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Simultaneously forbidden resonances in the Autler-Townes effect with a modulated pump
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It was shown recently that systems subject to a strong modulating interaction can exhibit a new property in
their response to a probe field. Under certain conditions an infinite number of resonances are simultaneously
forbidden[V. N. Smelyanskiy, G. W. Ford, and R. S. Conti, Phys. Rev63\ 2598(1996)]. In the present
paper we investigate this effect in the case of a three-state system in which a strong pump field with a periodic
frequency modulatiotf) couples a pair of excited levels while the complex Autler-Townes spectrum is probed
via a weak field that connects one of the coupled states to the ground state. Under certain conditions a
half-infinite comb of spectral lines, spaced Qy simultaneously disappear from the Autler-Townes spectrum.
These lines are positioned above or below a unique edge frequency, which is that of the probe transition in the
absence of the strong field. It is shown that the aforementioned effect results from a special factorization
property of the corresponding Floguet Hamiltonian that describes the Autler-Townes spectrum. Detailed analy-
sis of this property is presented. In particular, it is found that the subset of the parameter space of the system
where the factorization occurs consists of an infinite number of quasiperiodic manifolds. These manifolds
exhibit some universal features related to the degeneracy of the dressed states. The line shapes of the probe
resonances near the degeneracy points are derived. The intensities of the probe resonances are investigated in
the limit of ) small compared with the modulation depth and the strength of the pump field. In the latter case,
effects related to the avoided crossings of the dressed-state levels are considered. The Floguet Hamiltonian that
describes the Autler-Townes spectrum in the case consideffedtivelycorresponds to a special model of a
periodically driven systenjwith period 27/Q)) in which an external perturbation has the form of an operator
projecting onto a single-quantum state. We generalize this model to the casé&ldeaal periodically driven
system where the simultaneous vanishing of a half-infinite number of the dressed-state Fourier harmonics are
analyzed. Possible experimental tests of the effect are suggeSi€ih0-2947P7)04303-5

PACS numbgs): 42.50.Hz, 32.80-t, 33.40+f

I. INTRODUCTION of levels spaced with the energy of a photon of the driving
field.

One of the most important aspects of nonlinear matter- This spectrum can be investigated experimentally using a
radiation interactions is related to the fact that the action of videly adopted experimental method originated in the sem-
strong resonance field alters the properties of a physical sy%lal v;/ork Okf Auttljer f?nlg tThovtvneEZ]. I? this m?tt?]odt\zn atdd|— |
tem in an essential way. This topic has been very thoroughl 83&%?5&3 I?avfls o gofnc:anph?rcdslgvne?iz usg d Aossar?ggu);t
investigated and many interesting effects have been ob: = -~ ; X )
served. Among these are the ac Stark effdd the Autler of the strong-field level splitting described above, the spec

S ; - tral peak in the probe absorption spectrum will also split into
and Townes effedi2], gain without inversiori3,4], electro- 5 dgublet of Iiﬁes[Z]. Thisp splittiFr:g called the ALE)tIer—
magnetically induced transpareniy,6], etc. y

X ; ’ Townes effect, is one of the most direct manifestations of the
One of the basic concepts in this area, the spectrum of &sactrum of dressed states. Numerous observations of this

driven system, can be understood from the consideration of gfect were made for various wavelengths in gak®40],

pair of quantum energy levels resonantly coupled via gaser-cooled atom$11], and the solid stat§12], in both
strong monochromatic field of frequeney [7]. This field  steady-state and transigit3] regimes, and for threg9] or

will induce low-frequency oscillations in the system, termedmore levels involved in the effe¢10], including the case of
“Rabi flopping,” with frequencyr<w. Considered in the continuum-continuum splitting14].

rotating-wave approximation the time-varying wave function  Theoretical investigation of this effect has included time-
of the system will oscillate at four distinct frequencies, independent probe absorption and emission spectra in the
which can be chosen, for example,as/2 andw*r/2. This  three-level configuratiopl5], as well as multilevel systems
doubling of oscillation frequencies compared with the un-and time-dependent absorption spe€1@]. The general case
driven system is effectively the splitting of each of the en-of multiple strong fields connecting different pairs of levels
ergy levels into a doublet. The splitting of each doublet ishas been treated in Ref$,17].

r, while the spacing between the two doublets is the driving Recently the phenomenon of electromagnetically induced
frequencyw. Such aspectrunfor a resonantly driven system transparency{5,6] has attracted considerable interest. This
is frequently described in terms of a pair of dressed stateffect is closely related to the Autler-Townes effect when the
which are combined states of an electromagnetic field and medium is made transparent to a certain probe frequency as a
guantum systerfB]. Each dressed state corresponds to a pairesult of destructive interference of the split components of
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the probe transitiofi18]. At the same time a resonantly en- 1>
hanced third-order susceptibility can be obtaipgf

All the work mentioned above was restricted to the use of o, /& % O+MQ cosQt
monochromatic fields, which is not to say that sufficient at- pQ@ °
tention has been paid to the Autler-Townes pump-probe — D>

scheme with anodulatedoump field. In this regard consider
fields with a periodic frequency modulatigiFM). Use of
such fields, for example, is the basis for ultrasensitive ab-
sorption spectroscopyl9—-21] where the resonant informa-
tion is put at a modulation frequenésind its harmonigsthat

is high compare_d to the predominantly Iowarequenqy NOIS& hservables and to deal directly with the spectrum of a sys-
of lasers. A periodically modulated pump field provides an

interesting tool for Autler-Townes-type spectroscopy due totem dressed by a periodically modulated pump. Because the

the large number of sidebands and additional parameters tht pe of nonlinearity in this case is more complex than that
o - or the case of the usual dressed states, new effects can be
can be sensitively controlled over wide ranges. expected to appedld]
In this paper we consider a new object for Autler- P PP X

Townes-type spectroscopy, a quantum system dressed by aThe organization of this paper is as follows: In Sec. Il we
strong resonant pump field of the form first consider a two-level system subject to a strong pump

field of the form(1) with (nea) resonant carrier frequency.
E(t)=Eexf —iwt—id(t)]+c.c., H(t)=Msin(Qt). We then describe its dressed-state spectrum and the infinite
(1) set of resonances induced by a weak probe that connects one
of the two strongly coupled levels to a third level. In Sec. llI
Here& is a field amplitudew is the carrier frequency of the we consider the factorization property of the effectifo-
field, M is the modulation index, anf is the modulation que) Hamiltonian that describes the dressed-state spectrum
frequency. Such a field is an essentially polychromatic fieldof the system and a related effect of simultaneously forbid-
with a carrier wave at the frequenay and an infinite num- den resonances. This is the principal result of the paper.
ber of sideband&+nQ) (n=*x1,+2,...). Then in Sec. IV we investigate this effect analytically and
If both the modulation indexM and the field amplitude numerically, using the method of continued fractions. Sec-
£ are sufficiently large then the Fourier harmonics of thetion V deals with topological properties of the manifolds in
field will be strongly mixed by a nonperturbative nonlinear- the parameter space of the system on which the effect of
ity in the saturated quantum transitip22]. Due to the peri- simultaneously forbidden resonances takes place. In this sec-
odic character of the modulation the spectrum of dressetlon also the effect of a degeneracy of the dressed-state levels
states will consist, not of doublets as in the unmodulatedvill be considered. In Sec. VI we investigate the limit of
case, but rather of infiniteddersof sublevels with the spac- small modulation frequency. Section VII concludes with a
ing between sublevels corresponding to the modulation frediscussion and summary.
quency. Such a spectrum exhibits nontrivial nonlinear fea-
tures[23,24). _ _ , Il. THE LINEAR RESPONSE TO A PROBE FIELD
The effect of the interaction of a two-level system with a
periodic FM field has been intensively investigated earlier We consider a three-level system in theconfiguration
[19,27-3Q and more recentl}22,23,25,26,31-33Periodic  as shown in Fig. 1. A strong FM field of the forid) is
modulation of the field produces additional sidebands in thepplied between an excited stdte) and an intermediate
scattered spectrup31] and leads to a periodic modulation of state|2). A weak probe field
the absorption coefficient and fluorescence sig@al. The .
strong field and strong modulation produce additional reso- Ep(t)=€pe"“’pt+ c.c. 2
nances in the spectf22], a nonlinear phenomenon that has
also been intensively studied, but not yet completely underresonantly excites the system from the ground g@iteo the
stood, in the related field of magnetic resonaf2® 25. state|1). We will be interested in the linear response of the
All of the above-mentioned results are restricted to thesystem to the probe field and will calculate the probe absorp-
case with two quantum levels. Following the approach oftion spectrum and the induced polarization for the probe
Autler-Townes spectroscopy that involves a third level andransition. The equations for the time-varying probability
an additional(probe field, allows one to investigate more amplitudes of a single atom are

lo>

FIG. 1. Three-level pump-probe scheme in theonfiguration
with a frequency modulated pump.
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where — wy and — w, are the energies of the stat@y and Here we have used the explicit form of the phase modulation
|2), respectively, the energy of the stdfie® is set to zero.  ¢(t) [Eq. (1)].

The relaxation widths of the levels afey, ,, anddg; and Because the Hamiltonian in E¢LO) depends upon time
d,, are dipole matrix elemenigonsidered real In order to  periodically with a period 2/} one can write two linearly
find a linear response to a probe field the effect of the probéndependent solutions of EGLO) in a form that follows from
upon the ground-state population must be neglectedhe Floquet theorer2,34]

Therefore we write

Wo(t) =g, €) Dr(t)=e Nt X D MM (a=x, =1,
n=-—ow
We now transform to the frame rotating with the instanta- (1D

neous frequency of the coupling field where the indexx distinguishes the two solutions. The pa-

W, o rameters\ . (rather, A\.) are called the quasienergies
( ):( ot +i (D) ) (5 [35,36. As seen from the form of the dressed states in Eq.
L P e Uz (11) the choice of quasienergies is ambiguous within integer

multiples of Q). Each of the dressed statgdl) is associated

After neglecting counterrotating terms in the new frame, i o [adder of quasienergy “levels”

[valid if |¢(t)|<w] and taking into account Eq4), we

write the equations for the slowly varying amplitudes A,+NQ, a=*, n=0,£1,.... (12)
1 A1)
) There will be two such ladders that correspond to the two
! r dressed states. It follows from E.0) that these ladders are
d ( 1//1) 2 ( 1111) complimentary to each other
|— =
dt . [
& ST & Ai+A_=A, modQ). (13
e i(wp—wp)t The harmonics of the dressed stadel, @5, in Eq.(11) as
+rp ) (6)  well as the quasienergies, can be found as the solution of
0 a matrix eigenvalue problem for a certain infinite matrix

Hamiltonian[35]. This problem will be treated in Sec. Ill.

where Here all harmonicsb{, and the quasienergies are assumed
to be known for both dressed statékl). These dressed
1 1 . o .
r=— gdlzfy Mp=— %dmé’p, (7 states will be used as the basis in E@). rather than using
|1), |2). If we set
and

H(=C. (OO (O+C_(OP (1), =12 (14

A=w=wp. ® then, using Eqs6), (10) we can derive the equations for the
The quantityA in Eq. (8) is the detuning from resonance of @mplitudesC..(t)

the carrier frequency of the coupling field. Equati@) is _

valid for t< yllrf) andy 2>1p. The first term on the right- iC,=— ! > Yap()Cpt 1 D) e (@p~ 00t g=+
hand side(rhs) of Eq. (6) describes the resonant coupling 24=%

between the statdd) and|2) including the effect of dissi- (15

pation, while the second term in E¢) corresponds to the

weak probe. wherey,4(t) are coefficients associated with dissipation
In this paper we will be interested in the limit of weak

dissipation

yaﬁ<t>=k§lzyk®ﬁ<t>*®5(t>, a,B=%*. (16
I’, Q>7l,2' (9) ’

It follows from the form of the dressed-state amplitudes

It is advantageous in this limiting case to use, rather than th&)a t) TEq. (1D that th fficient t illate at th
stationary state$l) and |2), the dynamical(field-dressef fre}('quj e)n[cigéf —)])\ﬁ?—pﬂe (Cgi Olcileln %B)( )w(t)wsé?e:setﬁe ine-

states, which incorporate the effect of a strong coupling ex'homogeneous terms in EGL5), associated with the probe

actly: These can be obtained by. solving K@) while ne- field, oscillate at the frequenciesw,—wo—\,+n{)
glecting the small terms proportional tg, , andr,. The (a=%; n=0,x1 )

Schralinger equation for the time-varying amplitudes of the - . :
Under the conditior{9) the intervals between quasienergy
dressed state®, A1) then takes the form levels are much greater than the relaxation widths of the
@, 0 r ®, ; levelsy, and vy,
= . 1
r A+MQcoqQt)/\ P, (10

d

dt

P,

INy—=A_+mQ|>y;, foranyintegem. (17
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It follows then from Eq.(15) that the probe field will pro- As seen from Eq(22), a monochromatic probe field with
duce resonance in the system whenever its frequency satifequency close te,, , gives rise to a stimulated emission at
fies one of the conditions an infinite comb of frequencies, ,+ & with corresponding

amplitudes of individual harmonics proportional to
(18) 1 nb1m- Those harmonics correspond to all possible tran-

sitions from the quasienergy levels,+m( of the reso-
where o=+, n=0,=1,+2,.... There will be two nantly excited dressed state back to the ground state.
“combs” of the probe resonance frequencies , corre- Thus, in the limit of weak dissipatiofEq. (17)], the har-
sponding to various intervals between the ground-state levehonics of the dressed statdg , provide the essential infor-
—wg and levelsk ,+nQ of the quasienergy ladders for two mation about the probe-absorption resonances and stimulated
dressed statesa(=+). Near the resonancel8) a steady- emission of the probe. These quantities will be of central
state solution of Eq(15) has the form interest here.

W= Van=wot N, N,

efiﬁt

Ca(t)%rpq)inmu C_,~0 (19

Il. FACTORIZATION PROPERTY
OF THE FLOQUET HAMILTONIAN
(in what follows we will use the subscript « to identify the
other dressed state relative to that identified daye.g., if
a— + then—a— — and vice versa In Eq. (19) the “field-
dressed” damping coefficiert,, is

In the preceding section the linear response to a probe
field [Egs.(22), (23)] was calculated in terms of the quasien-
ergiesA . and the harmonics of the dressed-state amplitudes
Csz(t), satisfying Eq.(10). The Hamiltonian in Eq(10) is

te special, in that iteffectivelydescribes a two-level system

To= 2 w > [0F? (200 subject to a strong harmonic perturbation with frequeficy
k=12 n=-= that is coupled to a system via a single-quantum sfthte
(that is, described by a single diagonal matrix elemeht

and the small probe detuningis our knowledge, this form of the interaction has not been
encountered before in studies of two-level driven systems. It
8= wp—Van, |8<Q. (21) leads to a very special property of the dressed-state harmon-

ics @1, andd3, that will be considered here.
Note thatC,(t) is a nondiagonal element of the density ma-  To describe this property we use the approach developed
trix between the ground stai®) and one of the dressed by Shirley [35]. After substituting expressiongll) for
states. Near the resonan¢®g) the probe field resonantly @<(t) (i=1,2) into Eq.(10) we obtain an infinite set of
excites the system to this dressed state from the ground stat€sirix recursion relations fob® (i=1,2). They can be

and the amplitudeC,(t) is enhanced. The amplitude \yitten in the form of a matrix eigenvalue problem for the
C_,(t) corresponding to the other dressed state is muck g

smaller (~r,/€)) provided that the conditiori17) holds.
This is not true near the degeneracy points where two ladders

_of guasienergy nearly coincidéhis effect will be considered —nO r Dy, 0 O\[[®y, 4
| aml+slo Sl
Based on the solutiofl9) one can find the polarization r A-nQj\®;, 0 1/[\Pon
p(t) induced in an optically thin medium by the probe field o o
near the resonancédg) ( 1’"“) = ( Lo . u=MQJ/2. (24)
q>2,n+1 q)Z,n
+
|0(t):5pm:2_0c Xﬁ,m(‘s)e_w“'m”)t*C-C-’ (22 Here the integen ranges from— to +o and superscript
a is omitted for simplicity. The operator whose eigenvalues
where are\’s is an infinite-dimensional Hermitian matri¥loquet
Hamiltonian
(23 Nd(z)l a (23
Xnm( 0=~ 35T ) P10Pim: @3 )
HereN is the atom density and the detuniags given in Eq. > .212 HIG P m=AD; (25)
m=—o j=1,

(21). As seen from Eqg22), (23) the probe-absorption curve
near each resonan¢t8) has a Lorentzian shape with a width
determined by the field-dressed damping paramétgr  with rows and columns identified by pairs of indices, e.g.,
There will be two infinite sets of resonandd$) correspond- (i,n) and (j,m), where the indices take on the values
ing to two quasienergy ladders and they will be well resolved=1,2 and n=0,+1,.... The eigenvectors are infinite-
under condition(9). It follows from Eg.(22) that each reso- dimensional column vectors. If one orders their elements
nance(18) is characterized by an absorption cross sectionb; , so thati runs over its values before each changein
proportional to|®{|? (cf. Ref.[2]). then the Floquet Hamiltonia® is
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(1k+1) (2k+1) (1k) (2k) (1k—1) (2k—-1)

(1k+1)| - —(1k+1) r 0 0 0 0
(2k+1)| - r A—(k+1)Q 0 w 0 0
(1k) 0 0 —kQ r 0 0
(26)
(2k) 0 M r A-rQ 0 o
(1k—1) 0 0 0 0 —(k—=1)Q r
(2k—1) 0 0 0 w r A—(k—1)Q

The eigenvalues of{ (quasienergigscan be found as roots On the other hand, the componeh, alwaysvanishes un-

of the characteristic equation figfi—IN]=0, wherel is an  der condition(27) because in this case the columnk)lof

identity matrix. the matrix<—\I contains only one nonzero matrix element,
The Floquet Hamiltonian has a periodic structure WithHﬂj [precisely the same condition leads to E28)].

only the coefficient off) in the diagonal elements varying It follows from Eg. (28), that under conditior(27), the

from block to block. This structure endows the eigenvaluesharacteristic equation fox is reduced to one of the two

and eigenvectors with periodic properties.lfis an eigen-  conditions

value, then so also s+ p{) for any integemp. The quasien-

ergies form two infinite sets described by Eq$2), (13). defH\")+kQ]=0 ordefH, '+kQ]=0, (30

The elementsb;" " of the eigenvector with the quasienergy

Ao+ pQ are related to the elemends”,, of the eigenvector Which are the conditions of existence for nontrivial bounded

with quasienergyr,, via the equality®?,, ,=®{? Thus, solutions of the closed half-infinite systems of equatitses

the difference between eigenvectors within the same set is @Scussion above However, in general, these conditions

matter of assignment of integerin ®¢, . It corresponds to carlnot be sat|sf|eq 15|multaneogsly because the matr_lces

the ambiguity in the choice of quasienergy in Egl) and H_(k*)+kQ are not similar anc_i_thelr eigenvalues do not coin-

has no physical significance. It suffices, therefore, to invescide. Therefore, under conditid@?)

tigate any two branches of quasienergies from different

sgts and){heir eigenvectors.q ges P1p=P2,=0, foralin<korn>k, (31)
Let us assume that the quasienekggatisfies the follow-

ing condition for a certain integec depending on which of the determinants in E2[) vanishes.

This property has an immediate effect on the polarizability of
the system induced by the resonant probe fi&d. (22)]. If

A +kQ=0. 2D the parameters of the coupling fiefq(t) are adjusted so that

one of the quasienergies,. or A _, satisfies conditiori27)

In this case, as seen from Hg6), the matrixH—\I has the  then an infinite number of probe-absorption resonances will
column (1k) and row (1K) with only one nonzero element be simultaneously forbidddisee Eqs(22), (31)]. According
(=r). Therefore the determinant 8 —\I can be factorized to Egs.(18), (27), and(31), the values of the resonance fre-
quenciesy, for the forbidden resonances are

defH—N]=—r2defH{ "' — NI]defH, ' —\I]. (29
“ “ V= wo+MAQ, (32)

Here matricesH| ) and H\") are half-infinite diagonal \,pere integem varies from— to —1 or from 1 to+ s,
blocks of /¢ that correspond to the values of indexanging  Therefore, the positions of these resonances correspond to an
from —c to k—1 and fromk+1 to +, respectively. The infinite sequence of equally spaced probe frequencies,
matricesH{ )~ \I andH{")—\I determine the coefficients me+ .. below M<0) or above (>0) the unique fre-
of the half-infinite systems of equations in E@5) for  quency edgew. It is clear that the same half-infinite se-
®; , corresponding tm<k andn>k, respectively. quence of frequencies will be absent in the spectrum of
This special factorization property of the Floquet Hamil- stimylated emission of the projef. Egs.(22), (23)] when
tonian(28) is a manifestation of the fact that under condition {he frequencyw,, is resonant with the allowed transition. We
(27) each of the half-infinite systems of equations(®) is  refer to this effect as simultaneously forbidden resonances
closed. Indeed, one can see from the forn#ofEq. (26)]  (SFR ([24]).
that the coupling between those systems occurs via the ma- Note that this effect appears to be a direct consequence of
trix elementsH3y,,="H5)" '=r. Therefore those systems the special factorization property28) that the Floquet
will be closed whenever Hamiltonian possesses when its eigenvalues are integer mul-
tiples of (). One would expect that this factorization is a
®,,=0. (299  manifestation of a certain kind of a symmetry of the Hamil-
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tonian. We have not found this symmetry explicitly, how-  Equations(33), (35—39 constitute the basis for the nu-
ever, we did find that, for certain choices for the parametergnerical solution of the matrix eigenvalue problég#). One
the factorization leads to a degeneracy of quasienergy levefist solves the algebraic equatidi39), using definitions

(see Sec. V. (35), (38), and selects any two quasienergies (12), (13
corresponding to different dressed states. Then for each

IV. THE SOLUTION IN TERMS quasienergyh . one uses a recursion in Eq&6), (37) to-

OF CONTINUED FRACTIONS gether with Eq.(33) to express the harmonieB,,,P,, at

various values oh solely in terms of a single component

We will now investigate the appearance of simultaneousplo_ The componen®; , can be found then from the nor-
forbidden resonances by solving the matrix eigenvalue probmalization condition.
lem (24). One of the methods to obtain its exact, nonpertur- gefore proceeding with numerical work we describe the
bative solution is based on the use of infinite continued fracspR effect analytically, using Eq$33)—(39). This effect
tions [37]. This mt_ethod is especially s_uitaple he_re becausppears whenever the conditid®?) is satisfied. That is,
the terms proportional to the modulation indsk in EQs.  whenever a rung of one of the quasienergy ladders coincides
(24) involve a projection operator. It is, therefore, possible towith zero. Assume that this condition is satisfied for some
express the harmonicb,,, in terms of the harmonic®,,  integerk. It can be written as =0, using the notatio(35).
with the samen In this case the numerators in the expressiongfpy..; Egs.
(36) and (37) vanish. However, as can be shown, both har-
monics®, . ; do not vanish simultaneously under the con-
dition (27) (otherwise®,,=®,,=0 for all n, a case which
i . . is not of physical interegt Thus, at least one of the denomi-
and ascalar three-term recursion relation for the harmonics 5tors in Eqs(36), (37) must vanish under the conditig®7)
@, can be obtained after substituting E83) into Eq.(24)  and this leads to one of the following equations:

N+nQ
T

2n in» (3

dA\p) Pt ulni1Prpsat uln-1P1-1=0, (34 d(Q)=Y(Q), (40)
where or
A=A+nQ, d(X)=(A—x)x+r2 (35) d(—Q)=Y(Q). (41)
The method to be used here for solving E2¢) is similar It can be shown that E§40) corresponds to the vanishing

to one used in Ref2]. The ratios of theb’s are expressed as ¢ def H{ ") +kQ] while Eq.(41) corresponds to the vanish-
infinite continued fractions by a standard method detailed iring of defH{ ) +kQ]=0 [cf Egs. (30)]. In general, both
Appendix A. Then the following equations that relate K ' ' ' !

. equations cannot be simultaneously satisfisde below.
@141 t0o Py, can be written: ; y f W

Assume, for example, that E@0) is satisfied while Eq41)

is not. It follows then from Eqs(37) that ®,,_,=0, and
using the backward recursion in this equation and also Eg.
(33), one obtains

Dyp1= = uN[d N ) =Y P N )] 1@y, (36)

Dypog=—pA[d\q-) =Y TN )] 0, (37)

where ®,,,P,,=0 for n<k. (42
) If, on the contrary, Eq(41) is satisfied and Eq40) is not,
YN, = M AnMn+q (39) then, using the forward recursion in E(6) and also Eq.
VAN ) =Y (M) (33), one obtains
The coefficientsy(*)(\,,) can be expressed in terms of infi- d,,,P,,=0 for n>k. (43

nite continued fractions, using a backward recursion for

Y() and a forward recursion fo¥(*). Furthermore, Eqs. The SFR corresponding to Eq#0), (42) can be called
(34)—(38) are used to obtain the algebraic equation Xor lower in the sense that harmonics of the dressed state with
One divides both parts of the recursion relati8%) by  n<k vanish. Conversely, the SFR corresponding to Egs.
®,, and then substitutes the ratids, ,.,/®,, from Egs. (41), (43) can be called upper. The picture is that the param-

(36), (37). This yields eters of the system are adjusted so that one of the rungs of
one of the ladders coincides with the bare level of state 1
d(A ) =Y (N - Y (N, =0. (399  (A\¢=0). At this point all the harmonics corresponding to the

rungs abover{>k) or below (h<k) the given rung vanish.
The parameters,, andd(x) are defined in Eq(35) and the Note that in either case the condition,=0 leads to
Y&)(N,) are defined as continued fractions in Eg8). It  ®,,=0 [see Eq(33)].
follows from the structure of th&(“)(\,)) that the form of In Fig. 2(a) two branches of quasienergiks (M) for the
Eq. (39) does not depend on the choicenfUsing Eqs(38),  two different dressed states are plotted as functions of the
(39) one can readily verify the periodic properties of the modulation indexM. Due to the periodic property of the
quasienergies\,, discussed abové.e., if \,, satisfies this quasienergiefEq. (12)] these branches produce the two lad-
equation, so does,+ p{l). ders of quasienergy curves.(M)+nQ (n=0,x1,...).



2192 V. N. SMELYANSKIY, R. S. CONTI, AND G. W. FORD 55

a) 0.5
T K
A
, ] 0,0 5
A B 0.2
0.1
0

FIG. 3. Dots in each plot correspond to the values of the har-
monics®, , of the dressed state with quasieneigy for different
integersn. Values ofr,(), andA are the same as in Fig. 2. The plot
in (a) corresponds tM =6.2 which lies near the second avoided
crossing in Fig. 2a) (marked with the letteB). Dots that lie on
solid and dashed lines itb), labeled withA and C, respectively,
are plotted for the values @&l that correspond to the points of SFR
from Fig. 2 with the same labels. At the poiAtall positive har-
monics vanish whereas at the potall negative harmonics van-
ish.

FIG. 2. (a) Quasienergiea .. vs M for fixed values of the cou- L .
pling field strengthr =1.2, detuning from resonanae=0.8, and  (N=—1,—2,—3). Note that all the harmonics in either Fig.
modulation frequency)=0.6. Crossings ok _ with the zero en- 2(b) or 2(c), but not both, vanish alternately at the crossing
ergy marked with bold dots correspond\b~2.9, 4.7, 7.6, 8.8. For  Points (points of SFR, which are indicated by vertical
the dressed state with quasienergy plots of®, , vsM are shown  dashed lines to connect with Fig(a2 At the first and third
in (b) and(c). Each harmonic is labeled by itson the plots. Note ~ points(lower SFR Eq. (40) is satisfied and, according to the
that the harmonicDP, ; does not vanish aM—0 (in this limit ~ discussion above, all transitions to the quasienergy levels
N_+3Q approaches the “bare” dressed-state energy in the abn{) below zero are simultaneously forbidden. At the second
sence of modulation. and fourth points(upper SFR Eq. (41) is satisfied and all

transitions to the quasienergy levei§) above zero are si-
The boundaries of the interval of periodicity with the width multaneously forbidden.
Q) (the zong are indicated by dot-dashed lines. It follows It can be immediately seen by comparison of Fige) 2
from Eqg. (13) that the quasienergy curvas.(M) are posi- and 2b), 2(c) that the points of SFR lie inside of the regions
tioned symmetrically relative to the zone centef2+ pQ where the harmonic®, , of one sign ofn dominate over the
[the zone center in Fig. (8 corresponds to the integer harmonics of the opposite sign of and those regions are
p=—1 and is also indicated by the dot-dashed Jirziffer- separated by the avoided crossing regions. In contrast, in the
ent quasienergy curves, in general, do not cross each otheicinity of the avoided-crossings the harmonics of both signs
and therefore each of them is confined within a half zoneare, in general present. For example, in Figg) 3he dots
with a width /2. The quasienergy curves repeatedly ap-correspond to the values @b, for different integern’s
proach the zone boundaries and the gaps in the avoidethlculated at the fixed value & corresponding to the sec-
crossings grow with modulation indedM. The horizontal ond avoided crossing in Fig(& (it is marked with the letter
axis corresponds to zero energy and coincides with the posB). For comparison, the plots df, , in Fig. 3(b) correspond
tion of the energy level of the staté) (cf. Fig. 1). There is  to the values ofM at the second and third points of SFR
only one quasienergy curv@abeled\ _) that crosses the [pointsA andC in Fig. 2@] which are positioned before and
horizontal axis. The crossing points are indicated in Fig) 2 after the avoided crossing, correspondingly.
by bold dots. At those points the conditig®7) is satisfied It turns out that in order to understand qualitatively this
for k=0. behavior of the dressed state harmonics one needs to con-

The harmonicspb, , of the dressed state with quasienergy sider the low-frequency limif2<r, as will be done in Sec.
A_ are shown in Figs. ® (n=1,2,3) and &) VI. Here we remark that the Figs(&, 2(b), 2(c) correspond
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0 M ics of the other dressed state will obey the E4B) with k
20 40 replaced by—k. Therefore it suffices to investigate just one
of the equations(40) or (41).
¢1 0 In order to gain some intuition about the structure of the

manifold of SFR we first consider the case of weak modula-
tion

M<1, (45

where the results can be obtained analytically. It is conve-
nient to choose the quasienergy branckesso that they go
continuously into the “energies” of the dressed states in the
absence of modulatiofthe latter can be obtained from Eq.

to the frequency¥)2=0.5, while for largerQQ=r there will (10) with M =0]:
be no such distinct and comparatively wide “regions of Mo =A% (r2+A2/4)Y2 (M—0). (46)
SFR” as in Figs. 2b), 2(c) (cf. [24]). -7

The componen®, , is plotted in Fig. 4. According to the |n this case the ladders of the quasienergy le(®&® can be
discussion above this component does not vanish at the SFipproximately written as.. +n{) and the condition for SFR
points. In the limitM>r it asymptotically approaches unity (27) amounts to one of the conditions
while all the other harmonic®,, with n#0 decrease to

FIG. 4. Zeroth harmonid, for the dressed state with quasien-
ergyh_ vs M.

zero[cf. Figs. 2b), 2(c)]. This can be understood from the e, +kQ~=~0, k<0, (47)
Schralinger Eq.(10). In the limit of strong modulation the
coupling field between the statgk) and|2) (term propor- e_+1Q~0, 1>0. (48

tional tor) becomes increasingly off resonance and its effect
will be diminished. In this case the quasienergy for one ofNote that, the zero harmonids, 5, o do not vanish under
the dressed states approaches zar_p in F|g z(a)] and the the condition (27) and, in general, dominate in the limit
corresponding amplitudes have the limitd,(t)—1, M<1. Nonzero harmonicé,,,®,,~M!" and are formed
d,(t)—0. by all possible elementary processes of net absorgfian

In addition to the points of SFR there are also cases iM<0) or emission (>0) of |n| “quanta” of frequency
which the harmonicsb,,,,®,, vanish at single values of {2. It can be shown, using a diagrammatic approach, that
integern rather than at an infinite number of its values as inunder the conditiort47) all processes with net absorption of
the SFR effect. For example, only the comporatshown  more tharjk| quanta() are forbidderiEqg. (42)], while under
in Fig. 2b) has zeros at the valudd ~3.82 and 6.71 and the condition (48) the processes with net emission bf

9.98 while all other harmonics do not. This effect is consid-guanta are forbiddefEq. (43)].
ered in Appendix B. The EQ.(40) can be rearranged and then simplified in the

limit M<<1, using the explicit form of the continued fraction
Y(H)(Q) [Eq. (38)] and keeping only leading terms M?2.
Finally, for smallM it takes the form
The conditions for SFR40), (41) impose certain relations s
between the parameters M, A, and(). As can be readily d(—kQ)= MQ" [ k(k—1) N k(k+1)
verified these equations involve three-independent dimen- 4 \d(1-k)Q) d(—(1+k)Q)/)"
sionless parameterg(), M, A/Q, and the points of SFR (49
form two manifolds in the 3D space of these parameters
which we will now investigatéwe shall call them factoriza- In the limit M—0 this equation corresponds to Eg7), as
tion manifolds. can be seen if one takes into account that the funalipf)
Using Eq.(24) one can derive the following transforma- in Eq. (49) can be written in the form
tion properties of the harmonics of the two dressed states and

V. FACTORIZATION MANIFOLDS

their corresponding quasienergies: d(x)=(e+—x)(x—€-)
O (—A)=(—1)"d]_(A), [cf. Egs.(35), (46)]. Solving Eq.(49) for A one obtains to
n o the first order inM?
Py (—A)=(=1)" D, _(A), N (—A)=—N_(4) 2
1 (r/Q))
(44) A/Q:—k+E(r/Q)2+M2 T P ,
.l 2| _
(here thex signs designate the different dressed sjates 2k | k+ k(r/Q) } 1]

the other hand, it is seen from the explicit formsdgk) and

Y& (N ) [Egs.(35,38], that the Eqs(40), (41) that describe k=—1,-2,.... (50

the factorization manifolds can be transformed one into the

other by the replacememt— — A. Thus, if the harmonics For a fixed() these relations define the system of nearly
®; , for one of the dressed states obey E®) with a certain  parabolic surfaces in the space of parametéfs, M, and
integerk then, after the transformatiach— — A the harmon- A/, identified by the various integer values laf
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The manifold corresponding to the other type of SFR
[Egs.(41), (43)] can be obtained from the above manifold by
reflectionin the planeA =0, as follows from Eq(44) and
the subsequent discussion. This manifold also consists of a
semi-infinite system of surfaces, each corresponding to a par-
ticular value of negative quasienergy_(r,M,A)=—-1Q
(I>0) that is traceable to the dressed-state energy
e_=—1Q (46), (48) at M=0. At these surfaces we have
®; ,=0 for n>|.

Degeneracy of the dressed states

If one plots together the two factorization manifolds they
will form a *honeycomb” structure. Cross sections of this
structure at different values of the paramatere shown in
Figs. 6a), 6(b). The downward curves correspond to lower
SFR(40), (42) and upward curves correspond to upper SFR
(41), (43).

Any two surfaces belonging to the different factorization
manifolds intersect along a certain line and each such line
corresponds to a point in the cross sections shown in Figs.
6(a), 6(b) (these points lie at the crossing of downward and
upward curves Note that the occurrence of the intersection
lines becomes possible because points on the factorization
manifolds correspond to the roots of two different algebraic
equations(40) and (41).

The remarkable feature of the intersection lines is that
they always correspond to the field detuniAgbeing an
integer multiple of the modulation frequendy [cf. Figs.
6(a), 6(b)]

FIG. 5. One of the two factorization manifolds defined by Eq.
(40) in the space of the dimensionless parametéf3, M, and
A/Q. Al surfaces are enumerated with the integer
k=-1,—-2,... and points on the surface with a gikenorrespond
to one and the same value of the quasienergy
A, (r,M,A)=—kQ>0 that reduces to the “bare” energy of the The intersection ah =0 is immediately seen from Eqgl0),
dressed state, =—kQ at M—0. At the kth surface all of the (41) which coincide with each other in this capef. Egs.
harmonics®, ,, ®,, with n<k vanish simultaneously. Note that, (35), (38)]. However those equations do not coincideAat
according to Eqs(46), (47) thekth surface crosses the axisQ) at #0 and the intersections correspondingrig0 are non-
the integer points\/Q)=—k>0. The other factorization manifold trivial. This result is nonperturbative because it holds in the
defined by the Eq(41) can be obtained simply by reflection in the range ofM andr where they cannot be considered snfall
planeA =0 [cf. Eq. (44) and the subsequent discussion Figs. 6a), 6(b)].

The physical importance of the intersection lines is related
to the fact that at those lines the quasienergy levels belong-
not weak M = 1). Essentially, the expressiotiS0) give ing to different dressed states cross each other. Indeed, at
the asymptotic forms, a1 <1, of a set of nonlinear surfaces points on the intersection line the two different dressed states
that represent the solution of E0). This equation was [the one satisfying conditiod2) and the other satisfying
solved numerically, and the results are shown in Fig. 5. Eaci43)] correspond to the same ladder of quasienergy levels,
surface is represented by its intersections with two pairs o§ince\ . (r,M,A)—\_(r,M,A)=(1—-k)Q.
planes orthogonal to thiel axis and to the /() axis. This effect of degeneracy between the dressed states can

The intersections with th&1 =0 plane are the parabolic be explained from the factorization property of the Floquet
curves described by E@50). Points on each surface corre- Hamiltonian(28). If the parameters of the system are fixed at
spond to a fixed value of the positive quasienergysome point of one of the intersection lines of the factoriza-
A (r,M,A)=—kQ which connects smoothly to the dressedtion manifolds then the “wave functions” of the two dressed
state energy , = — k() (46), (47) at M—0. Thus, each sur- states,CIDifn and®; | obey the “Schrdinger equations'{25)
face can be identified by the value of integerThe system with two different Floquet HamiltoniansH'*) and H™,
of surfaces is semi-infinite, its lowest sheet corresponds teorrespondingly. Those Hamiltonians act in the different

A=nQ, n=0,x1,*2,.... (51

The approximatiori49), (50) fails when the modulation is

k=-1 and the sheets witlkk=—-2,—3,... arestacked
above. At thekth surface the quasienergy ladder @f +
dressed state has a level +k() that crosses zero energy
and all harmonicsb; , vanish forn<k. Thus the surfaces
with different values ok correspond to thelifferentlevels
of the quasienergy ladder crossing zero en¢&g}.

subspaces of positive and negative harmonics, which are not
coupled to each other. Therefore, the quasienergies do not
repel each other and crossing is allowed.

The reason that the degeneracy of the dressed states al-
ways occurs at integer values af(Q) [Eq. (28)] is as fol-
lows. At points on the intersection line between the two sur-
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IoM)
‘]Iv+l(M) a

where the upper sign corresponds to E) and the lower
to Eq. (41). Thus the system of curves in Fig. 5 lying at the
intersection of the manifold of SFR and the plare0 cor-
respond to Bessel zerog._,g,=M (n=12,...). The
curves corresponding to the other manif¢lEq. (41)] are
given by the equationg:y,o , =M (n=1,2,...). Because
the zeros of Bessel functions of integer ordey,(M) are the
same for anyn it follows then that the curves from both
manifolds cross at the points where

0, v=A/Q (53

A=pQ, M=j, (p=0x1,...k=1.2,...).
(54)

The above effect of the degeneracy of the dressed states
has an interesting experimentally observable manifestation.
Indeed, when quasienergies nearly cross, the dressed states
are strongly mixed via dissipation abdthdressed-state am-
plitudes C..(t) [Eqg. (15)] will be resonantly enhanceldhe
off-diagonal dissipative coefficieny, _(t) in Eq. (15) is
slowly varying near the degeneracy points and therefore both
equations are coupled to each othdn this situation the
probe response will be modified as compared to that given
by Egs. (22), (23). For convenience we now define the
quasienergies of the dressed states within the reduced
zone schemdanalogous to that in Fig.(d] so that the
crossing corresponds exactlyXa =0. Assume now that the
dressed state® "and ®~ correspond to the semi-infinite
ladders of levelmQ) with n=0 andn=<0, respectively. It

FIG. 6. Cross sections of the factorization manifolds corre-follows from the above discussion that there will be a unique
sponding to fixed values of the field strengtiQ. In (&  comb of resonance frequencies at the crossing point

r/Q:O3, in (b) r/Q=2.3. Downward curves enumerated wkh w0+ nQ) but the line Shapes of the resonances withO and
correspond to the surfaces of the manifold shown in Fig. 5. Thesg g are different.

curves form an infinite system bounded from below. The system of

upward curves is obtained by reflectionAd{) =0 and correspond v 4ne of the dressed states is excited directly by the probe
to the other manifold. The infinite set of these curves is bounde

from above. Dashed lines indicate the crossings of the curves be-nd th.e dissipative coupling b.etween the dressed states oc-
longing to different manifoldsdegeneracy poinksthat occur at curs via the degenerate qyasmgergy_ Ie\@IEO (the only
integer values ofA/(). Curves in(a) (smallr/) nearly reproduce common level of the effectively “semi-infinite” laddexsit

the dependences of zeros of Bessel functions on their inflafes can b,e Sho_Wn’ using the_formulas of Sec. Il that near Fhe
Eq. (53)]. Whenr/Q grows the downward curves move up whereas c"0SSing point the absorption rate per atom has the following
the upward curves move dovjof. Eq. (50)]. At r/Q>1 the initial ~ Non-Lorentzian form:

points of the curves at th&/Q) axis begin to interlace. This case .2
corresponds tab). Qwp) = u(h1y)

If the probe frequency i ,~n{Q+ w, with n#0, then

faces of the factorization manifold; identified by Fhe irjteger (53)2FQ+FB(F+F,—F§)/4

numbersk and| the following equations are satisfied simul- X s 5,

taneously: [6,6_— (P, T_—T/a]“+ (', 6-+I_5,)4
(55

N +kQ=0, N_+1Q=0, wherek<0, [>0

®2  4=sgrtn), B=sgn—n), 8.=wp—wo—A-—nQ,
and, therefore, not only is the difference between the (56)
quasienergiek .. an integeirthe degeneragybut their sum is
also an integerh . +\_=—(k+1)Q. However, according n#0

to Eq. (13) the sum of the quasienergies, +\_ always
equalsA modQ). Therefore, in this case the detuniagnust ~ Where |5,|~|5_| are the probe detunings, the coefficient
be a multiple of(). ,uz(Spdoj)pr/h, the damping coefficients . are given in

In the limit of smallr<( the above property can be Eq.(20), and the coefficienf .= y;®; @, , determines the
related to an obvious property of the Bessel functions. In thiglissipative coupling between the dressed statete that the
limit Egs. (40), (41) can be reduced to the following: “bare” damping constanty, is dropped out because accord-
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ing to Eq.(33) at the degeneracy pointbzi’OEO]. Itis im-  will be large. It is convenient then to identify the quasienergy

mediately seen from the explicit forms bf. andI’; that levels as well agb;", for variousn by the values of the
5 “quasidiscrete” variablez= \ ,+ n{) with the quasienergies
r.r_-re>o0 N o=(E,(t)); (mod Q) where the time average is over the

. . period of modulation Z/w. With this the harmonics of the
and, thereforeQ(w)) is always positive. Note also that, un- dressed states can be written as

like the nondegenerate case, the line shapes of the resonances
depend on the sign of. _ _ ¢ =d(z)=(expiz) D (1)).
Away from the degeneracy point the expression for the '
resonance probe absorpti¢h5) corresponds to the results The integrand functions here are highly oscillatory, provided
obtained in Sec. I[cf. Eq.(22)]. Exactly at the degeneracy that|E,(t)|>(, and therefore the integrals can be evaluated
points, it reduces to a form by the method of steepest descent. The stationary-phase con-
) A ditions for the two dressed states are

Qlow) =k S 2 T2 T2+ (12— 1276 " EButg=2z (a==). 62

A=A, =T (%) The energyE ,(t) periodically varies with time within a cer-
e Ln tain zong[cf. Eqg.(61)] and whenevet is inside of this zone,

where 6= wp— wo—nQ andl'=T", =T"_. . .
In the case oh=0 the probe frequency i®,~ w,, and (A=MQ)/2+ ay(A—MQ)?/4+r

bth dressed states vy|ll lze exc_lted simultaneously because <2< (A+MQ)2+ a(A+MQ)T4+12 (a==),

neither of the harmonic®, , vanish. Exactly at the degen-

eracy points the expression for the absorption rate takes the (63

form of Eq. (57) with, however, different values for the co-

efficientsA; andA,

the rootst of Eq. (62) are real and the harmonics of the
corresponding dressed stabg’(z) reveal oscillatory behav-
Al’z:r((q>l+’0)2+(q>1—’0)2)izrcqyiocpl—’o (58) ior as a function ofz, e.g.,

. . 1/2
[note that according to Eq44) at the degeneracy points @ 2 f ts B _
‘Dfozq)l_,o]- Pi(2)=a ey pemroye co . [E (t)—z]dt—7/4 |,
VI. THE LIMIT OF A VERY STRONG-COUPLING FIELD 1 Z?—r’—Az
ts=§ arcco BTV (64
We now will consider the case in which the strength of z

the strong-field coupling is much greater than the modula- On the other hand, for the values pfoutside of the zone

tion frequency(}. In this case the Qressed-sta}te harmonics(63) the rootst of Eq. (62) are complex and the harmonics
(j)é'rnt[]eevislnz(i)tirgﬁ interesting behavior as functions.otn- ®{*(z) decay exponentially away from the zone boundaries.
For example, fozz in the range

Q<r (59

0<az<(aA—MQ)2+J(aA—MQ)?/4+r% (65)
the time dependence of the Hamiltonian for the dressed-state i i i i
amplitudesd, (t) in Eq. (10) can be regarded as slow. After the corresponding asymptotic expressiondgff(2) is [39]
solving this equation in the adiabatic approximation the am- ~n
plitudes of the two dressed states take the form D%(z)= a(~a)

1T (2wMsinh ) 2

@“(t)%xi“(t)exp{—iftEa(r)dr) (i=12; a==)

0 X exp( - f OTSdt[(aA — Mcostt)/2

where the amplitude,sfz(t) are the instantaneous eigenvec-
tors of the Hamiltonian in Eq10) andE..(t) are its instan-

+V(aA—MQcosHt)?/4+r2— az]) ,
taneous eigenvalues

(66)
E,(1)=(A+MQ codHlt)/2

) r2—z24+Az
azOM

1 J—
+aJ(A+MQ coNt)?4+12  (a==). =g cosh (67)

G The root of Eq.(62) corresponding to the asymptoti66) is
Each adiabatic solutiof60) corresponds to a ladder of levels ts=—i7s+ 7/() for the casex=+ andts=irsfor a=—. It
(12). In the following we will be interested in the limit of is seen from Eq.(66) that the asymptotic behavior of
strong modulatioM > 1. Under this condition and condition ®7(z) in Eq. (66) has a singularity at=0. In the vicinity of
(59), the characteristic number of harmonibs, [Eq. (11)]  this point we haveb{(z)~ 7~ Y2-0. This reflects the fact
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FIG. 7. (a) Dressed-state harmoniclzsrn vsn. The boundary of FIG. 8. () Quasienergies.. vs M. 0=0.3 r=1.5 A=0.4.

the zone(63) is near zero {1.672); however, the negative com- 1hq ot dashed lines indicate the zone boundaries and zone center.

ponents are almost completely suppres¢éed., ®;_,~0.0001). (b). The dressed-state harmoniz; , vs M (the same values of
Note that the above values of the parametiysot correspondo A,r andQ). ’

points of SFR.(b) The samer and Q) but larger M =200. The
number of negative harmonics is strongly increased compared t

@ 9(b) parameterM is taken to be nearly 3 times larger

[r2/(MQ?)~0.5] and a large humber of negative harmonics
appear.

We now establish the relation between the adiabatic ap-
proximation (60) and the Floquet approach considered in
previous sections. Consider the plot of quasienergy curves
A+ (M) in Fig. 8@) that is obtained numerically by solving

g. (39 (ratio r/Q2=5). As the modulation indeM varies
far from the avoided crossings each quasienexgyM)
within a multiple of ) is alternately equal to one of the
functions U.(M)=(E.(t));, while the corresponding
dressed state is determined in turn by one of the adiabatic
solutions Eq.(60). Avoided crossings correspond to the so-

that the stationary-phase conditiffag. (62)] hasno roots in
the domain of realvz<<0. We do not consider here the prob-
lem of the continuation of the asymptotic @] (z) through
the vicinity of z=0.

However, one can draw an important conclusion based o
Eqgs.(63), (66). If M is not very large, that idyl <r?/Q?, the
boundaries of zon€63) are much farther from the origin
compared to the scale 6F and therefore the asymptoti66)
breaks down only “deeply” within regior(65) where the
harmonics®7 (z) are already negligibly small. Under this
condition the harmonics dfifferentdressed state@fz(z) S |utions of the equatiot . (M)—U _(M)=m(, wherem is
functions ofz do not overlapThey are narrowly localized 5, integer. Thus, in the vicinity of the avoided crossings the

within corresponding distinct zones of oscillatory behavioryragsed state is a superposition of both adiabatic states
(63) that are positioned on the opposite sides of the origin

z=0 and decay exponentially steeply away from the zone t

boundarieg40]. CHOEDY CaﬂXiB(t)eXF{_iJ’ Eg(7)dr
Numerical calculation of the dressed-state harmonics A==

®7(z) based on the Floquet theoffgs. (33), (35—(39)]

(68)

’ 55 [cf. definition (11)]. It follows then from the discussion
show that even for relatively large values bf<r</Q) above that away from the avoided-crossing regions the
when the boundaries of zon€&3) approacte=0 (~) the  yressed state will have either positive or negative harmonics,
harmonics®;’(z) are still suppressed in the regiarz<0.  \yhereas at the avoided crossing it will have both. It can be
The apparent reason is the absence of stationary points of tReown that the separation of the quasienergy curves at the
integrand in(exp(zt)®{’(t)) because Eq(62) does not have avoided crossingtheir repulsion is proportional to the am-
roots for realez<<0. Therefore, the value of the above inte- plitude of transition between the adiabatic states. It is easy to
gral in this domain is strongly suppressed. This case corresstimate, using the Landau-Zener thep#jt] and Eq.(61)
sponds to Fig. (& where the harmonic®;, are shown with  that this repulsion is small for values M=<r?/QZ. In such
solid dots for various integer values 0f Heren is assigned a case the individual harmonics of the dressed states will
so thatn=0 corresponds to the discrete valuezaflosest to  undergo sharp “steplike” behavior when one changes the
zero. The zone boundary is only at a distarce.67A) from  parameters of the system.

zero[r?/(Q? M)~1.67], however, negative harmonics are  This effect is seen in Fig. (B), where the harmonics
almost completely suppresseetg.cbf’,ﬁ0.000l). In Fig. ®,_, of the dressed state corresponding to the(M)
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guasienergy curve is plotted as a functionMf According  (for simplicity, the indexa is omitted. It follows from Egs.
to the discussion above, in the intervals bf where (71) that harmonics®; , with i#N can be expressed in
A_(M)=(E.((t)), this component nearly vanishes. The ef-terms of the componer , [cf. Eq. (33)]

fect is very profound wheM <r?/Q 2= 25. For larger values

of M the repulsion of the quasienergy curves increases, the _ iN ®yn, i=12,...N-1. (72

dependence o, _, on M becomes smoother, and the re- T E—g—nQ
gions where it takes on small values become narrower, _ )
shrinking down to the points of SFR. The reason for this isUSing these relations and E¢70) one derives thescalar
the following. The minimum separation between the eigenf€cursion equation for théy , which can be written in the
valuesE. (t) is r>Q, however, as/ grows the eigenvalues following form:

change rapidly and whekl >r?/Q? the adiabatic approxi- _ _

mation in Eq.(10) breaks down within each period of modu- Yn=Cns1¥neatCorthn-1, Pun=Cothn,  (79)
Iatiqn. Bec_ause of the resulting switching betwe_en the adiayhere the coefficients,, are
batic solutiongcf. Ref.[33]), the dressed states, in general,

have a large number of harmonics of both signs. This case M
corresponds to Fig.(B) where the harmonic® ], are plot- ch=A| g+nQ—&+ ey (74)
: =1 §—g—nQ
ted vsn.
Based on the results of Sec. IV and Appendices A and B one
VII. THE N-LEVEL SYSTEM can obtain the explicit solution for the harmonics of the
WITH MONOCHROMATIC PUMP dressed states and an algebraic equation for the spectrum of

Oq;uasienergies in terms of infinite continued fractions.

The significant property of the abowé-level model is
that it can be described by a single equat{@8) that corre-
sponds to the processes of emission and absorption of pho-
tons in the stat¢N). One could naively think of, as being
proportional to the amplitude for being in the sté with
n photons. The coefficients,, could then be regarded as
amplitudes of those transitions in which the number of pho-

The example considered thus far in this paper correspon
effectivelyto a special model of a periodically driven system
in which an external perturbation has the form of a projec
tion operator onto a single-quantum stéstate|2) in Eq.
(10)]. The phenomenon of simultaneously forbidden reso
nances is an intrinsic property of such a modete also
[24]). Indeed, consider now ahl-level system with the

Hamiltonian tonsn in the statd N) changes by 1. It is clear then that the
N N-1 dependence off,, uponn will be strongly affected if the
H(t)zz (€i|i><i|>+2 (rin IXN[+ 1| NXG]) coefficientc,=0 for somen=k. Applying similar argu-
i=1 i=1 ments to Eq(73) as were applied to Eq434) one can obtain
+2Acod)t|N)(N. (69) the result that, in this case,=0 for all n>k or n<k. As

seen from Eq(74), the conditionc,=0 is satisfied whenever
A monochromatic field with an amplituda and frequency the quasienergg+kQ coincides with one of the diagonal
Q is coupled directly only to a statdl), which is connected Matrix elements;
to the other states by the matrix elements. Again, we will
investigate the spectrum of quasienergies in the system, us-
ing a probe channel consisting of a weak field connection t‘qu. (75) is a generalization of conditiof27) derived above
some othexprobe state|0). The resonance response to the,, the case of a three-level systerit immediately follows

weak field is described by the harmonics of the dressed-staig, Egs.(71) that in this case the dressed-state harmonics
amplitudedcf. Eq. (11)] are

g=g+kQ j#£N (75

N
PYRNT &, ,=0, for n>k (n<k) andi=1.2,...N-1.
3 fl), a=12....N

The harmonics corresponding to=k

where the indexx enumerates the dressed states. There will B, =0, (i#]) @  #0

be N ladders of quasienergy levels corresponding to those R J Lk

stateqcf. Eq.(12)]. Applying the arguments similar to those This model represents a strongly driven system in which an

considered in the Sec. Il one obtains the recursion equationgyact result can be obtained. It can also be understood from

for the harmonics corresponding to a given dressed &t&te  the factorization property considered in Sec. Ill. The gener-

Eq. (24)] alization of the analysis for thBl-level case is straightfor-
N_1 ward.

En—nQ) Dy + rNi®i  FA(Dy o1+ D
(& JPrin .21 NIPint AN -1 Prina) VIIl. SUMMARY AND DISCUSSION

=gPy ., (70 In this paper we investigated the dynamics of the two-
level system subject to a strong resonant field with a periodic
FN®Pnnt (E—nQ)D; =gd;, (i=12,... N-1) frequency modulation using an additional “probe” channel

(71 that connects this system to some other I€gbbsen here as
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a ground level The new observables introduced via this L o L S e o e e e e B
channel are off-diagonal elements of the density matrix be-
tween the ground stat@) and resonantly coupled states o'k ]
|1) and|2). The time evolution of those observables in the
limit of weak dissipation is formally described by the Schro
dinger equation(10) for the two-level system driven via a
strong modulating interaction. The specific form of the @
Hamiltonian of this system with only one level being modu- 10 - 4
lated gives rise to the factorizatidg7), (28) of the determi-
nant of the associated Floquet Hamiltonian. As a result the 2 ,
dressed state with zero quasienergy is special, either its posi-
tive or negative harmonics are zero. 5

The above property has an immediate experimental mani-
festation when the dissipation is weak and the widths of the
probe absorption and emission lines are narrower than their
separationgcondition(9)]. In this case the strong FM pump
periodically modulates the probe-induced dipole moment
[Eqg. (22)] much more rapidly than the characteristic relax- FIG. 9. The reduced absorption rate per atans plotted vs
ation times in the system. Therefore the effect of such high{w,— )/ for the following values of the parametens=1.0,
frequency modulation on the medium will not be reduced to2=1.0,A=0.5,M=8.963,y,=0.03, 7,=0. Two combs of reso-
just modulation of its refraction index and absorption coeffi-nant frequencieso, appear and are shifted with respect to each
cient. Rather, this modulation creates a sort of “temporalother by A/2=0.5. Note the absence in one of the combs of all
grating” (quasienergy ladderghat resonantly scatters the resonances above the central resonance. This is the SFR effect.
monochromatic probe field with frequencies,=v. ,+ 6
[cf. Eq.(21)]. In general, there will be two infinite combs of other  comb corresponds to  the  frequencies
the probe transition frequencies. However, at certain values,~wo+n{, n=0,—1,—2,..., and allresonances with
of the parameters one of the combs becomesii-infinite n>0 are forbiddenthe corresponding dressed state has its
with a unique edge. We refer to this effect as simultaneouslyositive harmonics equal to zeraThere are six resonances
forbidden resonances. According to H83), when this ef-  seen in this comb. We stress that the position of the comb of
fect occurs one and the same half-infinite sequence of resdrequencies exhibiting the SFR effect is fixed by the central
nant frequencies will be absent in spectra of both probe abpoint at w,=w,, whereas the position of the other comb
sorption and emission. In the latter case the probe frequenayepends on the choice of parameters.
should be at resonance with one of the allowed transitions. The spectrum showing the SFR effect exhibited in Fig. 9

It is of interest to consider the line shape of the probecan be realized in a straightforward experiment, choosing an
response under the condition for SFR for an experimentallyatomic beam as the mediu(to minimize Doppler broaden-
suitable choice of parameters. We will consider the case ofg). If the atomic density in the beam lé~10° cm~2 and
probe-absorption. To find the full probe-absorption curve weone assumesy/(27)<10 MHz [ y=max(y;,y,)] one can
solved numerically Eq(6) for the amplitudesy;(t), #,(t).  use high modulation frequencied/(2), of the order of
In the stationary regime the amplitudes contain time-periodigeveral hundreds of MHz so that the rafdy can be made
multiples, ¢;(t)=exdi(wy— wp)tIZ0=" .4 sexp(—inQt) and large(in Fig. 9 it is~33). Using for the power density of the
the probe absorption rate is proportional to #m,. The  pump laser~ 100 W/cn?, the corresponding value of
amplitudes¢; , satisfy a set of recurrent relations which r/(27) is a few hundred MHz, of the same order as
were solved using the method of continued fractione do  Q/(2r). This corresponds to the parameters chosen for Fig.
not describe the details hér&’he probe-absorption rate per 9. The value of the modulation indé4 in this figure corre-
atom can be written in the form sponds to a modulation depth of 8#8(2#) which will be of
the order of 2 GHz. The reciprocal absorption lengths for
various frequencies of the probe can be expressed in terms of
the dimensionless coefficieat in Eq. (76) (near the probe
resonances it is also of the orderagf*|®§,|> cm™ %, where
wherea(w, /(1) is a dimensionless function @,/{. This  a, is the absorption length in the absence of modulation
function is plotted in Fig. 9 for the choice of the parameterswith the above choice of parameters, a beam of width 1 mm
r,M,A,Q that correspond to one of the points of SFR. Wewill absorb on the order of 10% of the probe at the central
fixed the relaxation widtt y, of the upper leve(state|1) in resonance. Thus with a sensitivity approaching the level of
Fig. 1) such thaty,/Q2=0.03. It is seen that the set of ab- 0.01% the structure of the lines in Fig. 9 could be seen,
sorption resonances are well resolved, and, in particularevealing the absence of the forbidden resonances discussed
even the weakest resonances are not buried under the nambove. We note that when the atom density in the beam
resonant background from the stronger lines. There are twimcreases the medium becomes optically thick and the line
combs of probe frequencies in the set. One of the combshape should be modified. However, the absorption in the
corresponds to the frequencieso,~wo+(n+0.5), vicinity of the forbidden resonances remains strongly sup-
n==*1,+2, ..., which occur both above and below. pressed provided the conditiofl/y>1 is satisfied. This
There are 12 resonances shown in this comb. However thigappens because the matrix elements for the corresponding

0
10 b

TN R N IR SO IRV I N Y Y S N T T N

6 5 4 3 2 1 0 t 2 3 4 S5 6
- Q
(mp 000)/

Epxdoy]

2
m a(wp/Q), (76)

Q(wp) = 2wp
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probe transitions€|®7|) are identically zero. the resonance interaction with the rf. Assume now that apart
In this paper the values of the system parameters wherisom the above resonance condition the factorization condi-

the SFR effect occuréorresponding to the factorization of tion is also satisfied. The latter will amount to both E@s),

the Floguet Hamiltonianwere investigated. These values (48) for some integer&k<<0 andl>0, (I —k=p). In order to

form two manifolds in the parameter space of the systenmake a resonance transition between the “up” and “down”

(honeycomb. The shapes of the factorization manifolds re-spin stategstateg 1) and|2) in our casgat leastp quanta of

flects the periodic property of the quasienergy ladders andf are needed. However, according to the discussion in Sec.

the strong nonlinearity in the system. V the factorization leads to the forbidding of the transitions
We further have shown that the factorization property andbetween the two different subspaces of the Floguet Hamil-

the related vanishing of a half-infinite number of dressedonian, i.e., the transitions with net absorption of more than

state harmonics appear in the general context of a periodjk| quanta or net emission of more thhguanta. It is clear

cally drivenN-level system in which an external perturbation then, that at the factorization points rf resonance will be sup-

has the form of an operator projecting onto a single-quantunpressed. It can be easily seen from E@S), (47), (48) that

state(state|2) in our casg¢ The above effect is an intrinsic for r#0 the suppression of the rf resonances occurs for

property of this model for which the particular case of p>1 andA=*(2n—p)Q2 wheren=0,1,...,p—1.

N=2 was considered in detail. It is worth noting that this  The important point is that the degeneracy of the quasien-

model with more than two levels can be realized in theergy levels and the above described Haroche{fikebidden

framework of the Autler-Townes scheme if we couple eitherresonances occur at particular points of the more general

of the stateg1) or |2) to some other statf8) by a strong factorization manifold¢Sec. V). The physical effect that oc-

monochromatic resonant field. Then either of the stronglycurs at all points of these manifolds is that of SFR, however,

coupled levels should be connected by a weak probe to thié cannot be observed in the context of a two-level system

level |0). In this case the envelopes of the off-diagonal ele-and requires a probe channel connecting to a third level.

ments of the density matrix that describe the probe response

will obey the Schrdinger equation with the Hamiltonian ACKNOWLEDGMENTS

(69) with N=3 (in principle more than one additional field .

and state can be involvid This research was supported_ by NSF Grant No. PHY-
The other consequence of the factorization is the possibil?417854 and the University of Michigan.

ity of a degeneracy of the dressed states. At the degeneracy

points quasienergy ladders for both states coincide and there APPENDIX A

Is a unique comb of equally spaced probe resonance frequen- oo e describe the standard technique for obtaining a

cies wo+n(). The shape of the resonance curves is NON¢qntinyed-fraction solution for a three-term recursion rela-
Lorentzian in this case and depends on the sign.of ti

The problem of a degeneracy of quasienergy levels in the0
two-level system with a modulating interaction has been in- Andbnt+Bhi1dni1+Bn16n-1=0. (A1)
tensively studied elsewhere, primarily in the context of the
spin-]_/Z magnetic-resonance probl@ae[zazq and refer- We first define “backward” and “forward” coefficients
ences therein The static field spin-precession frequency cor-
responds to 242/4+r?)Y2 in our notation[cf. Eq. (10)] x(t):¢”i1 (A2)
whereas the rf field strength corresponds to the modulation " én
depthMQ and the rf frequency corresponds®o(the quan- . ) L

Then after dividing Eq(A1) by ¢,, and using the definitions

tity r corresponds to the component of the static field normal : ! X
to the rf field polarization Some limiting cases were con- N Eqg. (A2) we obtain the recursion relations for the back-

sidered explicitly, in particular, Eq54) was discussed in Ward and forward coefficients

[23]. However, it is the factorization propert8) and the (+) (+)\—1_
structure of the factorization manifoldSec. ) which give a AntBniaXn HBn-a(Xh1) 7=0, (A3)
crucial insight for the understanding of this phenomenon— o _

9 9 P A+ B (X)) 1+B,_ X =0. (Ad)

the degeneracy points occur at the intersection of the factor-

ization. (+)
L . . We now formally solve Eq(A3) for X,"’; and Eq.(A4) for
The factorization explains another effect that appears in,-) Y aA3) -1 a(A%)

the context of the magnetic-resonance problem with spin 1/2."*1

This effect, referred to as _Haroche-llke resonancsse_: le:_Bnil(AnJanHX(nﬂ)fl, (A5)
[23,26], and references thergiis related to the suppression
of the time-averaged resonance rf absorption signal at certain X<n—+>l: —B,. (A, + Bnilxgﬂ)fl_ (A6)

values of the system parameters. The absorption of the weak
rf is resonantly enhanced when the frequency satisfies one ghe replacements—n+1 in Eq.(A5) andn—n—1 in Eq.

the conditiondcf. Eq. (46)] (A6) yield
pQ=e,—e—, (p=12,...). (77 Xi)= = Bn(Ageq T BpaoXith) 7L (A7)

Under these conditions the positions of the “bare” quasien-Applying a forward recursion in the equation f&f") and a
ergy ladders coincide. In general, the ladders will split due tdbackward recursion in the equation f&f ) these quantities
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are represented as infinite continued fractigfss. (A7)
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based on Eq(39) (written for n—1), that the quasienergy

serve as their definitiojsFinally, we use the expressions A must satisfy the following equation simultaneously with
(A7) in Eqg. (A1) which give us the relation between the Eq. (B3):

coefficients of this equation

An+Bh X +B,_ X )=0 (A8)

d()\nfl)_Y(_)()\nfl)ZO- (B4)

(it can be immediately verified that this is one and the samegquations(B3) and (B4) together constitute a condition for

equation for any value of the integaj. Equation(A8) is a

®,,=0 [as well asb,,=0, according to Eq(33)] and give

condition of existence of unique bounded solutions of Eqa relation between the three dimensionless parameters of the
(A1). If this condition is satisfied then one can use a recursystemA/Q, M, r/Q for this condition to be satisfied.

sion in Egs.(A2) to find a solution of Eq.Al) with an

We now turn to the conditiofR7), that is,\ =0 for some

accuracy to an arbitrary multiple. The correspondence bentegerk. According to the discussion in Sec. Ill, this con-
tweenA,, B,, ¢,, and the quantities introduced in Sec. IV dition leads, in general, toneof the equations(40) or (41).

is clear from the comparison of Eq@\1), (34).

APPENDIX B

Assume, at first, that neither of quantities equal zero.
Then, using EQs.(36), (38), one can write the ratios
D111/, for two adjacent values ai

q)1n+1 1

— = YN, (B1)
(I)l,n MNnia ( n
o} Np—

- YN, (B2)

. Mdn)

Furthermore, it is seen from Eq$38) that Y(*)(\,) ap-
proaches infinity as
d(An+1) =Y (Np11) =0. (B3)

In such a case the componeht , in Egs.(B1), (B2) van-
ishes while the harmonic®, ., do not. It can be shown,

It can be seen, that under the conditi@Y) Egs. (B3) and
(B4) formally coincide an=k with Egs.(40) and(41), re-
spectively. However, due to the fact that=0 neither of the
latter equations leads to the vanishing of the component
®, [cf. Egs.(36), (37)].

Consider now the harmoniceB, , with n#Kk. In the case
of the SFR corresponding to Eggl0), (42) the condition
(B3) cannot be satisfied far=k+ 1, becaus&(")(Q) does
not diverge[cf. Egs. (38), (40)]. Therefore the component
®, ., never equals zero in this case. This also can be seen
directly from Eqs.(34), (35

(B5)

On the other hand, single harmonics witk-k+ 1 can van-
ish and this is described by Eqd3), (B4) with n>k+1.
The other type of SFR41), (43) can be analyzed using simi-
lar arguments.
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