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The accessible information obtained in combined and sequential quantum measurements is calculated for a
binary pure gquantum state signal. It is shown that the accessible information obtained in the combined mea-
surement is equal to that obtained in the sequential measurement. The result indicates that the conjecture by
Peres and Woottef®hys. Rev. Lett66, 1119(1991)] is not valid, at least for a binary quantum state signal.
Furthermore, the result is compared with that obtained by Brody and MgRitgs. Rev. Lett76, 1 (1996)].
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[. INTRODUCTION combined or sequential, is more effective for the signal de-
tection.

It is well known in quantum mechanics that we cannot Peres and Wootters considered the detection process for
completely distinguish between two different nonorthogonathree spinj states,|¢;)=[1), |#,)=31)+3/2]), and
guantum states. This fact indicates that detection errors iW>3>=%|T>— \/§/2|l>, which are linearly dependent
quantum measurement for such quantum states are ineite,)=|4,)+|¢s)), where|T) and||) stand for spin-up
table. Therefore it is important to consider quantum measuresng spin-down states. They conjectured that the combined
ment that predicts, as accurate as possible, which quantUfjeasyrement gives more information than the sequential
state a physical system takes. This problem is not only Ofea5remenf1]. Subsequently, Massar and Popescu have
fundamental interest in quantum mechanics, but also of ©%hown that the combined measurement is more effective than

_sent|al importance in optical communication and quantu he sequential measureme]. However, they have used
information theory. A performance of quantum measuremen luati . hich i ither th Linf

is evaluated by the average probability of error or by the,. e evaluation quantity, w Ich 1S neither the mutual in orma-
mutual information. Quantum measurement that minimizeéIon nor the average probability Of. error. Recently, for a bi-
the average probability of error or that maximizes the mutua['&"y Signal consisting of the spin-particles, Brody and

information is referred to as optimum quantum measureMeister have proven that the minimum value of the average

ment. The maximum value of the mutual information is Probability of error in the combined measurement is equal to
called the accessible information. that in the sequential measuremgBL This result seems to

Consider a quantum communication system in which in-contradict the conjecture by Peres and Wootters. They have
formation is transmitted in terms of two quantum statesconsidered that such a contradiction is due to the difference

|41) and|4,). When the quantum statég,) and|y,) are  of the optimizations of quantum measurements; Peres and
nonorthogonal, detection error occurs, with finite probability, Wootters considered the quantum measurement maximizing
in such a binary communication system. To reduce the dethe mutual information while Brody and Meister considered
tection error and to transmit the information more accuratelythe quantum measurement minimizing the average probabil-
we can send the information with the two identical states. Irity of error.

this case, the quantum state of the signal that carries infor- Therefore the purpose of this paper is to investigate the
mation is given by |V)=|y)®|¥) or |¥,)=  accessible information obtained in the combined and sequen-
|2y ®|4,). Thus to obtain the information, the receiver tial quantum measurements on a binary pure quantum state
should perform quantum measurement on the signal whossignal. Our result shows that both measurements give the
quantum state ig¥ ;) or |¥,). When we perform the quan- same amount of information. Thus the conjecture by Peres
tum measurement on such a signal, there are two ways; orsnd Wootterg1] is not valid, at least, for a binary quantum

is a combined measurement in which the two componenstate signal, though the general validity of the conjecture still
states are treated as one composite quantum state, and tiegnains an open problem. Furthermore our result means that
other is a sequential measurement in which one of the tw8rody and Meister’s reasoning is not tr[@. In Sec. I, we
component states is first measured and then the other corimvestigate a property of an optimum quantum measurement
ponent state is measured by using the result of the first medn which we can obtain the accessible information. Using the
surement. It is interesting to consider which measurementesults, we consider the combined and sequential quantum
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measurements in Sec. lll and Sec. IV. We give concluding (,A:‘_f)ﬁ:o (j=1,2), (6)
remarks in Sec. V. ) :
II. INFORMATION-OPTIMUM MEASUREMENT F:j;m Fillj= 121’2 IF;, @)

In this section, we consider the accessible information
obtained in quantum measurement for a binary pure quantufynere the operatdF; is given by

state signal, where the statistical operators of the signal are A P.(j|k)
given by py=[1)(¢| and py=|4;)(i,|. We assume that Fi= > pkédn| ——————|. (8)
the quantum statds),) and|,) are nonorthogonal and lin- k=12 s P.(jlm)

early independent, and we sgj, | ,)=xe'¢ (k>0). Then

the Hilbert space of the signal becomes a two-dimensional
space given byHs={cq|1)+Cy|i)|cq,CcoeC, whereC  Using Egs(6) and(7), we can show thdﬂl andl'[2 become
stands for the field of complex numbers. The quantum meaprojection operators defined on the two-dimensional Hilbert
surement of the binary signal detection is described in termspaceH;. This is proved as follow§9]. First the resolution

of positive operator-valued measureslled quantum detec- of |dent|tyH1+ H2_| gives the relatiod ] Hz—Hsz Then
tion operators[4,5], 1'[1 andl‘[z, which satisfy the relations, using Eqs.(6) and(7), we obtain the relation

H1+H2—I andII;=0, wherel is an identity operator de- A A Ao A A A

fined on the Hibert space™s. The quantity (F1=F)ILIL=(F1 = F)ILLI; =0, 9
PC(j|k)=Tr[HJ-;3k] is the conditional probability that the
measurement outcome exhibits the quantum s$igtewhen
the quantum statéy,) has been actually received, where A~ -

Tr is the trace operation over the Hilbert space. Let ¢; be F1=Fo=mip1—mapa= i) mal gl = [Y2) ma(vl 10
the prior probability of the quantum stdmj), which is nor-

malized ast; + £,=1. Then the average probability of error \yith

in the quantum measurement is given by

P.=P.(1]2)&+ P(2|1)&,, and the mutual informatiof6] [PC(1|1)Pout(2)}
is calculated as m=§;In P2 1)Po(D) |’

where the operatd%l— IEZ is calculated from Eq(8) as

. [Pe212)Pou(1)
=8N B 12)Pou(2) |
(11

: Pe(jlk)
I_j:zu k:EI,Z Pe(ilk)&dn . - @ Sincelel—lez is a Hermitian operator defined on the two-
m;yz Pe(jlm)ém dimensional Hilbert space(, this operator has two eigen-
states|¢/;) and|,) with eigenvaluese; and u,. Using the
Furthermore the output probability of the quantum statespectral decomposition of the operatoy—F, and the or-
[4;) is given by Po(j)=2k-1Pc(j|k) é. After the mea- thogonality of the eigenstates, Eq(9 becomes
surement whose outcome indicates the quantum $tafe MJ<¢,|H1H2—MJ<¢1|H2H1—O (j=1,2). If wiu,#0, the
using the Bayes theoreifi], we can obtain the posterior completeness of the eigenstates gives the relation
probability of the quantum  state [¢;) as  [I,1I,=1I,I1,=0, or equivalently, 1'[2 1 (j=1,2). Thus
Pp(i|k)=Pc(K|}) &j/PoufK). Then the mutual information is e have found thatl, andil, are one- dlmensional projec-
expressed as tion operators defined on the Hilbert spakg unless the
|=H —H ?) operatorF; —F, has zero eigenvalue.
initial final»
Since the detection operatof; and H2 that maximize
whereHia andHyng are the initial and expected final en- the mutual information are one-dimensional projection op-

tropies calculated as erators, we can setﬁjzle)(wjl (j=1,2), where
{|w1),|wz)} is @ complete orthonormal system in the Hilbert
Hinitiar= — £1INé1— &Inéo=Hpin(€1), 3 spaceH,. On the other hand, since the signal quantum states

|1) and|y,) are linearly independent, we can construct a
complete orthonormal systefhe,),| ¢,)} as

Hina=— 2 Pouli) E Po(kli) Ian(klj} (4)

=12

)= [1) + el 4) )= |1h2) — €| 4n) (12
In Eq. (3), Hpin(X) is the binary entropy functiofi7], $1)= L(1+r) $2)= P(1-x)
Hpin(X) = —XInx—(1—x)In(1—X). (5)  Since{|wy),|w,)} and{|¢1),|d,)} are complete orthonor-
mal systems in the same Hilbert space, there must be a uni-
In this paper, we measure information in nats. tary transformation as follows:
Suppose that the quantum measurement described by the , ,
detection operatorEl; and T, maximizes the mutual infor- |w1>> _( e'*ZcodBl2) e '*Zsin(BlI2) ) ( |¢1>)
mation|. Then the detection operatokl, andIl, must sat- lwy)] | —e'*sin(pl2) e '“coqBI2) )\ |#s))’
isfy the necessary condition obtained by Holé&d, (13
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where the parametersand3 are determined by the require- (1+P)(1-Py) (1—Py)(1+Py)

ment that the mutual information should be maximized. Such = K2 (20
1+ 1- 1- 1+
a requirement is thatl/da= dl/9B8=0 and the Hesse matrix (1+Q)(1=Q2)  (17Q)(1+Qy)
calculated froml with respect toa and 8 is negative defi- _p2 _p2
. . . 1 Pl 52 1 P2 gl
nite. After some calculation, we obtain the parameteend =K%, > = K>, (22
B [10], =01 & 1-Q &

a=o,

(14
(é1— &)k

COB=Fr———.
v V1-4&16K°

Using Egs.(12) and (13),Awe can express the optimum de-
tection operatordl; andIl, in terms of the signal quantum

states| ;) and|#,),

~ 1[1—kco sin
( - 58_\/1_—18K2)|¢1><¢1|

172 1—«?
1(1-«cosB sing Kk—COSB
5( 12 +m)|lﬁz><'ﬂz|—m

X (€| gy )] + €7 o) (), (15

.~ 1(1+kcosB sinB
2:§< 1EK2 + \/ﬁz)hbl)(l/lll
1(1+«kcosB sing k+cosB
L] —\/1_—’(2)|¢2><¢2|—2(1—_sz

X (€| gy ) o] + €7 ) (). (16)

It is easy to check thaf[l+f[2 is an identity operator de-

fined on the Hilbert spaces of the signal,
(My+T1) [4) =) for any|¢) e Hs.

Therefore we finally obtain the accessible information

Iopta

1+P
1+Q

1

|0pt:§j=2L2 &(1+P))In
1 1-P,

><+§j:21’2 gj(l—Pj)ln(l_—Qj), (17)

where the parametef3; andQ; are given by

_1-21-4)«? Q:L 18)
Vo4 6P T J1-ag 67

which satisfy the following relations:

E1P1+ EPo=V1—-4£,&5K7,

(19

§1P1—6P2=Q1=—Qy,

(1+P)(1-Q) _(1+Pp)(1-Qp) _ 1+ 1-4£16k°
(1-P)(1+Q1) (1-P)(1+Q2) 1-1-4& &K
(20)

These relations are used to show that the accessible informa-
tion in the sequential measurement is equal to that in the
combined measurement.

Furthermore it is easy to see that the average probability
of error become® = 3(1+ \/1_4§1§2K2) in the quantum
measurement described by the detection operators given by
Egs. (15 and (16). It is important to note thatP .=
31— J1—4£,£,47) is the minimum value of the average
probability of error obtained by means of the quantum detec-
tion theory[4]. When we use this minimum value, the acces-
sible informationl ,; can be expressed as

I opt— Hpin( 1) — Huin Popt) )

where the functiorH;,(x) is given by Eq.(5). In this ex-
pression, the first term on the right-hand side is the Shannon
information of the signal, and the second term represents the
information loss due to the detection error. In the optimum
guantum measurement, the conditional probabiftyj|k)

can be expressed as

(23

Po(1]1)=1-P(2[1)=2(1+Py), (24)

P(2|2)=1-P(1]2)=3(1+Py), (25
and the output probabilit,,{j) is given by

Poul1)=1—Pou(2)=3(1+Qy). (26)

Moreover, after the measurement whose outcome indicates
the quantum stath), ), using the Bayes theorem, we obtain

namely,  the posterior probability,(j k) of the quantum statiey;) as

- _1+P,

Pp(1|1)—1—Pp(2|1)—§1—1+Q1, (27)
~ _1+P,

Pp(2|2)—1—Pp(1|2)—gz—1+Q2. (28)

These results are used when we investigate the combined and
sequential quantum measurements.

[ll. COMBINED QUANTUM MEASUREMENT

We now consider a quantum state signal that consists of
the two particles, where the quantum states of the signal are
given by [Wy)=[y)® 1) and [W;)=[¢r)®|1h2) with
|(¥,]W¥,)|=«?. In this section, we consider the combined
measurement that maximizes the mutual information. In the
combined measurement, we perform the quantum measure-
ment on one composite particle instead of the individual par-
ticles to know the quantum stat# ), but not| ;). Since the
quantum states of the composite particle 4ve;) and
|W,), which are linearly independent, the Hilbert space of
the signal becomes a two-dimensional space defined by
Hs={cq|W1)+cy|¥y)|cy,coeCh. Therefore the accessible
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informationl ¢ in the combined measurement is obtained by 1—2&,(j) k2 1-2&,(j) k2
replacingx? with «* in Egs.(17) and(18), Pi(j)=——=, Py(j)=————.
\/1_4§1§2K4 \/1_4§1§2K4
lc=Hpin(£1) —Huin( P, (29 (36)
with Here we have used the relatig)(j)&,(j)=&,€,4%. The
output probability in the second measurement becomes
1 . : .
P=5(1-V1-4£6K"). (30 PRNLi) =1-PQ(2i)=3[1+Qu(})]. (37
with
Furthermore in the combined measurement that gives the
accessible informatiom¢, the average probability of error Qu()=E&1(J)P1(j)— &(J)Po(j). (38

Pc is calculated to bé& =P, which is the minimum value.
Furthermore the posterior probability after the second mea-

IV. SEQUENTIAL QUANTUM MEASUREMENT surement is obtained by using the Bayes theorem,

In this section, we consider the sequential quantum mea- Drainin 1 5@oin s i LTP1)
surement for the signal that takes the quantum state Pp (11;)=1 Pp (2|1’J)_§1(J)1+Q1(J‘)’ (39)
|¥)=|¢)@[¥;) (i=1,2). In this measurement, the two
particles are measured in sequence. Thus the measurement 1+Py(j)

consists of the two steps. The first is to perform the measure- Py (2]2;1)=1-P2(1]2;]) = &,()) 170,(])’ (40

ment on one of the two particles such that the mutual infor-

mation should be maximized. By using the result of the firstyhere we seQ,(j)=—Q;(j). In Eqs.(34)—(40), the param-

measurement, the second measurement is carried out on tBgyr j means that the outcome of the first measurement ex-

other particle such that the maximum value of the mutuahipits the quantum statey;).

information is obtained. . _ Using Egs.(4), (37), (39), and(40), we can calculate the
After the first measurement, we can obtain the posteriopxpected final entropy after the second measurement as

probability Pél)(jlk) of the quantum statéy;) from Eqgs.

(18), (27), and(28), , :

H fina= _j=§;2 PGat(i) k;Z P(Ki)

1-2&6,k%+1—4&1EK2

(D) —1—_pW —
L T x| 2 PEJZ)(m|k;j)InPE)2)(m|k;j)“. (41
(31) m=1,2
Substituting Egs(37), (39), and(40) into this equation, we
PI(2]2)=1— P(l)(1|2):§21_2§1"2+ V1-4&160” can obtain the accessible informatibgobtained in the se-
P P Er— &\ 1—AEEx2 quential measurement from E@),
(32
lg=11+15, (42

and the output probability in the first measurement is ob-
tained from Eqs(18) and(26), with

&H—&
V1-46&k%]

When we perform the second measurement, we use the posrzzi > PO D &(DI1+P(j)]in

terior probability after the first measurement as the prior 2j512 k=12

probability of the quantum state in the second measurement. 1

That is, when the outcome of the first measurement exhibits +5 > POG) D &(D[1-P(j)]in
=12 k=1,2

=H.. D ei i i
. 33 1=Hon(60)+ 2, Poa() 2 &DIng(i). (43

1
Por(1)=1-Pgi(2)= 5

1+Qx())
1_Pk(j)}

1+ Pk(j)}

the quantum statéy;), we set the prior probability in the 1-Qu())
second measurement ag=P{)(K|j)=&(j). Thus when (44)
the second measurement maximizes the mutual information,

the conditional probability becomes It should be noted here that for the paramet&qj),

Qk(j), and &.(j), the relations obtained by replacirig,,
PP(L1:)=1-PP(2|L;)=3[1+P1(])], (34  Qi, and& with Py(j), Qu(j), and(j), in Egs.(19-(22)

are established. Using these relations and
PP (2]2;))=1-P2(1|2;))=4[1+Px())], (35  &u(i)€(i)=&1€2¢* we can calculate Eq44) as

where we have used Eq&4) and (25). The parameters l,=— 2 p(l)t(j) 2 E(HINE() —Hy(P),  (45)
P.(j) andP,(j) are given by 2 M2
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where the quantityP is given by Eq.(30). Thus we finally the combined measurement is shown to be equal to that ob-
obtain the following expression of the accessible informationtained in the sequential measurement; namigly; I . This

in the sequential measurement, result indicates that the conjecture by Peres and Wodttérs
is not valid, at least for a binary quantum state signal. The
Is=Hpin(£2) = Huin(P). (46) general validity of their conjecture remains an open problem.
Comparing this with Eq(29), we find the equality They considered the Iinearly depen_dent three quantum _states
|#1), |#,), and|¢s) of a spins particle. In such a special
lc=1ls. (47 case, the combined measurement could give more informa-

. o . . tion than the sequential measurement. Furthermore, our re-
Therefore it is found that the accessible information obtame%u“ shows that Brody and Meister’s reasoning is not correct.

in the_sequentlal measurement is equal to that obtained in thﬁ1ey considered the minimization of the average probability
cor_?rl:])lneq r_neasure:nent% th bability of . of error and showed that the combined and sequential mea-
the s§qu(Iar:1ltri21 lljrr?u\algstereomenet ;Vgg?guela'i;% :S' Ity of error in surements_gave the same average probability of error. Then
they have inferred that the difference from Peres and Woot-
ters’ result is due to the difference between the minimization
Ps:.zlz PO(DIP(2|115)) &) + PP (1]2:)) £x())]- of the average probability of error and the maximization of
= (48) the mutual information. As seen from our result, this is not
the case. For a binary pure quantum state signal, an optimum
Substituting Eqs(33)—(37) into this equation, we can obtain quantum measurement maximizing the mutual information is
Ps="P. Thus we find the equalityps= P, which indicates equal to that minimizing the average probability of efi®}.
that the minimum value of the average probability of error in
the combined measurement is equal to that in the sequential
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