PHYSICAL REVIEW A VOLUME 55, NUMBER 3 MARCH 1997
Coherent states in a Rydberg atom: Classical mechanics
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The interaction of a hydrogen or Rydberg atom with a circularly polarized microwave field leads to the
creation of global equilibrium points that may be stable or unstable depending on the particulars of the applied
field. The additional application of a magnetic field, perpendicular to the plane of polarization, can be used to
manipulate both the nature and the stability of these points. We show that stable three-dimensional motion can
be maintained that is localized at either a maximum or a minimum in the corresponding surface of zero
velocity. At these equilibria, the zero-velocity surface may be locally quadratic in coordinates and stable
harmonic-oscillator-like, nondispersive, coherent states can be supported. As the fields are varied, repeated
order-chaos transitions may be observed, including various passages through rigorously integrable limits.
Classical simulations are presented for a range of field strengths, and the effects of deviations of the microwave
field from exactly circular polarizatiorii.e., elliptical polarizatioh are examined using a pulsating zero-
velocity surface[S1050-294{®@7)07103-3

PACS numbsgs): 32.80.Rm, 05.45:b, 42.50.Hz, 92.10.Cg

I. INTRODUCTION and a four-dimensional4D) isotropic oscillator with con-
straints (obtained, e.g., via the Kustaanheimo-Stiefel trans-
The development of wave mechanics forced the abandorfermation[26,27)) has been exploited by Barut and X28]
ment of the idea that a physical path could be ascribed to ato show theoretically that nonspreading, almost Gaussian
atomic electron, thereby demolishing the concept of a classtates for the Kepler problem are possible, at least theoreti-
sical or planetary atorfil—3]. Nevertheless, a modern inter- cally. These wave packets “ride” along Kepler orbits and
pretation of what constitutes a “classical atorf#] can still  are constrained to the plane of the orbit. The complicated
be suggested as follow§) the wave packet that represents functional form of these states raises delicate issues of prepa-
the electron is localized in space, neither spreading nor digation, especially in the adjustment of the phase of the initial
persing as its center moves along a Kepler orbif; the  wave packet, which turns out to be critical to the long-term
guiding classical orbit is confined to a single plane in spacestability of the Xu-Barut states.
(interestingly, the configuration so produced would corre- The strategy that has proved most successfyractice
spond physically to a rotating giant dipdig]). Recent stud- in the preparation of nonspreading electronic wave packets
ies of “the classical limit of an atom” that follow this defi- and for investigating the semiclassical and classical limits of
nition have emphasized the creation of nondispersivean atom is to work at very high quantum numbers, usually in
electronic wave packets in Rydberg atoms whose motioithe presence of external fields, to create regimes in which the
will follow a Kepler orbit[6,7]. In actuality, there have been local energy spacings are approximately consfdn,29—
a number of attempts to construct quasiclassical or cohere3,17,34—38 Laser excitation is used to form a spatially
states for the Kepler problem, going back to the pioneeringvell-localized superposition of these states, which may
work of Schralinger. These attempts have met with varyingmimic a coherent state for a sufficiently large number of
degrees of success, although, ultimately, the states that ha¥pler periods as to permit their manipulation in experi-
been suggested have all eventually been found to spreadents(e.g., analogs of Young's double-slit interferometry
[8—-18. Recently, however, Klauder has proposed a positiveexperiment, except using matter waJ@&8]). For example,
resolution of this long-standing problem, showing that theadiabatic switching for atomic beams in crossed electric and
construction of coherent states for the bound part of the hymagnetic fields has been used to form circular stpd€s-
drogen atom is possible9]. 44]. The atomic beam undergoes multiphoton excitation in a
In order to assemble a wave packet without dispersion, aegion where the electric field dominates to populate the
guantum system with constant or almost constant energy-inear” state, which is then adiabatically turned into a cir-
level spacings is necessd30—22. For the harmonic oscil- cular state with the beam passing into a region where the
lator itself the construction of nonspreading, nondispersivanagnetic field dominates. The spatial orientations of the an-
states is obviously straightforward—the energy level spacgular momentunl and the Runge-Lenz vectdr are con-
ings are constant and truly nondispersive coherent states amlled by the external fields, and coherent elliptic states may
possible. Indeed, the original concept of coherent states wdse formed[45] that qualify as minimum uncertainty states
developed by Schdinger for the harmonic oscillator [46,47. Nevertheless, these packets eventually disperse; the
[11,23-29. In contrast to the isotropic harmonic oscillator, best that has been accomplished experimentally has been the
the energy-level spacings of the hydrogen atom are clearlgreation of atoms in which the spreading of the wave packet
not constant. Yet, the identity between the hydrogen atonis concentrated along the Kepler orbit—i.e., long-term radial
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but not angular confinemeit,6]. Bialynicki-Birula and co-worker$63,65 themselves rec-

In this paper we adopt a different strategy in that we usengnized the possibility of increasing the stability properties
external fields to continuously stabilize the packet as itof their original Gaussian wave pacKd9| by modifying its
moves around the nucleus; in essence, the states are cohershépe; actually, the curved Trojan they arrived at semiem-
states of an atom dressed by particular external fields. Speirically can be thought of as resulting from an attempt to
cifically, a combination of circularly polarize@CP) micro-  approximate the true eigenstates supported by the equilib-
wave and magnetic fields is used to create new global equidum point. The spectrum of the time-independent Hamil-
librium points in a rotating frame and, associated with thesdonian in the rotating framéin the vicinity of the equilib-
equilibria, there may be nondispersive coherent statés) if rium) supports a ladder of eigenstates, each of which is
the equilibrium isstableand (b) the regime surrounding the spatially localized in the proximity of the Lagrange point. A
equilibrium point is locally harmonic in a region that is large Gaussian wave packéwith appropriately chosen frequen-
compared to the wavelength of the electfone aim of this  cieg is really a zeroth-order approximation to the lowest
paper is to estimate the sizes of such harmonic regidie  such state. The curved wave packet used in R68.65, 64
resulting states, therefore, afi@ this approximatiopactu- (also relevant for stabilization in linearly polarized micro-
ally identical to conventional coherent states since the localvave fields[67]) is simply a better approximation to this
Hamiltonian is a harmonic oscillator. To be sure, these statestate, and, indeed, this packet was found to have better sta-
are not those sought by Schiinger; despite this, the present bility properties than the original packet used by Bialynicki-
approach represents a way of “parking” an electron in anBirula et al.[49]. In the opposite limit one would obviously
orbit far from the core or nucleus in a fashion similar to thechoose an exact eigenstate as the initial wave packet, since
motion of a satellite around the Earth. such an eigenstate of theotating-frame Hamiltonian can

In fact, considerable interest has resurfaced recently in theever disperse. An extension of the approach used by
creation of field-maintained coherent atomic states, and thiBialynicki-Birula and co-worker$63,65 to refine their ini-
work stems, in part, from the independent discovery by Fartial packet is to perform a full diagonalization of the Hamil-
relly and Uze48] and Bialynicki-Birulaet al.[49] of stable  tonian and identify states that are localized at the equilibrium
equilibria for a hydrogen atom in a circularly polarized mi- point. This will produce numerically accurate Trojan wave
crowave field 50-57,48,58 These equilibria are analogous packets and is the approach that Zakrzewski and co-workers
to gravitational equilibrium points in the restricted three-[68,69 have recently adapted to obtain Trojan eigenstates.
body problem of celestial mechani¢§9,6Q. Bialynicki-  Zakrzewski and co-workel$8,69 actually computed reso-
Birula et al. [49] recognized that wave packets launchednance wave functions using the complex-coordinate method
from these points will be expected to orbit the nucleus with-in a Floquet calculatiofi70]. An alternative is a conventional
out spreading, provided the field parameters are chosen suclbmplex-coordinate calculation in the rotating frafid&]. In
that the equilibrium point, which is aaximum is stable. any case, all of these approaches amount to recognizing the
Clearly, stable maxima are not common in atomic systemsgxistence of eigenstates of the Hamiltoni@am the rotating
and much is to be learned by comparison with perhaps thkame that have enhanced probability density remote from
most well-known example of stable motion at a maximum,the nucleus and concentrated close to the equilibrium point.
the dynamics of Jupiter's Trojan asteroids, whose existencl should be emphasized that such states are not coherent
was expected from Lagrange’s studies of the three-bodgtates; in principle, any eigenstate of any Hamiltonian in a
problem going back to 177f59]. Like their celestial coun- rotating frame qualifies as a nondispersive, nonstationary
terparts(L, andL5) whose stability can be attributed to the eigenstate, but the Trojans are unusually interesting because
interplay of Coriolis and gravitational forces, the atomic La- most of their probability density is localized away from the
grangian equilibrium points are stable over only a quite lim-core. However, the preparation of exact eigenstates of this
ited range of parameters. Associated with the atomic maxisystem may be difficult to actually implement in an experi-
mum is a transition to instability—essentially an atomic ment. Further, small displacements of the eigenstates from
Trojan bifurcation—as the electric-field strength is increasedhe equilibrium point will tend to cause the packets to
[48,61]. Beyond this bifurcation the quantum wave packet,spread; the beauty of a coherent state is that such a state is
which has become known as a Trojan state, will certainly beobust to displacements within the harmonic region sur-
expected to spread. An additional complication, however, isounding the equilibrium point.
that, if the linear regime surrounding the equilibrium pointis  For these reasons, an alternative strategy is in order in
smaller than the effective wavelength of the electronic wavevhich the emphasis is on preparing good approximations to
packet the wave packet will spread by leakage from théharmonic-oscillator coherent states by manipulating the sta-
stable region. We have argued recently that atoms of unreability properties of the Lagrange equilibrium points them-
istically large diameter would need to be prepared to guarselves. The groundwork may be laid by the addition of a
antee that the electronic wavelength could fit into the locallymagnetic field perpendicular to the plane of polarization of
linear region surrounding the equilibriuf®2,63. Inciden-  the CP field 48]. In this paper, we extend our earlier analysis
tally, contrary to misstatements|[if4], in Ref.[62] we argue  of the maximum[72], and, using classical mechanics, show
that the size of the stability region surrounding the Trojanthat a magneticB) field in combination with a CP micro-
equilibrium point is insufficient, for a reasonably sized atom,wave field can be used to stabilize genuinely 3D coherent
to support aGaussianwave packet rather than being too states in this system. For certain combinations of fields we
small to support any quantum states. We now summarizalso show that the problem may actually become integrable.
several different approaches to minimizing spreading of the Motion at a maximum, whether stable or unstable, is pre-
Trojan wave packets. carious both classically and quantum mechanically. In celes-
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tial mechanics, dissipation, e.g., will cause partidlaster-  point, even for extremely high electric-field strengths. The
oid9) localized at the Lagrange points to fall down the energyproblem thus satisfies the general criterion for a classical
maximum and ultimately to be lost. In the atomic problem,atom: localization of a wave packet both in an angular and a
while dissipation is not an issue, because the maximum is ngtidial sense in a 2D Keplerian orbit. In a frame rotating with
surrounded by potential walls a wave packet can tunnel intthe CP field frequency, the system resembles an atom in
nearby chaotic regions of phase space and thus, eventualtyossed electric and magnetic fields and may, therefore, be
ionize, perhaps by chaos-assisted tunneling. Evidence faronsidered to constitute a microscopic QP or Rydberg atom
this is found in the classical simulations we present thatrap[73].
show that the stable equilibrium is surrounded by a huge In the context of a Rydberg atom in crossed electric and
chaotic sea. Quantum calculations of Zakrzewetkal. [69] magnetic fields—denoted throughout as & B system
reveal that the widths of the Trojan resonances fluctuate corj86—91—a number of workers have postulated the existence
siderably with field parameters, similar to conductance fluc-of an “outer” well in the atomic potentia]92—95. In this
tuations in mesoscopic systems, underscoring the delicafield configuration the linear Zeeman or paramagnetic term
balancing act an electron at the maximum must undergo t¢proportional to the component of electronic angular momen-
remain stable. tum along the magnetic-field directipis not conserved and
The problems associated with dynamics amaximum can, therefore, be thought of as a velocity-dependent pertur-
can be alleviated with the discovery that it is possible to formbation that mixes coordinates and momenta. The difficulty in
a stable outeminimumin the effective potential using a treating such a term has led to a number of analyses that
slightly different field configuratiod73,74. The minimum  essentially ignore the paramagnetic term because its presence
configuration has a couple of advantagés: a particular, prevents the separation of the Hamiltonian into kinetic and
experimentally accessible, limit is rigorously integrable; andpotential parts. In the absence of the paramagnetic contribu-
(b) even in cases where the dynamics within the well is chation, under certain conditions, the potential in X B sys-
otic, the electron can still be strongly localized away fromtem may display an outer welB2—95. Despite the uncon-
the core—the only way it can approach the core is by tunirolled approximations involved, these studies have
neling through what may be a very substantial barrier. Inengendered experimental research directed to observing the
Ref. [74] it was shown that a ladder of nondispersive, non-unusually large atomic dipoles that might be expected to
stationary eigenstates is associated with this minimum ancesult from such a wel[5]. Unfortunately, simply ignoring
many of the eigenstates were calculated explicitly. Dependthe paramagnetic term is a rather poor approximation and, in
ing on the field parameters the classical mechanics may b&ctuality, the “potential-energy” function that results may or
chaotic and eigenstates scarred by unstable periodic orbiteay not possess an outer well, depending on the gauge used;
were found. In many ways the system mimics an electrorin other words, the approximation results in an unphysical,
trap such as the Penning trap: a number of recent articlese., gauge-dependent potentid,92—-99. More recently,
have, in fact, developed analogies between atomic RydberGederbaum and co-workef86] have demonstrated that an
electrons and the dynamics of charged particles in the Pawauter minimum can be created in the ator&ix B problem
and Penning trags5-78 as well as the motion of a neutral if the finite mass of the nucleus is taken into account, but the
atom in a so-called wire trafy9]. Similar phenomena exist remoteness from the nucleus of the resulting, relatively shal-
in both, and it is, therefore, valuable to compare the detailetbw, well makes it unclear how easy it would be to observe
dynamics of both types of system. One example is the chathe consequences of this well in an experiment.
otic heating or diffusion in momentum space that is found The approach we develop is gauge invariant and uses the
both in the microwave ionization of Rydberg atoms and in rfconcept of a zero-velocity surfa¢gVS) to handle the para-
heating of ions in a Paul traj80,81. A second is the prob- magnetic term. In th& X B system it is easy to demonstrate
lem of a hydrogen atom in a generalized van der Waals pothat an outer well cannot exist in the effective potential
tential, which has recently been shown to share identical inthe infinite nuclear mass approximatjomut, for the com-
tegrable limits with the Paul tragin the pseudopotential bined magnetic and CP fields we study, as already noted,
approximation [82,83. global equilibria corresponding to maxima or minima can be
Some time ago Clark, Korevaar, and Littmp84] sug- readily produced and visualized using the ZVS. In the rotat-
gested the possibility of a single Rydberg atom functioninging frame, therefore, all of the suggestions put forward as to
as a quasi-Pennin¢QP) trap: the system proposed was athe possible consequences of an outer potential well in the
hydrogen atom subjected to crossed electric and magnetlEX B system(giant dipoles, et¢.apply to this system, with
fields for which long-living resonances associated with thethe significant additional merits that such a well is not only
Stark saddle point were predictE@4]. However, the spectral (a) expected to exist theoretically, b(li) is also expected to
signature expected from the QP orbits has not, so far, bedme experimentally realizable.
detected 85,86. In this paper we show that, by a judicious  This paper studies the classical mechanics of the hydro-
choice of the sense of the polarization of the CP field, itsgen atom simultaneously subject to a CP microwave and an
frequency, and the magnetic-field strength, it is possible t@rthogonal magnetic field and reports extensive simulations
localize the electron in a harmonic potential well in a regionthat suggest that stable coherent wave packets can be sup-
of space that excludes the nucleus—essentially a double wghlorted quantum mechanically. The companion pa@é}de-
is produced in the effective potential. This is in a rotatingscribes quantum simulations of the time-dependent Schro
frame. In the laboratory frame the electronic wave packet iglinger equation using fast-Fourier-transfo(RFT) methods
localized both radially and in an angular sense—the packdab propagate the wave packet. The paper is organized as
travels along circular orbits lying beyond the Stark saddlefollows: in Sec. Il the Hamiltonian for the hydrogen atom in
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combined CP andperpendicular magnetic fields is intro- whereK is analogous to the Jacobi constant in the restricted
duced, together with the concept of a zero-velocity surfacethree-body probleniRTBP) and w= (w:+ w./2). The pres-
which is a method, adapted from celestial mechanics, to vience of a nonconserved velocity-dependgraramagnetic
sualize the dynamics in problems that feature velocity-term in the Hamiltonian prevents the separatiorHointo a
dependentCaoriolis) forces. Here we show how the direction positive-definite quadratic form in momenta and a potential-
of the magnetic field and the choice of polarization of the CPenergy term. Nevertheless, a type of potential—in the lan-
field can be used to produce either a maximum or a miniguage of celestial mechanics, a zero-velocity surface—can
mum in the effective potential. In each case, a second eqube constructed and provides an excellent starting point for
librium point, a saddle point, is shown to exist. A stability studying the dynamicks9,60. The first step is to rewrite the
analysis of the equilibrium points in this problem is pre- Hamiltonian, using Hamilton's equations of motion, in terms
sented in Sec. lll, where it is shown that tBefield can not  of velocitiesrather than momenta, which gives

only stabilize the equilibrium points but can also extend the ool io B

volume of phase space that is locally harmonic around the —, _ X ty+z° }ﬂ:X_ oo+ o) (CyD). (3)
equilibrium point. Further, an integrable limit of this prob- 2 r 2 Y.

lem is identified. Section IV is given over to a series of 3D

classical Simu|a‘[ions; in particu|ar, we propagate swarms oNOte that the kinetic pal’t is now pOSitive definite in momenta
trajectories with initial conditions chosen to simulate coher-and the ZVS is defined

ent atomic states. In this section we also investigate the tran-

oy o ip B
sition from regular to chaotic motion as the field parameters _y_ XY "2 _ _1__ _@i@iFod) (x2+y?).
are varied. Of course, in an actual experiment it may be 2 r 2

difficult to produce and maintain a CP field for which the (4)

polarization is exactly circular. Thus we have also performeqNhile level curves of the ZVS may be used to provide in-
a series of simulations to study the possible effects of eIIIp'formation on the location and nature of equilibrium points

ticity of the microwave field on the stability of the motions. and the locations of classically allowed and forbidden re-

Conclusions are in Sec. V. ' ; .
gions, unlike apotentiatenergy surface, such level curves
need provide no information on the linear stability of equi-
IIl. CLASSICAL HAMILTONIAN librium points, unless those equilibria are saddles. More di-
AND EQUILIBRIUM POINTS rectly, a maximum in a ZVS might be stable or unstable, and
The Lagrangian for a hydrogen atofin atomic units SOme :_:malysis must .be perfon_”ned to dptermi_ne stgbility. A
ap=h=e=u=1 and assuming an infinite nuclear mass key point of the Ham|lt.oln|am2) is that this conflguratlon of
subjected simultaneously to a CP microwave fiéfield f|eIQS allows the'cqefflment of't.he' paramagnetic term tp be
strengthF and frequencyw;) and a static magnetic field varied or even eliminated. Equilibria of the ZVS are obtained

perpendicular to the plane of polarization of the CP field is by requiring that all first partial derivatives of the ZVS van-

ish, i.e.,dV/dq;=0 with q;=(X,y,z). The equilibrium points

+y2+2 1 tw, . are founq to occur in pairs: depending on the sign chosen in
= > + P (Xy—yXx) Eqg. (1) either a saddle and a maximum or a saddle and a
minimum are produced. These cases will be referred to as the
*F(x coswst+y sinwst), (1)  maximum and minimum configurations.
where w,. is the cyclotron frequencysometimes denoted as A. The maximum configuration

the reduced magnetic-field streng®/B,=B/2.35x10° T Taking the + sign in Eq.(4) with ©,=0 results in the
in atomic unit$, and the choice of sign in the paramagnem:zero-velocity surface ¢

term is determined by the direction of the magnetic field. The
sign of F is immaterial but our convention is to choose this 1 wi(wi+ wg) )

sign such that any global equilibria corresponding to maxima V=— T +Fx— 5 (X2 +y?), 6)
or minima will turn out to lie along the positive axis. At

this point we note that, by virtue of Cauchy’s uniquenessyjith the equilibrium points lying on the axis as given by
theorem, a particle starting out in the plane of polarizationghe solutions of the equations

with an initial velocity contained in that plane, will never

leave the plan§98]. This is useful in that the reduced prob- F+ 1x2— of( 0+ 0f)Xo=0 (6)
lem is amenable to the computation of surfaces of section.

The time dependence in E€L) may be eliminated by going for the maximum and

to a frame that rotates at the constant angular velasity

which finally leads to the Hamiltonian F— 16— of(wet 0)Xo=0 ()
24 024p2 1 for the saddle point. For concisenegsis used to refer sim-
PxT Py TPz het . O .
K=" o(XPy—YPy) ply to any equilibrium point. When it is necessary to specifi-

cally differentiate between the saddle and the maximum and
the minimum, the obvious notation§®™" andx$2will be
used. Figure 1 is an isometric plot of the 2D ZVS, with
o.=0 showing the locations df; andL\®. It is the latter

2
IFX+% (x3+y?), )
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FIG. 1. Isometric view of the ZVS in scaled units as defined in
Eq. (24) with F=0.6, w.=0, w;=1. The saddld ; and the maxi-
mumL ,, are shown.

that provides the analogy with the Lagrange equilibrium

pointsL, andL 5 in the RTBP. Note that this configuration of

equilibria is preserved even on the addition of a magnetic

flelt_j .(wCQEO), provided that the Larmor frequency and the FIG. 2. (a) Zero-velocity surface for the minimum configuration

helicity of the wave are chosen sup_h that the pIL_Js Si9Myith w,=3.46 T, ;=50 GHz, andF=2000 Vicm. A section y

emerges,'n Eq(2). However' thesFab'l!ty of these pomts, =z=0) through the potential is shown. Also plotted is the har-

and the size of the regime supporting linear dynamics aroungonic approximation to the potentia®, and the Gaussian prob-

the maximum will be affected by the relative magnitudes ofapility density of the ground staté’|2. (b) Level curves of the ZVS

F, o, andw, as will become apparent. together with contours of the ground state as obtained by Taylor
We pause to remark that the analysis of Ré€] is based  expansion about the minimum. The parameters are the same as in

on the launching of wave packets centeredLdif* in the  (a).

pure CP limit. These packets will be good approximations to

the ideal nondispersive coherent state only if the size of theion at the maximum(essentially preparing a differently

locally harmonic regime surroundind;®is large compared shaped wave packenight lead to enhanced stability. On the

to the wavelength of the electron. In the classical limit, aother hand, it might not.

trajectory started precisely &fi®* will remain at that point,

but dressing such a periodic orlqg circular orbit in the B. The minimum configuration

laboratory framgwith a Gaussian wave packet opens up the

possibility of spreading due to nonlinearities and chaos. Otdn

course, the nature of both classical and quantal motion at

stable maximum differs considerably from the more usua

case of motion at a minimum; e.g., deviations from perfect F—1/x3— wf(we— wf)Xg=0 (8)

circular polarization might tend to destabilize the maximum

by producing time-dependent driving terms, i.e., the absencgr the minimum and

of confining potential walls means that the wave packet can

escape the vicinity of the maximum by leakage into nonlin- F+ 1/x(2)—wf(wc— ws)Xo=0 9

ear regimes. Bialynicki-Birula and co-worke83,65 have

pointed out that quantum effects may act to confine the wavéor the saddle. We examined the nature and the stability of

packet, even though the classical dynamics will tend to esthe critical points of the ZVS in this limit and found that a

cape. This is due to the existence of a so-called “quantuntransition occurs aF =3[ wi(w.— wi)1¥¥3/4. For F<F.

potential,” which, e.g., in 1D for the Schdinger equation the ZVS possesses no real critical points.FA:F. a real,

H ¢ (x) =E¢(X) is given byVQ(x)=—(ﬁ2/2m)¢”(x)/¢(x). double critical point is spawned that, with increasifg

However, this term will be repulsive for a perfectly Gaussiansplits into a saddle point and a minimum. Figur@)2s a

wave function. Inclusion of higher-order terms in the expan-section through the ZVS showing these features, together

Selection of the- sign in Eq.(4), with ».>0, results in
entirely different critical point topology. Again the equi-
ﬁnria occur along the axis as solutions of equations
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with a harmonic approximation to the minimum and an esti-
mate of the ground-state wave function in the potential well.
Figure Zb) shows level curves of the ZVS and a contour plot
of the ground-state wave function—details of how this wave
function are calculated are supplied later. The depth of the
well and its proximity to the nucleus depend sensitively on
the field strengths. Note that for this field configuration ion-
ization is impossible except along ttzedirection. Having
established the existence of equilibria that are analogs of
Lagrangian points in the RTBP, the next step is to under-
stand the factors affecting the stability of the maximum and
the spatial extent of any stable regions in comparison to the
size of#.

Ill. STABILITY ANALYSIS
AND COHERENT STATES

The basic idea is to expand the Hamiltonian in a Taylor
series at a global equilibrium point; if the expansion is lo-
(DS cally harmonic, then a coherent stdtiefined by the local
frequencies will be able to be prepared provided that the
equilibrium point is linearly stable. Such a coherent state
the rotating framgwill neither spread nor disperse as it ex-
unstablg(unshadefl The linesAB andCD are described in the text ecutes mo“o.” a}long &_1 Kepler orlithe Kepler fre.quency of
and the labels &, etc., refer to the surfaces of section in Figs. 5the electron is in a l.'l resonance with t'he microwave fre-
and 6. quency, although it might decay by tunneling. An additional
and, in general, more significant source of dispersion will
arise if the tails of the wave packet penetrate appreciably into
nonlinear or chaotic parts of phase space. This is expected to

T T T
) /\
s \,
ey g A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 3. Stability regions for the maximum configuration as a
function of the scaled parametess, and e: stable (shaded and

‘\

-

FIG. 4. Poincaresurfaces of
section @,=0) in scaled units
showing the Trojan bifurcation
with w,=0. In each case the en-
ergy is the energy of the maxi-
mum: (a) €=0.0444, (b) €=0.1,
(c) €=0.1156(the Trojan bifurca-
tion), (d) e=0.1170.

X X
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“v- wr

D

-10 p

. FIG. 5. Poincaresurfaces of
section along the linéB in Fig.

3. In each case=0.6 while wg is

changed(a) ws=0.2,(b) ws=0.6,

(©) ws=3, and(d) ws=0.8.

be a bigger problem at the maximum than at the minimumto prediagonalize a locally linear approximation to the
In the laboratory frame, if these dispersive factors can bédamiltonian at the relevant equilibrium point. A stability
minimized, the electronic wave packet will travel along aanalysis is only necessary for the maximubf{*) configu-
circular Kepler orbit while remaining localized radially and ration because motion at a minimum that is to lowest order
angularly for a finite(hopefully largeé number of Kepler pe- quadratic(as it is in the present case Bﬂ:in), be it in a

riods. An important point in our study is that the stability of potential-energy or a zero-velocity surface, must always be
aIﬂiearly stable in a small enough domain around that equilib-
rium point. (A good account of the existence of stable

; . o maxima in celestial mechanics is provided by Greenberg and
tonian system can occur only at a potential-energy minimum P y 9

In many experimentally important problems the Hamiltonianpav's[_loq') For both the maximum and t_he mihimum con-
can be separated into a sum of a positive-definite kinetidurations the strategy about to be described is used to com-
term depending quadratically on momenta and a potentiaﬁ"?t_e the functional fornﬁspemﬂcally, the frequencigsf the
part depending exclusively on coordinates, which preventditial coherent state. The steps involved &g a transfor-
stable motion from occurringtherthan at a minimuni9g]. mation to a syno.d_lc _barycentrlc system of Cartesian poord|-
While this is the most common situation in atomic physics,nates at the equilibriurh,,, (b) expansion of the ZVS in a
the problem in hand does not meet this criterion because dioWer series to second order—this produces what is known
the presence of theonconservecbaramagnetic term, i.e., N nuclear physics as a cranked oscillat@), determination
one cannot identify separate kinetic and potential parts of th@f the linear stability regime of the equilibrium poitfor the
Hamiltonian. Therefore, the stability of any equilibrium Maximum, and(d) computation of the vacuum state of the
points must, in principle, be calculated explicitly; e.g., by cranked oscillator.
computing the eigenvalues of the infinitesimally symplectic
mapping governing the flow. Additionally, the paramagnetic
term complicates the computation of the frequencies assoc
ated with the coherent state, since this bilinear perturbation
must first be diagonalized. The transformation from the original rotatingynodio

In this section we show how to compute the appropriatecenter of mass coordinates to the equilibrium configuration
frequencies at either a maximum or a minimum in the presit,, is accomplished through the canonical transformation
ence of the paramagnetic term. The procedure is essentiallyt01,103

netic field in tandem with the CP field.
Usually, stable motion at an equilibrium point in a Hamil-

ﬁ. Transformation to synodical barycentric coordinates atL ,
and development of the cranked oscillator
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FIG. 6. Poincaresurfaces of
section along the lin€D in Fig.
3. In each casevs=3, while € is

changed(a) €=0.2,(b) €=0.4,(c)
€=1.0, and(d) e=1.5.

R
-1s <10 -5 ) 5 10 15 -10 -

X
X:XO+§! Px= p§v
y=mn py:pn+wX01 (10)
z= g! pz= p{ ’
which transforms the Hamiltoniaf®) into the form
2 2 2
Pet P, TP
H= == w(¢p,~ 7P +6, (11

where the “force function” is given by

2

1 ® 1 1
O=——FF(£+x0)+ 5 (€4 77) — 50X+ g wixs

2
(O]

c
-V W

4

2

12

+ Xo§ s

and which may be expanded x§ [103] to produce an ap-
proximate Hamiltonian describing librations arouing

H=H+H_,
where

2 2 2 2
Pe+ P, TP w
H= =+ 5 (ag+bn’+cl®) —w(ép,~ 7Py,

(13

with

1wy 2 b_1
=2\ a3 PTLe

2
w 1
_°+_3
4 xp

’ c= (J_)ng ’
(14)

andH, (the part of the Hamiltonian containing only constant
termg being given by

1 1 1
He=— = 0EFFXo+ s wix5— e
0

2 8 (19

In the classical calculationd, is ignored, although it pro-
vides a useful energy calibration in the quantum computa-
tions to be reported elsewhef®7]. The HamiltonianH is
identical in form to the cranke¢hnisotropi¢ oscillator that

has been used in nuclear physics to generate basis vectors for
self-consistent calculations to model collective rotations
[104-107. More recently, this problem has also been ad-
dressedbased on the Bogoliubov-Tyablikov transformadion

in molecular physics to simplify rotational-vibrational
Hamiltonians[108—111. The motion in the{ direction is
stable and harmonic and, since it decouples from the planar
motion in this approximation, need not be considered explic-
itly in the stability analysis that we are on the verge of per-
forming.
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B. Stability analysis of the equilibrium L defAZ—A)=0, (19)

As noted, a stability analysi$1,119 of this problem is

only needed at the maximum, i.e., at the equilibriulfff*.  whereZ is the unit matrix. Rather than solving this equation
Restricting ourselves to first-order librations arowfff*we  directly, we accept a suggestion of Depfit13]: since

define the vector detR=1 the matrixR can be inverted and we compute the

_ matrix productR AR %, where

E=(&7.p:.Py) (16)
and the matrix AN -1 1 0

0 © 1 0 _ 1 N 01

R 1 o ol (20
4 ) 0 0 1 .
=l —aw2 0 0 ol (17) 0 1 00
0 —bw®’ - O

The eigenvalues are then determined as the roots of the poly-
which allows Hamilton’s equations to be written in the form Nomial equation

E=AZ. (18) de(\Z—B)=0, (21)
The stability of an equilibrium is determined by the eigen-
values of the matrix4, i.e., the roots of the equation where
|
N —lte 1-\°—aw? AN-1+o)+trw
L |1 A “AN1l-w)—\w 1-\°—bw? -
B=RAR'=| 0 N 1te : (22)
0 1 -1-w -\
|
The resulting polynomial equation of values thata andb may take for stable dynamics to be
. ) 5 . possible: specifically, the field parameters must be selected
de(AI-B)=A"+(2+a+b)A 0 +(a-1)(b—1)o". so thatb lies in the rangef<b<1 [49]. As one passes
(23 outside the stable regime a transition to instabiligg]

(Brown or Trojan bifurcation[61]) occurs atL]® when

e.=FJw{?=%3"¥~0.1156, which limits the range of
linear dynamicg$49,48|.

Figure 3 shows the regions of stahkighaded and un-
table (unshadefl motion at the maximum as a function of
e parameters, and e. For w.#0 the curve separating

stable from unstable motion consists of an upper branch
n(osc>) and a lower branche(S) given by[114]

is considerably simpler to solve than Eq9). This is similar
to the procedure for establishing linear stabilignd the
Routh critical valug in the RTBP. The motion idinearly
stable if the four eigenvalues are purely imaginary; impor-
tantly, stable motion is possible even in the regime where th
force function(i.e., the part of the Hamiltonian that depends
solely on coordinatgscorresponds to a saddle point—the
rotation stabilizes the dynamics, in analogy to the situation i

the Paul and Penning trapg5-78,82,83 ><_4—5w§t(21%m§)\/m

It is convenient to work with scaled frequencies and field S 2
.. . . . . EC 4/ 2/3 2 2/3 1 ( 5)
strengths. In the original Hamiltoniaffior the maximuny it 2 3ws (2= \/4—9ws)
is possible to scale the coordinates and momenta as follows:
r'=w%, p'= —1/3p After dropping the primes this yields where the uppeflower) sign is taken throughout foel
for the Hamiltonian(2), (€9). These two functions become equal to each other ex-

actly atws= 5, which is the rightmost point in Fig. 3. As one
B ) traverses the curve separating the stable from unstable re-
H=KC=3(pi+py) — —— (XPpy—YP) + 5 0s(X*+y?) + ex, gimes a Trojan bifurcation occurs—this is a generalization of
(24)  the Trojan bifurcation fow.=0 [49,48,6]. In general, as a
function of e and for fixedw, two transitions between stable
where K=K/w?®, ws=wJw<2 ande=F/w*>. This scal- and unstable motion occur, as, e.g., upon moving up the line
ing shows that thelassicaldynamics depends only on the ws=3 in Fig. 3: first a transition to instability occurs at=
three parameters, o, ande. £ and then a transition back to stability @t3. Interestingly,
In the casew.=0 the stable region for the problem in at the point labeled 5c in Fig. 3, where the two stability lines
hand is extremely limited and results in a very restricted setoincide, the problem becomes rigorously integrable, as can
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, 7 \
.
FIG. 7. Level curves of the ZVS at the maximum with
b=0.9562—see Eq(14). Thick lines are contourgat 0.25, 0.5,
0.75, and 0.9bof the Gaussian probability density centered_at
(in a.u); (@ xo=10% (b) xo=10". The axis scales in the andy
directions are equivalent, but, for clarity, the rangex @indy are
different.
be shown using results given by Rakowdad Chu[115— x %
117). At this point w.=2 and e.=(2/3)*® and the Hamil- N = 7

tonian (19) reduces to

v

—1n24n2 1 124 \,2 FIG. 8. Poincaresurfaces of sectioffa) around the maximum
H=2(p*py) r (XPy=YPo) + 3 (X" HYT) +ecx. and (b) level curves of the ZVS fow=1x10"°, w,=5x10"¢,
(26)  andF=5x10"8 a.u. In(b) the thick lines are contour&@t 0.25,
0.5, 0.75, and 0.9%f the Gaussian probability density centered at
The classical motions that occur in the various regions of ,=10* a.u.

Fig. 3 will be explored shortly, but it is important to note that

the stability diagram, Fig. 3, is obtained fronlimear stabil- &' =A¢+Bp,,
ity analysis that says nothing about the size of the stable
region; it merely indicates for what parameter values some
stable domain exists dt;®. In particular, linear stability
analysis contains no scale information and, therefore, if the
stable volume of phase space is much smaller #iarany
putative coherent state will spread rapidlgspitethe stabil- ,
ity of the maximum. This issue will be taken up again P,=P,*CE,

shortly. Our immediate task is to compute the local frequen- ) )
cies at the equilibrid ™ and LMin 2 thereby, compute with A—BC=1 (to preserve the commutation relations be-
m m ’ 3

the ground state of the cranked oscillator tween coordinates and momental can be reduced to the
' following separable formhere we follow the notation of
Ref.[97] where a more complete treatment is provided

7' =An+Bp;,

(27)
p;=ps+Cr,

C. Coherent states

The four eigenvalues aofl in the stable regiméeither at T 21022, 02
the maximum or the minimujrare purely imaginary of the - 2m; P+ 2mddg 2m,, P
form =iQ, and £iQ), , where(),, are positive, real num- (28
bers. After a rotation in phase spa@®escribed in detail in

Refs.[104-107,109-111,108,97 where

+%mnﬂf]7y'2,
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2 N2

I U
-

£ 02-a0’+ w?

and

02 -02 29
M, =c2_n. 2, 2
7 Q5-botw
with w.=|w|a, w,=|w|\b, andw,=|w|\c. The eigen-
values are given by

m
E=— (et 2)A|Q, )+

|mg|

my,

ey (DR (30
7

/ FIG. 9. Swarm of initial condi-
~ ///,/ tions plotted on the ZVS for

the maximum with w.=0

au., 0;=4.6296%10°% au., F

=3.4274%10° au, K

\\\\\\ = =-1.13%10"° awu., and xq

M§ =3654.1 a.u., at times aftefa)

and(b) 0, and(c) and(d) 796 Ke-
pler orbits.

y=wQlh,

with

(a—b)w? 39
andN is a normalization factor. In the simulations to follow,
in this and in the companion papgd7], the procedure de-
scribed above was used to generate a coherent state, either
classically or quantum mechanically. The same general pro-
cedure is valid both at the maximum and at the minimum,
although it is unnecessary at the minimum for the special
casew;= w /2, i.e., paramagnetic term eliminated. We also

If the ground-state energy of the cranked oscillator is defined©t€ that, quantum mechanically, the translation of coordi-
asEqy=%4, then the 3D vacuum state can be expressed a3ates toL, introduces an additional phase factor into the

follows in terms of the original coordinates:

_ L@, B, w5
\Ifooo(x,y,z)—Nex;{ S X TSy T iy

31

The parametergs, 3,y are given by

a=Q(1+Q)/h,

B=Q(1-Q)/t,

wave packet25) as described if97]. This phase factor, like
the term iny in Eq. (31), has noclassicalconsequences and
is therefore ignored.

IV. CLASSICAL DYNAMICS AND GAUSSIAN SWARMS

In this section we study the classical dynamics of both the
maximum and minimum configurations in light of the stabil-
ity analysis presented in the preceding section. Included are
simulations in which a swarm of classical particles is chosen
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ARANARNANY
: (b)§

FIG. 10. Swarm of initial con-
2.

ditions plotted on the ZVS for the
maximum withw,=5%x10"°% a.u.,
wi=1x10"% au., F=5x10"8
a.u., K=10"* a.u., andx,=10"

(d) a.u., at times aftefa) and (b) O,
//

SO
;:Z 5 and(c) and(d) 341 Kepler orbits.

with a spatial probability distribution given by¥ (x,y,z)|? Kolmogorov-Arnold-Mose(KAM ) islands are embedded in
and propagated in time classically to indicate how a quantuna sea of chaotic or scattering trajectorigmization is pos-
wave packet might behave. Of course, no phase informatiosible because at energies greater than the saddle-point energy
is included in the classical “packet” but such simulations the electron can escape over the saddil.) As e is in-
are often found to be excellent predictors of the stability ofcreased further the KAM curves start to break up and the
quantum systems. In order to facilitate an understanding ohotion becomes increasingly chaotic, as illustrated in the
the global dynamics and the possible, existence of ordersequence Figs.(d)—4(d), which shows the Trojan bifurca-
chaos transitions we also examine Poincsuwefaces of sec-  tion that occurs at zero magnetic field.
tion in the planar limit. To avoid possible confusion the two  The addition of a magnetic fielde(,#0) changes the
configurations(maximum and minimumare treated sepa- sjtuation dramatically, since it is now possible to adjust the
rately. relative sizes of the coefficientsandb in order to enlarge
the stable domain. In particular, it allows one to increBse
beyondF, thereby increasing the size of the harmonic re-
gime atLp®. However, stable and unstable regimes still
While the classical simulations of quantum wave packetgersist. Figures 5 and 6 show sequences of surfaces of sec-
to be described later in this section are all 3D, for clarity, wetion along the lines labeledB andCD in Fig. 3 (the points
first consider the 2D limit. We computed Poinca@faces in the parameter plane corresponding to the various surfaces
of section(SO9 in the vicinity of L™ by integrating the  of section in Figs. 5 and 6 are labeled on Fig, &d it is
equations of motion in cylindrical coordinatés=p cosp,  apparent that a sequence of order-chaos transitions occur. In
y=p sing), computing theP,=0 surface of section and Fig. 3 it is apparent that to the right of the line,= 3, the
plotting thex-y phase plane(The classical scaling property motion is everywhere stable, although not necessarily inte-
means that all SOS are equivalent, independent of the valugrable. At the pointe=(2/3)*3, w,=2 the two parts of the
for xq, at fixed wg and e through mechanical similarityln  stability-instability curve coalesce and the corresponding
the absence of a magnetic field the regular regime surroundurface of section is shown in Fig(d. At this point the
ing L® may be quite small—see Fig. 4—and the Hamiltonian is rigorously integrable, as can be shown using

8
8

I contllf
22 24 24

X

A. Dynamics at the maximum
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FIG. 11. Regions of parameter space for which the minimum
exists(shadeft wy is the scaled frequency ards the scaled field ost
strength as defined in the text.

results due to Rakoviand Chu[115-117 and as discussed
above. The transition through the integrable limit is shown

rather compellingly in the sequence¢as-5(d) and Ga)— ol
6(d). Interestingly, Figs. @ and &b) show a “shadow”(a
roughly hyperbolic blank argdhat runs through the surface o2

of section. We were unable to eliminate this feature despite
integrating numerous trajectories in this region and choosing
different surfaces of section. The shadows seem to be a result os}
of the complicated topology of the torus that intersects the

surface. Jaffesuggests using numerically determined orbits R I R T T
to define the surface of section and thereby to avoid such
shadowq 118]. Since the details of the surface of section in
the vicinity of the maximum are unaffected we leave this
pOIIEI;[gtl:)r: ;L:)u;iosvtysdg' Gaussian wave packet defined as i% FIG. 12. Combined Poincérwrfalces of section for the mini-
Ref. [49] and assuming-;® is located atxo=10" a.u. (the é@_é&”lﬁﬁ,@?&%’;@ b 07z andlmm2 2 () <09,
value suggested iM9]) with €e=0.0444[49]. It is apparent

that much of the packet spills out of the harmonic regime. If.o,ghly coherent. All calculations are in scaled units.
Xo=10" a.u., however, most of the packet can fit quite com-
fortably into the harmonic part of the maximum—see Fig.
7(b). The stability of a Gaussian wave packet launched at
Ly# depends, in part, on the quality of a locally harmonic o o S
approximation to the ZVS at™. If F=0 the ZVS is flat Before examining the c_iynam|.cs.|n detail it is illuminating,
(i.e., not harmonic at glitransverse to the field direction in first, to consider two particular limits of the ZVS,

the rotating frame, but becomes increasingly harmonic with

increasingF. However, forw.=0, the Trojan bifurcation 1 wi(w;— ws) _—

[61], which occurs at. "> whene,=F ./ »0**~0.1156, limits V=—rt———— (X*+y)—Fx (33

the range of linear dynamics. The magnetic field allows one

to increase~ beyond the critical value in the pure CP limit, (a) in the EXB limit (w;=0) the effective potential is
thereby increasing the size of the harmonic regime ‘.

Figure 8a) shows the SOS for a typical set of magnetic and

CP field strengths, and it is apparent that the size of the V=—£+Fx. (34
regular regime at,, has been increased considerably as r

compared to the pure CP case. The corresponding coherent

state is shown in Fig.(®). Figure 9 shows the time evolution Clearly, the ionization threshold is given by the simple Stark
of a 3D Gaussian swarm of initial conditions chosen to simu-saddle-poin{SSP criterion[84,86,87, despite the presence
late the state shown in Fig(d), and it is apparent that the of the magnetic field. Classically, ionization is possilibet
swarm does not remain coherent but tends to spread alompt inevitablé whenever the energy exceeds the energy of
the curves of the ZVS. Contrast the case in Fig. 10, which igshe saddle point. Note that, while a double well may exist in
a simulation for the wave packet whose projection is showrthe “potential,” defined artificially by setting the general-
in Fig. 8(b). In this case the swarm of initial conditions stays ized momentag,=p, =0 in Eq.(2) [92-94, no such struc-

04+

B. Dynamics at the minimum
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FIG. 13. Swarm of initial con-
ditions plotted on the ZVS for
the minimum trap with o,
=15198%10° au., oy
=75991510' au, F
=3.88943%10 7  au, €
=1.03314 a.u..K=-1.454 62
X102 a.u., andky=6298.79 a.u.,
at times aftea) and(b) 0, and(c)
and(d) 597 Kepler orbits.

ture can occur in the ZVS—essentially, ionization is onlyand the electron may escape if its energy lies above the
possible because of the presence of the paramagnetic termsaddle point in the ZVS, although above threshold, bound,

the static crossed-fields system. classical motion is also possibjd8]. However, the ioniza-
(b) The pure CP(i.e., w,=0) problem is more compli- tion mechanism in the CP case is considerably more intricate
cated: the effective potential is given by than for theE X B problem, involving destabilization through
1 ) a Trojan bifurcatior{48,61].
@i a2 The system under study differs considerably from these
=———— (x*+y9)+F 2T 7 ; :
v r 2 XAy TFX, 39 two limits in that the coefficient of the term in{+y?) in

FIG. 14. Swarm of initial con-
ditions with an elliptically polar-
ized field; w., w¢, andF are the
same as for Fig. 10¢;=0.6 and
a,=1.0. Initial Gaussian(a) at
t=0; (b) after 500 Kepler orbits.
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3 = = SSSS§

= (a)

FIG. 15. Swarm of initial con-
ditions with an elliptically polar-
ized field; w., ws, andF are the
same as for Fig. 10¢;=1.0 and
a,=0.6. Initial Gaussian(a) at
t=0; (b) after 500 Kepler orbits.

the ZVS can be arranged to be nonzero and positive, thu& typical 3D swarm of initial conditions is shown in Fig. 13
confining the electrofiin the planar limii irrespective of the and it is apparent that the swarm stays extremely compact
size of F. This occurs whenevepn.— w;>0, provided that and localized at the minimum in the ZVS.

w;#0. For a givenw, this coefficient is maximized when

w;= w2, i.e., the paramagnetic term in E@®) is absent,

and the ZVS becomes equivalent to a true potential-energy C. Elliptical polarization

Surface(this case is illustrated in Flg)2ln the 3D Hamil- and pulsating zero velocity surfaces

tonian, however, ionization is possible but only along the

direction. The ionization energy threshold is given by . . S o
’ feasible to prepare microwave radiation whose polarization
_ F (36) is exactly circular. In this subsection we examine the effect
20i(w.— wy) of relatively small deviations from circularity for Gaussian

) ] ] swarms started at the maximum. Results for the minimum
and all of the 3D simulations we report fall below this value. 5, similar, and, in general, the minimum is even more ro-

Again, it is convenient to scale coordinates and momentay st than the maximum to such deviations. We consider only
although in a different way than previously since now they,e planar limit ¢=0) for which the Hamiltonian for a hy-

coefficient of the paramagnetic teuncan be zero: explicitly  grogen atom in an elliptically polarized microwave field and

the scaling isr'=w3r, p'=w,3p. After dropping the 5 orthogonal magnetic field is
primes this yields the Hamiltonian

It is apparent that in an actual experiment it might not be

Eion=

2 2 2
1 pxtpy 1 1 We
H=KC=3(pct Pyt p2) = = (2= 2)(xpy—YPy) H= === =5 0cXpy—yp) + 5 (C+y?)
+3(x?+y?) + ex. (37) +F(a;x coswst+ ayy sinwst), (39

whereK=K/w?"® Q=ww., ande=F/w 3. This scaling whereq; anda, are parameters that control the ellipticity of
shows that the dynamics depends only on the three parantie field; e.g., circular polarization is given ly=«,. We
eters,kC, ), ande. Figure 11 shows the region of parametermove to a frame rotating with the microwave frequency,
space for which the minimum exists. which results in an explicitly time-dependent Hamiltonian
Figure 12a) is a typical Poincarsurface of section of the where the driving terms result from the ellipticity of the field.
planar = 0) Hamiltonian for a value ok midway between It is possible, proceeding as before, to construct a ZVS that is
the minimum and the saddle point. The figure clearly showsiow time dependent, i.e., the surface pulsates in time. Fig-
stable motion localized in the well in the ZVS. Interestingly, ures 14 and 15 show the long-term behavior of a Gaussian
for the special value of)=3, (i.e., paramagnetic term ab- swarm after 500 Kepler periods fo «;=0.6, a,=1.0 and
senj in Fig. 12a) the dynamics in the well is essentially (ii) o;=1, a,=0.6, respectively. In both cases the swarm was
harmonic and, in fact, the planar system is actually integrablstarted at the equilibrium point assuming exactly CP radia-
in this limit. The possible integrability of this Hamiltonian tion, and it is apparent that, while the swarm does not stay
was evidently first speculated on in R¢f1]; in fact, the  Gaussian, neither does it dissipate. For less severe, but still
Hamiltonian is of Stakel form and separates in elliptical quite strong, deviations from pure CP radiation the packet
coordinate§119—-123. For values of)#1 it is possible for  tends to stay together, as illustrated in Fig. 16, which shows
the motion to be chaotic within the well, as shown in Fig. (a) the initial Gaussian, anth)—(g) the time evolution of the
12(b). Provided that tunneling is unimportant the electronpacket on the pulsating ZVS during the last Kepler cycle of
will still be confined in the well by the curves of zero veloc- the integration. These results suggest that even fairly sub-
ity for all values ofK below both the saddle point arkt],,, . stantial deviations from ellipticity are not sufficient to de-
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FIG. 16. Swarm of initial
conditions with an elliptically
polarized field;w., ws, and F
are the same as for Fig. 10,
;=0.8 and a,=1.0. Initial
swarm (@) at t=0; (b) after
499.0, (c) after 499.2,(d) after
499.4, (e) after 499.6,(f) after
499.8, andg) after 500.0 rev.
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stroy the coherence of the packet. We note that the conceptsential classical predictions are found, in the companion
of pulsating coordinates and a pulsating ZVS has been usquhper[97], to be borne out in numerically accurate gquantum
in celestial mechanics in the elliptical restricted three-bodyFFT computations. Finally we note that the results in this

problem, as described by Muris¢h23]. paper may have applications to excitonic systems in crossed
(statig electric and magnetic fields where the coefficient of
V. CONCLUSIONS the paramagnetic term may vary as the effective masses of

] . . the hole and electron vaf@1,124—-12¢and also in the pos-
We have investigated the dynamics of a hydrogen atomyonium atom where this term vanishge7.
subjected simultaneously to a circularly polarized microwave

field and a magnetic field perpendicular to the plane of po-
larization. Stability analysis and classical simulations reveal
that the magnetic field can be used to stabilize wave packets
prepared at the global equilibrium point against dispersion We thank Professor T. Uzer, Dr. Charles Cerjan, and Pro-
and spreading. In the harmonic approximation these statdessor Charles Jafffor helpful suggestions. Support of this
are identical to the coherent states of the cranked harmoniwork by the American Chemical SocietfPetroleum Re-
oscillator and behave accordingly, as coherent states. Theearch Fundis gratefully acknowledged.
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