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Accessible information in combined and sequential quantum measurements
on a binary-state signal
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The accessible information obtained in combined and sequential quantum measurements is calculated for a
binary pure quantum state signal. It is shown that the accessible information obtained in the combined mea-
surement is equal to that obtained in the sequential measurement. The result indicates that the conjecture by
Peres and Wootters@Phys. Rev. Lett.66, 1119~1991!# is not valid, at least for a binary quantum state signal.
Furthermore, the result is compared with that obtained by Brody and Meister@Phys. Rev. Lett.76, 1 ~1996!#.
@S1050-2947~97!06601-8#
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I. INTRODUCTION

It is well known in quantum mechanics that we cann
completely distinguish between two different nonorthogo
quantum states. This fact indicates that detection error
quantum measurement for such quantum states are in
table. Therefore it is important to consider quantum meas
ment that predicts, as accurate as possible, which quan
state a physical system takes. This problem is not only
fundamental interest in quantum mechanics, but also of
sential importance in optical communication and quant
information theory. A performance of quantum measurem
is evaluated by the average probability of error or by
mutual information. Quantum measurement that minimi
the average probability of error or that maximizes the mut
information is referred to as optimum quantum measu
ment. The maximum value of the mutual information
called the accessible information.

Consider a quantum communication system in which
formation is transmitted in terms of two quantum sta
uc1& and uc2&. When the quantum statesuc1& and uc2& are
nonorthogonal, detection error occurs, with finite probabili
in such a binary communication system. To reduce the
tection error and to transmit the information more accurate
we can send the information with the two identical states
this case, the quantum state of the signal that carries in
mation is given by uC1&5uc1& ^ uc1& or uC2&5
uc2& ^ uc2&. Thus to obtain the information, the receiv
should perform quantum measurement on the signal wh
quantum state isuC1& or uC2&. When we perform the quan
tum measurement on such a signal, there are two ways;
is a combined measurement in which the two compon
states are treated as one composite quantum state, an
other is a sequential measurement in which one of the
component states is first measured and then the other c
ponent state is measured by using the result of the first m
surement. It is interesting to consider which measurem
551050-2947/97/55~1!/22~5!/$10.00
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combined or sequential, is more effective for the signal
tection.

Peres and Wootters considered the detection proces
three spin-12 states, uf1&5u↑&, uf2&5 1

2u↑&1A3/2u↓&, and
uf3&5 1

2u↑&2A3/2u↓&, which are linearly dependen
(uf1&5uf2&1uf3&), where u↑& and u↓& stand for spin-up
and spin-down states. They conjectured that the combi
measurement gives more information than the sequen
measurement@1#. Subsequently, Massar and Popescu h
shown that the combined measurement is more effective
the sequential measurement@2#. However, they have use
the evaluation quantity, which is neither the mutual inform
tion nor the average probability of error. Recently, for a
nary signal consisting of the spin-1

2 particles, Brody and
Meister have proven that the minimum value of the avera
probability of error in the combined measurement is equa
that in the sequential measurement@3#. This result seems to
contradict the conjecture by Peres and Wootters. They h
considered that such a contradiction is due to the differe
of the optimizations of quantum measurements; Peres
Wootters considered the quantum measurement maximi
the mutual information while Brody and Meister consider
the quantum measurement minimizing the average proba
ity of error.

Therefore the purpose of this paper is to investigate
accessible information obtained in the combined and sequ
tial quantum measurements on a binary pure quantum s
signal. Our result shows that both measurements give
same amount of information. Thus the conjecture by Pe
and Wootters@1# is not valid, at least, for a binary quantum
state signal, though the general validity of the conjecture s
remains an open problem. Furthermore our result means
Brody and Meister’s reasoning is not true@3#. In Sec. II, we
investigate a property of an optimum quantum measurem
in which we can obtain the accessible information. Using
results, we consider the combined and sequential quan
22 © 1997 The American Physical Society
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55 23ACCESSIBLE INFORMATION IN COMBINED AND . . .
measurements in Sec. III and Sec. IV. We give conclud
remarks in Sec. V.

II. INFORMATION-OPTIMUM MEASUREMENT

In this section, we consider the accessible informat
obtained in quantum measurement for a binary pure quan
state signal, where the statistical operators of the signal
given by r̂15uc1&^c1u and r̂25uc2&^c2u. We assume tha
the quantum statesuc1& anduc2& are nonorthogonal and lin
early independent, and we set^c1uc2&5keiw (k.0). Then
the Hilbert space of the signal becomes a two-dimensio
space given byHs5$c1uc1&1c2uc2&uc1 ,c2PC%, where C
stands for the field of complex numbers. The quantum m
surement of the binary signal detection is described in te
of positive operator-valued measures~called quantum detec
tion operators! @4,5#, P̂1 andP̂2, which satisfy the relations
P̂11P̂25 Î and P̂j>0, whereÎ is an identity operator de
fined on the Hilbert space Hs . The quantity
Pc( j uk)5Tr@P̂j r̂k# is the conditional probability that the
measurement outcome exhibits the quantum stateuc j& when
the quantum stateuck& has been actually received, whe
Tr is the trace operation over the Hilbert spaceHs . Let j j be
the prior probability of the quantum stateuc j&, which is nor-
malized asj11j251. Then the average probability of erro
in the quantum measurement is given
Pe5Pc(1u2)j21Pc(2u1)j1, and the mutual information@6#
is calculated as

I5 (
j51,2

(
k51,2

Pc~ j uk!jklnF Pc~ j uk!

(
m51,2

Pc~ j um!jmG . ~1!

Furthermore the output probability of the quantum st
uc j& is given byPout( j )5(k51,2Pc( j uk)jk . After the mea-
surement whose outcome indicates the quantum stateuck&,
using the Bayes theorem@6#, we can obtain the posterio
probability of the quantum state uc j& as
Pp( j uk)5Pc(ku j )j j /Pout(k). Then the mutual information is
expressed as

I5H initial2Hfinal , ~2!

whereH initial andHfinal are the initial and expected final en
tropies calculated as

H initial52j1lnj12j2lnj25Hbin~j1!, ~3!

Hfinal52 (
j51,2

Pout~ j !F (
k51,2

Pp~ku j !lnPp~ku j !G . ~4!

In Eq. ~3!, Hbin(x) is the binary entropy function@7#,

Hbin~x!52xlnx2~12x!ln~12x!. ~5!

In this paper, we measure information in nats.
Suppose that the quantum measurement described b

detection operatorsP̂1 and P̂2 maximizes the mutual infor-
mation I . Then the detection operatorsP̂1 andP̂2 must sat-
isfy the necessary condition obtained by Holevo@8#,
g
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~ F̂ j2Ĝ!P̂j50 ~ j51,2!, ~6!

Ĝ5 (
j51,2

F̂ jP̂j5 (
j51,2

P̂j F̂ j , ~7!

where the operatorF̂ j is given by

F̂ j5 (
k51,2

r̂kjklnF Pc~ j uk!

(
m51,2

Pc~ j um!jmG . ~8!

Using Eqs.~6! and~7!, we can show thatP̂1 andP̂2 become
projection operators defined on the two-dimensional Hilb
spaceHs . This is proved as follows@9#. First the resolution
of identity P̂11P̂25 Î gives the relationP̂1P̂25P̂2P̂2. Then
using Eqs.~6! and ~7!, we obtain the relation

~ F̂12F̂2!P̂1P̂25~ F̂12F̂2!P̂2P̂150, ~9!

where the operatorF̂12F̂2 is calculated from Eq.~8! as

F̂12F̂25p1r̂12p2r̂25uc1&p1^c1u2uc2&p2^c2u,
~10!

with

p15j1lnFPc~1u1!Pout~2!

Pc~2u1!Pout~1!G , p25j2lnFPc~2u2!Pout~1!

Pc~1u2!Pout~2!G .
~11!

Since F̂12F̂2 is a Hermitian operator defined on the tw
dimensional Hilbert spaceHs , this operator has two eigen
statesuĉ1& and uĉ2& with eigenvaluesm1 andm2. Using the
spectral decomposition of the operatorF̂12F̂2 and the or-
thogonality of the eigenstates, Eq.~9! becomes
m j^ĉ j uP̂1P̂25m j^ĉ j uP̂2P̂150 ( j51,2). If m1m2Þ0, the
completeness of the eigenstates gives the rela
P̂1P̂25P̂2P̂150, or equivalently,P̂j

25P̂j ( j51,2). Thus
we have found thatP̂1 and P̂2 are one-dimensional projec
tion operators defined on the Hilbert spaceHs unless the
operatorF̂12F̂2 has zero eigenvalue.

Since the detection operatorsP̂1 and P̂2 that maximize
the mutual information are one-dimensional projection o
erators, we can setP̂j5uv j&^v j u ( j51,2), where
$uv1&,uv2&% is a complete orthonormal system in the Hilbe
spaceHs . On the other hand, since the signal quantum sta
uc1& and uc2& are linearly independent, we can construc
complete orthonormal system$uf1&,uf2&% as

uf1&5
uc1&1e2 iwuc2&

A2~11k!
, uf2&5

uc2&2eiwuc1&

A2~12k!
. ~12!

Since $uv1&,uv2&% and $uf1&,uf2&% are complete orthonor
mal systems in the same Hilbert space, there must be a
tary transformation as follows:

S uv1&

uv2&
D 5S eia/2cos~b/2! e2 ia/2sin~b/2!

2eia/2sin~b/2! e2 ia/2cos~b/2!
D S uf1&

uf2&
D ,

~13!
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where the parametersa andb are determined by the require
ment that the mutual information should be maximized. Su
a requirement is that]I /]a5]I /]b50 and the Hesse matri
calculated fromI with respect toa andb is negative defi-
nite. After some calculation, we obtain the parametersa and
b @10#,

a5w, sinb57A 12k2

124j1j2k
2,

~14!

cosb56
~j12j2!k

A124j1j2k
2
.

Using Eqs.~12! and ~13!, we can express the optimum d
tection operatorsP̂1 andP̂2 in terms of the signal quantum
statesuc1& and uc2&,

P̂15
1

2 S 12kcosb

12k2 2
sinb

A12k2D uc1&^c1u

1
1

2 S 12kcosb

12k2 1
sinb

A12k2D uc2&^c2u2
k2cosb

2~12k2!

3~eiwuc1&^c2u1e2 iwuc2&^c1u!, ~15!

P̂25
1

2 S 11kcosb

12k2 1
sinb

A12k2D uc1&^c1u

1
1

2 S 11kcosb

12k2 2
sinb

A12k2D uc2&^c2u2
k1cosb

2~12k2!

3~eiwuc1&^c2u1e2 iwuc2&^c1u!. ~16!

It is easy to check thatP̂11P̂2 is an identity operator de
fined on the Hilbert spaceHs of the signal, namely,
(P̂11P̂2)uc&5uc& for any uc&PHs .

Therefore we finally obtain the accessible informati
I opt,

I opt5
1

2 (
j51,2

j j~11Pj !lnS 11Pj

11Qj
D

31
1

2 (
j51,2

j j~12Pj !lnS 12Pj

12Qj
D , ~17!

where the parametersPj andQj are given by

Pj5
122~12j j !k

2

A124j1j2k
2
, Qj5

2j j21

A124j1j2k
2
, ~18!

which satisfy the following relations:

j1P12j2P25Q152Q2 , j1P11j2P25A124j1j2k
2,

~19!

~11P1!~12Q1!

~12P1!~11Q1!
5

~11P2!~12Q2!

~12P2!~11Q2!
5
11A124j1j2k

2

12A124j1j2k
2
,

~20!
h
~11P1!~12P2!

~11Q1!~12Q2!
5

~12P1!~11P2!

~12Q1!~11Q2!
5k2, ~21!

12P1
2

12Q1
2 5k2

j2
j1
,

12P2
2

12Q2
2 5k2

j1
j2
. ~22!

These relations are used to show that the accessible info
tion in the sequential measurement is equal to that in
combined measurement.

Furthermore it is easy to see that the average probab
of error becomesPe5

1
2(16A124j1j2k

2) in the quantum
measurement described by the detection operators give
Eqs. ~15! and ~16!. It is important to note thatPopt5
1
2(12A124j1j2k

2) is the minimum value of the averag
probability of error obtained by means of the quantum det
tion theory@4#. When we use this minimum value, the acce
sible informationI opt can be expressed as

I opt5Hbin~j1!2Hbin~Popt!, ~23!

where the functionHbin(x) is given by Eq.~5!. In this ex-
pression, the first term on the right-hand side is the Shan
information of the signal, and the second term represents
information loss due to the detection error. In the optimu
quantum measurement, the conditional probabilityPc( j uk)
can be expressed as

Pc~1u1!512Pc~2u1!5 1
2 ~11P1!, ~24!

Pc~2u2!512Pc~1u2!5 1
2 ~11P2!, ~25!

and the output probabilityPout( j ) is given by

Pout~1!512Pout~2!5 1
2 ~11Q1!. ~26!

Moreover, after the measurement whose outcome indic
the quantum stateuck&, using the Bayes theorem, we obta
the posterior probabilityPp( j uk) of the quantum stateuc j& as

Pp~1u1!512Pp~2u1!5j1
11P1

11Q1
, ~27!

Pp~2u2!512Pp~1u2!5j2
11P2

11Q2
. ~28!

These results are used when we investigate the combined
sequential quantum measurements.

III. COMBINED QUANTUM MEASUREMENT

We now consider a quantum state signal that consist
the two particles, where the quantum states of the signal
given by uC1&5uc1& ^ uc1& and uC2&5uc2& ^ uc2& with
u^C1uC2&u5k2. In this section, we consider the combine
measurement that maximizes the mutual information. In
combined measurement, we perform the quantum meas
ment on one composite particle instead of the individual p
ticles to know the quantum stateuC j&, but notuc j&. Since the
quantum states of the composite particle areuC1& and
uC2&, which are linearly independent, the Hilbert space
the signal becomes a two-dimensional space defined
Hs5$c1uC1&1c2uC2&uc1 ,c2PC%. Therefore the accessibl
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55 25ACCESSIBLE INFORMATION IN COMBINED AND . . .
information I C in the combined measurement is obtained
replacingk2 with k4 in Eqs.~17! and ~18!,

I C5Hbin~j1!2Hbin~P!, ~29!

with

P5
1

2
~12A124j1j2k

4!. ~30!

Furthermore in the combined measurement that gives
accessible informationI C , the average probability of erro
PC is calculated to bePC5P, which is the minimum value

IV. SEQUENTIAL QUANTUM MEASUREMENT

In this section, we consider the sequential quantum m
surement for the signal that takes the quantum s
uC j&5uc j& ^ uc j& ( j51,2). In this measurement, the tw
particles are measured in sequence. Thus the measure
consists of the two steps. The first is to perform the meas
ment on one of the two particles such that the mutual inf
mation should be maximized. By using the result of the fi
measurement, the second measurement is carried out o
other particle such that the maximum value of the mut
information is obtained.

After the first measurement, we can obtain the poste
probability Pp

(1)( j uk) of the quantum stateuc j& from Eqs.
~18!, ~27!, and~28!,

Pp
~1!~1u1!512Pp

~1!~2u1!5j1
122j2k

21A124j1j2k
2

j12j21A124j1j2k
2

,

~31!

Pp
~1!~2u2!512Pp

~1!~1u2!5j2
122j1k

21A124j1j2k
2

j22j11A124j1j2k
2

,

~32!

and the output probability in the first measurement is
tained from Eqs.~18! and ~26!,

Pout
~1!~1!512Pout

~1!~2!5
1

2 F11
j12j2

A124j1j2k
2G . ~33!

When we perform the second measurement, we use the
terior probability after the first measurement as the pr
probability of the quantum state in the second measurem
That is, when the outcome of the first measurement exhi
the quantum stateuc j&, we set the prior probability in the
second measurement asjk5Pp

(1)(ku j )[jk( j ). Thus when
the second measurement maximizes the mutual informa
the conditional probability becomes

Pc
~2!~1u1; j !512Pc

~2!~2u1; j !5 1
2 @11P1~ j !#, ~34!

Pc
~2!~2u2; j !512Pc

~2!~1u2; j !5 1
2 @11P2~ j !#, ~35!

where we have used Eqs.~24! and ~25!. The parameters
P1( j ) andP2( j ) are given by
y
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P1~ j !5
122j2~ j !k

2

A124j1j2k
4
, P2~ j !5

122j1~ j !k
2

A124j1j2k
4
.

~36!

Here we have used the relationj1( j )j2( j )5j1j2k
2. The

output probability in the second measurement becomes

Pout
~2!~1; j !512Pout

~2!~2; j !5 1
2 @11Q1~ j !#, ~37!

with

Q1~ j !5j1~ j !P1~ j !2j2~ j !P2~ j !. ~38!

Furthermore the posterior probability after the second m
surement is obtained by using the Bayes theorem,

Pp
~2!~1u1; j !512Pp

~2!~2u1; j !5j1~ j !
11P1~ j !

11Q1~ j !
, ~39!

Pp
~2!~2u2; j !512Pp

~2!~1u2; j !5j2~ j !
11P2~ j !

11Q2~ j !
, ~40!

where we setQ2( j )52Q1( j ). In Eqs.~34!–~40!, the param-
eter j means that the outcome of the first measurement
hibits the quantum stateuc j&.

Using Eqs.~4!, ~37!, ~39!, and~40!, we can calculate the
expected final entropy after the second measurement as

Hfinal52 (
j51,2

Pout
~1!~ j !H (

k51,2
Pout

~2!~k; j !

3F (
m51,2

Pp
~2!~muk; j !lnPp

~2!~muk; j !G J . ~41!

Substituting Eqs.~37!, ~39!, and ~40! into this equation, we
can obtain the accessible informationI S obtained in the se-
quential measurement from Eq.~2!,

I S5I 11I 2 , ~42!

with

I 15Hbin~j1!1 (
j51,2

Pout
~1!~ j ! (

k51,2
jk~ j !lnjk~ j !, ~43!

I 25
1

2 (
j51,2

Pout
~1!~ j ! (

k51,2
jk~ j !@11Pk~ j !# lnF 11Pk~ j !

11Qk~ j !
G

1
1

2 (
j51,2

Pout
~1!~ j ! (

k51,2
jk~ j !@12Pk~ j !# lnF 12Pk~ j !

12Qk~ j !
G .

~44!

It should be noted here that for the parametersPk( j ),
Qk( j ), and jk( j ), the relations obtained by replacingPk ,
Qk , andjk with Pk( j ), Qk( j ), andjk( j ), in Eqs.~19!–~22!
are established. Using these relations a
j1( j )j2( j )5j1j2k

2, we can calculate Eq.~44! as

I 252 (
j51,2

Pout
~1!~ j ! (

k51,2
jk~ j !lnjk~ j !2Hbin~P!, ~45!
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where the quantityP is given by Eq.~30!. Thus we finally
obtain the following expression of the accessible informat
in the sequential measurement,

I S5Hbin~j1!2Hbin~P!. ~46!

Comparing this with Eq.~29!, we find the equality

I C5I S . ~47!

Therefore it is found that the accessible information obtain
in the sequential measurement is equal to that obtained in
combined measurement.

The minimum value of the average probability of error
the sequential measurement is calculated as

PS5 (
j51,2

Pout
~1!~ j !@Pc

~2!~2u1; j !j1~ j !1Pc
~2!~1u2; j !j2~ j !#.

~48!

Substituting Eqs.~33!–~37! into this equation, we can obtai
PS5P. Thus we find the equality,PS5PC , which indicates
that the minimum value of the average probability of error
the combined measurement is equal to that in the seque
measurement. When the quantum statesuc1& and uc2& are
the spin-12 quantum states, this result is equivalent to th
obtained by Brody and Meister@3#.

V. CONCLUDING REMARKS

The main result of this paper is that for a binary pu
quantum state signal, the accessible information obtaine
ry

m

n

d
he

ial

t

in

the combined measurement is shown to be equal to that
tained in the sequential measurement; namely,I C5I S . This
result indicates that the conjecture by Peres and Wootters@1#
is not valid, at least for a binary quantum state signal. T
general validity of their conjecture remains an open proble
They considered the linearly dependent three quantum s
uf1&, uf2&, and uf3& of a spin-12 particle. In such a specia
case, the combined measurement could give more infor
tion than the sequential measurement. Furthermore, ou
sult shows that Brody and Meister’s reasoning is not corre
They considered the minimization of the average probabi
of error and showed that the combined and sequential m
surements gave the same average probability of error. T
they have inferred that the difference from Peres and Wo
ters’ result is due to the difference between the minimizat
of the average probability of error and the maximization
the mutual information. As seen from our result, this is n
the case. For a binary pure quantum state signal, an optim
quantum measurement maximizing the mutual information
equal to that minimizing the average probability of error@9#.
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