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The excitation amplitude after multiple crossings is not a mere product of Landau-Zener transition prob-
abilities at each crossing, due to coherent evolution of the system in between crossings. In the three-level
ladder system, the trapping of population by frequency modulated fields ensures coherent evolution, and
inclusion of phase effects for population redistribution after multiple crossings becomes necessary. The relative
phase accumulated by various adiabatic states as they evolve along different paths is tailored to show the
existence of quantum interference effects. We present a method of inverting the population in a three-level
system, without affecting the population in the intermediate state. We also presaihbatical implementa-
tion of the three-level ladder system, where these effects can be reqbd€150-294{©7)01503-5

PACS numbeps): 32.80.Bx, 42.50.Gy

[. INTRODUCTION ings. We had earlier shown the existence of population trap-
ping in a two-level system driven by a frequency modulated
The Landau-ZeneflZ) [1] formula for the calculation of field [6], where there is a redistribution of population at the

the transition probability at a crossing of two potential en-crossing of energy levels. We present here a detailed study of

ergy curves of atomic systems has been widely used. Participese crossings in multilevel systems, typically for the three-
larly, in problems of slow atomic and ionic collisions, where level cascade system. We show interference effects which
the motion of the heavy nuclei is treated classically and théfise due to the phase accumulated as the system evolves

various inelastic processes are investigated by solving a nolong various paths in between multiple crossings of energy

stationary Schidinger equation, LZ theory is used exten- levels. By an appropriate choice of detuning, this path and

sively to calculate various transition probabilities. The Lz thus the phase accumulated along itis tailored. We also dem-

formula deals with nonadiabatic transitions between tWOo_nstr_ate a mechanlsm for qchleV|ng nearly c_omplete pop_ula—
n inversion across multilevel system, without stepwise

adiabatic states as the system traverses a crossing of the %‘r%nsfer of population through intermediate states. This in-
ergy levels. The states involved should depend weakly on the Pop 9 :

) . . . Version can be completely undone at the next crossing. We
parameter, which when varied causes the crossing, Ieadmg Hscuss the advantages of this method over the usual rapid

transition between them. This means that the LZ formula is, i patic passage proce®AP), which uses unconventional
valid only if the departure from adiabatic behavior is not toosequence of pulsdg] to achieve such inversion. Moreover,
large [2]. Bates[3] pointed out that the validity of the LZ \ye ais0 propose an all optical implementation of the three-
formula is more restrictive than is commonly supposed. Th@aye| |adder system iroptical atoms where these various
major objections raised were the failure of the LZ formula toeffects can be realized.

take into account the transitions that occur away from the The outline of the paper is as follows. In Sec. II, we set up

crossings, the atomic orbitals being spherically unsymmetriche equations that would govern the dynamics of three-level
and the variation of interactioricoupling energy with  system in presence of frequency modulated fields. In Sec. Ill,
nuclear separation. Extension of the LZ formula for multi- we demonstrate the effects of phase and quantum interfer-
level (even infinitg crossing, when they amell separated  ence in this system, and discuss various features. We also
has been shown to decompose into elementary LZ factors alescribe a mechanism of inverting population in a three-level
each crossin§4], each of which mixes only a pair of states. system. In Sec. IV, we present a scheme to realize a three-
On the other hand, multilevel crossing in the context of scatievel system in optical atoms. We present our conclusions in
tering of atoms and ions has been dealt with in detail bySec. V.
Nakamurg 5], where the dependence of the probability am-
plitude on the Stokes phase is noticed. Its inclusion leads to
a better matching of the LZ theory with the exact quantum
calculation. As we had earlier demonstratggl, a two-level system in
In this paper, we choose the parameters in the domaithe presence of a frequency modulated electromagnetic field
such that LZ-like behavior is valid at every crossing andshows trapping of population, and its redistribution at peri-
examine the dynamics when there are multiple crossingedic intervals of time. These times correspond to the times at
with the system evolving coherently in between these crosswhich the adiabatic levels cross each other. The applied field
being coherent ensures coherent evolution between such
crossings. As a generalization, we consider here a three-level
*Electronic address: gsa@prl.ernet.in ladder system in presence of frequency modulated electro-
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@y, W, where, |)=C4|1)+C,|2)+ C5|3). We now discuss the
various conditions for localization of population in a multi-
2> level system in presence of a frequency modulated field.
The generating function for the Bessel functi¢B$gives
®, the various spectral components of the frequency modulated
field

A2 __________ 3> eI Msin(Qt) — z Jk(M)eith- (4)
k= —o0

FIG. 1. Three-level ladder system with the energies being me

sured from the middie level2). Transitions |1)<|2) and e observe, that for larg@ the major contribution on the

|2)«|3) are coupled by frequency modulated fields centered afime scales slower than the periodic exponential§ in (By.
w; and w,, respectivelyA;, A, and 2G;, 2G, are the detunings Would be from theJo(M) term, moreover, magnitudes of
and Rabi frequencies of the corresponding transitions, respectivelyn(M) decay with increase im| for a fixedM. Hence, for

large Q)
g;sgrl:zt;c field. The frequency modulated field at the atom is H. o~ —d-[Erdo(My) + Exdg(M,)]. ®)
E=E,e [t h10] 4 Eg=ilopt+da0] Lo o - By choosingM; to be a zero of the zeroth-order Bessel func-
' tion, i.e.,Jo(M;)=0 fori=1 and 2, the dominant term in
H()=M;sinQ;t), i=1,2, (1)  the interaction Hamiltonian goes to zero, which effectively
leads to trapping of the population on the appropriate time
whereM; and ), are the index of modulation and the fre- scales. At timest~ 7/2Q, 37/2Q) ,57/2(,---, (for the

quency of modulation, respectively. This field interacts withresonant cagethe other exponentials would dominate the
a three-level cascade system Fig. 1. The field centered #teraction term, causing transitions between different levels.

w, couples the transitiongl)«|2) and w, couples We now transform Eq(3), whereH denotes theomplete
|2)«|3). The total Hamiltonian of the system is Hamiltoniangiven by Eq.(2), into a frame rotating with the
instantaneous frequency of the field by defining the follow-
H=fwil 1(1|—fiw,d3)(3|—d-E, ) ing transformation for the complex amplitud€s's:

Ci=Cellett* a0 C,=C,,
whered=d1,|1){2|+d,32)(3|+c.c. The first two terms in
H correspond to the unperturbed system, the energies being Eszcse_i[w2t+¢2(t)]_ (6)
measured from the middle levi), and the last term is the
interaction term in dipole approximation. We describe theWWe neglect the rapidly rotating terms at twice the optical
dynamics of the atom plus field system by the Sdimger  frequency, likee™2l«it* 41 (for i=1,2), then the equa-

equation tions of evolution for the slowly varyin@€;’s are
C.] [ —i[A;—M.Q.c08Q.t+6)] G, 0 C,
C,|= iG* 0 iG, C, |, (7)
Cq 0 IG5 i[A;—MyQyco8Q,t)] || Cy

where, A;=wq,—w; and A,=w,3— w,, the parameters tion due to jumpgat the crossings are firstly, the choice of
2G;=(2dy,- E;)/h and 2G,=(2d,3- E,)/% are the Rabi fre- the modulation indexM; such thatJy(M;)=0, for both
guencies of the corresponding transitiofggives the initial i=1,2 and secondly, the choice of modulation frequency
phase mismatch between the fiellsandE,, and the over- ;, which would set the times at which jumgsrossings

dot denotes the first-order time derivatil@]. Here, its the would occur. Radmore, Tarzi, and Tap§0] studied the
G,’s that provide the nonadiabatic coupling between varioussteady-state ionization spectra induced by a phase-varying
adiabatic statesi)’s and cause transitions between themfield, which exhibited redistribution of population. On the
whenever their energies cross each other. Thus, the condither hand, by modulating away the resonant component of
tions for observing trapping of population and its redistribu-the applied fieldwhich is similar to our con-
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dition for trapping, Lam and SavagElL1] obtained complete 10F @
population inversion in two-level system due to correlated
sidebands. 0.8 -
The trapping states we demonstrate are limited by the = 441
decay processes in the atom, as was shown in [RgfWe G-—
require{)> vy, where 2y is the spontaneous emission rate of = 0.4
the excited state, to observe these jumps. Here, its not a mere 02

generalization of the earlier spin 1/2 syst¢@j to a spin 1
system, but to a more general three-level ladder system, apart
from consideration of phase accumulation between various
kinds of multiple crossings. Kenkret. al.[12] have demon-
strated dynamic localization in solid-state systems, in the
motion of a charged particle in an infinite lattice driven by a
harmonic time-dependent electric field, which essentially is
an equispaced infinite multilevel system. The condition for
dynamic localization in Ref12] is closely related to what is 1 -
obtained here, a brief comparison has been made by a treat- : it

ment for finite lattice site$12]. 8w R whn

Energy

Ill. CALCULATIONS AND DISCUSSION o

In this section, we demonstrate the phenomenon of local-
ization and jumps, and the need to consider phase effects due
to coherent evolution of the population along different inter-
fering pathways. To observe trapping, we choose the index
of modulation such that its a zero of the Bes3gfunction.

The jumps occur at times when the bare energy levels cross.
Figure 2 shows the trapping of population and its transfer at
the times when the energy levels cross. The energy levels
and the various crossings depicted in the figures correspond
to the zero-order Hamiltonian in the rotating frame. As is FIG. 2. (@ There is no trapping of population if th;'s are
well known, the consideration of the nonadiabatic couplingchosen such thatlo(M;)#0. For M;=M,=7, Q,;=0,=1,
G's between the adiabatic states would transform thes@1—,10; A2=—10, G;=C,=6, with the initial condition
crossings into avoided crossings. We initially put in thelC1l°=1:[C2°=|C4|*=0. (b) The evolution of the energy levels,
population in statell) and show the importance of the given by Eq.(8) and the crossings of these levels for a choice of
choice ofM for trapping. In Fig. 2a) we do not have any M such thatlo(M)=0, M=30.6346 and the other parameters be-

. . . ing the same as ifa). The dashed, dotted, and solid lines are for
tr.applln.g, asM is not a zero of the Bessel, function (for. energies of levelgl), |2), and|3), respectively(c) Dynamic evo-
simplicity we takeM;=M, and Q;=(,, general case is

. lution of the trapping of population in various states. At every
discussed later For M;=30.6346(tenth zero of the J  (1ossing of the energy levelthe first two crossings are denoted by
Bessel functionwe have trapping of population Fig(@. 4 circle and arrow there is redistribution of population, for
The zero-order energidse., without the nonadiabatic cou- M =30.6346 and the other parameters being the same &s).in
pling term of the adiabatic level$l) and|3) as measured Similar to (b) the dashed, dotted, and solid lines denfBa|?,
from |2), in the frame corotating with the instantaneous field|C,|2, and|C5|2, respectivelyA; andG; are in units of(.
frequency are

ter the first crossing. To illustrate the need to consider the

Ei(t)=A;—M1Q c08Q4t+6), Ex(t)=0, phase accumulated between two crossings along the various
paths of evolution, we choose the values/of, such that
Ea(t)=—[A2—M2Q,c08Q5t)]. (8)  level|1) does not cross the other levels, Figa3 There is a
periodic exchange of population predominantly between lev-
Hence, wheneveE;=E; (for i#j; i,j=1,2,3), the levels els|2) and|3), whereas the population {i) remains prac-

li) and|j) cross at those times causing a population transfetically unaffected. We begin initially with the population in
Fig. 2(b). The first nonadiabatic crossing takes place wherj3). The probability of it being transferred {@), due to the
E;=E, at Qt~1.23; the second crossing is &t~1.57 nonadiabatic coupling ternG,, at the first crossing is
whenE; = Ej; the next crossing takes place whes=Es; at  P=0.9, using the Landau-Zener theory. If one considers
Qt~1.90 and so on. The population transfer probability ateach crossing independently, the probability at every cross-
the crossing oftwo levelscan be approximated by the ing is the same because the absolute value of the slope of the
Landau-Zener transition probabilifyl], by taking only the energy differenceE,—E; is the same at all crossings, Fig.
linear terms in the expansion of c6K] in Eq. (8) about the  3(a). To determine the population after multiple crossings,
crossing time. The probability turns out to be one cannot merely take the individual Landau-Zener prob-
P=1-e 27, «k=[G?|d/dt(E;—E,)|] at Qt~1.23, abilities [4] at each crossing, as it would imply steady
P=0.8, which is comparable to the observed probability af-decrease in the probability of population transfer with in-
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457 " . @ and Gallaghef16], they have observed quantum interference
o N SN RN in multiphoton transitions. When a pulse is applied to the
> 15| ' system, it traverses resonan@kin to crossing in our cage
o T twice, once, on the rising edge of the pulse, and another, on
2 o I ‘\T 7 the falling edge. The superposition of the two states in-
Wosl \/ \/ \/ volved, evolves coherently in between these resonances. The
i Landau-Zener probabilities are considered at each traversal

of the resonance and also, the phase accumulated in between
these crossings, which leads to interference in the transition
probability when the relative phase accumulated by each
state during the pulse is varied.

As is shown in Fig. &), there are two distinct pathways
(indicated by the arrowsat each crossing along which the
system evolves, thereafter, the levels cross again and so on.
In between these crossings, the superposition of the corre-
sponding states evolvesherentlyin time. The net transition
probability between the two states depends on the relative
phase accumulated along each path. The path traversed by
the system can be varied by varying the detunings. We ex-
amine, the probability of population being in ley2) and its
dependence on the path traversed between the first two cross-
ings. We observe the evolution of the system frOm=0 to
6.0, by which time leve|2) has crossed a second time with
level |3). By varying A, the phase accumulated by the sys-
tem, as it evolves coherently along the two paths between the
two crossings, is varied and we see quantum interference
effect, Fig. 3c). The probability of population transfer varies
from 0.2 to 0.8 by varying the relative paths of evolution of
the states between crossings.

FIG. 3. (a) The energy leve|1l) (dashed does not cross with When all three levelscross(the LZ formula cannot be
|2) (dotted and |3) (solid) for M=14.9309,A4,=25, A,=10,  used due to the two-state approximajiéor |A,|=|A,| at a
G1=7, G,=3, with the initial condition [C5?°=1, |Ci|*  time Qt=cos L(A/MQ), there is a periodic exchange of
=|C,|?=0. The arrows denote the various paths along which thepopulation between the top and the bottom level at every
system evolves in between crossings) The population in|3),  crossing, whereas the population in the middle level remains
where after multiple crossings the probablllt)_/ is not a mere produciniact. If the population is initially put in levéll)(|3)), after
of Landau-Zener probablllt_les at each crossn@.ngntum inter- b first crossing the population is transferred 30 (1)),
fére_ngeo ef;:eCt ogserved n Lhe Set EOpu.lat'o?] n 'ev‘é)h.aﬁ with the intermediate level experiencing transient population,

t=6.0 [shown by arrow in(b)], by changing the patffwhic Fig. 4(a). Note further, that the population transfer to the
depends o\,) along which the system evolves and thus, accumu_intermediate state is not complete, oril0—20 % goes into
lates a different phasé; andG; are in the units of). . . . . P i ~070 9

it. The inversion achieved at the first crossing is completely

creasing number of crossing¥/hile the observed probabil- undone at the next crossing. This is quite different from the
ity is more or less independent of the number of crossingsisual population transfer in three-level systems by RAP
the system has undergone. The population3h revives In RAP one requires a sequence of unconventional pulses, so
completely after even number of crossings, Fi(h)3Thus, that first the empty set of levels is pumped and only
the probability after multiple crossings requires considerthereafter—with some temporal overlap—the initially popu-
ation of thephase accumulately the system between such lated levels are addressed. In this way the intermediate level
crossings along with the Landau-Zener probabilities at eachemains practically unpopulated. Another RAP proposal, is
crossing. to apply temporarily coincident pulses with frequency sweep

It was shown by Berry13] that when a quantum system in an anti-intuitive manner, so that again the unpopulated
is forced round a cycle by an adiabatic change, it will returnlevels experience the resonance and there after the populated
with an extra phase which is purely geometric in naturelevel. All these proposals are sensitive to the precise times at
Bouwmeesteret al. [14] have implemented the twisted which the pulses are applied or are frequency swept. In con-
Landau-Zener model in optical atoms and showed the effedrast, we deal with cw fields and as the application of the FM
of phase, due to curvature of the path followed in the paramfield leads to simultaneous crossing of all the levislike
eter space. As a result, even for open paths, the geometric RAP, where the unpopulated levels are dressed first and
phase strongly influences transition probability, as is demonthereafter the populated level crosses with the appropriate
strated in our system. The effect of phase is also considerestatg, and, hence, is experimentally more attractive. Another
by Vitanov and Knight[15], where they studied multiple advantage is that the presence of finite population in the
pulse excitation of two-level system by a train of pulses.intermediate level renders the RAP process very inefficient.
They accounted for the phase accumulation, during and ilVhereas, in our scheme, population in the intermediate state
between these pulses. In an experiment by Gatzke, Watkinsgmains untouched. Only the population|iy and|3) gets

IC4l2

IC,4?
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FIG. 4. (a) When all three-levels cross at every crossing, there is FIG. 5. (a) Level|1) (dashedldoes not cross any other level for

a periodic exchange of population betwefr) and |3) (solid), a choice of §=m/2 and M,=30.6346, M,=14.9309, {1,

whereas, the leveéR) (dotted experiences partial population trans- :1/2|’ 92:.1’. A|l=20, A2h=5’ Gl=.8’ G,=3 dand |mt|€;|ly thed
fer. ForM =30.6346A; = A,=5, G, = G,=7, with the initial con- ~ POPUaton is in eve3). The energies of2) and|3) are denote

dition |C,4[2=1, |C,|?=|C[2=0. (b) Same aga) with initial con- by dotted and solid lines, respectlve_[h_) Trapping is clearly seen
" 2 2 2~ 2 . . even whenM,#M,, Q1#(, and a finited, all parameters being

diion |Cp|*=1, |C4|*=|C4[*~0, the population in the the same as ifi@). A; andG; are in units of()

intermediate statédotted remains unaffected even after multiple Co ! 2

crossings with other levels. Population |ih) and|3) are denoted . ]
by the solid line.A; andG; are scaled in terms db. the parameters over ranges that are sometimes not accessible

in experiments with real atoms. In the trapping phenomenon

exchanged at every crossing. Figui@)shows this feature, We describe using frequency modulated field, the localization
when all the population is initially in2) it remains un- IS more effective if the interaction term of the Hamiltonian is

changed even after multiple crossings with levills and minimal, which can be ensured by choosing a high index of
|3). modulation. The experimental difficulty with real atoms lies

The crossing of energy levels is essential for populatior achieving h|gh index of modulation at opt!cal f_requ_enmes,
transfer, otherwise it remains trapped in various levels de@"d, hencepptical atomswould be best suited in this re-
pending on the initial condition. In general, trapping is also9'™Me- _ , , ,
observed wheM, # M, however, they have to be chosen as ' contrast to a single ring cavity used in RE£7] for the
zeros of thel, Bessel function. Choice of unequél; and two_—l_evel atom, here, we require two |den_t|cal _coupled ring
Q, does not affect these trapping states. Trapping is alsG2Vities Fig. 6. One possibility could be tvidentical fiber-
unaffected by initial phase mismatch between the figlgs OPIC ring resonators coupled using &2 fiber-optic cou-
andE,. If the phase mismatch, or choice of();’s, does not pler. wWe .dIStInngh the various modes by thdmectlor) Of.
result in extra crossings of the energy levels, the characteProPagation The eigenmodes, for a particular polarization
istic trapping dynamics of the system does not suffer. westate of a single longitudinal mode in the coupled cavity,
show in Fig. 5, for a general choice of parameters, i.e., when
M1#M,, Q,#Q, and a finite phase differenag trapping
persists.

IV. OPTICAL ATOMS REALIZATION

The basic unit one deals with in the physics of atomic- FAR
optical resonance is a two-level atom interacting with an
electromagnetic radiation of a frequency that matches the
energy level separation in the atom. Woerdman and co-
workers[17] have shown in detail that a system formed us-
ing two distinct coupled classical optical modes show analo-
gous characteristics, this system has been termed as an
optical atom They have also shown that multilevel systems g 6. schematic of the optical implementation of the three-
with even number of levels like four, six, etc., can be simu-jeye ladder systemQ,, depicts the effect of the Faraday rotator
lated in optical atoms by an appropriate choice of variou§raR). The conservativecoupling of both cavities is gotten by a
longitudinal modes in the cavity. lossless X 2 fiber coupler(FC). The dissipativecoupler(DC) is a

We propose, an optical implementation ofttaee-level  thin localized absorber. The three nondegeneratepagation
atom. The highlight of studies with optical atoms is that, theymodes simulating the three-level ladder system arg caw;, and
being macroscopic in nature one has precise control on adw,-ccw,.
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would be two degenerate set of modes traveling clockwise Now let us consider the three-level optical atom in pres-
(cw) and counterclockwiséccw) in each cavity. Thus, there ence of a harmonically time-dependent field at the frequency
would be four degenerate modes cwcw;, cw,, and ccwy @, i.e., S=Se”'“I'+c.c. We transform the Hamiltonian to
(where 1 and 2 label the two cavitiedlow, the basic ideais the W basis, which after the rotating-wave approximation is

to lift the degeneracies of two modes in one of the cavities
A A, S O
and couple all these modes appropriately.
The Faraday rotator in the ring resonator 1 would simu- Hw=| So O S |. (10
late mechanical rotation of only the ring cavitye assume 0 S, —A_

weak coupling between the two cavitjethis would result in
a round-trip phase difference between the; cand ccwy
modes due to th&agnac effectthus lifting the degeneracy The detunings are defined as\ =w—W, and
between these counter propagating modes. A_=w—W_. The generalized Rabi frequency of the opti-
We require that the coupling between modes; amd  cal atom forw, =W_, between the various transitions is
ccw, (and ccw and cw) should beconservativé18], which  proportional to A%+ 2802. A comparison of Egs(9) and
would result in frequency splitting, in the passive mode(10) shows that the analogy between the three-level atomic
structure of the coupled cavity. Whereas, the couplibg  system and its optical implementation is complete if the fol-
backscatteringbetween cw and ccwy should be of thalis-  lowing connections are made:
sipativekind, which would cause frequency locking of these
two modes. These various couplings can be realized in the
following way. To realize a conservative couplingloasless W3 > W_
2X2 fiber-optic coupler can be used, which would merely Ars s A
A ; : 12 +
redistribute the intensity between thecand ccw (and cor- i o )
respondingly between cgwand cw) modes, causing a fre- d12,023 <> (magneto-optic coefficient of FAR(its length.
quency splitting between them and would result in an anti-
crossing in the passive coupled cavity mode structure. Thga
width of this frequency splitting would be proportional to the
coupling ratio of the X2 coupler. On the other hand, the
dissipative couple(DC) could be a localized absorber, i.e., a
thin (as compared to the wavelength of the input fiedd-
sorbing layer placed perpendicular to the mode axis, th
would cause frequency locking of the modes in cavity 2.
This phenomenon of frequency locking is same asldle&- V. CONCLUSIONS
ing problemof the counterpropagating modes due to injec-
tion signal(caused by scattering, exdn laser gyroscope at (@ We have shown parameter regimes where various
low rotation rate$19]. As there is no rotation of cavity 2 the kinds of multilevel crossings occur, causing population re-
cw, and ccw modes get frequency locked and become dedistribution. (b) The phase accumulated by various states in
generate. Without this dissipative coupler one would havéetween these crossings plays a vital role in determining the
two two-level systems shifted in frequencies, such that cwtransition probabilities after multiple crossings, leading to
and ccw would be uncoupled and near degenerate. Novfluantum interference effectc) We have demonstrated a
there would be three nondegenerate modes in the systefethod for near 100% population inversion in three-level
CW;, CCW,, and CVg-CCW, (aS the modes in the Cavity 2 are ladder system, without affecting the population in the inter-
coupled and frequency lockefR0]. mediate level.(d) Trapping of population persists, even if
On similar lines as in Ret]_?], we introduce two param- there is an initial phase mismatch between the two applled
etersS andW, where the Faraday isolator Strength is propor-fiG'dS, or unequal choice of the modulation index and modu-
tional to S. W is proportional to intensity coupling of the lation frequency(e) We have proposed an optical implemen-
modes cw— ccw, («W,) and ccw< cw, («W_) via the tation of the three-level ladder system in which such a phe-
2x2 coupler Fig. 6. We define the eigenvectors of thenomenon can be observed. _ o
Hamiltonian Hg for W=0 as theS basis and those for ~ Furthermore, a three-level configuration is also pos-
S=0 as theW basis. In theS basis we have the following sible with an appropriate choice of a set of longitudinal

Wy <7 W4

To observe the phenomenon of trapping states discussed

rlier, one would have to generate an appropriate Seddl

the Faraday rotator, so thaB/dt simulates frequency modu-

lated field, with a modulation indeM so thatJy(M)=0,

and the frequency of modulatiof}, the choice of which
ould determine the times at which various levels cross each
ther.

Hamiltonian: modes in the cavity and the corresponding coupling of these
modes. Unlike the fiber-optic possibility, one could even go
S W, o in for bulk optic cavities where, a variable coupling between
the cavities can be obtained using various methods of eva-
He=| W, 0 W_|. (9 nescent coupling21]. This optical atom implementation
0O W. -5S would open avenues to observe richer dynamics in three-

level systems in hitherto unexplored parameter regime.

For simplicity we assume a symmetricak2 coupler, i.e.,
W=W_=W_. On diagonalizing Eq(9) we get the eigen-
frequencies, which are,=0 and . =+ 2S?+W?. On One of us(W.H.) would like to acknowledge the Council
varying the paramete$ one obtains an avoided crossing due of Scientific and Industrial Research, Government of India,
to the couplingw. for financial support.
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