure that the centrifugal terms will domina
effectively preventing the transfer of potential to kinetic e
ergy. The autocorrelation function is highly periodic an
regular. Thus this case mimics the highly localized behav
of case 2 below. For the present conditions this time dep
dence is nearly periodic with no perceptible growth over
12 cycle propagation time.

Reversing the direction of the magnetic field brings us
case 2. The wave packet is placed at the outer minimum
is subject to a nonconserved paramagnetic term. The d
tion of the integration is again 12 cycles, which, because
the higher value ofvc is 106 ps. The time dependence of th
absolute value of the autocorrelation function is plotted
Fig. 2~a! and is seen to be regular and highly periodic.
spite of the detrimental effect of the paramagnetic term,
initial wave packet clearly remains highly localized. The a
plitude of the initial wave packet is plotted in Fig. 2~b!, with
the contour representation in Fig. 2~c!. The final wave packet
is plotted analogously in Figs. 2~d! and 2~e!. Inspection of
these figures corroborates the highly correlated nature of
propagation. On the other hand, a plot of the virial comm
tator time dependence, presented in Fig. 2~f!, reveals a slow
but perceptible growth, which is an indication of a slow lo
of correlation.

Case 3 represents the culmination of our efforts. The L
mor precession due to the external magnetic field and
precession due to the CP field cancel the paramagnetic
exactly. The result is an integrable system with an ou
minimum, well away from the nucleus, which is locally ha
monic @49,50#. Consequently, its vacuum state is cohere



Eq.

2228 55CERJAN, LEE, FARRELLY, AND UZER
FIG. 1. Quantum evolution of a wave packet initially placed at amaximum. The parameters in Eq.~2! are, in atomic units,F
55.000(28), vc55.000(26), v f51.000(26). The maximumLm is at x0510 000.0. The parameters for the wave packet given in
~47! are as follows:a52.698 74~26!, b52.133 54~26!, g54.09371~27!. The plots are in the scaled units of Eq.~48! and the nucleus is
shown by the symbol%. ~a! Autocorrelation function as a function of time, Eq.~50!. ~b! Wave packet~uCu2! at timet50 on a section of the
2563256 grid used in the fast Fourier transform~FFT! calculations@x range5~264, 64! scaled units and they range is~219, 19! scaled
units#. ~c! Contour diagram of wave packet att50 on the FFT grid. Also shown is a contour plot of the ZVS@Eq. ~3!#, ~d! wave packet at
the end of 12 cycles.~e! Contour diagram of the wave packet att512 cycles.~f! Time dependence of the virial commutator, Eq.~51!.
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FIG. 2. Quantum evolution of a wave packet initially placed at aminimumwith nonvanishing paramagnetic term. The parameters in
~2! are, in atomic units,F53.8997(27), vc51.705 59(25), v f56.037 78(26). The minimumLm is atx055332.28. The parameters fo
the wave packet given in Eq.~47! are as follows:a57.654 84~26!, b58.963 06~26!, g51.960 33~27!. Units and definitions as in Fig. 1.~a!
Autocorrelation function as a function of time, Eq.~50!. ~b! Wave packet at timet50 on a section of the 2563256 grid used in the FFT
calculations@x range5~264, 64! scaled units and they range is~252, 52! scaled units#. ~c! Contour diagram of wave packet att50. ~d!
Wave packet at the end of 12 cycles.~e! Contour diagram of the wave packet att512 cycles.~f! Time dependence of the virial commutato
Eq. ~51!.
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FIG. 3. Quantum evolution of a wave packet initially placed at a minimum with vanishing paramagnetic term. This is an ex
approximation to a rigorously coherent state. The parameters in Eq.~2! are, in atomic units:F53.899(27), vc51.6887(25),
v f58.4435(26). The minimumLm is at x054880.0. The parameters for the wave packet given in Eq.~47! are as follows:a57.354 12~
26!, b58.9385~26!, g50. The evolution is shown in the nonrotating frame for one cycle of the microwave field. The initial wave p
of Eq. ~47! was propagated in the rotating frame and the result was transformed to this frame. The propagation begins on the left-
at t50 and scaled units are used throughout. The contours on the right-hand side show the zero-velocity surface~ZVS! halfway through the
cycle. The grid is the same as used in Fig. 2. Note the resemblance to the Bohr atom.
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and Fig. 3 confirms this expectation admirably: while in t
rotating frame, the initial wave packet does nothing for
field cycles amounting to 107 ps, in the nonrotating fra
itis revolving around the nucleus on a large circular or
without spreading—much like a classical electron travel
on the circular orbits of the Bohr atom.

V. DISCUSSION AND CONCLUSIONS

The thesis of this and the previous article@19# can be
summarized as follows: Coherent states of Rydberg at
can be produced by a judicious combination of circula
polarized microwave and magnetic fields. The quantum m
chanical simulations presented in this paper are the final c
firmation of this thesis and corroborate earlier classical
jectory swarm results@19#. Our prescription is to expand th
Hamiltonian in a Taylor series at a global equilibrium poin
if the expansion is locally harmonic then a coherent st
~defined by the local frequencies! will emerge~provided that
the equilibrium point is linearly stable.! Such a coherent stat
~in the rotating frame! can neither spread nor disperse as
executes revolutions around the nucleus, although a Tr
wave packet will slowly decay due to tunneling. An add
tional, and, in general, more significant, source of dispers
will arise if the tails of the wave packet penetrate apprecia
into the nonlinear or chaotic parts of phase space@43#. This
source of spreading can be anticipated by examining the
tours of the ZVS, a classical-mechanical construct. In
laboratory frame, if these dispersive factors can be m
e
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n-
-

e

t
an

n,
y

n-
e
i-

mized, the electronic wave packet will travel along a circu
Kepler orbit while remaining localized radially and angular
for a finite ~but possibly very large! number of Kepler peri-
ods. An important point in our study is that the stability
such a packet can be enhanced considerably by using a
netic field in addition to the CP field. Indeed, the initial wa
packet and field choices displayed remarkable localiza
with the addition of a static magnetic field whereas the
sence of this field can lead to rapid delocalization. New
developed half-cycle pulses@62,63# show promise in the de
tection of these states.

But rising above mundane technical concerns for a m
ment, an exciting prospect emerges, and it is this: Schr¨d-
inger’s motivation in those heroic days of quantum mech
ics was not to invent yet another set of complicat
quantum-mechanical wave packets but to create a clas
electron in an atom. Our work, which produces wave pack
that can be created and held together for experimentally
sible parameters, shows that physics is on the verge of r
izing Schrödinger’s dream.
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