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Multiple Landau-Zener crossings and quantum interference in atoms driven
by phase modulated fields
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2Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
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The excitation amplitude after multiple crossings is not a mere product of Landau-Zener transition prob-
abilities at each crossing, due to coherent evolution of the system in between crossings. In the three-level
ladder system, the trapping of population by frequency modulated fields ensures coherent evolution, and
inclusion of phase effects for population redistribution after multiple crossings becomes necessary. The relative
phase accumulated by various adiabatic states as they evolve along different paths is tailored to show the
existence of quantum interference effects. We present a method of inverting the population in a three-level
system, without affecting the population in the intermediate state. We also present anall optical implementa-
tion of the three-level ladder system, where these effects can be realized.@S1050-2947~97!01503-5#

PACS number~s!: 32.80.Bx, 42.50.Gy
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I. INTRODUCTION

The Landau-Zener~LZ! @1# formula for the calculation of
the transition probability at a crossing of two potential e
ergy curves of atomic systems has been widely used. Par
larly, in problems of slow atomic and ionic collisions, whe
the motion of the heavy nuclei is treated classically and
various inelastic processes are investigated by solving a
stationary Schro¨dinger equation, LZ theory is used exte
sively to calculate various transition probabilities. The L
formula deals with nonadiabatic transitions between t
adiabatic states as the system traverses a crossing of th
ergy levels. The states involved should depend weakly on
parameter, which when varied causes the crossing, leadin
transition between them. This means that the LZ formula
valid only if the departure from adiabatic behavior is not t
large @2#. Bates@3# pointed out that the validity of the LZ
formula is more restrictive than is commonly supposed. T
major objections raised were the failure of the LZ formula
take into account the transitions that occur away from
crossings, the atomic orbitals being spherically unsymme
and the variation of interaction~coupling! energy with
nuclear separation. Extension of the LZ formula for mu
level ~even infinite! crossing, when they arewell separated,
has been shown to decompose into elementary LZ facto
each crossing@4#, each of which mixes only a pair of state
On the other hand, multilevel crossing in the context of sc
tering of atoms and ions has been dealt with in detail
Nakamura@5#, where the dependence of the probability a
plitude on the Stokes phase is noticed. Its inclusion lead
a better matching of the LZ theory with the exact quant
calculation.

In this paper, we choose the parameters in the dom
such that LZ-like behavior is valid at every crossing a
examine the dynamics when there are multiple crossi
with the system evolving coherently in between these cro
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ings. We had earlier shown the existence of population tr
ping in a two-level system driven by a frequency modula
field @6#, where there is a redistribution of population at t
crossing of energy levels. We present here a detailed stud
these crossings in multilevel systems, typically for the thr
level cascade system. We show interference effects wh
arise due to the phase accumulated as the system ev
along various paths in between multiple crossings of ene
levels. By an appropriate choice of detuning, this path a
thus the phase accumulated along it is tailored. We also d
onstrate a mechanism for achieving nearly complete pop
tion inversion across multilevel system, without stepw
transfer of population through intermediate states. This
version can be completely undone at the next crossing.
discuss the advantages of this method over the usual r
adiabatic passage process~RAP!, which uses unconventiona
sequence of pulses@7# to achieve such inversion. Moreove
we also propose an all optical implementation of the thr
level ladder system inoptical atoms, where these various
effects can be realized.

The outline of the paper is as follows. In Sec. II, we set
the equations that would govern the dynamics of three-le
system in presence of frequency modulated fields. In Sec
we demonstrate the effects of phase and quantum inte
ence in this system, and discuss various features. We
describe a mechanism of inverting population in a three-le
system. In Sec. IV, we present a scheme to realize a th
level system in optical atoms. We present our conclusion
Sec. V.

II. MODEL

As we had earlier demonstrated@6#, a two-level system in
the presence of a frequency modulated electromagnetic
shows trapping of population, and its redistribution at pe
odic intervals of time. These times correspond to the time
which the adiabatic levels cross each other. The applied fi
being coherent ensures coherent evolution between s
crossings. As a generalization, we consider here a three-l
ladder system in presence of frequency modulated elec
2165 © 1997 The American Physical Society
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magnetic field. The frequency modulated field at the atom
given as

E5E1e
2 i [v1t1f1~ t !]1E2e

2 i [v2t1f2~ t !]1c.c.;

f i~ t !5Misin~V i t !, i51,2, ~1!

whereMi andV i are the index of modulation and the fre
quency of modulation, respectively. This field interacts w
a three-level cascade system Fig. 1. The field centere
v1 couples the transitionsu1&↔u2& and v2 couples
u2&↔u3&. The total Hamiltonian of the system is

H5\v12u1&^1u2\v23u3&^3u2d•E, ~2!

whered5d12u1&^2u1d23u2&^3u1c.c. The first two terms in
H correspond to the unperturbed system, the energies b
measured from the middle levelu2&, and the last term is the
interaction term in dipole approximation. We describe t
dynamics of the atom plus field system by the Schro¨dinger
equation

FIG. 1. Three-level ladder system with the energies being m
sured from the middle levelu2&. Transitions u1&↔u2& and
u2&↔u3& are coupled by frequency modulated fields centered
v1 andv2, respectively.D1, D2 and 2G1, 2G2 are the detunings
and Rabi frequencies of the corresponding transitions, respecti
u
m
n
u

is

at

ing

e

i\
]uc&
] t

5Huc&, ~3!

where, uc&5C1u1&1C2u2&1C3u3&. We now discuss the
various conditions for localization of population in a mult
level system in presence of a frequency modulated field.

The generating function for the Bessel functions@8# gives
the various spectral components of the frequency modula
field

eiM sin~Vt !5 (
k52`

`

Jk~M !eikVt. ~4!

We observe, that for largeV the major contribution on the
time scales slower than the periodic exponentials in Eq.~4!
would be from theJ0(M ) term, moreover, magnitudes o
Jn(M ) decay with increase inunu for a fixedM . Hence, for
largeV

Hint'2d•@E1J0~M1!1E2J0~M2!#. ~5!

By choosingMi to be a zero of the zeroth-order Bessel fun
tion, i.e., J0(Mi)50 for i51 and 2, the dominant term in
the interaction Hamiltonian goes to zero, which effective
leads to trapping of the population on the appropriate ti
scales. At timest; p/2V , 3p/2V ,5p/2V,•••, ~for the
resonant case! the other exponentials would dominate th
interaction term, causing transitions between different lev

We now transform Eq.~3!, whereH denotes thecomplete
Hamiltoniangiven by Eq.~2!, into a frame rotating with the
instantaneous frequency of the field by defining the follo
ing transformation for the complex amplitudesCi ’s:

C̃15C1e
i [v1t1f1~ t !] , C̃25C2 ,

C̃35C3e
2 i [v2t1f2~ t !] . ~6!

We neglect the rapidly rotating terms at twice the optic
frequency, likee62i [v i t1f i (t)] , ~for i51,2), then the equa
tions of evolution for the slowly varyingC̃i ’s are

a-

t

ly.
F C8 1C8 2
C8 3

G5F 2 i @D12M1V1cos~V1t1u!# iG1 0

iG1* 0 iG2

0 iG2* i @D22M2V2cos~V2t !#
GF C̃1

C̃2

C̃3

G , ~7!
cy

ying
e
t of
where, D15v122v1 and D25v232v2, the parameters
2G15(2d12•E1)/\ and 2G25(2d23•E2)/\ are the Rabi fre-
quencies of the corresponding transitions,u gives the initial
phase mismatch between the fieldsE1 andE2, and the over-
dot denotes the first-order time derivative@9#. Here, its the
Gi ’s that provide the nonadiabatic coupling between vario
adiabatic statesu i & ’s and cause transitions between the
whenever their energies cross each other. Thus, the co
tions for observing trapping of population and its redistrib
s

di-
-

tion due to jumps~at the crossings!, are firstly, the choice of
the modulation indexMi such thatJ0(Mi)50, for both
i51,2 and secondly, the choice of modulation frequen
V i , which would set the times at which jumps~crossings!
would occur. Radmore, Tarzi, and Tang@10# studied the
steady-state ionization spectra induced by a phase-var
field, which exhibited redistribution of population. On th
other hand, by modulating away the resonant componen
the applied field~which is similar to our con-
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55 2167MULTIPLE LANDAU-ZENER CROSSINGS AND QUANTUM . . .
dition for trapping!, Lam and Savage@11# obtained complete
population inversion in two-level system due to correla
sidebands.

The trapping states we demonstrate are limited by
decay processes in the atom, as was shown in Ref.@6#. We
requireV@g, where 2g is the spontaneous emission rate
the excited state, to observe these jumps. Here, its not a m
generalization of the earlier spin 1/2 system@6# to a spin 1
system, but to a more general three-level ladder system, a
from consideration of phase accumulation between vari
kinds of multiple crossings. Kenkreet. al. @12# have demon-
strated dynamic localization in solid-state systems, in
motion of a charged particle in an infinite lattice driven by
harmonic time-dependent electric field, which essentially
an equispaced infinite multilevel system. The condition
dynamic localization in Ref.@12# is closely related to what is
obtained here, a brief comparison has been made by a t
ment for finite lattice sites@12#.

III. CALCULATIONS AND DISCUSSION

In this section, we demonstrate the phenomenon of lo
ization and jumps, and the need to consider phase effects
to coherent evolution of the population along different int
fering pathways. To observe trapping, we choose the in
of modulation such that its a zero of the BesselJ0 function.
The jumps occur at times when the bare energy levels cr
Figure 2 shows the trapping of population and its transfe
the times when the energy levels cross. The energy le
and the various crossings depicted in the figures corresp
to the zero-order Hamiltonian in the rotating frame. As
well known, the consideration of the nonadiabatic coupl
Gi ’s between the adiabatic states would transform th
crossings into avoided crossings. We initially put in t
population in stateu1& and show the importance of th
choice ofM for trapping. In Fig. 2~a! we do not have any
trapping, asM is not a zero of the BesselJ0 function ~for
simplicity we takeM15M2 and V15V2, general case is
discussed later!. For Mi530.6346~tenth zero o f the J0
Bessel function! we have trapping of population Fig. 2~c!.
The zero-order energies~i.e., without the nonadiabatic cou
pling term! of the adiabatic levelsu1& and u3& as measured
from u2&, in the frame corotating with the instantaneous fie
frequency are

E1~ t !5D12M1V1cos~V1t1u!, E2~ t !50,

E3~ t !52@D22M2V2cos~V2t !#. ~8!

Hence, wheneverEi5Ej ~for iÞ j ; i , j51,2,3), the levels
u i & andu j & cross at those times causing a population tran
Fig. 2~b!. The first nonadiabatic crossing takes place wh
E15E2 at Vt;1.23; the second crossing is atVt;1.57
whenE15E3; the next crossing takes place whenE25E3 at
Vt;1.90 and so on. The population transfer probability
the crossing oftwo levels can be approximated by th
Landau-Zener transition probability@1#, by taking only the
linear terms in the expansion of cos(Vt) in Eq. ~8! about the
crossing time. The probability turns out to b
P512e22pk, k5@G2/ud/dt(E12E2)u# at Vt;1.23,
P50.8, which is comparable to the observed probability
d
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ter the first crossing. To illustrate the need to consider
phase accumulated between two crossings along the va
paths of evolution, we choose the values ofD1,2 such that
level u1& does not cross the other levels, Fig. 3~a!. There is a
periodic exchange of population predominantly between l
els u2& and u3&, whereas the population inu1& remains prac-
tically unaffected. We begin initially with the population i
u3&. The probability of it being transferred tou2&, due to the
nonadiabatic coupling termG2, at the first crossing is
P50.9, using the Landau-Zener theory. If one consid
each crossing independently, the probability at every cro
ing is the same because the absolute value of the slope o
energy differenceE22E3 is the same at all crossings, Fig
3~a!. To determine the population after multiple crossing
one cannot merely take the individual Landau-Zener pr
abilities @4# at each crossing, as it would implya steady
decrease in the probability of population transfer with i

FIG. 2. ~a! There is no trapping of population if theMi ’s are
chosen such thatJ0(Mi)Þ0. For M15M257, V15V251,
D1510, D25210, G15G256, with the initial condition
uC1u251, uC2u25uC3u250. ~b! The evolution of the energy levels
given by Eq.~8! and the crossings of these levels for a choice
M such thatJ0(M )50, M530.6346 and the other parameters b
ing the same as in~a!. The dashed, dotted, and solid lines are f
energies of levelsu1&, u2&, andu3&, respectively.~c! Dynamic evo-
lution of the trapping of population in various states. At eve
crossing of the energy levels~the first two crossings are denoted b
a circle and arrow! there is redistribution of population, fo
M530.6346 and the other parameters being the same as in~a!.
Similar to ~b! the dashed, dotted, and solid lines denoteuC1u2,
uC2u2, anduC3u2, respectively.D i andGi are in units ofV.
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2168 55W. HARSHAWARDHAN AND G. S. AGARWAL
creasing number of crossings. While the observed probabil
ity is more or less independent of the number of crossi
the system has undergone. The population inu3& revives
completely after even number of crossings, Fig. 3~b!. Thus,
the probability after multiple crossings requires consid
ation of thephase accumulatedby the system between suc
crossings along with the Landau-Zener probabilities at e
crossing.

It was shown by Berry@13# that when a quantum system
is forced round a cycle by an adiabatic change, it will retu
with an extra phase which is purely geometric in natu
Bouwmeesteret al. @14# have implemented the twiste
Landau-Zener model in optical atoms and showed the ef
of phase, due to curvature of the path followed in the para
eter space. As a result, even for open paths, the geom
phase strongly influences transition probability, as is dem
strated in our system. The effect of phase is also consid
by Vitanov and Knight@15#, where they studied multiple
pulse excitation of two-level system by a train of pulse
They accounted for the phase accumulation, during an
between these pulses. In an experiment by Gatzke, Watk

FIG. 3. ~a! The energy levelu1& ~dashed! does not cross with
u2& ~dotted! and u3& ~solid! for M514.9309,D1525, D2510,
G157, G253, with the initial condition uC3u251, uC1u2

5uC2u250. The arrows denote the various paths along which
system evolves in between crossings.~b! The population inu3&,
where after multiple crossings the probability is not a mere prod
of Landau-Zener probabilities at each crossing.~c! Quantum inter-
ference effect observed in the net population in levelu3& at
Vt56.0 @shown by arrow in~b!#, by changing the path~which
depends onD2) along which the system evolves and thus, accum
lates a different phase.D i andGi are in the units ofV.
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and Gallagher@16#, they have observed quantum interferen
in multiphoton transitions. When a pulse is applied to t
system, it traverses resonance~akin to crossing in our case!
twice, once, on the rising edge of the pulse, and another
the falling edge. The superposition of the two states
volved, evolves coherently in between these resonances.
Landau-Zener probabilities are considered at each trave
of the resonance and also, the phase accumulated in bet
these crossings, which leads to interference in the transi
probability when the relative phase accumulated by e
state during the pulse is varied.

As is shown in Fig. 3~a!, there are two distinct pathway
~indicated by the arrows! at each crossing along which th
system evolves, thereafter, the levels cross again and so
In between these crossings, the superposition of the co
sponding states evolvescoherentlyin time. The net transition
probability between the two states depends on the rela
phase accumulated along each path. The path traverse
the system can be varied by varying the detunings. We
amine, the probability of population being in levelu2& and its
dependence on the path traversed between the first two c
ings. We observe the evolution of the system fromVt50 to
6.0, by which time levelu2& has crossed a second time wi
level u3&. By varyingD2 the phase accumulated by the sy
tem, as it evolves coherently along the two paths between
two crossings, is varied and we see quantum interfere
effect, Fig. 3~c!. The probability of population transfer varie
from 0.2 to 0.8 by varying the relative paths of evolution
the states between crossings.

When all three levelscross ~the LZ formula cannot be
used due to the two-state approximation! for uD1u5uD2u at a
time Vt5cos21(D/MV), there is a periodic exchange o
population between the top and the bottom level at ev
crossing, whereas the population in the middle level rema
intact. If the population is initially put in levelu1&(u3&), after
the first crossing the population is transferred tou3& (u1&),
with the intermediate level experiencing transient populati
Fig. 4~a!. Note further, that the population transfer to th
intermediate state is not complete, only;10–20% goes into
it. The inversion achieved at the first crossing is complet
undone at the next crossing. This is quite different from
usual population transfer in three-level systems by RAP@7#.
In RAP one requires a sequence of unconventional pulse
that first the empty set of levels is pumped and on
thereafter—with some temporal overlap—the initially pop
lated levels are addressed. In this way the intermediate l
remains practically unpopulated. Another RAP proposal
to apply temporarily coincident pulses with frequency swe
in an anti-intuitive manner, so that again the unpopula
levels experience the resonance and there after the popu
level. All these proposals are sensitive to the precise time
which the pulses are applied or are frequency swept. In c
trast, we deal with cw fields and as the application of the F
field leads to simultaneous crossing of all the levels~unlike
in RAP, where the unpopulated levels are dressed first
thereafter the populated level crosses with the appropr
state!, and, hence, is experimentally more attractive. Anot
advantage is that the presence of finite population in
intermediate level renders the RAP process very inefficie
Whereas, in our scheme, population in the intermediate s
remains untouched. Only the population inu1& and u3& gets

e
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exchanged at every crossing. Figure 4~b! shows this feature
when all the population is initially inu2& it remains un-
changed even after multiple crossings with levelsu1& and
u3&.

The crossing of energy levels is essential for populat
transfer, otherwise it remains trapped in various levels
pending on the initial condition. In general, trapping is a
observed whenM1ÞM2, however, they have to be chosen
zeros of theJ0 Bessel function. Choice of unequalV1 and
V2 does not affect these trapping states. Trapping is a
unaffected by initial phase mismatch between the fieldsE1
andE2. If the phase mismatchu, or choice ofV i ’s, does not
result in extra crossings of the energy levels, the charac
istic trapping dynamics of the system does not suffer.
show in Fig. 5, for a general choice of parameters, i.e., w
M1ÞM2, V1ÞV2 and a finite phase differenceu, trapping
persists.

IV. OPTICAL ATOMS REALIZATION

The basic unit one deals with in the physics of atom
optical resonance is a two-level atom interacting with
electromagnetic radiation of a frequency that matches
energy level separation in the atom. Woerdman and
workers@17# have shown in detail that a system formed u
ing two distinct coupled classical optical modes show ana
gous characteristics, this system has been termed a
optical atom. They have also shown that multilevel system
with even number of levels like four, six, etc., can be sim
lated in optical atoms by an appropriate choice of vario
longitudinal modes in the cavity.

We propose, an optical implementation of athree-level
atom. The highlight of studies with optical atoms is that, th
being macroscopic in nature one has precise control on

FIG. 4. ~a! When all three-levels cross at every crossing, ther
a periodic exchange of population betweenu1& and u3& ~solid!,
whereas, the levelu2& ~dotted! experiences partial population tran
fer. ForM530.6346,D15D255,G15G257, with the initial con-
dition uC1u251, uC2u25uC3u250. ~b! Same as~a! with initial con-
dition uC2u251, uC1u25uC3u250, the population in the
intermediate state~dotted! remains unaffected even after multip
crossings with other levels. Population inu1& and u3& are denoted
by the solid line.D i andGi are scaled in terms ofV.
n
-

o

r-
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the parameters over ranges that are sometimes not acce
in experiments with real atoms. In the trapping phenomen
we describe using frequency modulated field, the localizat
is more effective if the interaction term of the Hamiltonian
minimal, which can be ensured by choosing a high index
modulation. The experimental difficulty with real atoms lie
in achieving high index of modulation at optical frequencie
and, hence,optical atomswould be best suited in this re
gime.

In contrast to a single ring cavity used in Ref.@17# for the
two-level atom, here, we require two identical coupled ri
cavities Fig. 6. One possibility could be twoidentical fiber-
optic ring resonators coupled using a 232 fiber-optic cou-
pler. We distinguish the various modes by theirdirection of
propagation. The eigenmodes, for a particular polarizatio
state of a single longitudinal mode in the coupled cavi

s
FIG. 5. ~a! Level u1& ~dashed! does not cross any other level fo

a choice of u5p/2 and M1530.6346, M2514.9309, V1

51/2, V251, D1520, D255, G158, G253 and initially the
population is in levelu3&. The energies ofu2& and u3& are denoted
by dotted and solid lines, respectively.~b! Trapping is clearly seen
even whenM1ÞM2, V1ÞV2 and a finiteu, all parameters being
the same as in~a!. D i andGi are in units ofV2.

FIG. 6. Schematic of the optical implementation of the thre
level ladder system.V rot depicts the effect of the Faraday rotat
~FAR!. The conservativecoupling of both cavities is gotten by
lossless 232 fiber coupler~FC!. Thedissipativecoupler~DC! is a
thin localized absorber. The three nondegeneratepropagation
modes simulating the three-level ladder system are cw1, ccw1, and
cw2-ccw2.
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2170 55W. HARSHAWARDHAN AND G. S. AGARWAL
would be two degenerate set of modes traveling clockw
~cw! and counterclockwise~ccw! in each cavity. Thus, there
would be four degenerate modes cw1, ccw1, cw2, and ccw2
~where 1 and 2 label the two cavities!. Now, the basic idea is
to lift the degeneracies of two modes in one of the cavit
and couple all these modes appropriately.

The Faraday rotator in the ring resonator 1 would sim
late mechanical rotation of only the ring cavity 1~we assume
weak coupling between the two cavities!, this would result in
a round-trip phase difference between the cw1 and ccw1
modes due to theSagnac effect, thus lifting the degeneracy
between these counter propagating modes.

We require that the coupling between modes cw1 and
ccw2 ~and ccw1 and cw2) should beconservative@18#, which
would result in frequency splitting, in the passive mo
structure of the coupled cavity. Whereas, the coupling~by
backscattering! between cw2 and ccw2 should be of thedis-
sipativekind, which would cause frequency locking of the
two modes. These various couplings can be realized in
following way. To realize a conservative coupling, alossless
232 fiber-optic coupler can be used, which would mere
redistribute the intensity between the cw1 and ccw2 ~and cor-
respondingly between ccw1 and cw2) modes, causing a fre
quency splitting between them and would result in an a
crossing in the passive coupled cavity mode structure.
width of this frequency splitting would be proportional to th
coupling ratio of the 232 coupler. On the other hand, th
dissipative coupler~DC! could be a localized absorber, i.e.,
thin ~as compared to the wavelength of the input field! ab-
sorbing layer placed perpendicular to the mode axis,
would cause frequency locking of the modes in cavity
This phenomenon of frequency locking is same as thelock-
ing problemof the counterpropagating modes due to inje
tion signal~caused by scattering, etc.! in laser gyroscope a
low rotation rates@19#. As there is no rotation of cavity 2 th
cw2 and ccw2 modes get frequency locked and become
generate. Without this dissipative coupler one would ha
two two-level systems shifted in frequencies, such that c2
and ccw2 would be uncoupled and near degenerate. N
there would be three nondegenerate modes in the sy
cw1, ccw1, and cw2-ccw2 ~as the modes in the cavity 2 ar
coupled and frequency locked! @20#.

On similar lines as in Ref.@17#, we introduce two param
etersS andW, where the Faraday isolator strength is prop
tional to S. W is proportional to intensity coupling of th
modes cw1↔ccw2 (}W1) and ccw1↔cw2 (}W2) via the
232 coupler Fig. 6. We define the eigenvectors of t
Hamiltonian HS for W50 as theS basis and those fo
S50 as theW basis. In theS basis we have the following
Hamiltonian:

HS5F S W1 0

W1 0 W2

0 W2 2S
G . ~9!

For simplicity we assume a symmetrical 232 coupler, i.e.,
W5W15W2 . On diagonalizing Eq.~9! we get the eigen-
frequencies, which arevo50 andv656A2S21W2. On
varying the parameterS one obtains an avoided crossing d
to the couplingW.
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Now let us consider the three-level optical atom in pre
ence of a harmonically time-dependent field at the freque
v l i.e., S5S0e

2 iv l t1c.c. We transform the Hamiltonian t
theW basis, which after the rotating-wave approximation

HW5F D1 S0 0

S0 0 S0

0 S0 2D2

G . ~10!

The detunings are defined asD15v l2W1 and
D25v l2W2 . The generalized Rabi frequency of the op
cal atom forW15W2 , between the various transitions
proportional toAD212S0

2. A comparison of Eqs.~9! and
~10! shows that the analogy between the three-level ato
system and its optical implementation is complete if the f
lowing connections are made:

v12↔ v1

v23↔ v2

D12↔ D6

d12,d23↔ ~magneto-optic coefficient of FAR!3~its length!.

To observe the phenomenon of trapping states discu
earlier, one would have to generate an appropriate fieldS at
the Faraday rotator, so that]B/]t simulates frequency modu
lated field, with a modulation indexM so thatJ0(M )50,
and the frequency of modulationV, the choice of which
would determine the times at which various levels cross e
other.

V. CONCLUSIONS

~a! We have shown parameter regimes where vari
kinds of multilevel crossings occur, causing population
distribution.~b! The phase accumulated by various states
between these crossings plays a vital role in determining
transition probabilities after multiple crossings, leading
quantum interference effect.~c! We have demonstrated
method for near 100% population inversion in three-le
ladder system, without affecting the population in the int
mediate level.~d! Trapping of population persists, even
there is an initial phase mismatch between the two app
fields, or unequal choice of the modulation index and mo
lation frequency.~e! We have proposed an optical impleme
tation of the three-level ladder system in which such a p
nomenon can be observed.

Furthermore, a three-levelL configuration is also pos
sible with an appropriate choice of a set of longitudin
modes in the cavity and the corresponding coupling of th
modes. Unlike the fiber-optic possibility, one could even
in for bulk optic cavities where, a variable coupling betwe
the cavities can be obtained using various methods of e
nescent coupling@21#. This optical atom implementation
would open avenues to observe richer dynamics in thr
level systems in hitherto unexplored parameter regime.
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