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Simultaneously forbidden resonances in the Autler-Townes effect with a modulated pump
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It was shown recently that systems subject to a strong modulating interaction can exhibit a new property in
their response to a probe field. Under certain conditions an infinite number of resonances are simultaneously
forbidden@V. N. Smelyanskiy, G. W. Ford, and R. S. Conti, Phys. Rev. A53, 2598 ~1996!#. In the present
paper we investigate this effect in the case of a three-state system in which a strong pump field with a periodic
frequency modulationV couples a pair of excited levels while the complex Autler-Townes spectrum is probed
via a weak field that connects one of the coupled states to the ground state. Under certain conditions a
half-infinite comb of spectral lines, spaced byV, simultaneously disappear from the Autler-Townes spectrum.
These lines are positioned above or below a unique edge frequency, which is that of the probe transition in the
absence of the strong field. It is shown that the aforementioned effect results from a special factorization
property of the corresponding Floquet Hamiltonian that describes the Autler-Townes spectrum. Detailed analy-
sis of this property is presented. In particular, it is found that the subset of the parameter space of the system
where the factorization occurs consists of an infinite number of quasiperiodic manifolds. These manifolds
exhibit some universal features related to the degeneracy of the dressed states. The line shapes of the probe
resonances near the degeneracy points are derived. The intensities of the probe resonances are investigated in
the limit of V small compared with the modulation depth and the strength of the pump field. In the latter case,
effects related to the avoided crossings of the dressed-state levels are considered. The Floquet Hamiltonian that
describes the Autler-Townes spectrum in the case considered,effectivelycorresponds to a special model of a
periodically driven system~with period 2p/V) in which an external perturbation has the form of an operator
projecting onto a single-quantum state. We generalize this model to the case of anN-level periodically driven
system where the simultaneous vanishing of a half-infinite number of the dressed-state Fourier harmonics are
analyzed. Possible experimental tests of the effect are suggested.@S1050-2947~97!04303-5#

PACS number~s!: 42.50.Hz, 32.80.2t, 33.40.1f
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I. INTRODUCTION

One of the most important aspects of nonlinear mat
radiation interactions is related to the fact that the action o
strong resonance field alters the properties of a physical
tem in an essential way. This topic has been very thoroug
investigated and many interesting effects have been
served. Among these are the ac Stark effect@1#, the Autler
and Townes effect@2#, gain without inversion@3,4#, electro-
magnetically induced transparency@5,6#, etc.

One of the basic concepts in this area, the spectrum
driven system, can be understood from the consideration
pair of quantum energy levels resonantly coupled via
strong monochromatic field of frequencyv @7#. This field
will induce low-frequency oscillations in the system, term
‘‘Rabi flopping,’’ with frequency r!v. Considered in the
rotating-wave approximation the time-varying wave functi
of the system will oscillate at four distinct frequencie
which can be chosen, for example, as6r /2 andv6r /2. This
doubling of oscillation frequencies compared with the u
driven system is effectively the splitting of each of the e
ergy levels into a doublet. The splitting of each doublet
r , while the spacing between the two doublets is the driv
frequencyv. Such aspectrumfor a resonantly driven system
is frequently described in terms of a pair of dressed sta
which are combined states of an electromagnetic field an
quantum system@8#. Each dressed state corresponds to a p
551050-2947/97/55~3!/2186~17!/$10.00
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of levels spaced with the energy of a photon of the drivi
field.

This spectrum can be investigated experimentally usin
widely adopted experimental method originated in the se
inal work of Autler and Townes@2#. In this method an addi-
tional weak probe field that connects one of the two stron
coupled energy levels to some third level is used. As a re
of the strong-field level splitting described above, the sp
tral peak in the probe absorption spectrum will also split in
a doublet of lines@2#. This splitting, called the Autler-
Townes effect, is one of the most direct manifestations of
spectrum of dressed states. Numerous observations of
effect were made for various wavelengths in gases@9,10#,
laser-cooled atoms@11#, and the solid state@12#, in both
steady-state and transient@13# regimes, and for three@9# or
more levels involved in the effect@10#, including the case of
continuum-continuum splitting@14#.

Theoretical investigation of this effect has included tim
independent probe absorption and emission spectra in
three-level configuration@15#, as well as multilevel system
and time-dependent absorption spectra@16#. The general case
of multiple strong fields connecting different pairs of leve
has been treated in Refs.@6,17#.

Recently the phenomenon of electromagnetically indu
transparency@5,6# has attracted considerable interest. Th
effect is closely related to the Autler-Townes effect when
medium is made transparent to a certain probe frequency
result of destructive interference of the split components
2186 © 1997 The American Physical Society
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55 2187SIMULTANEOUSLY FORBIDDEN RESONANCES IN THE . . .
the probe transition@18#. At the same time a resonantly en
hanced third-order susceptibility can be obtained@5#.

All the work mentioned above was restricted to the use
monochromatic fields, which is not to say that sufficient
tention has been paid to the Autler-Townes pump-pro
scheme with amodulatedpump field. In this regard conside
fields with a periodic frequency modulation~FM!. Use of
such fields, for example, is the basis for ultrasensitive
sorption spectroscopy@19–21# where the resonant informa
tion is put at a modulation frequency~and its harmonics! that
is high compared to the predominantly low-frequency no
of lasers. A periodically modulated pump field provides
interesting tool for Autler-Townes-type spectroscopy due
the large number of sidebands and additional parameters
can be sensitively controlled over wide ranges.

In this paper we consider a new object for Autle
Townes-type spectroscopy, a quantum system dressed
strong resonant pump field of the form

E~ t !5E exp@2 ivt2 if~ t !#1c.c., f~ t !5Msin~Vt !.
~1!

HereE is a field amplitude,v is the carrier frequency of the
field, M is the modulation index, andV is the modulation
frequency. Such a field is an essentially polychromatic fi
with a carrier wave at the frequencyv and an infinite num-
ber of sidebandsv1nV (n561,62, . . . ).

If both the modulation indexM and the field amplitude
E are sufficiently large then the Fourier harmonics of t
field will be strongly mixed by a nonperturbative nonlinea
ity in the saturated quantum transition@22#. Due to the peri-
odic character of the modulation the spectrum of dres
states will consist, not of doublets as in the unmodula
case, but rather of infiniteladdersof sublevels with the spac
ing between sublevels corresponding to the modulation
quency. Such a spectrum exhibits nontrivial nonlinear f
tures@23,24#.

The effect of the interaction of a two-level system with
periodic FM field has been intensively investigated ear
@19,27–30# and more recently@22,23,25,26,31–33#. Periodic
modulation of the field produces additional sidebands in
scattered spectrum@31# and leads to a periodic modulation o
the absorption coefficient and fluorescence signal@22#. The
strong field and strong modulation produce additional re
nances in the spectra@22#, a nonlinear phenomenon that h
also been intensively studied, but not yet completely und
stood, in the related field of magnetic resonance@23,25#.

All of the above-mentioned results are restricted to
case with two quantum levels. Following the approach
Autler-Townes spectroscopy that involves a third level a
an additional~probe! field, allows one to investigate mor
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observables and to deal directly with the spectrum of a s
tem dressed by a periodically modulated pump. Because
type of nonlinearity in this case is more complex than th
for the case of the usual dressed states, new effects ca
expected to appear@24#.

The organization of this paper is as follows: In Sec. II w
first consider a two-level system subject to a strong pu
field of the form~1! with ~near! resonant carrier frequency
We then describe its dressed-state spectrum and the infi
set of resonances induced by a weak probe that connects
of the two strongly coupled levels to a third level. In Sec.
we consider the factorization property of the effective~Flo-
quet! Hamiltonian that describes the dressed-state spect
of the system and a related effect of simultaneously forb
den resonances. This is the principal result of the pa
Then in Sec. IV we investigate this effect analytically a
numerically, using the method of continued fractions. S
tion V deals with topological properties of the manifolds
the parameter space of the system on which the effec
simultaneously forbidden resonances takes place. In this
tion also the effect of a degeneracy of the dressed-state le
will be considered. In Sec. VI we investigate the limit
small modulation frequency. Section VII concludes with
discussion and summary.

II. THE LINEAR RESPONSE TO A PROBE FIELD

We consider a three-level system in theL configuration
as shown in Fig. 1. A strong FM field of the form~1! is
applied between an excited stateu1& and an intermediate
stateu2&. A weak probe field

Ep~ t !5Epe2 ivpt1c.c. ~2!

resonantly excites the system from the ground stateu0& to the
stateu1&. We will be interested in the linear response of t
system to the probe field and will calculate the probe abso
tion spectrum and the induced polarization for the pro
transition. The equations for the time-varying probabil
amplitudes of a single atom are

FIG. 1. Three-level pump-probe scheme in thel configuration
with a frequency modulated pump.
i
d

dtS C0

C1

C2

D 5S 2v0 2
1

\
d01Ep~ t ! 0

2
1

\
d10Ep~ t ! 2

i

2
g1 2

1

\
d12E~ t !

0 2
1

\
d21E~ t ! 2v22

i

2
g2

D S C0

C1

C2

D , ~3!
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where2v0 and2v2 are the energies of the statesu0& and
u2&, respectively, the energy of the stateu1& is set to zero.
The relaxation widths of the levels are\g1,2, andd01 and
d12 are dipole matrix elements~considered real!. In order to
find a linear response to a probe field the effect of the pr
upon the ground-state population must be neglec
Therefore we write

C0~ t !5eiv0t. ~4!

We now transform to the frame rotating with the instan
neous frequency of the coupling field

S C1

C2
D 5S c1

eivt1 if~ t !c2
D . ~5!

After neglecting counterrotating terms in the new fram
@valid if uḟ(t)u!v] and taking into account Eq.~4!, we
write the equations for the slowly varying amplitud
c1,2(t)

i
d

dtS c1

c2
D 5S 2

ig1

2
r

r D1ḟ~ t !2
ig2

2

D S c1

c2
D

1r pS e2 i ~vp2v0!t

0 D , ~6!

where

r52
1

\
d12E, r p52

1

\
d01Ep , ~7!

and

D5v2v2 . ~8!

The quantityD in Eq. ~8! is the detuning from resonance o
the carrier frequency of the coupling field. Equation~6! is
valid for t!g1 /r p

2 andg1,2@r p . The first term on the right-
hand side~rhs! of Eq. ~6! describes the resonant couplin
between the statesu1& and u2& including the effect of dissi-
pation, while the second term in Eq.~6! corresponds to the
weak probe.

In this paper we will be interested in the limit of wea
dissipation

r , V@g1,2. ~9!

It is advantageous in this limiting case to use, rather than
stationary statesu1& and u2&, the dynamical~field-dressed!
states, which incorporate the effect of a strong coupling
actly. These can be obtained by solving Eq.~6! while ne-
glecting the small terms proportional tog1,2 and r p . The
Schrödinger equation for the time-varying amplitudes of t
dressed statesF1,2(t) then takes the form

i
d

dtS F1

F2
D 5S 0 r

r D1MVcos~Vt !
D S F1

F2
D . ~10!
e
d.

-

e

-

Here we have used the explicit form of the phase modula
f(t) @Eq. ~1!#.

Because the Hamiltonian in Eq.~10! depends upon time
periodically with a period 2p/V one can write two linearly
independent solutions of Eq.~10! in a form that follows from
the Floquet theorem@2,34#

F i
a~ t !5e2 ilat (

n52`

`

F i ,n
a e2 inVt ~a56, i51,2!,

~11!

where the indexa distinguishes the two solutions. The p
rametersl6 ~rather, \l6) are called the quasienergie
@35,36#. As seen from the form of the dressed states in
~11! the choice of quasienergies is ambiguous within inte
multiples ofV. Each of the dressed states~11! is associated
with a ladder of quasienergy ‘‘levels’’

la1nV, a56, n50,61, . . . . ~12!

There will be two such ladders that correspond to the t
dressed states. It follows from Eq.~10! that these ladders ar
complimentary to each other

l11l25D, mod~V!. ~13!

The harmonics of the dressed statesF1,n
a F2,n

a in Eq. ~11! as
well as the quasienergiesla can be found as the solution o
a matrix eigenvalue problem for a certain infinite matr
Hamiltonian @35#. This problem will be treated in Sec. III
Here all harmonicsF1,n

a and the quasienergies are assum
to be known for both dressed states~11!. These dressed
states will be used as the basis in Eq.~6! rather than using
u1&, u2&. If we set

c i~ t !5C1~ t !F i
1~ t !1C2~ t !F i

2~ t !, i51,2 ~14!

then, using Eqs.~6!, ~10! we can derive the equations for th
amplitudesC6(t)

iĊa52
i

2 (
b56

gab~ t !Cb1r pF i
a~ t !* e2 i ~vp2v0!t, a56

~15!

wheregab(t) are coefficients associated with dissipation

gab~ t !5 (
k51,2

gkFk
a~ t !*Fk

b~ t !, a,b56. ~16!

It follows from the form of the dressed-state amplitud
F1,2

a (t) @Eq. ~11!# that the coefficientsgab(t) oscillate at the
frequenciesla2lb1pV (p50,61, . . . ), whereas the in-
homogeneous terms in Eq.~15!, associated with the prob
field, oscillate at the frequenciesvp2v02la1nV
(a56; n50,61, . . . ).

Under the condition~9! the intervals between quasienerg
levels are much greater than the relaxation widths of
levelsg1 andg2

ul12l21mVu@g1,2 for any integerm. ~17!
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It follows then from Eq.~15! that the probe field will pro-
duce resonance in the system whenever its frequency s
fies one of the conditions

vp'na,n[v01la1nV, ~18!

where a56, n50,61,62, . . . . There will be two
‘‘combs’’ of the probe resonance frequenciesn6,n corre-
sponding to various intervals between the ground-state l
2v0 and levelsla1nV of the quasienergy ladders for tw
dressed states (a56). Near the resonance~18! a steady-
state solution of Eq.~15! has the form

Ca~ t !'r pF1,n
a e2 idt

d1 iGa/2
, C2a'0 ~19!

~in what follows we will use the subscript2a to identify the
other dressed state relative to that identified bya, e.g., if
a→1 then2a→2 and vice versa!. In Eq. ~19! the ‘‘field-
dressed’’ damping coefficientGa is

Ga5 (
k51,2

gk (
n52`

1`

uFk,n
a u2 ~20!

and the small probe detuningd is

d5vp2na,n , udu!V. ~21!

Note thatCa(t) is a nondiagonal element of the density m
trix between the ground stateu0& and one of the dresse
states. Near the resonance~18! the probe field resonantly
excites the system to this dressed state from the ground
and the amplitudeCa(t) is enhanced. The amplitud
C2a(t) corresponding to the other dressed state is m
smaller (;r p /V) provided that the condition~17! holds.
This is not true near the degeneracy points where two lad
of quasienergy nearly coincide~this effect will be considered
in Sec. V!.

Based on the solution~19! one can find the polarization
p(t) induced in an optically thin medium by the probe fie
near the resonance~18!

p~ t !5Ep (
m52`

1`

xn,m
a ~d!e2 i ~na,m1d!t1c.c., ~22!

where

xn,m
a ~d!52

Nd01
2

\~d1 iGa/2!
F1,n

a F1,m
a . ~23!

HereN is the atom density and the detuningd is given in Eq.
~21!. As seen from Eqs.~22!, ~23! the probe-absorption curv
near each resonance~18! has a Lorentzian shape with a wid
determined by the field-dressed damping parameterGa .
There will be two infinite sets of resonances~18! correspond-
ing to two quasienergy ladders and they will be well resolv
under condition~9!. It follows from Eq.~22! that each reso-
nance~18! is characterized by an absorption cross sect
proportional touF1,n

a u2 ~cf. Ref. @2#!.
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As seen from Eq.~22!, a monochromatic probe field with
frequency close tona,n gives rise to a stimulated emission
an infinite comb of frequenciesna,m1d with corresponding
amplitudes of individual harmonics proportional
f1,n

a f1,m
a . Those harmonics correspond to all possible tra

sitions from the quasienergy levelsla1mV of the reso-
nantly excited dressed state back to the ground state.

Thus, in the limit of weak dissipation@Eq. ~17!#, the har-
monics of the dressed statesF1,n

a provide the essential infor
mation about the probe-absorption resonances and stimu
emission of the probe. These quantities will be of cent
interest here.

III. FACTORIZATION PROPERTY
OF THE FLOQUET HAMILTONIAN

In the preceding section the linear response to a pr
field @Eqs.~22!, ~23!# was calculated in terms of the quasie
ergiesl6 and the harmonics of the dressed-state amplitu
F1,2

6 (t), satisfying Eq.~10!. The Hamiltonian in Eq.~10! is
special, in that iteffectivelydescribes a two-level system
subject to a strong harmonic perturbation with frequencyV
that is coupled to a system via a single-quantum stateu1&
~that is, described by a single diagonal matrix element!. To
our knowledge, this form of the interaction has not be
encountered before in studies of two-level driven systems
leads to a very special property of the dressed-state harm
ics F1,n

6 andF2,n
6 that will be considered here.

To describe this property we use the approach develo
by Shirley @35#. After substituting expressions~11! for
F i

a(t) ( i51,2) into Eq. ~10! we obtain an infinite set of
matrix recursion relations forF i ,n

a ( i51,2). They can be
written in the form of a matrix eigenvalue problem for th
l ’s

S 2nV r

r D2nV
D S F1,n

F2,n
D 1mS 0 0

0 1D F S F1,n21

F2,n21
D

1S F1,n11

F2,n11
D G5lS F1,n

F2,n
D , m[MV/2. ~24!

Here the integern ranges from2` to 1` and superscript
a is omitted for simplicity. The operator whose eigenvalu
arel ’s is an infinite-dimensional Hermitian matrix~Floquet
Hamiltonian!

(
m52`

`

(
j51,2

Hi ,n
j ,mF j ,m5lF i ,n , ~25!

with rows and columns identified by pairs of indices, e.
( i ,n) and (j ,m), where the indices take on the value
i51,2 and n50,61, . . . . The eigenvectors are infinite
dimensional column vectors. If one orders their eleme
F i ,n so thati runs over its values before each change inn
then the Floquet HamiltonianH is
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•

~1,k11!

~2,k11!

~1,k!

~2,k!

~1,k21!

~2,k21!

•

• ~1,k11! ~2,k11! ~1,k! ~2,k! ~1,k21! ~2,k21! •

1
• • • • • • • •

• 2~1,k11! r 0 0 0 0 •

• r D2~k11!V 0 m 0 0 •

• 0 0 2kV r 0 0 •

• 0 m r D2rV 0 m •

• 0 0 0 0 2~k21!V r •

• 0 0 0 m r D2~k21!V •

• • • • • • • •

2 ~26!
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The eigenvalues ofH ~quasienergies! can be found as root
of the characteristic equation det@H2Il#50, whereI is an
identity matrix.

The Floquet Hamiltonian has a periodic structure w
only the coefficient ofV in the diagonal elements varyin
from block to block. This structure endows the eigenvalu
and eigenvectors with periodic properties. Ifl is an eigen-
value, then so also isl1pV for any integerp. The quasien-
ergies form two infinite sets described by Eqs.~12!, ~13!.
The elementsF i ,n

a,p of the eigenvector with the quasienerg
la1pV are related to the elementsF i ,n

a of the eigenvector
with quasienergyla via the equalityF i ,n1p

a 5F i ,n
a,p Thus,

the difference between eigenvectors within the same set
matter of assignment of integern in F i ,n

a . It corresponds to
the ambiguity in the choice of quasienergy in Eq.~11! and
has no physical significance. It suffices, therefore, to inv
tigate any two branches of quasienergiesl6 from different
sets and their eigenvectors.

Let us assume that the quasienergyl satisfies the follow-
ing condition for a certain integerk:

l1kV50. ~27!

In this case, as seen from Eq.~26!, the matrixH2lI has the
column (1,k) and row (1,k) with only one nonzero elemen
(5r ). Therefore the determinant ofH2lI can be factorized

det@H2lI #52r 2det@Hk
~1 !2lI #det@Hk

~2 !2lI #. ~28!

Here matricesHk
(2) and Hk

(1) are half-infinite diagonal
blocks ofH that correspond to the values of indexn ranging
from 2` to k21 and fromk11 to 1`, respectively. The
matricesHk

(2)2lI andHk
(1)2lI determine the coefficient

of the half-infinite systems of equations in Eq.~25! for
F i ,n corresponding ton,k andn.k, respectively.

This special factorization property of the Floquet Ham
tonian~28! is a manifestation of the fact that under conditi
~27! each of the half-infinite systems of equations in~25! is
closed. Indeed, one can see from the form ofH @Eq. ~26!#
that the coupling between those systems occurs via the
trix elementsH2,k11

2,k 5H2,k
2,k115r . Therefore those system

will be closed whenever

F2,k50. ~29!
s

a

s-

a-

On the other hand, the componentF2,k alwaysvanishes un-
der condition~27! because in this case the column (1,k) of
the matrixH2lI contains only one nonzero matrix elemen
H1,k

2,k @precisely the same condition leads to Eq.~28!#.
It follows from Eq. ~28!, that under condition~27!, the

characteristic equation forl is reduced to one of the two
conditions

det@Hk
~1 !1kV#50 or det@Hk

~2 !1kV#50, ~30!

which are the conditions of existence for nontrivial bound
solutions of the closed half-infinite systems of equations~see
discussion above!. However, in general, these condition
cannot be satisfied simultaneously because the matr
Hk

(6)1kV are not similar and their eigenvalues do not co
cide. Therefore, under condition~27!

F1,n5F2,n50, for alln,k or n.k, ~31!

depending on which of the determinants in Eq.~30! vanishes.
This property has an immediate effect on the polarizability
the system induced by the resonant probe field@Eq. ~22!#. If
the parameters of the coupling fieldE(t) are adjusted so tha
one of the quasienergies,l1 or l2 , satisfies condition~27!
then an infinite number of probe-absorption resonances
be simultaneously forbidden@see Eqs.~22!, ~31!#. According
to Eqs.~18!, ~27!, and~31!, the values of the resonance fre
quenciesnm for the forbidden resonances are

nm5v01mV, ~32!

where integerm varies from2` to 21 or from 1 to1`.
Therefore, the positions of these resonances correspond
infinite sequence of equally spaced probe frequenc
mV1v0, below (m,0) or above (m.0) the unique fre-
quency edgev0. It is clear that the same half-infinite se
quence of frequencies will be absent in the spectrum
stimulated emission of the probe@cf. Eqs.~22!, ~23!# when
the frequencyvp is resonant with the allowed transition. W
refer to this effect as simultaneously forbidden resonan
~SFR! ~@24#!.

Note that this effect appears to be a direct consequenc
the special factorization property~28! that the Floquet
Hamiltonian possesses when its eigenvalues are integer
tiples of V. One would expect that this factorization is
manifestation of a certain kind of a symmetry of the Ham
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tonian. We have not found this symmetry explicitly, how
ever, we did find that, for certain choices for the paramet
the factorization leads to a degeneracy of quasienergy le
~see Sec. V!.

IV. THE SOLUTION IN TERMS
OF CONTINUED FRACTIONS

We will now investigate the appearance of simultaneo
forbidden resonances by solving the matrix eigenvalue pr
lem ~24!. One of the methods to obtain its exact, nonpert
bative solution is based on the use of infinite continued fr
tions @37#. This method is especially suitable here beca
the terms proportional to the modulation indexM in Eqs.
~24! involve a projection operator. It is, therefore, possible
express the harmonicsF2,n in terms of the harmonicsF1,n
with the samen

F2,n5
l1nV

r
F1,n , ~33!

and ascalar three-term recursion relation for the harmoni
F1,n can be obtained after substituting Eq.~33! into Eq.~24!

d~ln!F1,n1mln11F1,n111mln21F1,n2150, ~34!

where

ln5l1nV, d~x!5~D2x!x1r 2. ~35!

The method to be used here for solving Eq.~34! is similar
to one used in Ref.@2#. The ratios of theF ’s are expressed a
infinite continued fractions by a standard method detailed
Appendix A. Then the following equations that rela
F1,n61 to F1,n can be written:

F1,n1152mln@d~ln11!2Y~1 !~ln11!#
21F1,n , ~36!

F1,n2152mln@d~ln21!2Y~2 !~ln21!#
21F1,n , ~37!

where

Y~6 !~ln!5
m2lnln61

d~ln61!2Y~6 !~ln61!
. ~38!

The coefficientsY(6)(ln) can be expressed in terms of infi
nite continued fractions, using a backward recursion
Y(2) and a forward recursion forY(1). Furthermore, Eqs
~34!–~38! are used to obtain the algebraic equation forl.
One divides both parts of the recursion relation~34! by
F1,n and then substitutes the ratiosF1,n61 /F1,n from Eqs.
~36!, ~37!. This yields

d~ln!2Y~1 !~ln!2Y~2 !~ln!50. ~39!

The parametersln andd(x) are defined in Eq.~35! and the
Y(6)(ln) are defined as continued fractions in Eq.~38!. It
follows from the structure of theY(6)(ln) that the form of
Eq. ~39! does not depend on the choice ofn. Using Eqs.~38!,
~39! one can readily verify the periodic properties of t
quasienergiesln discussed above~i.e., if ln satisfies this
equation, so doesln1pV).
s,
ls

s
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-
-
e
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Equations~33!, ~35–39! constitute the basis for the nu
merical solution of the matrix eigenvalue problem~24!. One
first solves the algebraic equation~39!, using definitions
~35!, ~38!, and selects any two quasienergiesl6 ~12!, ~13!
corresponding to different dressed states. Then for e
quasienergyl6 one uses a recursion in Eqs.~36!, ~37! to-
gether with Eq.~33! to express the harmonicsF1,n ,F2,n at
various values ofn solely in terms of a single componen
F1,0. The componentF1,0 can be found then from the nor
malization condition.

Before proceeding with numerical work we describe t
SFR effect analytically, using Eqs.~33!–~39!. This effect
appears whenever the condition~27! is satisfied. That is,
whenever a rung of one of the quasienergy ladders coinc
with zero. Assume that this condition is satisfied for som
integerk. It can be written aslk50, using the notation~35!.
In this case the numerators in the expressions forF1,k61 Eqs.
~36! and ~37! vanish. However, as can be shown, both h
monicsF1,k61 do not vanish simultaneously under the co
dition ~27! ~otherwise,F1,n[F2,n[0 for all n, a case which
is not of physical interest!. Thus, at least one of the denom
nators in Eqs.~36!, ~37! must vanish under the condition~27!
and this leads to one of the following equations:

d~V!5Y~1 !~V!, ~40!

or

d~2V!5Y~2 !~V!. ~41!

It can be shown that Eq.~40! corresponds to the vanishin
of det@Hk

(1)1kV# while Eq.~41! corresponds to the vanish
ing of det@Hk

(2)1kV#50 @cf. Eqs. ~30!#. In general, both
equations cannot be simultaneously satisfied~see below!.
Assume, for example, that Eq.~40! is satisfied while Eq.~41!
is not. It follows then from Eqs.~37! that F1,k2150, and
using the backward recursion in this equation and also
~33!, one obtains

F2,n ,F1,n50 for n,k. ~42!

If, on the contrary, Eq.~41! is satisfied and Eq.~40! is not,
then, using the forward recursion in Eq.~36! and also Eq.
~33!, one obtains

F2,n ,F1,n50 for n.k. ~43!

The SFR corresponding to Eqs.~40!, ~42! can be called
lower in the sense that harmonics of the dressed state
n,k vanish. Conversely, the SFR corresponding to E
~41!, ~43! can be called upper. The picture is that the para
eters of the system are adjusted so that one of the rung
one of the ladders coincides with the bare level of stat
(lk50). At this point all the harmonics corresponding to t
rungs above (n.k) or below (n,k) the given rung vanish.
Note that in either case the conditionlk50 leads to
F2,k50 @see Eq.~33!#.

In Fig. 2~a! two branches of quasienergiesl6(M ) for the
two different dressed states are plotted as functions of
modulation indexM . Due to the periodic property of the
quasienergies@Eq. ~12!# these branches produce the two la
ders of quasienergy curvesl6(M )1nV (n50,61, . . . ).
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The boundaries of the interval of periodicity with the wid
V ~the zone! are indicated by dot-dashed lines. It follow
from Eq. ~13! that the quasienergy curvesl6(M ) are posi-
tioned symmetrically relative to the zone centerD/21pV
@the zone center in Fig. 2~a! corresponds to the intege
p521 and is also indicated by the dot-dashed line#. Differ-
ent quasienergy curves, in general, do not cross each o
and therefore each of them is confined within a half zo
with a width V/2. The quasienergy curves repeatedly a
proach the zone boundaries and the gaps in the avo
crossings grow with modulation indexM . The horizontal
axis corresponds to zero energy and coincides with the p
tion of the energy level of the stateu1& ~cf. Fig. 1!. There is
only one quasienergy curve~labeledl2) that crosses the
horizontal axis. The crossing points are indicated in Fig. 2~a!
by bold dots. At those points the condition~27! is satisfied
for k50.

The harmonicsF1,n of the dressed state with quasiener
l2 are shown in Figs. 2~b! (n51,2,3) and 2~c!

FIG. 2. ~a! Quasienergiesl6 vsM for fixed values of the cou-
pling field strengthr51.2, detuning from resonanceD50.8, and
modulation frequencyV50.6. Crossings ofl2 with the zero en-
ergy marked with bold dots correspond toM'2.9, 4.7, 7.6, 8.8. For
the dressed state with quasienergyl2 plots ofF1,n vsM are shown
in ~b! and~c!. Each harmonic is labeled by itsn on the plots. Note
that the harmonicF1,3 does not vanish atM→0 ~in this limit
l213V approaches the ‘‘bare’’ dressed-state energy in the
sence of modulation.
er
e
-
ed

si-

(n521,22,23). Note that all the harmonics in either Fig
2~b! or 2~c!, but not both, vanish alternately at the crossi
points ~points of SFR!, which are indicated by vertica
dashed lines to connect with Fig. 2~a!. At the first and third
points~lower SFR! Eq. ~40! is satisfied and, according to th
discussion above, all transitions to the quasienergy lev
nV below zero are simultaneously forbidden. At the seco
and fourth points~upper SFR! Eq. ~41! is satisfied and all
transitions to the quasienergy levelsnV above zero are si-
multaneously forbidden.

It can be immediately seen by comparison of Figs. 2~a!
and 2~b!, 2~c! that the points of SFR lie inside of the region
where the harmonicsF1,n of one sign ofn dominate over the
harmonics of the opposite sign ofn and those regions ar
separated by the avoided crossing regions. In contrast, in
vicinity of the avoided-crossings the harmonics of both sig
are, in general present. For example, in Fig. 3~a! the dots
correspond to the values ofF1,n for different integern’s
calculated at the fixed value ofM corresponding to the sec
ond avoided crossing in Fig. 2~a! ~it is marked with the letter
B). For comparison, the plots ofF1,n in Fig. 3~b! correspond
to the values ofM at the second and third points of SF
@pointsA andC in Fig. 2~a!# which are positioned before an
after the avoided crossing, correspondingly.

It turns out that in order to understand qualitatively th
behavior of the dressed state harmonics one needs to
sider the low-frequency limitV!r , as will be done in Sec
VI. Here we remark that the Figs. 2~a!, 2~b!, 2~c! correspond

-

FIG. 3. Dots in each plot correspond to the values of the h
monicsF1,n of the dressed state with quasienergyl2 for different
integersn. Values ofr ,V, andD are the same as in Fig. 2. The plo
in ~a! corresponds toM56.2 which lies near the second avoide
crossing in Fig. 2~a! ~marked with the letterB). Dots that lie on
solid and dashed lines in~b!, labeled withA andC, respectively,
are plotted for the values ofM that correspond to the points of SF
from Fig. 2 with the same labels. At the pointA all positive har-
monics vanish whereas at the pointC all negative harmonics van
ish.
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to the frequencyV50.5r , while for largerV*r there will
be no such distinct and comparatively wide ‘‘regions
SFR’’ as in Figs. 2~b!, 2~c! ~cf. @24#!.

The componentF1,0 is plotted in Fig. 4. According to the
discussion above this component does not vanish at the
points. In the limitM@r it asymptotically approaches unit
while all the other harmonicsF1,n with nÞ0 decrease to
zero @cf. Figs. 2~b!, 2~c!#. This can be understood from th
Schrödinger Eq.~10!. In the limit of strong modulation the
coupling field between the statesu1& and u2& ~term propor-
tional to r ) becomes increasingly off resonance and its eff
will be diminished. In this case the quasienergy for one
the dressed states approaches zero@l1 in Fig. 2~a!# and the
corresponding amplitudes have the limitsF1(t)→1,
F2(t)→0.

In addition to the points of SFR there are also cases
which the harmonicsF2,n ,F1,n vanish at single values o
integern rather than at an infinite number of its values as
the SFR effect. For example, only the componentF1,3 shown
in Fig. 2~b! has zeros at the valuesM'3.82 and 6.71 and
9.98 while all other harmonics do not. This effect is cons
ered in Appendix B.

V. FACTORIZATION MANIFOLDS

The conditions for SFR~40!, ~41! impose certain relations
between the parametersr , M , D, andV. As can be readily
verified these equations involve three-independent dim
sionless parametersr /V, M , D/V, and the points of SFR
form two manifolds in the 3D space of these paramet
which we will now investigate~we shall call them factoriza
tion manifolds!.

Using Eq.~24! one can derive the following transforma
tion properties of the harmonics of the two dressed states
their corresponding quasienergies:

F1,n
1 ~2D!5~21!nF1,2n

2 ~D!,

F2,n
1 ~2D!5~21!n11F2,2n

2 ~D!, l1~2D!52l2~D!
~44!

~here the6 signs designate the different dressed states!. On
the other hand, it is seen from the explicit forms ofd(x) and
Y(6)(ln) @Eqs.~35,38!#, that the Eqs.~40!, ~41! that describe
the factorization manifolds can be transformed one into
other by the replacementD→2D. Thus, if the harmonics
F i ,n for one of the dressed states obey Eq.~42! with a certain
integerk then, after the transformationD→2D the harmon-

FIG. 4. Zeroth harmonicF0,n for the dressed state with quasie
ergyl2 vsM .
f
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ics of the other dressed state will obey the Eq.~43! with k
replaced by2k. Therefore it suffices to investigate just on
of the equations,~40! or ~41!.

In order to gain some intuition about the structure of t
manifold of SFR we first consider the case of weak modu
tion

M!1, ~45!

where the results can be obtained analytically. It is con
nient to choose the quasienergy branchesl6 so that they go
continuously into the ‘‘energies’’ of the dressed states in
absence of modulation@the latter can be obtained from Eq
~10! with M50]:

l6→e65D/26~r 21D2/4!1/2 ~M→0!. ~46!

In this case the ladders of the quasienergy levels~12! can be
approximately written ase61nV and the condition for SFR
~27! amounts to one of the conditions

e11kV'0, k,0, ~47!

e21 lV'0, l.0. ~48!

Note that, the zero harmonicsF1,0,F2,0 do not vanish under
the condition ~27! and, in general, dominate in the lim
M!1. Nonzero harmonicsF1,n ,F2,n;M unu and are formed
by all possible elementary processes of net absorption~for
n,0) or emission (n.0) of unu ‘‘quanta’’ of frequency
V. It can be shown, using a diagrammatic approach, t
under the condition~47! all processes with net absorption o
more thanuku quantaV are forbidden@Eq. ~42!#, while under
the condition ~48! the processes with net emission ofl
quanta are forbidden@Eq. ~43!#.

The Eq.~40! can be rearranged and then simplified in t
limit M!1, using the explicit form of the continued fractio
Y(1)(V) @Eq. ~38!# and keeping only leading terms inM2.
Finally, for smallM it takes the form

d~2kV!5
M2V4

4 S k~k21!

d„~12k!V…

1
k~k11!

d„2~11k!V…

D .
~49!

In the limit M→0 this equation corresponds to Eq.~47!, as
can be seen if one takes into account that the functiond(x)
in Eq. ~49! can be written in the form

d~x!5~e12x!~x2e2!

@cf. Eqs.~35!, ~46!#. Solving Eq.~49! for D one obtains to
the first order inM2

D/V52k1
1

k
~r /V!21M2

~r /V!2

2kH Fk1
1

k
~r /V!2G221J ,

k521,22, . . . . ~50!

For a fixedV these relations define the system of nea
parabolic surfaces in the space of parametersr /V, M , and
D/V, identified by the various integer values ofk.
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The approximation~49!, ~50! fails when the modulation is
not weak (M * 1). Essentially, the expressions~50! give
the asymptotic forms, atM!1, of a set of nonlinear surface
that represent the solution of Eq.~40!. This equation was
solved numerically, and the results are shown in Fig. 5. E
surface is represented by its intersections with two pairs
planes orthogonal to theM axis and to ther /V axis.

The intersections with theM50 plane are the paraboli
curves described by Eq.~50!. Points on each surface corre
spond to a fixed value of the positive quasiener
l1(r ,M ,D)52kV which connects smoothly to the dress
state energye152kV ~46!, ~47! atM→0. Thus, each sur
face can be identified by the value of integerk. The system
of surfaces is semi-infinite, its lowest sheet correspond
k521 and the sheets withk522,23, . . . are stacked
above. At thekth surface the quasienergy ladder ofa51
dressed state has a levell11kV that crosses zero energ
and all harmonicsF i ,n vanish forn,k. Thus the surfaces
with different values ofk correspond to thedifferent levels
of the quasienergy ladder crossing zero energy@38#.

FIG. 5. One of the two factorization manifolds defined by E
~40! in the space of the dimensionless parametersr /V, M , and
D/V. All surfaces are enumerated with the integ
k521,22, . . . and points on the surface with a givenk correspond
to one and the same value of the quasiene
l1(r ,M ,D)52kV.0 that reduces to the ‘‘bare’’ energy of th
dressed statee152kV at M→0. At the kth surface all of the
harmonicsF1,n , F2,n with n,k vanish simultaneously. Note tha
according to Eqs.~46!, ~47! thekth surface crosses the axisD/V at
the integer pointsD/V52k.0. The other factorization manifold
defined by the Eq.~41! can be obtained simply by reflection in th
planeD50 @cf. Eq. ~44! and the subsequent discussion#.
h
f

y

to

The manifold corresponding to the other type of SF
@Eqs.~41!, ~43!# can be obtained from the above manifold b
reflection in the planeD50, as follows from Eq.~44! and
the subsequent discussion. This manifold also consists
semi-infinite system of surfaces, each corresponding to a
ticular value of negative quasienergyl2(r ,M ,D)52 lV
( l.0) that is traceable to the dressed-state ene
e252 lV ~46!, ~48! at M50. At these surfaces we hav
F i ,n50 for n. l .

Degeneracy of the dressed states

If one plots together the two factorization manifolds th
will form a ‘‘honeycomb’’ structure. Cross sections of th
structure at different values of the parameterr are shown in
Figs. 6~a!, 6~b!. The downward curves correspond to low
SFR ~40!, ~42! and upward curves correspond to upper S
~41!, ~43!.

Any two surfaces belonging to the different factorizatio
manifolds intersect along a certain line and each such
corresponds to a point in the cross sections shown in F
6~a!, 6~b! ~these points lie at the crossing of downward a
upward curves!. Note that the occurrence of the intersecti
lines becomes possible because points on the factoriza
manifolds correspond to the roots of two different algebr
equations,~40! and ~41!.

The remarkable feature of the intersection lines is t
they always correspond to the field detuningD being an
integer multiple of the modulation frequencyV @cf. Figs.
6~a!, 6~b!#

D5nV, n50,61,62, . . . . ~51!

The intersection atD50 is immediately seen from Eqs.~40!,
~41! which coincide with each other in this case@cf. Eqs.
~35!, ~38!#. However those equations do not coincide atD
Þ0 and the intersections corresponding tonÞ0 are non-
trivial. This result is nonperturbative because it holds in t
range ofM andr where they cannot be considered small@cf.
Figs. 6~a!, 6~b!#.

The physical importance of the intersection lines is rela
to the fact that at those lines the quasienergy levels belo
ing to different dressed states cross each other. Indee
points on the intersection line the two different dressed sta
@the one satisfying condition~42! and the other satisfying
~43!# correspond to the same ladder of quasienergy lev
sincel1(r ,M ,D)2l2(r ,M ,D)5( l2k)V.

This effect of degeneracy between the dressed states
be explained from the factorization property of the Floqu
Hamiltonian~28!. If the parameters of the system are fixed
some point of one of the intersection lines of the factoriz
tion manifolds then the ‘‘wave functions’’ of the two dresse
states,F i ,n

1 andF i ,n
2 obey the ‘‘Schro¨dinger equations’’~25!

with two different Floquet Hamiltonians,H~`! and H~2!,
correspondingly. Those Hamiltonians act in the differe
subspaces of positive and negative harmonics, which are
coupled to each other. Therefore, the quasienergies do
repel each other and crossing is allowed.

The reason that the degeneracy of the dressed state
ways occurs at integer values ofD/V @Eq. ~28!# is as fol-
lows. At points on the intersection line between the two s

.
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faces of the factorization manifolds identified by the integ
numbersk and l the following equations are satisfied simu
taneously:

l11kV50, l21 lV50, wherek,0, l.0
~52!

and, therefore, not only is the difference between
quasienergiesl6 an integer~the degeneracy! but their sum is
also an integer:l11l252(k1 l )V. However, according
to Eq. ~13! the sum of the quasienergiesl11l2 always
equalsD modV. Therefore, in this case the detuningD must
be a multiple ofV.

In the limit of small r!V the above property can b
related to an obvious property of the Bessel functions. In
limit Eqs. ~40!, ~41! can be reduced to the following:

FIG. 6. Cross sections of the factorization manifolds cor
sponding to fixed values of the field strengthr /V. In ~a!
r /V50.3, in ~b! r /V52.3. Downward curves enumerated withk
correspond to the surfaces of the manifold shown in Fig. 5. Th
curves form an infinite system bounded from below. The system
upward curves is obtained by reflection inD/V50 and correspond
to the other manifold. The infinite set of these curves is boun
from above. Dashed lines indicate the crossings of the curves
longing to different manifolds~degeneracy points! that occur at
integer values ofD/V. Curves in~a! ~small r /V) nearly reproduce
the dependences of zeros of Bessel functions on their indices@cf.
Eq. ~53!#. Whenr /V grows the downward curves move up where
the upward curves move down@cf. Eq. ~50!#. At r /V.1 the initial
points of the curves at theD/V axis begin to interlace. This cas
corresponds to~b!.
r

e

is

M
J7n~M !

J7n11~M !
50, n[D/V ~53!

where the upper sign corresponds to Eq.~40! and the lower
to Eq. ~41!. Thus the system of curves in Fig. 5 lying at th
intersection of the manifold of SFR and the planer50 cor-
respond to Bessel zeros:j2D/V,n5M (n51,2, . . . ). The
curves corresponding to the other manifold@Eq. ~41!# are
given by the equations:j D/V,n5M (n51,2, . . . ). Because
the zeros of Bessel functions of integer orderJ6n(M ) are the
same for anyn it follows then that the curves from bot
manifolds cross at the points where

D5pV, M5 j p,k ~p50,61, . . . ;k51,2, . . .!.
~54!

The above effect of the degeneracy of the dressed st
has an interesting experimentally observable manifestat
Indeed, when quasienergies nearly cross, the dressed s
are strongly mixed via dissipation andbothdressed-state am
plitudesC6(t) @Eq. ~15!# will be resonantly enhanced@the
off-diagonal dissipative coefficientg12(t) in Eq. ~15! is
slowly varying near the degeneracy points and therefore b
equations are coupled to each other#. In this situation the
probe response will be modified as compared to that gi
by Eqs. ~22!, ~23!. For convenience we now define th
quasienergies of the dressed statesl6 within the reduced
zone scheme@analogous to that in Fig. 2~a!# so that the
crossing corresponds exactly tol6[0. Assume now that the
dressed statesF1and F2 correspond to the semi-infinite
ladders of levelsnV with n>0 andn<0, respectively. It
follows from the above discussion that there will be a uniq
comb of resonance frequencies at the crossing p
v01nV but the line shapes of the resonances withn50 and
nÞ0 are different.

If the probe frequency isvp'nV1v0 with nÞ0, then
only one of the dressed states is excited directly by the pr
and the dissipative coupling between the dressed states
curs via the degenerate quasienergy levell6[0 ~the only
common level of the effectively ‘‘semi-infinite’’ ladders!. It
can be shown, using the formulas of Sec. II that near
crossing point the absorption rate per atom has the follow
non-Lorentzian form:

Q~vp!5m~f1,n
a !2

3
~db!2Ga1Gb~G1G22Gc

2!/4

@d1d22~G1G22Gc
2!/4#21~G1d21G2d1!2/4

,

~55!

a[sgn~n!, b[sgn~2n!, d65vp2v02l62nV,
~56!

nÞ0

where ud1u;ud2u are the probe detunings, the coefficie
m5(Epd01)2vp /\, the damping coefficientsG6 are given in
Eq. ~20!, and the coefficientGc5g1F1,0

1 F1,0
2 determines the

dissipative coupling between the dressed states@note that the
‘‘bare’’ damping constantg2 is dropped out because accor
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ing to Eq. ~33! at the degeneracy pointsF2,0
6 [0]. It is im-

mediately seen from the explicit forms ofG6 andGc that

G1G22Gc
2.0

and, therefore,Q(vp) is always positive. Note also that, un
like the nondegenerate case, the line shapes of the reson
depend on the sign ofn.

Away from the degeneracy point the expression for
resonance probe absorption~55! corresponds to the result
obtained in Sec. II@cf. Eq. ~22!#. Exactly at the degenerac
points, it reduces to a form

Q~vp!5m
A1~d!21A2~G22Gc

2!/4

d41d2~G21Gc
2!/21~G22Gc

2!2/16
, ~57!

A15A25G~f1,n
a !2

whered5vp2v02nV andG5G15G2 .
In the case ofn50 the probe frequency isvp'v0, and

both dressed states will be excited simultaneously beca
neither of the harmonicsFk,0

6 vanish. Exactly at the degen
eracy points the expression for the absorption rate takes
form of Eq. ~57! with, however, different values for the co
efficientsA1 andA2

A1,25G~~F1,0
1 !21~F1,0

2 !2!62GcF1,0
1 F1,0

2 ~58!

@note that according to Eq.~44! at the degeneracy point
F1,0

1 [F1,0
2 #.

VI. THE LIMIT OF A VERY STRONG-COUPLING FIELD

We now will consider the case in which the strength
the strong-field couplingr is much greater than the modula
tion frequencyV. In this case the dressed-state harmon
F i ,n reveal some interesting behavior as functions ofn. Un-
der the condition

V!r ~59!

the time dependence of the Hamiltonian for the dressed-s
amplitudesF1,2(t) in Eq. ~10! can be regarded as slow. Afte
solving this equation in the adiabatic approximation the a
plitudes of the two dressed states take the form

Fa~ t !'x i
a~ t !expS 2 i E t

Ea~t!dt D ~ i51,2; a56 !

~60!

where the amplitudesx1,2
6 (t) are the instantaneous eigenve

tors of the Hamiltonian in Eq.~10! andE6(t) are its instan-
taneous eigenvalues

Ea~ t !5~D1MV cosVt !/2

1aA~D1MV cosVt !2/41r 2 ~a56 !.

~61!

Each adiabatic solution~60! corresponds to a ladder of leve
~12!. In the following we will be interested in the limit o
strong modulationM@1. Under this condition and conditio
~59!, the characteristic number of harmonicsF i ,n

a @Eq. ~11!#
ces
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f
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will be large. It is convenient then to identify the quasiener
levels as well asF i ,n

a for various n by the values of the
‘‘quasidiscrete’’ variablez5la1nV with the quasienergies
la>^Ea(t)& t ~mod V) where the time average is over th
period of modulation 2p/v. With this the harmonics of the
dressed states can be written as

F i ,n
a [F i

a~z!5^exp~ izt!F i
a~ t !&.

The integrand functions here are highly oscillatory, provid
that uEa(t)u@V, and therefore the integrals can be evalua
by the method of steepest descent. The stationary-phase
ditions for the two dressed states are

Ea~ ts!5z ~a56 !. ~62!

The energyEa(t) periodically varies with time within a cer
tain zone@cf. Eq. ~61!# and wheneverz is inside of this zone,

~D2MV!/21aA~D2MV!2/41r 2

,z,~D1MV!/21aA~D1MV!2/41r 2 ~a56 !,

~63!

the rootsts of Eq. ~62! are real and the harmonics of th
corresponding dressed stateF i

a(z) reveal oscillatory behav-
ior as a function ofz, e.g.,

F1
a~z!>aS 2

pMsinVt D 1/2cosS E0ts @Ea~ t !2z#dt2p/4D ,
ts5

1

V
arccosS z22r 22Dz

zMV D . ~64!

On the other hand, for the values ofz outside of the zone
~63! the rootsts of Eq. ~62! are complex and the harmonic
F i

a(z) decay exponentially away from the zone boundari
For example, forz in the range

0,az,~aD2MV!/21A~aD2MV!2/41r 2 ~65!

the corresponding asymptotic expression forF i
a(z) is @39#

F1
a~z!>

a~2a!n

~2pMsinhVts!
1/2

3expS 2E
0

ts
dt@~aD2McoshVt !/2

1A~aD2MVcoshVt !2/41r 22az# D ,
~66!

ts5
1

V
cosh21S r 22z21Dz

azVM D . ~67!

The root of Eq.~62! corresponding to the asymptotic~66! is
ts52 i ts1p/V for the casea51 andts5 i ts for a52. It
is seen from Eq.~66! that the asymptotic behavior o
F1

a(z) in Eq. ~66! has a singularity atz50. In the vicinity of
this point we haveF1

a(z);t21/2→0. This reflects the fact
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that the stationary-phase condition@Eq. ~62!# hasno roots in
the domain of realaz,0. We do not consider here the pro
lem of the continuation of the asymptotic ofF1

a(z) through
the vicinity of z50.

However, one can draw an important conclusion based
Eqs.~63!, ~66!. If M is not very large, that is,M!r 2/V2, the
boundaries of zone~63! are much farther from the origin
compared to the scale ofV and therefore the asymptotic~66!
breaks down only ‘‘deeply’’ within region~65! where the
harmonicsF1,2

a (z) are already negligibly small. Under thi
condition the harmonics ofdifferentdressed statesF1,2

6 (z) as
functions ofz do not overlap. They are narrowly localized
within corresponding distinct zones of oscillatory behav
~63! that are positioned on the opposite sides of the ori
z50 and decay exponentially steeply away from the zo
boundaries@40#.

Numerical calculation of the dressed-state harmon
F1

a(z) based on the Floquet theory@Eqs. ~33!, ~35!–~39!#
show that even for relatively large values ofM&r 2/V2

when the boundaries of zones~63! approachz50 (;V) the
harmonicsF i

a(z) are still suppressed in the regionaz,0.
The apparent reason is the absence of stationary points o
integrand in^exp(izt)Fi

a(t)& because Eq.~62! does not have
roots for realaz,0. Therefore, the value of the above int
gral in this domain is strongly suppressed. This case co
sponds to Fig. 7~a! where the harmonicsF1,n

1 are shown with
solid dots for various integer values ofn. Heren is assigned
so thatn50 corresponds to the discrete value ofz closest to
zero. The zone boundary is only at a distance'1.67V from
zero @r 2/(V2 M )'1.67#, however, negative harmonics a
almost completely suppressed~e.g.F1,21

1 '0.0001). In Fig.

FIG. 7. ~a! Dressed-state harmonicsF1,n
1 vs n. The boundary of

the zone~63! is near zero ('1.67V); however, the negative com
ponents are almost completely suppressed~e.g.,F1,21

1 '0.0001).
Note that the above values of the parametersdo not correspondto
points of SFR.~b! The samer and V but largerM5200. The
number of negative harmonics is strongly increased compare
~a!.
n

r
n
e

s

the

e-

7~b! parameterM is taken to be nearly 3 times large
@r 2/(MV2)'0.5# and a large number of negative harmoni
appear.

We now establish the relation between the adiabatic
proximation ~60! and the Floquet approach considered
previous sections. Consider the plot of quasienergy cur
l6(M ) in Fig. 8~a! that is obtained numerically by solvin
Eq. ~39! ~ratio r /V55). As the modulation indexM varies
far from the avoided crossings each quasienergyla(M )
within a multiple of V is alternately equal to one of th
functions U6(M )5^E6(t)& t , while the corresponding
dressed state is determined in turn by one of the adiab
solutions Eq.~60!. Avoided crossings correspond to the s
lutions of the equationU1(M )2U2(M )5mV, wherem is
an integer. Thus, in the vicinity of the avoided crossings
dressed state is a superposition of both adiabatic states

F i
a~ t !5 (

b56
Cabx i

b~ t !expS 2 i E t

Eb~t!dt D ~68!

@cf. definition ~11!#. It follows then from the discussion
above that away from the avoided-crossing regions
dressed state will have either positive or negative harmon
whereas at the avoided crossing it will have both. It can
shown that the separation of the quasienergy curves at
avoided crossing~their repulsion! is proportional to the am-
plitude of transition between the adiabatic states. It is eas
estimate, using the Landau-Zener theory@41# and Eq.~61!
that this repulsion is small for values ofM&r 2/V2. In such
a case the individual harmonics of the dressed states
undergo sharp ‘‘steplike’’ behavior when one changes
parameters of the system.

This effect is seen in Fig. 8~b!, where the harmonics
F1,24

2 of the dressed state corresponding to thel2(M )

to

FIG. 8. ~a! Quasienergiesl6 vs M . V50.3 r51.5 D50.4.
The dot-dashed lines indicate the zone boundaries and zone ce
~b!. The dressed-state harmonicF1,4

2 vs M ~the same values o
D,r andV).
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quasienergy curve is plotted as a function ofM . According
to the discussion above, in the intervals ofM where
l2(M )>^E1(t)& t this component nearly vanishes. The e
fect is very profound whenM&r 2/V2525. For larger values
of M the repulsion of the quasienergy curves increases,
dependence ofF1,24 on M becomes smoother, and the r
gions where it takes on small values become narrow
shrinking down to the points of SFR. The reason for this
the following. The minimum separation between the eig
valuesE6(t) is r@V, however, asM grows the eigenvalue
change rapidly and whenM.r 2/V2 the adiabatic approxi-
mation in Eq.~10! breaks down within each period of modu
lation. Because of the resulting switching between the a
batic solutions~cf. Ref. @33#!, the dressed states, in gener
have a large number of harmonics of both signs. This c
corresponds to Fig. 7~b! where the harmonicsF1,n

1 are plot-
ted vsn.

VII. THE N-LEVEL SYSTEM
WITH MONOCHROMATIC PUMP

The example considered thus far in this paper correspo
effectivelyto a special model of a periodically driven syste
in which an external perturbation has the form of a proj
tion operator onto a single-quantum state@state u2& in Eq.
~10!#. The phenomenon of simultaneously forbidden re
nances is an intrinsic property of such a model~see also
@24#!. Indeed, consider now anN-level system with the
Hamiltonian

H~ t !5(
i51

N

~Ei u i &^ i u!1 (
i51

N21

~r iNu i &^Nu1r NiuN&^ i u!

12AcosVtuN&^Nu. ~69!

A monochromatic field with an amplitudeA and frequency
V is coupled directly only to a stateuN&, which is connected
to the other states by the matrix elementsr iN . Again, we will
investigate the spectrum of quasienergies in the system
ing a probe channel consisting of a weak field connection
some other~probe! stateu0&. The resonance response to t
weak field is described by the harmonics of the dressed-s
amplitudes@cf. Eq. ~11!#

(
i51

N

F i
a~ t !u i &, a51,2, . . . ,N

where the indexa enumerates the dressed states. There
be N ladders of quasienergy levels corresponding to th
states@cf. Eq. ~12!#. Applying the arguments similar to thos
considered in the Sec. II one obtains the recursion equat
for the harmonics corresponding to a given dressed state@cf.
Eq. ~24!#

~EN2nV!FN,n1 (
i51

N21

r NiF i ,n1A~FN,n211FN,n11!

5gFN,n , ~70!

r iNFN,n1~Ei2nV!F i ,n5gF i ,n ~ i51,2, . . . ,N21!
~71!
he

r,
s
-

a-
,
se

ds

-

-

s-
to

te

ill
e

ns

~for simplicity, the indexa is omitted!. It follows from Eqs.
~71! that harmonicsF i ,n with iÞN can be expressed in
terms of the componentFN,n @cf. Eq. ~33!#

F i ,n52
r iN

Ei2g2nV
FN,n , i51,2, . . . ,N21. ~72!

Using these relations and Eq.~70! one derives thescalar
recursion equation for theFN,n which can be written in the
following form:

cn5cn11cn111cn21cn21 , FN,n[cncn , ~73!

where the coefficientscn are

cn5AS g1nV2EN1 (
i51

N21
r Nir iN

Ei2g2nV D 21

. ~74!

Based on the results of Sec. IV and Appendices A and B
can obtain the explicit solution for the harmonics of t
dressed states and an algebraic equation for the spectru
quasienergies in terms of infinite continued fractions.

The significant property of the aboveN-level model is
that it can be described by a single equation~73! that corre-
sponds to the processes of emission and absorption of
tons in the stateuN&. One could naively think ofcn as being
proportional to the amplitude for being in the stateuN& with
n photons. The coefficientscn could then be regarded a
amplitudes of those transitions in which the number of ph
tonsn in the stateuN& changes by 1. It is clear then that th
dependence ofcn upon n will be strongly affected if the
coefficient cn50 for somen5k. Applying similar argu-
ments to Eq.~73! as were applied to Eq.~34! one can obtain
the result that, in this case,cn[0 for all n.k or n,k. As
seen from Eq.~74!, the conditionck50 is satisfied wheneve
the quasienergyg1kV coincides with one of the diagona
matrix elementsEj

Ej5g1kV jÞN ~75!

@Eq. ~75! is a generalization of condition~27! derived above
for the case of a three-level system#. It immediately follows
from Eqs.~71! that in this case the dressed-state harmon
are

F i ,n50, for n.k ~n,k! and i51,2, . . . ,N21.

The harmonics corresponding ton5k

F i ,k50, ~ iÞ j ! F j ,kÞ0.

This model represents a strongly driven system in which
exact result can be obtained. It can also be understood f
the factorization property considered in Sec. III. The gen
alization of the analysis for theN-level case is straightfor-
ward.

VIII. SUMMARY AND DISCUSSION

In this paper we investigated the dynamics of the tw
level system subject to a strong resonant field with a perio
frequency modulation using an additional ‘‘probe’’ chann
that connects this system to some other level~chosen here as
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a ground level!. The new observables introduced via th
channel are off-diagonal elements of the density matrix
tween the ground stateu0& and resonantly coupled state
u1& and u2&. The time evolution of those observables in t
limit of weak dissipation is formally described by the Schr¨-
dinger equation~10! for the two-level system driven via
strong modulating interaction. The specific form of t
Hamiltonian of this system with only one level being mod
lated gives rise to the factorization~27!, ~28! of the determi-
nant of the associated Floquet Hamiltonian. As a result
dressed state with zero quasienergy is special, either its p
tive or negative harmonics are zero.

The above property has an immediate experimental m
festation when the dissipation is weak and the widths of
probe absorption and emission lines are narrower than t
separations@condition~9!#. In this case the strong FM pum
periodically modulates the probe-induced dipole mom
@Eq. ~22!# much more rapidly than the characteristic rela
ation times in the system. Therefore the effect of such hi
frequency modulation on the medium will not be reduced
just modulation of its refraction index and absorption coe
cient. Rather, this modulation creates a sort of ‘‘tempo
grating’’ ~quasienergy ladders! that resonantly scatters th
monochromatic probe field with frequenciesvp5n6,n1d
@cf. Eq. ~21!#. In general, there will be two infinite combs o
the probe transition frequencies. However, at certain va
of the parameters one of the combs becomessemi-infinite
with a unique edge. We refer to this effect as simultaneou
forbidden resonances. According to Eq.~23!, when this ef-
fect occurs one and the same half-infinite sequence of r
nant frequencies will be absent in spectra of both probe
sorption and emission. In the latter case the probe freque
should be at resonance with one of the allowed transitio

It is of interest to consider the line shape of the pro
response under the condition for SFR for an experiment
suitable choice of parameters. We will consider the case
probe-absorption. To find the full probe-absorption curve
solved numerically Eq.~6! for the amplitudesc1(t), c2(t).
In the stationary regime the amplitudes contain time-perio
multiples, c j (t)5exp@i(v02vp)t#(n52`

n5` cj,nexp(2inVt) and
the probe absorption rate is proportional to Imc1,0. The
amplitudesc j ,n satisfy a set of recurrent relations whic
were solved using the method of continued fractions~we do
not describe the details here!. The probe-absorption rate pe
atom can be written in the form

Q~vp!52vpUEpd01\V U2a~vp /V!, ~76!

wherea(vp /V) is a dimensionless function ofvp /V. This
function is plotted in Fig. 9 for the choice of the paramete
r ,M ,D,V that correspond to one of the points of SFR. W
fixed the relaxation width\g1 of the upper level~stateu1& in
Fig. 1! such thatg1 /V50.03. It is seen that the set of ab
sorption resonances are well resolved, and, in particu
even the weakest resonances are not buried under the
resonant background from the stronger lines. There are
combs of probe frequencies in the set. One of the com
corresponds to the frequenciesvp'v01V(n10.5),
n561,62, . . . , which occur both above and belowv0.
There are 12 resonances shown in this comb. However
-
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other comb corresponds to the frequencie
vp'v01nV, n50,21,22, . . . , and all resonances with
n.0 are forbidden~the corresponding dressed state has it
positive harmonics equal to zero!. There are six resonances
seen in this comb. We stress that the position of the comb
frequencies exhibiting the SFR effect is fixed by the centra
point at vp5v0, whereas the position of the other comb
depends on the choice of parameters.

The spectrum showing the SFR effect exhibited in Fig.
can be realized in a straightforward experiment, choosing a
atomic beam as the medium~to minimize Doppler broaden-
ing!. If the atomic density in the beam isN;1010 cm23 and
one assumesg/(2p)&10 MHz @g[max(g1,g2)# one can
use high modulation frequenciesV/(2p), of the order of
several hundreds of MHz so that the ratioV/g can be made
large~in Fig. 9 it is'33). Using for the power density of the
pump laser; 100 W/cm2, the corresponding value of
r /(2p) is a few hundred MHz, of the same order as
V/(2p). This corresponds to the parameters chosen for Fi
9. The value of the modulation indexM in this figure corre-
sponds to a modulation depth of 8.9V/(2p) which will be of
the order of 2 GHz. The reciprocal absorption lengths fo
various frequencies of the probe can be expressed in terms
the dimensionless coefficienta in Eq. ~76! ~near the probe
resonances it is also of the order ofa0

21uF1,n
a u2 cm21, where

a0 is the absorption length in the absence of modulation!.
With the above choice of parameters, a beam of width 1 m
will absorb on the order of 10% of the probe at the centra
resonance. Thus with a sensitivity approaching the level
0.01% the structure of the lines in Fig. 9 could be seen
revealing the absence of the forbidden resonances discus
above. We note that when the atom density in the bea
increases the medium becomes optically thick and the lin
shape should be modified. However, the absorption in th
vicinity of the forbidden resonances remains strongly sup
pressed provided the conditionV/g@1 is satisfied. This
happens because the matrix elements for the correspond

FIG. 9. The reduced absorption rate per atoma is plotted vs
(vp2v0)/V for the following values of the parameters:r51.0,
V51.0,D50.5,M58.963,g150.03,g250. Two combs of reso-
nant frequenciesvp appear and are shifted with respect to eac
other byD/250.5. Note the absence in one of the combs of a
resonances above the central resonance. This is the SFR effect.
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probe transitions (}uF1,n
a u) are identically zero.

In this paper the values of the system parameters wh
the SFR effect occurs~corresponding to the factorization o
the Floquet Hamiltonian! were investigated. These value
form two manifolds in the parameter space of the syst
~honeycomb!. The shapes of the factorization manifolds r
flects the periodic property of the quasienergy ladders
the strong nonlinearity in the system.

We further have shown that the factorization property a
the related vanishing of a half-infinite number of dress
state harmonics appear in the general context of a peri
cally drivenN-level system in which an external perturbatio
has the form of an operator projecting onto a single-quan
state~stateu2& in our case!. The above effect is an intrinsi
property of this model for which the particular case
N52 was considered in detail. It is worth noting that th
model with more than two levels can be realized in t
framework of the Autler-Townes scheme if we couple eith
of the statesu1& or u2& to some other stateu3& by a strong
monochromatic resonant field. Then either of the stron
coupled levels should be connected by a weak probe to
level u0&. In this case the envelopes of the off-diagonal e
ments of the density matrix that describe the probe respo
will obey the Schro¨dinger equation with the Hamiltonia
~69! with N53 ~in principle more than one additional fiel
and state can be involved!.

The other consequence of the factorization is the poss
ity of a degeneracy of the dressed states. At the degene
points quasienergy ladders for both states coincide and t
is a unique comb of equally spaced probe resonance freq
cies v01nV. The shape of the resonance curves is n
Lorentzian in this case and depends on the sign ofn.

The problem of a degeneracy of quasienergy levels in
two-level system with a modulating interaction has been
tensively studied elsewhere, primarily in the context of t
spin-1/2 magnetic-resonance problem~see@23,26# and refer-
ences therein!. The static field spin-precession frequency c
responds to 2(D2/41r 2)1/2 in our notation @cf. Eq. ~10!#
whereas the rf field strength corresponds to the modula
depthMV and the rf frequency corresponds toV ~the quan-
tity r corresponds to the component of the static field norm
to the rf field polarization!. Some limiting cases were con
sidered explicitly, in particular, Eq.~54! was discussed in
@23#. However, it is the factorization property~28! and the
structure of the factorization manifolds~Sec. V! which give a
crucial insight for the understanding of this phenomenon
the degeneracy points occur at the intersection of the fac
ization.

The factorization explains another effect that appears
the context of the magnetic-resonance problem with spin
This effect, referred to as Haroche-like resonances~see
@23,26#, and references therein! is related to the suppressio
of the time-averaged resonance rf absorption signal at ce
values of the system parameters. The absorption of the w
rf is resonantly enhanced when the frequency satisfies on
the conditions@cf. Eq. ~46!#

pV5e12e2, ~p51,2, . . .!. ~77!

Under these conditions the positions of the ‘‘bare’’ quasie
ergy ladders coincide. In general, the ladders will split due
re
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the resonance interaction with the rf. Assume now that ap
from the above resonance condition the factorization con
tion is also satisfied. The latter will amount to both Eqs.~47!,
~48! for some integersk,0 andl.0, (l2k5p). In order to
make a resonance transition between the ‘‘up’’ and ‘‘dow
spin states~statesu1& andu2& in our case! at leastp quanta of
rf are needed. However, according to the discussion in S
V the factorization leads to the forbidding of the transitio
between the two different subspaces of the Floquet Ham
tonian, i.e., the transitions with net absorption of more th
uku quanta or net emission of more thanl quanta. It is clear
then, that at the factorization points rf resonance will be s
pressed. It can be easily seen from Eqs.~77!, ~47!, ~48! that
for rÞ0 the suppression of the rf resonances occurs
p.1 andD56(2n2p)V wheren50,1, . . . ,p21.

The important point is that the degeneracy of the quas
ergy levels and the above described Haroche-like~forbidden!
resonances occur at particular points of the more gen
factorization manifolds~Sec. V!. The physical effect that oc
curs at all points of these manifolds is that of SFR, howev
it cannot be observed in the context of a two-level syst
and requires a probe channel connecting to a third level.
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APPENDIX A

Here, we describe the standard technique for obtainin
continued-fraction solution for a three-term recursion re
tion

Anfn1Bn11fn111Bn21fn2150. ~A1!

We first define ‘‘backward’’ and ‘‘forward’’ coefficients

Xn
~6 !5

fn61

fn
. ~A2!

Then after dividing Eq.~A1! by fn and using the definitions
in Eq. ~A2! we obtain the recursion relations for the bac
ward and forward coefficients

An1Bn11Xn
~1 !1Bn21~Xn21

~1 ! !2150, ~A3!

An1Bn11~Xn11
~2 ! !211Bn21Xn

~2 !50. ~A4!

We now formally solve Eq.~A3! for Xn21
(1) and Eq.~A4! for

Xn11
(2)

Xn21
~1 ! 52Bn21~An1Bn11Xn

~1 !!21, ~A5!

Xn11
~2 ! 52Bn11~An1Bn21Xn

~2 !!21. ~A6!

The replacementsn→n11 in Eq. ~A5! andn→n21 in Eq.
~A6! yield

Xn
~6 !52Bn~An611Bn62Xn61

~6 ! !21. ~A7!

Applying a forward recursion in the equation forXn
(1) and a

backward recursion in the equation forXn
(2) these quantities
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are represented as infinite continued fractions@Eqs. ~A7!
serve as their definitions#. Finally, we use the expression
~A7! in Eq. ~A1! which give us the relation between th
coefficients of this equation

An1Bn11Xn
~1 !1Bn21Xn

~2 !50 ~A8!

~it can be immediately verified that this is one and the sa
equation for any value of the integern). Equation~A8! is a
condition of existence of unique bounded solutions of E
~A1!. If this condition is satisfied then one can use a rec
sion in Eqs.~A2! to find a solution of Eq.~A1! with an
accuracy to an arbitrary multiple. The correspondence
tweenAn , Bn , fn , and the quantities introduced in Sec. I
is clear from the comparison of Eqs.~A1!, ~34!.

APPENDIX B

Assume, at first, that neither of quantitiesln equal zero.
Then, using Eqs.~36!, ~38!, one can write the ratios
F1,n11 /F1,n for two adjacent values ofn

F1,n11

F1,n
52

1

mln11
Y~1 !~ln!, ~B1!

F1,n

F1,n21
52m

ln21

d~ln!
2Y~1 !~ln!. ~B2!

Furthermore, it is seen from Eqs.~38! that Y(1)(ln) ap-
proaches infinity as

d~ln11!2Y~1 !~ln11!50. ~B3!

In such a case the componentF1,n in Eqs. ~B1!, ~B2! van-
ishes while the harmonicsF1,n61 do not. It can be shown
ev
.

ey

t-
e

.
r-

e-

based on Eq.~39! ~written for n21), that the quasienergy
l must satisfy the following equation simultaneously wi
Eq. ~B3!:

d~ln21!2Y~2 !~ln21!50. ~B4!

Equations~B3! and ~B4! together constitute a condition fo
F1,n50 @as well asF2,n50, according to Eq.~33!# and give
a relation between the three dimensionless parameters o
systemD/V, M , r /V for this condition to be satisfied.

We now turn to the condition~27!, that is,lk50 for some
integerk. According to the discussion in Sec. III, this con
dition leads, in general, tooneof the equations,~40! or ~41!.
It can be seen, that under the condition~27! Eqs. ~B3! and
~B4! formally coincide atn5k with Eqs. ~40! and ~41!, re-
spectively. However, due to the fact thatlk50 neither of the
latter equations leads to the vanishing of the compon
F1,k @cf. Eqs.~36!, ~37!#.

Consider now the harmonicsF1,n with nÞk. In the case
of the SFR corresponding to Eqs.~40!, ~42! the condition
~B3! cannot be satisfied forn5k11, becauseY(1)(V) does
not diverge@cf. Eqs. ~38!, ~40!#. Therefore the componen
F1,k11 never equals zero in this case. This also can be s
directly from Eqs.~34!, ~35!

F1,k11

F1,k
52

r 2

mV
Þ0. ~B5!

On the other hand, single harmonics withn.k11 can van-
ish and this is described by Eqs.~B3!, ~B4! with n.k11.
The other type of SFR~41!, ~43! can be analyzed using sim
lar arguments.
.
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