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Coherent states in a Rydberg atom: Classical mechanics

Ernestine Lee,1 Andrea F. Brunello,1,2 and David Farrelly1
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2Department of Physics, State University of New York, Stony Brook, New York 11794-3800

~Received 26 August 1996!

The interaction of a hydrogen or Rydberg atom with a circularly polarized microwave field leads to the
creation of global equilibrium points that may be stable or unstable depending on the particulars of the applied
field. The additional application of a magnetic field, perpendicular to the plane of polarization, can be used to
manipulate both the nature and the stability of these points. We show that stable three-dimensional motion can
be maintained that is localized at either a maximum or a minimum in the corresponding surface of zero
velocity. At these equilibria, the zero-velocity surface may be locally quadratic in coordinates and stable
harmonic-oscillator-like, nondispersive, coherent states can be supported. As the fields are varied, repeated
order-chaos transitions may be observed, including various passages through rigorously integrable limits.
Classical simulations are presented for a range of field strengths, and the effects of deviations of the microwave
field from exactly circular polarization~i.e., elliptical polarization! are examined using a pulsating zero-
velocity surface.@S1050-2947~97!07103-5#

PACS number~s!: 32.80.Rm, 05.45.1b, 42.50.Hz, 92.10.Cg
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I. INTRODUCTION

The development of wave mechanics forced the aband
ment of the idea that a physical path could be ascribed to
atomic electron, thereby demolishing the concept of a c
sical or planetary atom@1–3#. Nevertheless, a modern inte
pretation of what constitutes a ‘‘classical atom’’@4# can still
be suggested as follows:~i! the wave packet that represen
the electron is localized in space, neither spreading nor
persing as its center moves along a Kepler orbit;~ii ! the
guiding classical orbit is confined to a single plane in sp
~interestingly, the configuration so produced would cor
spond physically to a rotating giant dipole@5#!. Recent stud-
ies of ‘‘the classical limit of an atom’’ that follow this defi
nition have emphasized the creation of nondispers
electronic wave packets in Rydberg atoms whose mo
will follow a Kepler orbit @6,7#. In actuality, there have bee
a number of attempts to construct quasiclassical or cohe
states for the Kepler problem, going back to the pioneer
work of Schrödinger. These attempts have met with varyi
degrees of success, although, ultimately, the states that
been suggested have all eventually been found to sp
@8–18#. Recently, however, Klauder has proposed a posi
resolution of this long-standing problem, showing that t
construction of coherent states for the bound part of the
drogen atom is possible@19#.

In order to assemble a wave packet without dispersio
quantum system with constant or almost constant ene
level spacings is necessary@20–22#. For the harmonic oscil-
lator itself the construction of nonspreading, nondispers
states is obviously straightforward—the energy level sp
ings are constant and truly nondispersive coherent state
possible. Indeed, the original concept of coherent states
developed by Schro¨dinger for the harmonic oscillato
@11,23–25#. In contrast to the isotropic harmonic oscillato
the energy-level spacings of the hydrogen atom are cle
not constant. Yet, the identity between the hydrogen a
551050-2947/97/55~3!/2203~19!/$10.00
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and a four-dimensional~4D! isotropic oscillator with con-
straints~obtained, e.g., via the Kustaanheimo-Stiefel tra
formation@26,27#! has been exploited by Barut and Xu@28#
to show theoretically that nonspreading, almost Gauss
states for the Kepler problem are possible, at least theo
cally. These wave packets ‘‘ride’’ along Kepler orbits an
are constrained to the plane of the orbit. The complica
functional form of these states raises delicate issues of pr
ration, especially in the adjustment of the phase of the ini
wave packet, which turns out to be critical to the long-te
stability of the Xu-Barut states.

The strategy that has proved most successfulin practice
in the preparation of nonspreading electronic wave pack
and for investigating the semiclassical and classical limits
an atom is to work at very high quantum numbers, usually
the presence of external fields, to create regimes in which
local energy spacings are approximately constant@4,6,29–
33,17,34–38#. Laser excitation is used to form a spatial
well-localized superposition of these states, which m
mimic a coherent state for a sufficiently large number
Kepler periods as to permit their manipulation in expe
ments ~e.g., analogs of Young’s double-slit interferomet
experiment, except using matter waves@39#!. For example,
adiabatic switching for atomic beams in crossed electric
magnetic fields has been used to form circular states@40–
44#. The atomic beam undergoes multiphoton excitation i
region where the electric field dominates to populate
‘‘linear’’ state, which is then adiabatically turned into a ci
cular state with the beam passing into a region where
magnetic field dominates. The spatial orientations of the
gular momentumL and the Runge-Lenz vectorA are con-
trolled by the external fields, and coherent elliptic states m
be formed@45# that qualify as minimum uncertainty state
@46,47#. Nevertheless, these packets eventually disperse
best that has been accomplished experimentally has bee
creation of atoms in which the spreading of the wave pac
is concentrated along the Kepler orbit—i.e., long-term rad
2203 © 1997 The American Physical Society
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2204 55LEE, BRUNELLO, AND FARRELLY
but not angular confinement@4,6#.
In this paper we adopt a different strategy in that we u

external fields to continuously stabilize the packet as
moves around the nucleus; in essence, the states are coh
states of an atom dressed by particular external fields. S
cifically, a combination of circularly polarized~CP! micro-
wave and magnetic fields is used to create new global e
librium points in a rotating frame and, associated with the
equilibria, there may be nondispersive coherent states if~a!
the equilibrium isstableand ~b! the regime surrounding th
equilibrium point is locally harmonic in a region that is larg
compared to the wavelength of the electron~one aim of this
paper is to estimate the sizes of such harmonic regions!. The
resulting states, therefore, are~in this approximation! actu-
ally identical to conventional coherent states since the lo
Hamiltonian is a harmonic oscillator. To be sure, these st
are not those sought by Schro¨dinger; despite this, the prese
approach represents a way of ‘‘parking’’ an electron in
orbit far from the core or nucleus in a fashion similar to t
motion of a satellite around the Earth.

In fact, considerable interest has resurfaced recently in
creation of field-maintained coherent atomic states, and
work stems, in part, from the independent discovery by F
relly and Uzer@48# and Bialynicki-Birulaet al. @49# of stable
equilibria for a hydrogen atom in a circularly polarized m
crowave field@50–57,48,58#. These equilibria are analogou
to gravitational equilibrium points in the restricted thre
body problem of celestial mechanics@59,60#. Bialynicki-
Birula et al. @49# recognized that wave packets launch
from these points will be expected to orbit the nucleus wi
out spreading, provided the field parameters are chosen
that the equilibrium point, which is amaximum, is stable.
Clearly, stable maxima are not common in atomic syste
and much is to be learned by comparison with perhaps
most well-known example of stable motion at a maximu
the dynamics of Jupiter’s Trojan asteroids, whose existe
was expected from Lagrange’s studies of the three-b
problem going back to 1772@59#. Like their celestial coun-
terparts~L4 andL5! whose stability can be attributed to th
interplay of Coriolis and gravitational forces, the atomic L
grangian equilibrium points are stable over only a quite li
ited range of parameters. Associated with the atomic m
mum is a transition to instability—essentially an atom
Trojan bifurcation—as the electric-field strength is increas
@48,61#. Beyond this bifurcation the quantum wave pack
which has become known as a Trojan state, will certainly
expected to spread. An additional complication, however
that, if the linear regime surrounding the equilibrium point
smaller than the effective wavelength of the electronic wa
packet the wave packet will spread by leakage from
stable region. We have argued recently that atoms of unr
istically large diameter would need to be prepared to gu
antee that the electronic wavelength could fit into the loca
linear region surrounding the equilibrium@62,63#. Inciden-
tally, contrary to misstatements in@64#, in Ref.@62# we argue
that the size of the stability region surrounding the Tro
equilibrium point is insufficient, for a reasonably sized ato
to support aGaussianwave packet rather than being to
small to support any quantum states. We now summa
several different approaches to minimizing spreading of
Trojan wave packets.
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Bialynicki-Birula and co-workers@63,65# themselves rec-
ognized the possibility of increasing the stability propert
of their original Gaussian wave packet@49# by modifying its
shape; actually, the curved Trojan they arrived at semie
pirically can be thought of as resulting from an attempt
approximate the true eigenstates supported by the equ
rium point. The spectrum of the time-independent Ham
tonian in the rotating frame~in the vicinity of the equilib-
rium! supports a ladder of eigenstates, each of which
spatially localized in the proximity of the Lagrange point.
Gaussian wave packet~with appropriately chosen frequen
cies! is really a zeroth-order approximation to the lowe
such state. The curved wave packet used in Refs.@63, 65, 66#
~also relevant for stabilization in linearly polarized micr
wave fields@67#! is simply a better approximation to thi
state, and, indeed, this packet was found to have better
bility properties than the original packet used by Bialynick
Birula et al. @49#. In the opposite limit one would obviously
choose an exact eigenstate as the initial wave packet, s
such an eigenstate of the~rotating-frame! Hamiltonian can
never disperse. An extension of the approach used
Bialynicki-Birula and co-workers@63,65# to refine their ini-
tial packet is to perform a full diagonalization of the Ham
tonian and identify states that are localized at the equilibri
point. This will produce numerically accurate Trojan wa
packets and is the approach that Zakrzewski and co-wor
@68,69# have recently adapted to obtain Trojan eigensta
Zakrzewski and co-workers@68,69# actually computed reso
nance wave functions using the complex-coordinate met
in a Floquet calculation@70#. An alternative is a conventiona
complex-coordinate calculation in the rotating frame@71#. In
any case, all of these approaches amount to recognizing
existence of eigenstates of the Hamiltonian~in the rotating
frame! that have enhanced probability density remote fro
the nucleus and concentrated close to the equilibrium po
It should be emphasized that such states are not cohe
states; in principle, any eigenstate of any Hamiltonian in
rotating frame qualifies as a nondispersive, nonstation
eigenstate, but the Trojans are unusually interesting bec
most of their probability density is localized away from th
core. However, the preparation of exact eigenstates of
system may be difficult to actually implement in an expe
ment. Further, small displacements of the eigenstates f
the equilibrium point will tend to cause the packets
spread; the beauty of a coherent state is that such a sta
robust to displacements within the harmonic region s
rounding the equilibrium point.

For these reasons, an alternative strategy is in orde
which the emphasis is on preparing good approximation
harmonic-oscillator coherent states by manipulating the
bility properties of the Lagrange equilibrium points them
selves. The groundwork may be laid by the addition o
magnetic field perpendicular to the plane of polarization
the CP field@48#. In this paper, we extend our earlier analys
of the maximum@72#, and, using classical mechanics, sho
that a magnetic (B) field in combination with a CP micro-
wave field can be used to stabilize genuinely 3D coher
states in this system. For certain combinations of fields
also show that the problem may actually become integra

Motion at a maximum, whether stable or unstable, is p
carious both classically and quantum mechanically. In ce
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55 2205COHERENT STATES IN A RYDBERG ATOM: . . .
tial mechanics, dissipation, e.g., will cause particles~aster-
oids! localized at the Lagrange points to fall down the ene
maximum and ultimately to be lost. In the atomic proble
while dissipation is not an issue, because the maximum is
surrounded by potential walls a wave packet can tunnel
nearby chaotic regions of phase space and thus, event
ionize, perhaps by chaos-assisted tunneling. Evidence
this is found in the classical simulations we present t
show that the stable equilibrium is surrounded by a hu
chaotic sea. Quantum calculations of Zakrzewskiet al. @69#
reveal that the widths of the Trojan resonances fluctuate c
siderably with field parameters, similar to conductance fl
tuations in mesoscopic systems, underscoring the deli
balancing act an electron at the maximum must underg
remain stable.

The problems associated with dynamics at amaximum
can be alleviated with the discovery that it is possible to fo
a stable outerminimum in the effective potential using a
slightly different field configuration@73,74#. The minimum
configuration has a couple of advantages:~a! a particular,
experimentally accessible, limit is rigorously integrable; a
~b! even in cases where the dynamics within the well is c
otic, the electron can still be strongly localized away fro
the core—the only way it can approach the core is by t
neling through what may be a very substantial barrier.
Ref. @74# it was shown that a ladder of nondispersive, no
stationary eigenstates is associated with this minimum
many of the eigenstates were calculated explicitly. Depe
ing on the field parameters the classical mechanics ma
chaotic and eigenstates scarred by unstable periodic o
were found. In many ways the system mimics an elect
trap such as the Penning trap: a number of recent arti
have, in fact, developed analogies between atomic Rydb
electrons and the dynamics of charged particles in the P
and Penning traps@75–78# as well as the motion of a neutra
atom in a so-called wire trap@79#. Similar phenomena exis
in both, and it is, therefore, valuable to compare the deta
dynamics of both types of system. One example is the c
otic heating or diffusion in momentum space that is fou
both in the microwave ionization of Rydberg atoms and in
heating of ions in a Paul trap@80,81#. A second is the prob-
lem of a hydrogen atom in a generalized van der Waals
tential, which has recently been shown to share identica
tegrable limits with the Paul trap~in the pseudopotentia
approximation! @82,83#.

Some time ago Clark, Korevaar, and Littman@84# sug-
gested the possibility of a single Rydberg atom function
as a quasi-Penning~QP! trap: the system proposed was
hydrogen atom subjected to crossed electric and magn
fields for which long-living resonances associated with
Stark saddle point were predicted@84#. However, the spectra
signature expected from the QP orbits has not, so far, b
detected@85,86#. In this paper we show that, by a judiciou
choice of the sense of the polarization of the CP field,
frequency, and the magnetic-field strength, it is possible
localize the electron in a harmonic potential well in a regi
of space that excludes the nucleus—essentially a double
is produced in the effective potential. This is in a rotati
frame. In the laboratory frame the electronic wave packe
localized both radially and in an angular sense—the pac
travels along circular orbits lying beyond the Stark sad
y
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point, even for extremely high electric-field strengths. T
problem thus satisfies the general criterion for a class
atom: localization of a wave packet both in an angular an
radial sense in a 2D Keplerian orbit. In a frame rotating w
the CP field frequency, the system resembles an atom
crossed electric and magnetic fields and may, therefore
considered to constitute a microscopic QP or Rydberg a
trap @73#.

In the context of a Rydberg atom in crossed electric a
magnetic fields—denoted throughout as theE3B system
@86–91#—a number of workers have postulated the existe
of an ‘‘outer’’ well in the atomic potential@92–95#. In this
field configuration the linear Zeeman or paramagnetic te
~proportional to the component of electronic angular mom
tum along the magnetic-field direction! is not conserved and
can, therefore, be thought of as a velocity-dependent pe
bation that mixes coordinates and momenta. The difficulty
treating such a term has led to a number of analyses
essentially ignore the paramagnetic term because its pres
prevents the separation of the Hamiltonian into kinetic a
potential parts. In the absence of the paramagnetic contr
tion, under certain conditions, the potential in theE3B sys-
tem may display an outer well@92–95#. Despite the uncon-
trolled approximations involved, these studies ha
engendered experimental research directed to observing
unusually large atomic dipoles that might be expected
result from such a well@5#. Unfortunately, simply ignoring
the paramagnetic term is a rather poor approximation and
actuality, the ‘‘potential-energy’’ function that results may
may not possess an outer well, depending on the gauge u
in other words, the approximation results in an unphysic
i.e., gauge-dependent potential@5,92–95#. More recently,
Cederbaum and co-workers@96# have demonstrated that a
outer minimum can be created in the atomicE3B problem
if the finite mass of the nucleus is taken into account, but
remoteness from the nucleus of the resulting, relatively sh
low, well makes it unclear how easy it would be to obser
the consequences of this well in an experiment.

The approach we develop is gauge invariant and uses
concept of a zero-velocity surface~ZVS! to handle the para-
magnetic term. In theE3B system it is easy to demonstra
that an outer well cannot exist in the effective potential~in
the infinite nuclear mass approximation!, but, for the com-
bined magnetic and CP fields we study, as already no
global equilibria corresponding to maxima or minima can
readily produced and visualized using the ZVS. In the rot
ing frame, therefore, all of the suggestions put forward as
the possible consequences of an outer potential well in
E3B system~giant dipoles, etc.! apply to this system, with
the significant additional merits that such a well is not on
~a! expected to exist theoretically, but~b! is also expected to
be experimentally realizable.

This paper studies the classical mechanics of the hyd
gen atom simultaneously subject to a CP microwave and
orthogonal magnetic field and reports extensive simulati
that suggest that stable coherent wave packets can be
ported quantum mechanically. The companion paper@97# de-
scribes quantum simulations of the time-dependent Sc¨-
dinger equation using fast-Fourier-transform~FFT! methods
to propagate the wave packet. The paper is organized
follows: in Sec. II the Hamiltonian for the hydrogen atom
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2206 55LEE, BRUNELLO, AND FARRELLY
combined CP and~perpendicular! magnetic fields is intro-
duced, together with the concept of a zero-velocity surfa
which is a method, adapted from celestial mechanics, to
sualize the dynamics in problems that feature veloc
dependent~Coriolis! forces. Here we show how the directio
of the magnetic field and the choice of polarization of the
field can be used to produce either a maximum or a m
mum in the effective potential. In each case, a second e
librium point, a saddle point, is shown to exist. A stabili
analysis of the equilibrium points in this problem is pr
sented in Sec. III, where it is shown that theB field can not
only stabilize the equilibrium points but can also extend
volume of phase space that is locally harmonic around
equilibrium point. Further, an integrable limit of this prob
lem is identified. Section IV is given over to a series of 3
classical simulations; in particular, we propagate swarms
trajectories with initial conditions chosen to simulate coh
ent atomic states. In this section we also investigate the t
sition from regular to chaotic motion as the field paramet
are varied. Of course, in an actual experiment it may
difficult to produce and maintain a CP field for which th
polarization is exactly circular. Thus we have also perform
a series of simulations to study the possible effects of el
ticity of the microwave field on the stability of the motion
Conclusions are in Sec. V.

II. CLASSICAL HAMILTONIAN
AND EQUILIBRIUM POINTS

The Lagrangian for a hydrogen atom~in atomic units
a05\5e5m51 and assuming an infinite nuclear mas!
subjected simultaneously to a CP microwave field~field
strengthF and frequencyv f! and a static magnetic field
perpendicular to the plane of polarization of the CP field

L5
ẋ21 ẏ21 ż2

2
1
1

r
2

6vc

2
~xẏ2yẋ!

6F~x cosv f t1y sinv f t !, ~1!

wherevc is the cyclotron frequency~sometimes denoted a
the reduced magnetic-field strength,B/B05B/2.353105 T
in atomic units!, and the choice of sign in the paramagne
term is determined by the direction of the magnetic field. T
sign ofF is immaterial but our convention is to choose th
sign such that any global equilibria corresponding to maxi
or minima will turn out to lie along the positivex axis. At
this point we note that, by virtue of Cauchy’s uniquene
theorem, a particle starting out in the plane of polarizati
with an initial velocity contained in that plane, will neve
leave the plane@98#. This is useful in that the reduced prob
lem is amenable to the computation of surfaces of sect
The time dependence in Eq.~1! may be eliminated by going
to a frame that rotates at the constant angular velocityv f ,
which finally leads to the Hamiltonian

H5K5
px
21py

21pz
2

2
2
1

r
2v~xpy2ypx!

7Fx1
vc
2

8
~x21y2!, ~2!
e,
i-
-

i-
i-

e
e

of
-
n-
s
e

d
-

e

a

s
,

n.

whereK is analogous to the Jacobi constant in the restric
three-body problem~RTBP! andv5(v f7vc/2). The pres-
ence of a nonconserved velocity-dependent~paramagnetic!
term in the Hamiltonian prevents the separation ofH into a
positive-definite quadratic form in momenta and a potent
energy term. Nevertheless, a type of potential—in the l
guage of celestial mechanics, a zero-velocity surface—
be constructed and provides an excellent starting point
studying the dynamics@59,60#. The first step is to rewrite the
Hamiltonian, using Hamilton’s equations of motion, in term
of velocitiesrather than momenta, which gives

H5
ẋ21 ẏ21 ż2

2
2
1

r
7Fx2

v f~v f7vc!

2
~x21y2!. ~3!

Note that the kinetic part is now positive definite in momen
and the ZVS is defined

V5H2
ẋ21 ẏ21 ż2

2
52

1

r
7Fx2

v f~v f7vc!

2
~x21y2!.

~4!

While level curves of the ZVS may be used to provide
formation on the location and nature of equilibrium poin
and the locations of classically allowed and forbidden
gions, unlike apotential-energy surface, such level curve
need provide no information on the linear stability of equ
librium points, unless those equilibria are saddles. More
rectly, a maximum in a ZVS might be stable or unstable, a
some analysis must be performed to determine stability
key point of the Hamiltonian~2! is that this configuration of
fields allows the coefficient of the paramagnetic term to
varied or even eliminated. Equilibria of the ZVS are obtain
by requiring that all first partial derivatives of the ZVS va
ish, i.e.,]V/]qi50 with qi5(x,y,z). The equilibrium points
are found to occur in pairs: depending on the sign chose
Eq. ~1! either a saddle and a maximum or a saddle an
minimum are produced. These cases will be referred to as
maximum and minimum configurations.

A. The maximum configuration

Taking the1 sign in Eq. ~4! with vc>0 results in the
zero-velocity surface

V52
1

r
1Fx2

v f~v f1vc!

2
~x21y2!, ~5!

with the equilibrium points lying on thex axis as given by
the solutions of the equations

F11/x0
22v f~vc1v f !x050 ~6!

for the maximum and

F21/x0
22v f~vc1v f !x050 ~7!

for the saddle point. For concisenessx0 is used to refer sim-
ply to any equilibrium point. When it is necessary to spec
cally differentiate between the saddle and the maximum
the minimum, the obvious notationsx0

max~min! andx0
sadwill be

used. Figure 1 is an isometric plot of the 2D ZVS, wi
vc50 showing the locations ofLs andLm

max. It is the latter
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55 2207COHERENT STATES IN A RYDBERG ATOM: . . .
that provides the analogy with the Lagrange equilibriu
pointsL4 andL5 in the RTBP. Note that this configuration o
equilibria is preserved even on the addition of a magn
field (vcÞ0), provided that the Larmor frequency and t
helicity of the wave are chosen such that the plus s
emerges in Eq.~2!. However, thestability of these points,
and the size of the regime supporting linear dynamics aro
the maximum will be affected by the relative magnitudes
F, v f , andvc , as will become apparent.

We pause to remark that the analysis of Ref.@49# is based
on the launching of wave packets centered onLm

max in the
pure CP limit. These packets will be good approximations
the ideal nondispersive coherent state only if the size of
locally harmonic regime surroundingLm

max is large compared
to the wavelength of the electron. In the classical limit
trajectory started precisely atLm

max will remain at that point,
but dressing such a periodic orbit~a circular orbit in the
laboratory frame! with a Gaussian wave packet opens up
possibility of spreading due to nonlinearities and chaos.
course, the nature of both classical and quantal motion
stable maximum differs considerably from the more us
case of motion at a minimum; e.g., deviations from perf
circular polarization might tend to destabilize the maximu
by producing time-dependent driving terms, i.e., the abse
of confining potential walls means that the wave packet
escape the vicinity of the maximum by leakage into nonl
ear regimes. Bialynicki-Birula and co-workers@63,65# have
pointed out that quantum effects may act to confine the w
packet, even though the classical dynamics will tend to
cape. This is due to the existence of a so-called ‘‘quant
potential,’’ which, e.g., in 1D for the Schro¨dinger equation
Hf(x)5Ef(x) is given byVQ(x)52(\2/2m)f9(x)/f(x).
However, this term will be repulsive for a perfectly Gaussi
wave function. Inclusion of higher-order terms in the expa

FIG. 1. Isometric view of the ZVS in scaled units as defined
Eq. ~24! with F50.6,vc50, v f51. The saddleLs and the maxi-
mumLm are shown.
ic

n

d
f
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e

e
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e
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m
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sion at the maximum~essentially preparing a differentl
shaped wave packet! might lead to enhanced stability. On th
other hand, it might not.

B. The minimum configuration

Selection of the2 sign in Eq.~4!, with vc.0, results in
an entirely different critical point topology. Again the equ
libria occur along thex axis as solutions of equations

F21/x0
22v f~vc2v f !x050 ~8!

for the minimum and

F11/x0
22v f~vc2v f !x050 ~9!

for the saddle. We examined the nature and the stability
the critical points of the ZVS in this limit and found that
transition occurs atFc53@v f(vc2v f)#

2/3/A3 4. For F,Fc
the ZVS possesses no real critical points. AtF5Fc a real,
double critical point is spawned that, with increasingF,
splits into a saddle point and a minimum. Figure 2~a! is a
section through the ZVS showing these features, toge

FIG. 2. ~a! Zero-velocity surface for the minimum configuratio
with vc53.46 T,v f550 GHz, andF52000 V/cm. A section (y
5z50) through the potential is shown. Also plotted is the ha
monic approximation to the potentialVho, and the Gaussian prob
ability density of the ground stateuCu2. ~b! Level curves of the ZVS
together with contours of the ground state as obtained by Ta
expansion about the minimum. The parameters are the same
~a!.
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FIG. 3. Stability regions for the maximum configuration as
function of the scaled parametersvs and e : stable~shaded! and
unstable~unshaded!. The linesAB andCD are described in the tex
and the labels 5a, etc., refer to the surfaces of section in Figs.
and 6.
ill
into
d to
with a harmonic approximation to the minimum and an es
mate of the ground-state wave function in the potential w
Figure 2~b! shows level curves of the ZVS and a contour p
of the ground-state wave function—details of how this wa
function are calculated are supplied later. The depth of
well and its proximity to the nucleus depend sensitively
the field strengths. Note that for this field configuration io
ization is impossible except along thez direction. Having
established the existence of equilibria that are analogs
Lagrangian points in the RTBP, the next step is to und
stand the factors affecting the stability of the maximum a
the spatial extent of any stable regions in comparison to
size of\.

III. STABILITY ANALYSIS
AND COHERENT STATES

The basic idea is to expand the Hamiltonian in a Tay
series at a global equilibrium point; if the expansion is
cally harmonic, then a coherent state~defined by the local
frequencies! will be able to be prepared provided that th
equilibrium point is linearly stable. Such a coherent state~in
the rotating frame! will neither spread nor disperse as it e
ecutes motion along a Kepler orbit~the Kepler frequency of
the electron is in a 1:1 resonance with the microwave f
quency!, although it might decay by tunneling. An addition
and, in general, more significant source of dispersion w
arise if the tails of the wave packet penetrate appreciably
nonlinear or chaotic parts of phase space. This is expecte
-
-

FIG. 4. Poincare´ surfaces of
section (Pr50) in scaled units
showing the Trojan bifurcation
with vc50. In each case the en
ergy is the energy of the maxi
mum: ~a! e50.0444, ~b! e50.1,
~c! e50.1156~the Trojan bifurca-
tion!, ~d! e50.1170.
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FIG. 5. Poincare´ surfaces of
section along the lineAB in Fig.
3. In each casee50.6 whilevs is
changed.~a! vs50.2, ~b! vs50.6,
~c! vs5

2
3 , and~d! vs50.8.
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be a bigger problem at the maximum than at the minimu
In the laboratory frame, if these dispersive factors can
minimized, the electronic wave packet will travel along
circular Kepler orbit while remaining localized radially an
angularly for a finite~hopefully large! number of Kepler pe-
riods. An important point in our study is that the stability
such a packet can be enhanced considerably by using a
netic field in tandem with the CP field.

Usually, stable motion at an equilibrium point in a Ham
tonian system can occur only at a potential-energy minimu
In many experimentally important problems the Hamiltoni
can be separated into a sum of a positive-definite kin
term depending quadratically on momenta and a poten
part depending exclusively on coordinates, which preve
stable motion from occurringother than at a minimum@99#.
While this is the most common situation in atomic physi
the problem in hand does not meet this criterion becaus
the presence of thenonconservedparamagnetic term, i.e.
one cannot identify separate kinetic and potential parts of
Hamiltonian. Therefore, the stability of any equilibriu
points must, in principle, be calculated explicitly; e.g.,
computing the eigenvalues of the infinitesimally symplec
mapping governing the flow. Additionally, the paramagne
term complicates the computation of the frequencies ass
ated with the coherent state, since this bilinear perturba
must first be diagonalized.

In this section we show how to compute the appropri
frequencies at either a maximum or a minimum in the pr
ence of the paramagnetic term. The procedure is essen
.
e

ag-

.

ic
al
ts

,
of

e

ci-
n

e
-
lly

to prediagonalize a locally linear approximation to t
Hamiltonian at the relevant equilibrium point. A stabilit
analysis is only necessary for the maximum (Lm

max) configu-
ration because motion at a minimum that is to lowest or
quadratic~as it is in the present case atLm

min!, be it in a
potential-energy or a zero-velocity surface, must always
linearly stable in a small enough domain around that equi
rium point. ~A good account of the existence of stab
maxima in celestial mechanics is provided by Greenberg
Davis @100#.! For both the maximum and the minimum co
figurations the strategy about to be described is used to c
pute the functional form~specifically, the frequencies! of the
initial coherent state. The steps involved are~a! a transfor-
mation to a synodic barycentric system of Cartesian coo
nates at the equilibriumLm , ~b! expansion of the ZVS in a
power series to second order—this produces what is kno
in nuclear physics as a cranked oscillator,~c! determination
of the linear stability regime of the equilibrium point~for the
maximum!, and ~d! computation of the vacuum state of th
cranked oscillator.

A. Transformation to synodical barycentric coordinates atLm

and development of the cranked oscillator

The transformation from the original rotating~synodic!
center of mass coordinates to the equilibrium configurat
Lm is accomplished through the canonical transformat
@101,102#
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FIG. 6. Poincare´ surfaces of
section along the lineCD in Fig.
3. In each casevs5

2
3 , while e is

changed.~a! e50.2, ~b! e50.4, ~c!
e51.0, and~d! e51.5.
nt

ta-

rs for
ns
d-
n
l

nar
lic-
er-
x5x01j, px5pj ,

y5h, py5ph1vx0 , ~10!

z5z, pz5pz ,

which transforms the Hamiltonian~2! into the form

H5
pj
21ph

21pz
2

2
2v~jph2hpj!1U, ~11!

where the ‘‘force function’’ is given by

U52
1

r
7F~j1x0!1

vc
2

8
~j21h2!2

1

2
v2x0

21
1

8
vc
2x0

2

1S vc
2

4
2v2D x0j , ~12!

and which may be expanded atx0 @103# to produce an ap-
proximate Hamiltonian describing librations aroundLm

H5H1Hc ,

where

H5
pj
21ph

21pz
2

2
1

v2

2
~aj21bh21cz2!2v~jph2hpj!,

~13!
with

a5
1

v2 S vc
2

4
2

2

x0
3D , b5

1

v2 S vc
2

4
1

1

x0
3D , c5

1

v2x0
3 ,

~14!

andHc ~the part of the Hamiltonian containing only consta
terms! being given by

Hc52
1

2
v2x0

27Fx01
1

8
vc
2x0

22
1

x0
. ~15!

In the classical calculationsHc is ignored, although it pro-
vides a useful energy calibration in the quantum compu
tions to be reported elsewhere@97#. The HamiltonianH is
identical in form to the cranked~anisotropic! oscillator that
has been used in nuclear physics to generate basis vecto
self-consistent calculations to model collective rotatio
@104–107#. More recently, this problem has also been a
dressed~based on the Bogoliubov-Tyablikov transformatio!
in molecular physics to simplify rotational-vibrationa
Hamiltonians@108–111#. The motion in thez direction is
stable and harmonic and, since it decouples from the pla
motion in this approximation, need not be considered exp
itly in the stability analysis that we are on the verge of p
forming.
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B. Stability analysis of the equilibrium Lm
max

As noted, a stability analysis@61,112# of this problem is
only needed at the maximum, i.e., at the equilibriumLm

max.
Restricting ourselves to first-order librations aroundLm

max we
define the vector

J5~j,h,pj ,ph! ~16!

and the matrix

A5S 0 v 1 0

2v 0 0 1

2av2 0 0 v

0 2bv2 2v 0

D , ~17!

which allows Hamilton’s equations to be written in the for

J̇5AJ. ~18!

The stability of an equilibrium is determined by the eige
values of the matrixA, i.e., the roots of the equation
or
th
ds
e
i

ld

w
s

e

n
se
-

det~lI2A!50, ~19!

whereI is the unit matrix. Rather than solving this equatio
directly, we accept a suggestion of Deprit@113#: since
detR51 the matrixR can be inverted and we compute th
matrix productRAR21, where

R5S l 21 1 0

1 l 0 1

1 0 0 0

0 1 0 0

D . ~20!

The eigenvalues are then determined as the roots of the p
nomial equation

det~lI2B!50, ~21!

where
B5RAR215S l 211v 12l22av2 l2l~211v!1lv

12v l 2l2l~12v!2lv 12l22bv2

1 0 2l 11v

0 1 212v 2l

D . ~22!
e
cted

f

f

nch

ex-
e
re-
of

e
line

es
can
The resulting polynomial equation

det~lI2B!5l41~21a1b!l2v21~a21!~b21!v4.
~23!

is considerably simpler to solve than Eq.~19!. This is similar
to the procedure for establishing linear stability~and the
Routh critical value! in the RTBP. The motion islinearly
stable if the four eigenvalues are purely imaginary; imp
tantly, stable motion is possible even in the regime where
force function~i.e., the part of the Hamiltonian that depen
solely on coordinates! corresponds to a saddle point—th
rotation stabilizes the dynamics, in analogy to the situation
the Paul and Penning traps@75–78,82,83#.

It is convenient to work with scaled frequencies and fie
strengths. In the original Hamiltonian~for the maximum! it
is possible to scale the coordinates and momenta as follo
r 85v2/3r , p85v21/3p. After dropping the primes this yield
for the Hamiltonian~2!,

H5K5 1
2 ~px

21py
2!2

1

r
2~xpy2ypx!1 1

8vs
2~x21y2!1ex,

~24!

whereK5K/v2/3, vs5vc/v,2 ande5F/v4/3. This scal-
ing shows that theclassicaldynamics depends only on th
three parameters,K, vs , ande.

In the casevc50 the stable region for the problem i
hand is extremely limited and results in a very restricted
-
e

n

s:

t

of values thata andb may take for stable dynamics to b
possible: specifically, the field parameters must be sele
so thatb lies in the range89,b,1 @49#. As one passes
outside the stable regime a transition to instability@49#
~Brown or Trojan bifurcation@61#! occurs atLm

max when
ec5Fc/v f

4/35 1
2 3

2(4/3)'0.1156, which limits the range o
linear dynamics@49,48#.

Figure 3 shows the regions of stable~shaded! and un-
stable~unshaded! motion at the maximum as a function o
the parametersvs and e. For vcÞ0 the curve separating
stable from unstable motion consists of an upper bra
(e c

.) and a lower branch (e c
,) given by @114#

ec
.,5

425vs
26~26 1

2vs
2!A429vs

2

24/3vs
2/3~26A429vs

2!2/3
, ~25!

where the upper~lower! sign is taken throughout fore c
.

(e c
,). These two functions become equal to each other

actly atvs5
2
3 , which is the rightmost point in Fig. 3. As on

traverses the curve separating the stable from unstable
gimes a Trojan bifurcation occurs—this is a generalization
the Trojan bifurcation forvc50 @49,48,61#. In general, as a
function ofe and for fixedvs two transitions between stabl
and unstable motion occur, as, e.g., upon moving up the
vs5

1
2 in Fig. 3: first a transition to instability occurs ate'

1
5 and then a transition back to stability ate'3

2. Interestingly,
at the point labeled 5c in Fig. 3, where the two stability lin
coincide, the problem becomes rigorously integrable, as
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be shown using results given by Rakovic´ and Chu@115–
117#. At this point vc5

2
3 and ec5(2/3)4/3 and the Hamil-

tonian ~19! reduces to

H5 1
2 ~px

21py
2!2

1

r
2~xpy2ypz!1 1

18 ~x21y2!1ecx.

~26!

The classical motions that occur in the various regions
Fig. 3 will be explored shortly, but it is important to note th
the stability diagram, Fig. 3, is obtained from alinear stabil-
ity analysis that says nothing about the size of the sta
region; it merely indicates for what parameter values so
stable domain exists atLm

max. In particular, linear stability
analysis contains no scale information and, therefore, if
stable volume of phase space is much smaller than\3, any
putative coherent state will spread rapidlydespitethe stabil-
ity of the maximum. This issue will be taken up aga
shortly. Our immediate task is to compute the local frequ
cies at the equilibriaLm

max andLm
min , and, thereby, compute

the ground state of the cranked oscillator.

C. Coherent states

The four eigenvalues ofA in the stable regime~either at
the maximum or the minimum! are purely imaginary of the
form 6 iVj and6 iVh , whereVj,h are positive, real num-
bers. After a rotation in phase space~described in detail in
Refs.@104–107,109–111,108,97#!,

FIG. 7. Level curves of the ZVS at the maximum wi
b50.9562—see Eq.~14!. Thick lines are contours~at 0.25, 0.5,
0.75, and 0.95! of the Gaussian probability density centered atLm
~in a.u.!; ~a! x05104; ~b! x05107. The axis scales in thex and y
directions are equivalent, but, for clarity, the ranges ofx andy are
different.
f

le
e

e

-

j85Aj1Bph ,

h85Ah1Bpj ,
~27!

pj85pj1Ch,

ph85ph1Cj,

with A2BC51 ~to preserve the commutation relations b
tween coordinates and momenta!, H can be reduced to the
following separable form~here we follow the notation of
Ref. @97# where a more complete treatment is provided!:

H5
1

2mj
pj8

21 1
2mjVj

2j821
1

2mh
ph8

21 1
2mhVh

2h82,

~28!

where

FIG. 8. Poincare´ surfaces of section~a! around the maximum
and ~b! level curves of the ZVS forv f5131026, vc5531026,
andF5531028 a.u. In ~b! the thick lines are contours~at 0.25,
0.5, 0.75, and 0.95! of the Gaussian probability density centered
Lm5104 a.u.
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FIG. 9. Swarm of initial condi-
tions plotted on the ZVS for
the maximum with vc50
a.u., v f54.629 6331026 a.u., F
53.427 4731029 a.u., K
521.13731023 a.u., and x0
53654.1 a.u., at times after~a!
and~b! 0, and~c! and~d! 796 Ke-
pler orbits.
ne
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cial
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mj5
Vj

22Vh
2

Vj
22av21v2

and

mh5
Vh

22Vj
2

Vh
22bv21v2 , ~29!

with vj5uvuAa, vh5uvuAb, andvz5uvuAc. The eigen-
values are given by

E5
mj

umju
~nj1 1

2 !\uVju1
mh

umhu ~nh1 1
2 !\uVhu. ~30!

If the ground-state energy of the cranked oscillator is defi
asE005\V, then the 3D vacuum state can be expressed
follows in terms of the original coordinates:

C000~x,y,z!5N expS 2
a

2
x22

b

2
y22

vz

2
z22 igxyD .

~31!

The parametersa,b,g are given by

a5V~11Q!/\,

b5V~12Q!/\,
d
as

g5vQ/\,

with

Q5
~a2b!v2

4~V22v2!
, ~32!

andN is a normalization factor. In the simulations to follow
in this and in the companion paper@97#, the procedure de-
scribed above was used to generate a coherent state, e
classically or quantum mechanically. The same general p
cedure is valid both at the maximum and at the minimu
although it is unnecessary at the minimum for the spe
casev f5vc/2, i.e., paramagnetic term eliminated. We al
note that, quantum mechanically, the translation of coo
nates toLm introduces an additional phase factor into t
wave packet~25! as described in@97#. This phase factor, like
the term ing in Eq. ~31!, has noclassicalconsequences an
is therefore ignored.

IV. CLASSICAL DYNAMICS AND GAUSSIAN SWARMS

In this section we study the classical dynamics of both
maximum and minimum configurations in light of the stab
ity analysis presented in the preceding section. Included
simulations in which a swarm of classical particles is chos
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FIG. 10. Swarm of initial con-
ditions plotted on the ZVS for the
maximum withvc5531026 a.u.,
v f5131026 a.u., F5531028

a.u., K51024 a.u., andx05104

a.u., at times after~a! and ~b! 0,
and ~c! and ~d! 341 Kepler orbits.
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with a spatial probability distribution given byuC(x,y,z)u2
and propagated in time classically to indicate how a quan
wave packet might behave. Of course, no phase informa
is included in the classical ‘‘packet’’ but such simulatio
are often found to be excellent predictors of the stability
quantum systems. In order to facilitate an understanding
the global dynamics and the possible existence of ord
chaos transitions we also examine Poincare´ surfaces of sec-
tion in the planar limit. To avoid possible confusion the tw
configurations~maximum and minimum! are treated sepa
rately.

A. Dynamics at the maximum

While the classical simulations of quantum wave pack
to be described later in this section are all 3D, for clarity,
first consider the 2D limit. We computed Poincare´ surfaces
of section~SOS! in the vicinity of Lm

max by integrating the
equations of motion in cylindrical coordinates~x5r cosf,
y5r sinf!, computing thePr50 surface of section and
plotting thex-y phase plane.~The classical scaling propert
means that all SOS are equivalent, independent of the v
for x0 , at fixedvs ande through mechanical similarity!. In
the absence of a magnetic field the regular regime surrou
ing Lm

max may be quite small—see Fig. 4—and th
m
n

f
of
r-

s

ue

d-

Kolmogorov-Arnold-Moser~KAM ! islands are embedded i
a sea of chaotic or scattering trajectories~ionization is pos-
sible because at energies greater than the saddle-point en
the electron can escape over the saddle@48#.! As e is in-
creased further the KAM curves start to break up and
motion becomes increasingly chaotic, as illustrated in
sequence Figs. 4~a!–4~d!, which shows the Trojan bifurca
tion that occurs at zero magnetic field.

The addition of a magnetic field (vcÞ0) changes the
situation dramatically, since it is now possible to adjust t
relative sizes of the coefficientsa andb in order to enlarge
the stable domain. In particular, it allows one to increaseF
beyondFc , thereby increasing the size of the harmonic
gime at Lm

max. However, stable and unstable regimes s
persist. Figures 5 and 6 show sequences of surfaces of
tion along the lines labeledAB andCD in Fig. 3 ~the points
in the parameter plane corresponding to the various surfa
of section in Figs. 5 and 6 are labeled on Fig. 3!, and it is
apparent that a sequence of order-chaos transitions occu
Fig. 3 it is apparent that to the right of the linevs5

2
3 , the

motion is everywhere stable, although not necessarily in
grable. At the pointe5~2/3!4/3, vs5

2
3 the two parts of the

stability-instability curve coalesce and the correspond
surface of section is shown in Fig. 5~c!. At this point the
Hamiltonian is rigorously integrable, as can be shown us
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results due to Rakovic´ and Chu@115–117# and as discusse
above. The transition through the integrable limit is sho
rather compellingly in the sequences 5~a!–5~d! and 6~a!–
6~d!. Interestingly, Figs. 6~a! and 6~b! show a ‘‘shadow’’~a
roughly hyperbolic blank area! that runs through the surfac
of section. We were unable to eliminate this feature des
integrating numerous trajectories in this region and choos
different surfaces of section. The shadows seem to be a r
of the complicated topology of the torus that intersects
surface. Jaffe´ suggests using numerically determined orb
to define the surface of section and thereby to avoid s
shadows@118#. Since the details of the surface of section
the vicinity of the maximum are unaffected we leave th
point to a future study.

Figure 7~a! shows a Gaussian wave packet defined as
Ref. @49# and assumingLm

max is located atx05104 a.u. ~the
value suggested in@49#! with e50.0444@49#. It is apparent
that much of the packet spills out of the harmonic regime
x0*107 a.u., however, most of the packet can fit quite co
fortably into the harmonic part of the maximum—see F
7~b!. The stability of a Gaussian wave packet launched
Lm
max depends, in part, on the quality of a locally harmon

approximation to the ZVS atLm
max. If F50 the ZVS is flat

~i.e., not harmonic at all! transverse to the field direction i
the rotating frame, but becomes increasingly harmonic w
increasingF. However, forvc50, the Trojan bifurcation
@61#, which occurs atLm

maxwhenec5Fc/v
4/3'0.1156, limits

the range of linear dynamics. The magnetic field allows o
to increaseF beyond the critical value in the pure CP limi
thereby increasing the size of the harmonic regime atLm

max.
Figure 8~a! shows the SOS for a typical set of magnetic a
CP field strengths, and it is apparent that the size of
regular regime atLm has been increased considerably
compared to the pure CP case. The corresponding cohe
state is shown in Fig. 8~b!. Figure 9 shows the time evolutio
of a 3D Gaussian swarm of initial conditions chosen to sim
late the state shown in Fig. 7~a!, and it is apparent that th
swarm does not remain coherent but tends to spread a
the curves of the ZVS. Contrast the case in Fig. 10, whic
a simulation for the wave packet whose projection is sho
in Fig. 8~b!. In this case the swarm of initial conditions sta

FIG. 11. Regions of parameter space for which the minim
exists~shaded!: vs is the scaled frequency ande is the scaled field
strength as defined in the text.
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roughly coherent. All calculations are in scaled units.

B. Dynamics at the minimum

Before examining the dynamics in detail it is illuminatin
first, to consider two particular limits of the ZVS,

V52
1

r
1

v f~vc2v f !

2
~x21y2!2Fx. ~33!

~a! in theE3B limit (v f50) the effective potential is

V52
1

r
1Fx. ~34!

Clearly, the ionization threshold is given by the simple Sta
saddle-point~SSP! criterion @84,86,87#, despite the presenc
of the magnetic field. Classically, ionization is possible~but
not inevitable! whenever the energy exceeds the energy
the saddle point. Note that, while a double well may exist
the ‘‘potential,’’ defined artificially by setting the genera
ized momentapx5py50 in Eq. ~2! @92–94#, no such struc-

FIG. 12. Combined Poincare´ surfaces of section for the mini
mum configuration with~a! e51, V5

1
2, andK522.1; ~b! e50.9,

V50.65, andK521.85.



2216 55LEE, BRUNELLO, AND FARRELLY
FIG. 13. Swarm of initial con-
ditions plotted on the ZVS for
the minimum trap with vc

51.519 8331025 a.u., v f

57.599 1531027 a.u., F
53.889 4331027 a.u., e
51.033 14 a.u.,K521.454 62
31022 a.u., andx056298.79 a.u.,
at times after~a! and~b! 0, and~c!
and ~d! 597 Kepler orbits.
ly
rm

the
nd,

ate
h

se
ture can occur in the ZVS—essentially, ionization is on
possible because of the presence of the paramagnetic te
the static crossed-fields system.

~b! The pure CP~i.e., vc50! problem is more compli-
cated: the effective potential is given by

V52
1

r
2

v f
2

2
~x21y2!1Fx, ~35!
in
and the electron may escape if its energy lies above
saddle point in the ZVS, although above threshold, bou
classical motion is also possible@48#. However, the ioniza-
tion mechanism in the CP case is considerably more intric
than for theE3B problem, involving destabilization throug
a Trojan bifurcation@48,61#.

The system under study differs considerably from the
two limits in that the coefficient of the term in (x21y2) in
FIG. 14. Swarm of initial con-
ditions with an elliptically polar-
ized field;vc , v f , andF are the
same as for Fig. 10,a150.6 and
a251.0. Initial Gaussian~a! at
t50; ~b! after 500 Kepler orbits.
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FIG. 15. Swarm of initial con-
ditions with an elliptically polar-
ized field;vc , v f , andF are the
same as for Fig. 10,a151.0 and
a250.6. Initial Gaussian~a! at
t50; ~b! after 500 Kepler orbits.
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the ZVS can be arranged to be nonzero and positive,
confining the electron~in the planar limit! irrespective of the
size ofF. This occurs whenevervc2v f.0, provided that
v fÞ0. For a givenvc this coefficient is maximized when
v f5vc/2, i.e., the paramagnetic term in Eq.~2! is absent,
and the ZVS becomes equivalent to a true potential-ene
surface~this case is illustrated in Fig. 2!. In the 3D Hamil-
tonian, however, ionization is possible but only along thez
direction. The ionization energy threshold is given by

Eion52
F2

2v f~vc2v f !
~36!

and all of the 3D simulations we report fall below this valu
Again, it is convenient to scale coordinates and mome

although in a different way than previously since now t
coefficient of the paramagnetic termv can be zero: explicitly
the scaling isr 85v c

2/3r , p85v c
21/3p. After dropping the

primes this yields the Hamiltonian

H5K5 1
2 ~px

21py
21pz

2!2
1

r
2~V2 1

2 !~xpy2ypx!

1 1
8 ~x21y2!1ex. ~37!

whereK5K/v c
2/3, V5v f /vc , ande5F/v c

4/3. This scaling
shows that the dynamics depends only on the three pa
eters,K, V, ande. Figure 11 shows the region of paramet
space for which the minimum exists.

Figure 12~a! is a typical Poincare´ surface of section of the
planar (z50) Hamiltonian for a value ofK midway between
the minimum and the saddle point. The figure clearly sho
stable motion localized in the well in the ZVS. Interesting
for the special value ofV5 1

2, ~i.e., paramagnetic term ab
sent! in Fig. 12~a! the dynamics in the well is essential
harmonic and, in fact, the planar system is actually integra
in this limit. The possible integrability of this Hamiltonia
was evidently first speculated on in Ref.@91#; in fact, the
Hamiltonian is of Sta¨ckel form and separates in elliptica
coordinates@119–122#. For values ofVÞ1

2 it is possible for
the motion to be chaotic within the well, as shown in F
12~b!. Provided that tunneling is unimportant the electr
will still be confined in the well by the curves of zero velo
ity for all values ofK below both the saddle point andEion .
us

y

.
a,

m-
r

s

le

.

A typical 3D swarm of initial conditions is shown in Fig. 1
and it is apparent that the swarm stays extremely comp
and localized at the minimum in the ZVS.

C. Elliptical polarization
and pulsating zero velocity surfaces

It is apparent that in an actual experiment it might not
feasible to prepare microwave radiation whose polarizat
is exactly circular. In this subsection we examine the eff
of relatively small deviations from circularity for Gaussia
swarms started at the maximum. Results for the minim
are similar, and, in general, the minimum is even more
bust than the maximum to such deviations. We consider o
the planar limit (z50) for which the Hamiltonian for a hy-
drogen atom in an elliptically polarized microwave field a
an orthogonal magnetic field is

H5
px
21py

2

2
2
1

r
2
1

2
vc~xpy2ypx!1

vc
2

8
~x21y2!

1F~a1x cosv f t1a2y sinv f t !, ~38!

wherea1 anda2 are parameters that control the ellipticity o
the field; e.g., circular polarization is given bya15a2. We
move to a frame rotating with the microwave frequenc
which results in an explicitly time-dependent Hamiltonia
where the driving terms result from the ellipticity of the fiel
It is possible, proceeding as before, to construct a ZVS tha
now time dependent, i.e., the surface pulsates in time. F
ures 14 and 15 show the long-term behavior of a Gaus
swarm after 500 Kepler periods for~i! a150.6,a251.0 and
~ii ! a151,a250.6, respectively. In both cases the swarm w
started at the equilibrium point assuming exactly CP rad
tion, and it is apparent that, while the swarm does not s
Gaussian, neither does it dissipate. For less severe, but
quite strong, deviations from pure CP radiation the pac
tends to stay together, as illustrated in Fig. 16, which sho
~a! the initial Gaussian, and~b!–~g! the time evolution of the
packet on the pulsating ZVS during the last Kepler cycle
the integration. These results suggest that even fairly s
stantial deviations from ellipticity are not sufficient to d
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FIG. 16. Swarm of initial
conditions with an elliptically
polarized field;vc , v f , and F
are the same as for Fig. 10
a150.8 and a251.0. Initial
swarm ~a! at t50; ~b! after
499.0, ~c! after 499.2,~d! after
499.4, ~e! after 499.6,~f! after
499.8, and~g! after 500.0 rev.
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stroy the coherence of the packet. We note that the con
of pulsating coordinates and a pulsating ZVS has been u
in celestial mechanics in the elliptical restricted three-bo
problem, as described by Murison@123#.

V. CONCLUSIONS

We have investigated the dynamics of a hydrogen a
subjected simultaneously to a circularly polarized microwa
field and a magnetic field perpendicular to the plane of
larization. Stability analysis and classical simulations rev
that the magnetic field can be used to stabilize wave pac
prepared at the global equilibrium point against dispers
and spreading. In the harmonic approximation these st
are identical to the coherent states of the cranked harm
oscillator and behave accordingly, as coherent states.
.

s

pt
ed
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m
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he

essential classical predictions are found, in the compan
paper@97#, to be borne out in numerically accurate quantu
FFT computations. Finally we note that the results in t
paper may have applications to excitonic systems in cros
~static! electric and magnetic fields where the coefficient
the paramagnetic term may vary as the effective masse
the hole and electron vary@91,124–126# and also in the pos-
itronium atom where this term vanishes@127#.
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