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Stabilization against ionization via high-Rydberg states

A. Wójcik, R. Parzyn´ski, and A. Grudka
Quantum Electronics Laboratory, Institute of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan´, Poland

~Received 18 July 1996; revised manuscript received 30 September 1996!

An analytical study is presented of two models of intense-laser ionization from an isolated initial state via a
band of high-Rydberg states in a system which bears many features of the hydrogen atom. The models differ
in the way the population from the directly excited Rydberg states can migrate to the states of higher angular
momenta. In one of them it migrates via nonresonant and in the other via resonant degenerate Raman coupling.
Within these models we draw conclusions about the efficiency of migration, the initial-state lifetime, the
redistribution of population, the laser intensities stabilizing the atom against ionization, the effect of the initial
state on the threshold stabilizing intensity, as well as about stabilizing mechanisms versus the initial-state
choice.@S1050-2947~97!03202-2#

PACS number~s!: 42.50.Hz, 32.80.Rm
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I. INTRODUCTION

One of the most intriguing phenomena in the curre
high-intensity laser-atom physics is stabilization of the at
against ionization@1#. With the recent experiment of de Boe
et al.@2# this phenomenon has left the phase of theoret
predictions and speculations. In this experiment, stabiliza
was observed in the ionization of the circular 5g neon state
with a single-photon energy being nearly four times the el
tron binding energy. Thus the photon energy fulfilled wha
usually referred to as the high-frequency condition@3#. Un-
der this condition the measured stabilizing intensities~sev-
eral times 1013W/cm2 in a 100-fs pulse! were found to be in
conformity with the recent calculations of Potvliege a
Smith for hydrogen@4#. In the high-frequency ionization
like the measured one, stabilization is determined by
initial-state evolution only and transitions to other bou
states do not play a role. This is quite opposite to what ta
place in ionization by low frequencies~i.e., the below-
ionization-threshold frequencies!, the process we shall stud
within a model hydrogen atom in the present paper.

Precisely, we shall study nominal two-photon ionizati
from an isolated initial state by light of a frequency ensuri
a band of high-Rydberg states to be an intermediary in
transition to the continuum. The inclusion of transition v
high-Rydberg states is what makes our paper different fr
the recent ones@5–8#. The other difference is that we de
scribe the whole process within an analytically solva
model. Such an approximate analytical solution of the pr
lem was possible only under appropriate modeling of
band of highly excited Rydberg states and the couplings
tween the states of the model. The present model is an
sential generalization of two recent analytical models, o
proposed by Ivanov@9# and the other by Wo´jcik and Parzyn´-
ski @10#, and the conclusions drawn from it are based
realistically calculated, representative atom-field coupl
parameters. The generalization consists in the inclusion
both nonresonant and resonant Raman-like migration
population from the directly excited band of high-Rydbe
551050-2947/97/55~3!/2144~11!/$10.00
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states to Rydberg states of higher-angular-momentum q
tum number. We included the above-mentioned migrat
since it was shown to be essential in the related proce
~transfer of population from the prepared low-l state to
higher-l states of the same principal quantum numb
n528 in hydrogen@11#, the hydrogen 2s-state two-photon
ionization via the low 8p Rydberg state@7#!. Within the
model, we derive analytical solutions for laser pulses sho
in duration than the representative Kepler period of the b
of highly excited Rydberg states, though the formal solut
for longer pulses poses no problems within our procedu
With this solution quantitative results are presented for io
ization of the model hydrogen atom from differentl states
but of the samen54 by a linearly polarized 100-fs pulse o
the frequency resonant to then54→n540 transition. The
initial states are intentionally chosen in such a way that
ther nonresonant or resonant migration of population
higher-l Rydberg states takes place. From the results
tained, we draw conclusions about the initial-state lifetim
redistribution of population versus laser intensity, efficien
of migration to higher-l Rydberg states, threshold laser i
tensities stabilizing the model atom against ionization, a
the stabilizing mechanisms versus the initial-state choice

Our paper is organized as follows. Section II is devoted
presentation of a formal theory. In Sec. II A we introduce t
model of ionization via high-Rydberg states, in which on
nonresonant migration of population to higher-l Rydberg
states via degenerate Raman coupling takes place. It is
shown in this section how to calculate~analytically, in prin-
ciple! the Raman coupling parameters. In Sec. II B th
model is solved in terms of continued fractions and the re
tion to the above-threshold-ionization problem of Deng a
Eberly @12# is pointed out. Section II C concerns the mod
in which the population from the directly excited Rydbe
states of a fixedl migrates to Rydberg states ofl increased
by 2 through a state degenerate with the initial state of
process. In Sec. III the analytical solutions are applied
different initial states in the model hydrogen atom and co
parative studies are performed with emphasis on stabil
tion. We end the paper by presenting in Sec. IV the m
conclusions derived from our model studies.
2144 © 1997 The American Physical Society
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II. THEORY

A. The model with nonresonance migration
and coupling parameters

Figure 1 shows the basic model of nominal two-phot
ionization of the hydrogen atom from an initial sta
u0&5un0l 0m0& via a band of high-lying Rydberg states
n@1. The principal quantum numbern0 of the initial state is
assumed to be low enough for this state to satisfy the co
tion of being well isolated from all other lower- and highe
lying states. The choice of this initial state is made so t
after absorption of one electric-dipole photon only tho
higher-lying Rydberg states could be excited whose angu
momentum quantum numberl is increased by one with re
spect tol 0 of the initial state. An exemplifying initial state
ensuring this condition~but not the only one! is the so-called
circular stateu0&5un0l 05m05n021& exposed to light lin-
early polarized along thez axis. Photons of such light leav
the magnetic quantum numberm0 of the atomic state un
changed, thus closing thel 0→ l 021 excitation channel. In
our model, photons are provided by a rectangular opt
pulse turned on att50. This pulse interacts with the atom
through the Hamiltonian taken in the momentum for
V5(2e/mec)AW •pW , where the vector potential is spatial
independent. The term withA2 was rejected in the abov
interaction Hamiltonian as it shifts all states equally by t
ponderomotive energy,e2A0

2/4mec
2. By absorbing one pho

ton, the atom from its initial stateu0&5un0l 0m0& is excited to
a band of Rydberg states with the momentuml5 l 011, lying
slightly below the ionization threshold. These Rydberg sta
with n@1 form what will be referred to as the first Rydbe
quasicontinuum. This quasicontinuum will be labeled
j51. ByV0,n1 we denote the matrix element for the couplin
between the initial state and ann state in thej51 quasicon-
tinuum. The essential point of the model is that the popu
tion which reached thej51 quasicontinuum (l 15 l 011) is
allowed to migrate to higher-angular-momentum Rydb
quasicontinuum, namely, to thej52 quasicontinuum
( l 25 l 013), then to thej53 quasicontinuum (l 35 l 015),
and so on@ l j5 l 01(2 j21)#, due to degenerate Raman tra

FIG. 1. The model of ionization from a low-lying atomic sta
u0&51n0l 0m0& via a band of high-lying Rydberg states (n@1),
with the inclusion of nonresonance migration of population
higher-angular-momentum Rydberg states due to degenerate R
transitions~dashed arrows!. The sign at the photon energy corr
sponds to either absorption (2) or emission (1) of a photon. By
j51,2, . . . ,N we label Rydberg quasicontinua of angula
momentum quantum numberl5 l 01(2 j21).
i-
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sitions involving both discrete and continuum states of
appropriate angular momenta as intermediaries. These
generate Raman transitions are schematically shown
dashed arrows in Fig. 1. In the basic model, no reson
intermediate state is assumed to be involved in the Ram
coupling between Rydberg states from the neighboring q
sicontinua. Specifically, this assumption is satisfied alway
the initial state is a circular stateu0&5un0l 05m05n021&
~but not only in this case!. A generalization of the basic
model to include an intermediate resonance in the Ram
coupling between the first (j51) and second (j52) quasi-
continua will be considered later on.

We shall describe the nonresonant Raman coupling
tween any two high-lying Rydberg states b
Dba5( i /\)Mba , whereMba is the standard Raman matri
element provided by the second-order perturbation the
Each high-lying Rydberg state is specified b
n@n0 , l5 l 01(2 j21), andm5m0, under our assumption
concerning the choice of the initial state and the light pol
ization ~linear along thez axis!. Specifically, in the applica-
tion of our model we will concentrate later onn054 and
n.40 corresponding to the exciting-photon ener
\v.R/16.0.85eV whereR is the Rydberg constant. Th
two high-lying Rydberg states (n.40) which are Raman
coupled can belong either to the same quasicontinuum
given l or to two neighboring quasicontinua differing by tw
in l , but both states undergo one-photon ionization, w
continuum-continuum transitions ignored in our model. As
result, the second-order matrix elementMba acquires an
imaginary part andDba is generally expressible as@11#

Dba5~11 iqba!Agbga/2, ~1!

wheregb(a) stands for Fermi’s golden rule ionization rate
ub&(ua&) to the continuum that is common for these two R
dberg states. Ifub& and ua& belong to two neighboring qua
sicontinua, there exist intermediate continuous states of o
one angular momentum. However, forub& and ua& from the
same quasicontinum, intermediate continuous states of
different angular momenta are accessible and thengb(a) must
be understood as a sum over partial ionization rates.
qba we denoted the Fano-like parameter defined as

qba5
~1/\!( 6,iÞr@~VbiVia /~Ea2Ei6\v!#

Agbga/2
, ~2!

where the sum is extended over rotating-wave and coun
rotating-wave terms, as well as over all bound and f
atomic states with the preclusion of the resonant ones.

The above-mentioned summation over intermediate st
can be performed exactly by the use of the Coulomb Gree
function @6#. In this paper, we prefer, however, an appro
mate approach based on the fact that the energy of the
ton involved (;0.85eV) is much higher than the energy d
ference between high-lying and even moderately high-ly
Rydberg states. Exploiting this fact, we formally split th
space of intermediate states into two groups, namely,
discrete states with their principal quantum numbern<n̄ and
the rest of the states. For a fixed photon energy\v,n̄ is
chosen to be large enough for the relationuEa2Enu!\v to
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be well fulfilled. Up ton5n̄ we explicitly compute the sum
in the numerator of Eq.~2!, but for n.n̄ we expand the
summand in the inverse powers of\v and retain only the
leading term. The last step in this procedure is what is u
ally referred to as the high-frequency approximation. An
n

ng
t

g
ns
en
u-
-

sential part of the leading term turns out to be reduced t
simple form and we shall show it now. According to th
procedure described above, we first replace the two-pho
matrix element from the numerator of Eq.~2! by its approxi-
mate form:
(
6,iÞr

VbiVia

Ea2Ei6\v
.S eA0

2mecD 2 2

\ F (i< n̄
Þr

~pz!bi~pz! ia
vai

vai
2 2v2 1

1

v2

3S (
i

~pz!bi~pz! iav ia2 (
i< n̄
Þr

~pz!bi~pz! iav ia2(
r

~pz!br~pz!rav raD G , ~3!
re-
d

y,

ld.
e
ally

e-
r
in
be-
where vba5(Eb2Ea)/\. Then, we use the relatio
(pz) iav ia52 i ( ṗz) ia5 i (]V/]z) ia , valid for an atomic po-
tentialV, to find that

(
i

~pz!bi~pz! iav ia52\S ]V

]z

]

]zD
ab

*
. ~4!

For the hydrogenic potential,V52e2/r , the resulting single
matrix element is calculated straightforwardly by applyi
standard techniques of angular-momentum algebra. For
states specified asua&5unlm& and ub&5un8l 8m85m&, one
obtains in this way the off-diagonal sum rule

(
i

~pz!bi~pz! iav ia52\e2F ~a0d l 8,l1a1d l 8,l12

1a2d l 8,l22!S 1r 2 d

dr D
nl,n8 l 8

1@b0d l 8,l1~ l13!a1d l 8,l12

2~ l22!a2d l 8,l22#S 1r 3D
nl,n8 l 8

G ,
~5!

where @ f (r )#nl,n8 l 85*0
`Rnl* (r ) f (r )Rn8 l 8(r )r

2dr is a purely
radial matrix element,dpq is the Kronecker symbol reflectin
the selection rules for two-photon electric-dipole transitio
and the rest are the angular-momentum-algebra coeffici
of the form

a05
2l ~ l11!2122m2

~2l21!~2l13!
, ~6!

a15
1

2l13 S @~ l11!22m2#@~ l12!22m2#

~2l11!~2l15! D 1/2, ~7!

a25
1

2l21 S ~ l 22m2!@~ l21!22m2#

~2l11!~2l23! D 1/2, ~8!
he

,
ts

b05
l ~ l11!23m2

~2l21!~2l13!
. ~9!

Thanks to the summation rule established and using the
lation (pz)ba5 imevbazba , we finally express the require
matrix element from Eq.~2! as

(
6,iÞr

VbiVia

Ea2Ei6\v

.22a0
3S 2R\v D 2 e2A0

2

4mec
2

3F ~a0d l ,l 81a1d l 8,l121a2d l 8,l22!S 1r 2 d

dr D
nl,n8 l 8

1@b0d l 8,l1~ l13!a1d l 8,l122~ l22!a2d l 8,l22#

3S 1r 3D
nl,n8 l 8

2
me
2

\e2S (
r

vbrv ra
2 zbrzra

1 (
i< n̄
Þr

vbiv ia
4

v ia
2 2v2 zbiziaD G , ~10!

wherea0 and 2R are the atomic units of length and energ
respectively, whilee2A0

2/(4mec
2) is the quiver~ponderomo-

tive! energy of the free electron in an electromagnetic fie
Equation ~10! is convenient for two reasons. First, th

incorporated radial matrix elements can be found analytic
for hydrogen and, secondly, the value of the sum overi<n̄ is
not too sensitive to the choice ofn̄ and for optical photons a
rather low n̄ ensures correct estimation of the sum. Mor
over, Eq. ~10! has correct marginal behavior fo
ub&5ua&5unlm&. In that diagonal case, the first two terms
the large square brackets take a particularly simple form
cause then

S 1r 2 d

dr D
nl,nl

52
1

2
Rnl
2 ~0!522/~n3a0

3!d l0



t

n

te

in
th
es

fo
a
m
t
ac

n

be

gu
te

by
f the

a

m-
rge
It is
s.
ti-
na-

ve

ates
he
en
um

d

ngs
re-

the

-
On
be-
s
ling
ly,
d

Ryd-
40
of
are
art
o
not
-

ddi-
en

p-
the
and
this
in a
are

55 2147STABILIZATION AGAINST IONIZATION VIA HIGH - . . .
and

~r23!nl,nl52/@ l ~ l11!~2l11!n3a0
3#

With only these two terms retained, Eq.~10! reduces to

(
6,iÞr

uVaiu2

Ea2Ei6\v

.
e2A0

2

4mec
2 S 2R\v D 2 4

3n3

3S d l013
3m22 l ~ l11!

l ~ l11!~2l21!~2l11!~2l13! D , ~11!

which is the 30-year-old result of Ritus@13,14# ~in fact, di-
minished by the ponderomotive energy due to our neglec
theA2 term in the interaction Hamiltonian!.

We will use Eq.~10! when calculating the two-photo
matrix elements inherent inqba @Eq. ~2!#, and apply the re-
cent prescription of Feldman, Fulton, and Judd@15# when
finding the needed ionization rates from high-Rydberg sta
In this way, we will complete all Raman couplingsDba of
our model. These Raman couplings play the role of link
parameters in the appropriate equations of motion for
Schrödinger population amplitudes of high-Rydberg stat
Let b0 stand for the Schro¨dinger amplitude of the initial
state, andbn j for the Schro¨dinger amplitude of ann state in
the j quasicontinuum. We write the evolution equations
the amplitudes in the rectangular-pulse and rotating-wave
proximations and then apply to them the Laplace transfor
tion (t→s, b0→b̃0 andbn j→b̃n j). It leads to an infinite se
of coupled algebraic equations. The appropriate Lapl
equation for the initial state is obtained along this line as

sb̃0512
i

\(
n

V0,n1b̃n1 , ~12!

whereas the equation for the first quasicontinuum (j51)
looks like

~s2 idn1!b̃n152
i

\
Vn1,0b̃02(

n8
Dn1,n81b̃n81

2(
n8

Dn1,n82b̃n82 , ~13!

while for the next quasicontinua (j>2) we have

~s2 idn j!b̃n j52(
n8

Dnj ,n8 j b̃n8 j2(
n8

Dnj ,n8 j21b̃n8 j21

2(
n8

Dnj ,n8 j11b̃n8 j11 , ~14!

where dn j is the field-free detuning from one-photo
( j51) or Raman multiphoton (j>2) resonance, and
Dnj ,n8 j 8 should be understood as the Raman coupling
tween then state in thej quasicontinuum and then8 state in
the j 8 quasicontinuum. We remind the reader that the an
lar momentum of states in a given quasicontinuum is de
of

s.

g
e
.

r
p-
a-

e

-

-
r-

mined byl j5 l 01(2 j21), and all these states are labeled
the same magnetic number as the initial state because o
assumed linear polarization of light along thez axis.

B. Approximate solution of the model
with nonresonance migration

It is impossible to find an exact analytical solution in
compact form to the set of Eqs.~12!–~14! if the laser pulse is
short and of high intensity, because an extremely high nu
ber of Rydberg states is generally excited due to both la
laser bandwidth and ionization broadening of the states.
thus unavoidable to simplify appropriately the set of Eq
~12!–~14! if one wants to treat the process within an analy
cal procedure. The main problem in finding a compact a
lytical solution to the set of interest is the actualn depen-
dence of the included Raman couplings. We ha
investigated this dependence. Precisely, exploiting Eq.~10!,
we calculated these couplings for a band of Rydberg st
aroundn540, assuming photon energy resonant with t
n054→n540 transition. For the Raman couplings betwe
Rydberg states within the same quasicontinu
(ua&5unl jm0&, ub&5un8l jm0&), we found thatDba changed
a little only whenn andn8 were varied around 40, and it di
not differ significantly fromDaa , i.e., whenn5n8. Such
behavior encouraged us to replace all Raman coupli
within a given quasicontinuum by a single coupling rep
sentative for this quasicontinuum, precisely,Dnj ,n8 j by
Dj j . In the case of the coupling between the states from
neighboring quasicontinua (ua&5unl jm0&, ub&5un8l j 8,m0&),
we distinguish between the cases ofn5n8 andnÞn8. In the
first case,Dba is small as the summation rule of Eq.~5! gives
zero. In the second case,Dba behaves similarly to the cou
plings between states within the same quasicontinuum.
this basis we neglect the interquasicontinuum coupling
tween states of the samen, and replace all other coupling
between two neighboring quasicontinua by a single coup
representative for a given pair of quasicontinua, name
Dnj ,n8 j 8 by Dj j 8. Briefly, both the intraquasicontinuum an
interquasicontinuum couplings are approximated to ben in-
dependent but they are still left to bel dependent. As the
representative couplings we choose those between the
berg states with the principal quantum numbers equal to
and 41. As a matter of fact, the above approximation
Raman couplings is justified if only those Rydberg states
populated whose principal quantum number do not dep
markedly fromn540. In practice, it is the case of not to
short and not too intense laser pulse. If a laser pulse does
fulfill these limitations, states with principal quantum num
bers differing significantly fromn540 will be populated as
well. The appropriate Raman couplings between these a
tional states will, even considerably, differ from the chos
representative couplings due to the rough 1/(nn8)3/2 depen-
dence. However, we will apply the approximation of the re
resentative couplings also in this case, being aware that
atom we deal with ceases to be a real hydrogen atom
becomes a model one. To assess how far the behavior of
model atom departs from that of the real hydrogen atom,
short highly intense-laser pulse, numerical simulations
necessary.
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According to the above approximation of the Raman c
pling parameters, we simplify Eqs.~12!–~14! to the follow-
ing set:

sb̃0512 iVK1 , ~15!

~s2 idn1!b̃n152 iVb̃02D11K12D12K2 , ~16!

~s2 idn j!b̃n j>252Dj jK j2Dj j21Kj212Dj j11Kj11 ,
~17!

where

Kj5(
n

b̃n j , ~18!

andV is the representative Rabi frequency for the transit
from the initial state to the first quasicontinuum. The ess
tial point is that the set of approximate Eqs.~15!–~17! is
structurally similar to the set obtained by Deng and Ebe
@12# for their model of a different phenomenon, name
above-threshold ionization~ATI ! with infinite sequence of
continua. Formally, their equations can be obtained fr
ours by neglecting the diagonal Raman couplings (Dj j50),
and replacing the remaining off-diagonal Raman couplin
Dj j 8 , by usual one-photon free-free couplings, precise
Dj j61 by iV j j61. Recognizing the above-stated structu
similarity, we adopt the solution procedure of Deng a
Eberly to the problem of our interest. Following their lin
we divide Eq.~16! by s2 idn1 and Eq.~17! by s2 idn j and
then sum the results over all Rydberg states. Equations~16!
and ~17! are then transformed into

~11P1D11!K152 iVP1b̃02P1D12K2 , ~19!

~11PjD j j !Kj>252PjD j j21Kj212PjD j j11Kj11 ,
~20!

where

Pj5(
n

1

s2 idn j
. ~21!

We solve Eq.~20! by the method of subsequent elimination
first eliminating the last Rydberg quasicontinuum w
j5N. For j5N, the second right-hand side term in Eq.~20!
vanishes and we can expressKN by KN21. Having expressed
KN by KN21, we then expressKN21 by KN22, and so on. In
this way one finds from Eq.~20! the recursion relation

Kj>252PjGjD j j21Kj21 , ~22!

with Gj having the form of a continued fraction. For allj
~also j51), Gj can be expressed by the recurrence form

Gj5
1

11PjD j j ~12~Dj j11
2 /Dj j !Pj11Gj11!

, ~23!

fulfilling the boundary condition

GN5
1

11PNDNN
. ~24!
-

n
-

y
,

s
,
l

,

a

Starting with this condition, we create step by stepGN21
from GN , GN22 from GN21 , . . . , andfinally G1 from G2.
By the use of Eq.~22!, we then expressK2 by K1 and sub-
stitute thisK2 into Eq.~19!. After this substitution, Eqs.~19!
and~15! form a set with respect tob̃0 andK1. When solved,
this set gives

b̃05
1

s1V2P1G1
, ~25!

K152 iVP1G1b̃0 . ~26!

Applying this solution, we find from Eqs.~16! and~17! that
for all j51,2, . . . ,N,

b̃n j5
1

s2 idn j

K j

Pj
, ~27!

where, in conformity with Eqs.~22! and ~26!,

Kj>25~21! j iVS )
k51

j21

Dk k11D S )
k51

j

PkGkD b̃0 . ~28!

Formally, Eq.~28! can be extended to include the case
j51 as well, if we assume thatPk51

0 is equal to 1. Equations
~25! and~27!, along with Eqs.~28!, ~23!, and~21!, constitute
the solution of our model in the Laplace domain.

Analytical transformation of the above Laplace soluti
to the time domain needs additional approximations. Follo
ing the papers@9,16# on the related subjects, we approxima
the Rydberg energy structure forn@1 by an equidistant
structure. The limitations of this harmonic approximation a
as those of the previous approximation of representative
man couplings. We simply writedn j5d j1nD j , with d j be-
ing the detuning from the Rydberg state closest to resona
in the j quasicontinuum,D j the appropriate spacing, an
n50,61,62, . . . the index numbering the states up an
down from the resonant one (n50). Then, we setD j5D and
d j5d50 for all j51,2, . . . ,N because of the actual orbita
degeneracy in hydrogen and the assumed resonance bet
the initial stateu0& and the Rydberg state ofn540 to which
n50 is ascribed. These assumptions allow us to apply
standard coth representation forPj @17#, namely,
Pj5P5(p/D)(11m)/(12m), wherem5exp(2Ts), with
T52p/D having the sense of the classical Kepler period
the resonant state o
n540 (D56.4631011 s21→T59.7 ps). With thisP, we
follow the prescription of Stey and Gibberd@17#, i.e., we
expand bothb̃0 and b̃n j in a power series ofm and then
transform each term of this expansion. The first term~with
m0) is known to contribute to all times, the second ter
~with m1) to times longer than the Kepler period, the thi
term ~with m2) to times longer than twice the Kepler perio
and so on. We assume the laser pulse duration to be sh
than the Kepler period, and thus retain only the first term
this expansion. The transformation of this term to the tim
domain is straightforward and results in the following Sch¨-
dinger amplitudes:

b05e22prt, ~29!
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bn j5gn~t!ei2pntAj)
k51

j

GK~0!, ~30!

wheret5t/T<1 is the pulse duration in units of the Keple
period,GK(0) is the value of the continued fractionGK at
m50, and

Aj5 i2~2p! jAu)
k51

j21

~Dk k11 /D! ~A152 i2pAu!,

~31!

gn~t!5
12e22p~r1 in!t

2p~r1 in!
, ~32!

r5puG1~0!, u5~V/D!2. ~33!

Thus, after a short optical pulse oft.1, the population that
has been left in the initial state of the process
ub0u25exp@24ptRe(r)#, while the population transferre
to the j quasicontinuum, obtained by integratingubn j u2 over
n, amounts to

Wj 5
t<1UAj)

k51

j

Gk~0!U2 12e24ptRe~r!

4pRe~r!
. ~34!

These simple formulas deserve four comments. First,
exponential decay law of the initial state holds only in t
short-pulse scale oft<1. It breaks for longer pulses o
t.1 due to the higher-order terms which would have to
included in the Stey-Gibberd expansion of the Laplace so
tion. Secondly, the decay rate of the initial state in the sh
pulse scale amounts to

R052DRe~r!52puDRe@G1~0!#

5
2p

\
uV0,1u2~\D!21Re@G1~0!# ~35!

and, after recognizing (\D)21 as the density of states, it ca
be interpreted as Fermi’s golden rule excitation rate of
first quasicontinuum modified by Re@G1(0)#, i.e., the effect
of nonresonant Raman couplings in the model. This mod
cation is, obviously, intensity dependent. Thirdly, there
evident formal resemblance of the final short-pulse formu
of our model to the corresponding formulas of Deng a
Eberly @12# for their model of ATI with a sequence of con
tinua. This formal resemblance becomes obvious if one r
izes that our first Rydberg quasicontinuum, of the actual d
crete structure not resolved by a short pulse, is a counter
of the first ATI continuum, and our higher-angula
momentum quasicontinua are counterparts of the subseq
ATI continua. Needless to say, in this context bound-bou
Raman couplings of our model obviously differ from on
photon free-free couplings of the ATI model. Finally, due
the approximations of representative Raman couplings
equal spacing of high-Rydberg states, Eqs.~29!–~34! can be
considered as only a rough analytical description of
population redistribution in a real hydrogen atom by a sh
intense-laser pulse.
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C. The model with resonance migration and its solution

Retaining the approximations introduced in the preced
section, we now generalize the model to include the c
when the Rydberg states from the first quasicontinuum
be resonantly coupled to a stateue& degenerate with the ini-
tial stateu0& ~see Fig. 2!. For example, this is the case of th
u0&54s initial state. In this case, the degenerate compan
ue&54d opens the resonance channel of migrati
np→4d→n f from the first to second Rydberg quasico
tinua.

According to Fig. 2, we denote byV1 the representative
Rabi frequency for the transition between the initialu0& state
and the first Rydberg quasicontinuum, and byV2(3) the ap-
propriate representative Rabi frequencies for the transi
between the resonantue& state and the first~second! quasi-
continua. The resonantue& state must be treated now on th
same footing as the initialu0& state and, as a result, instead
the previous Eqs.~15!–~17! we have the generalized set

sb̃0512 iV1K1 , ~36!

sb̃e52 iV2K12 iV3K2 , ~37!

~s2 idn1!b̃n152 iV1b̃02 iV2b̃e2D11K12D12K2 ,
~38!

~s2 idn2!b̃n252 iV3b̃e2D22K22D21K12D23K3 ,
~39!

~s2 idn j!b̃n j>352Dj jK j2Dj j21Kj212Dj j11Kj11 .
~40!

This new set can be solved along the line similar to that
applied previously in Sec. II B. Briefly, we first divide Eq
~38!–~40! by s2 idn j and then sum the resulting equatio
over alln. In this way, one obtains from Eqs.~36!–~40! a set
for the variablesb̃0 ,b̃e ,K1 ,K2, andKj>3. Because the ob-
tained equation forKj>3 is of the same structure as Eq.~20!,
its solution is still given by Eq.~22! with the only change
that nowj>3. Applying this solution, we find by subseque
eliminations that

FIG. 2. The model of ionization from a low-lying atomic sta
u0&5un0l 0m0& via a band of high-lying Rydberg states (n@1), in
which resonance migration of population from the first to seco
Rydberg quasicontinua takes place due to the existence of the
ue& of angular momentuml 012 degenerate with the initial stat
u0&5un0l 0m0&.
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b̃05
1

C
@s1P1G1~V22D12P2G2V3!

21P2G2V3
2#,

~41!

b̃e52
1

C
P1G1V1~V22D12P2G2V3!, ~42!

K152
i

C
P1G1V1~s1P2G2V3

2!, ~43!

Kj>25
i

C
~21! jV1@s1~V2V3 /D12!#

3S )
k51

j21

Dk k11D S )
k51

j

PkGkD , ~44!

where

C5~s1P1G1V1
2!~s1P2G2V3

2!

1P1G1~V22D12P2G2V3!
2s. ~45!

With this result, we obtain from Eqs.~38!–~40! the following
Laplace solution for Rydberg states:

b̃n j5
1

s2 idn j

K j

Pj
. ~46!

When transforming the above Laplace solutions to
time domain, we again focus on the short-pulse case o
(t<1,Pj→p/D j5p/D) and assume exactu0&→n540
resonance. In this case, ourC @Eq. ~45!# becomes a quadrati
equation with respect to the Laplace variables. As a result,
the time originals are found straightforwardly in the form

b0 5
t<1 1

x12x2
@@x11a2pG1~0!u1#e

2px1t2@x21a

2pG1~0!u1#e
2px2t#, ~47!

be 5
t<1

2pG1~0!Au1SAu22pG2~0!Au3
D12

D D
3
e2px1t2e2px2t

x12x2
, ~48!

bn1 5
t<1

2e2 i2pnt
G1~0!Au1
x12x2

3@@x11pG2~0!u3#g~n2 ix1 ,t!

2@x21pG2~0!u3#g~n2 ix2 ,t!#, ~49!

bn j>2 5
t<1

2 ie2 i2pnt
Aj

2p~x12x2! S )
k51

j

Gk~0!D
3F S x11

Au2u3
D12/D

Dg~n2ix1 ,t!

2Sx21
Au2u3D g~n2 ix2 ,t!G , ~50!

D12/D
e
ly

whereuk5(Vk /D)
2 for k51,2, and 3,Aj is defined by Eq.

~31! with the changeu→u1,

g~n2 ix6 ,t!5
ei2pt~n2 ix6!21

n2 ix6
, ~51!

and x6 are the roots of the quadratic equatio
x21ax1b50 with the coefficients

a5pG1~0!Fu11SAu22pG2~0!Au3
D12

D D 2G1pG2~0!u3 ,

~52!

b5p2G1~0!G2~0!u1u3 . ~53!

Integrating the squared modulus of the amplitudesbn j
over n, we arrive at the following total populations tran
ferred to the subsequent Rydberg quasicontinua:

W1 5
t<1

pu1U G1~0!

x12x2
U2

3H ux11pG2~0!u3u2
e4ptRe~x1!21

Re~x1!

1ux21pG2~0!u3u2
e4ptRe~x2!21

Re~x2!

24ReF @x11pG2~0!u3#@x21pG2~0!u3#*

3
e2pt~x11x2

* !21

x11x2*
G J , ~54!

Wj>2 5
t<1 1

4pux11x2u2UAj)
k51

j

Gk~0!U2

3H Ux11
Au2u3
D12/D

U2e4ptRe~x1!21

Re~x1!

1Ux21
Au2u3
D12/D

U2e4ptRe~x2!21

Re~x2!

24ReF S x11
Au2u3
D12/D

DSx21
Au2u3
D12/D

D*
3
e2pt~x11x2

* !21

x11x2*
GJ. ~55!

One evident effect of the resonant stateue& between the first
and second quasicontinua is that no simple exponential
cay law of the initial stateu0&, with the rateR0 given by Eq.
~35!, is valid any longer. Other effects ofue& on the redistri-
bution of population are the subject discussed in Sec. III

III. RESULTS

Now we apply the theory developed in Sec. II to the io
ization processes starting from different initial states. T
initial states under further considerations are chosen to s
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the same principal quantum numbern054 but to differ with
respect to the angular-momentum quantum numberl 0. One
group of the initial states is formed by the circul
4 f (m053) state and the 4d(m052) state. The initial states
of this group fulfill the conditions of the model with nonres
nance migration of population to higher-angular-moment
Rydberg quasicontinua~Sec. II B!. The other group encom
passes the initial states 4p(m051) and 4s, the states tha
fulfill the conditions of the model with resonance migratio
of the population from the lowest-angular-momentum Ry
berg quasicontinuum to the higher-angular-momentum R
berg quasicontinuum~Sec. II C!. For the models with the
above initial states, we now present in a graphical form
final results obtained for light of linear polarization and fr
quency resonant to then054→n540 transition. These re
sults are based on the representative atomic param
Dj j 8 andVK calculated along the line described in Sec. II

A. The 4f „m053… and 4d„m052… initial-state models

The essence of these models is nonresonance migratio
population to higher-angular-momentum Rydberg quasic
tinua and in this case we rely on the solution of Sec. II B.
the short-pulse scale, i.e., for pulse durationst shorter than
the Kepler period of the band of the excited Rydberg sta
aroundn540(t<2p/D59.7ps), the initial state was show
to decay exponentially at the rateR0 given by Eq.~35!. In
this case, 1/R0 means the initial-state lifetime and in Fig.
we show the lifetime of the circular 4f (m053) state in its
dependence on laser intensityI . At low intensities, the func-
tion ReG1(0) involved in 1/R0 is of the order of 1 and thus
the lifetime initially decreases as the inverse of intens
This is a purely perturbative tendency characterized by
straight line in the log-log plot of Fig. 3. At higher intens
ties, the effect of ReG1(0), i.e., of degenerate Raman co
plings in the model consists in changing this tendency,
in increasing the lifetime with increasing intensity up
some asymptotic intensity-independent value. Such a cha
of the tendency means the high-intensity initial-state stab

FIG. 3. Lifetime, 1/R0, of the circular 4f (m053) initial state
versus laser intensity. The light beam is assumed to be line
polarized of a frequency resonant to then054→n540 transition in
hydrogen.
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zation and we see from the figure that the critical intens
for the 4f (m053)-state stabilization to begin in our model
I52.531011W/cm2. It is worth noting that this critical in-
tensity is of the order I at/4

85(3.531016/48)W/cm2

.5.331011W/cm2, i.e., it corresponds to the electric field o
the pulse roughly equal to the Coulombic electric field exp
rienced by the initial-state electron from the nucleus in
real hydrogen atom. At this critical intensity the initial-sta
lifetime drops to its minimum value (1/R)min598 fs. The
corresponding maximum width of the initial state (2pRmin)
appears to be two orders of magnitude smaller than the
tance of the initial state from the neighboring state with
principal quantum number equal to 5. Under such a con
tion the initial state ofn054 is well isolated from all other
states ofnÞn0, as it was required in our model.

Now, we choose appropriately the pulse duration and
the duration chosen we study the effect of laser intensity
the population of different states of the model. We let t
initial state 4f (m053) survive the pulse assuming the pul
duration not to exceed significantly the minimum lifetime
this state. Precisely, we choose 100-fs pulse duration, ne
corresponding to 0.01 of the Kepler period of the excit
Rydberg states aroundn540, or to 20 optical cycles of the
light employed. The spectral width of the pulse of this du
tion is found to be smaller than the energy gap between
excited Rydberg states aroundn540 and the ionization
threshold. The fulfillment of the condition like that is nece
sary because no direct one-photon ionization of the ini
state is allowed in the model. For the 100-fs pulse durat
we show in Fig. 4 the effect of laser intensity on the pop
lation of the 4f (m053) initial state, the first Rydberg qua
sicontinum ofl54, and the atomic continuum. In the sca
of Fig. 4, it was impossible to include the appropriate curv
for the higher-angular-momentum Rydberg quasicontin
due to negligible population of these quasicontinua. For
ample, the maximum population of the second quasic
tinuum was calculated to be smaller than that of the fi
quasicontinuum by as many as four orders of magnitude.

ly FIG. 4. The population of the initial stateu0&54 f (m053), the
first Rydberg quasicontinuum~QC! of l54, and the continuum ver-
sus laser intensity, for a 100-fs laser pulse. The polarization
frequency of light are as in Fig. 3.
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2152 55A. WOJCIK, R. PARZYŃSKI, AND A. GRUDKA
thus evident that in the case of the 4f (m053) initial state,
when no resonance migration of population to high
angular-momentum Rydberg quasicontinua is possible,
dynamics of the ionization is completely determined by
initial state and the first Rydberg quasicontinuum which
directly coupled to this state. What we see in Fig. 4 is, tha
the perturbative regime of low intensities, the initial state
the stronger depleted the higher the intensity and the po
lation removed from this state is transferred mainly to
first quasicontinuum, with only a little population being se
to the continuum. After passing the critical intensity
2.531011 W/cm2 this tendency is reversed. In this strong
nonperturbative regime, the initial state is the weaker
pleted the higher the intensity. At the same time, the amo
of the population transferred to the first quasicontinuum
creases with increasing intensity down to zero in the hi
intensity limit. Consequently, the ionization stabilizes at t
level of 0.06 probability when intensity passes the thresh
value of about 1013 W/cm2. At this threshold intensity,
some amount of population is still kept in the first quasico
tinuum, but for intensities well above this threshold the su
pression of ionization has its main source in the initial-st
survival. Obviously, the level to which the ionization is su
pressed depends on the pulse duration and we checked
for the longest pulse allowed by our solution of Sec. II
(t51, corresponding to 9.7 ps in the case studied! no high-
intensity ionization suppression took place, i.e., the ioni
tion was complete.

For the other initial state 4d(m052), we found the results
comparable even qualitatively to those shown in Figs. 3
4. This is why these additional results are not presented h

B. The 4p„m051… and 4s initial-state models

Contrary to the previously considered models, now th
is open the resonance channel of population migration fr

FIG. 5. The population of the initial stateu0&54p(m051), the
first and second Rydberg quasicontinua ofl52 and 4, respectively
the resonant stateue&54 f (m51), and the continuum versus las
intensity for a 100-fs laser pulse. The polarization and frequenc
light are as in Fig. 3.
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the first to the second Rydberg quasicontinuum through
4 f or 4d state, respectively. We thus apply the solution
Sec. II C and, assuming the same pulse duration as pr
ously ~100 fs!, we study the population of different states
the models with resonance migration versus laser intens
The results for the 4p(m051) initial-state model are shown
in Fig. 5, whereas those for the 4s initial-state model are
shown in Fig. 6. It was impossible to show in the scale
these figures the curves relevant for the third and next q
sicontinua because the population transferred to them
small. For example, the maximum population reached by
third quasicontinuum turned out to be smaller by three ord
of magnitude when compared to the maximum populat
acquired by the resonantly coupled first and second qu
continua.

Let us comment on Fig. 5 first. As seen, the curves for
initial state 4p(m051), the first Rydberg quasicontinuum o
l52, and the continuum look qualitatively the same as
corresponding curves for the model with nonresonance
gration ~compare with Fig. 4!. However, there are two new
points. One point is that now the second quasicontinuum
populated as well, mainly at intermediate intensities, with
maximum population being approximately ten times sma
than that of the first quasicontinuum. The other point is t
the 4f (m51) state, being the resonant intermediary in t
degenerate Raman transition between the first and se
Rydberg quasicontinua, also gains population. The pop
tion transferred to this resonant state saturates at the lev
0.05. As a result, the observed high-intensity suppressio
ionization is now a combined effect of mainly the initia
state survival and the trapping of population in the reson
ue& state. It makes a difference when compared to the mo
with nonresonance migration. Finally, let us note that
threshold intensity stabilizing the ionization~now at the level
of 0.09! is of the same order of magnitude~about
1013 W/cm2) as it was in the previously discussed mode

f

FIG. 6. The population of the initial stateu0&54s, the resonant
stateue&54d(m50), the first and second Rydberg quasicontinua
l51 and 3, respectively, and the continuum versus laser inten
for a 100-fs laser pulse. The polarization and frequency of light
as in Fig. 3.



-
ll,
y

no
it
el
e
co
io
su
n

g

se
o
R
d-
e
o
ua
on
sti
o
o
lem

a
r-
-
an
s
io
lar
e
di
in
ar
b
on
bu
a

to

der
ity

n to
our
In
inant
te
rate
tly

t

ity
-

ed

itial
, it
e
ter-
dif-
nt
the
han-
nt-
the
of
the

ities
h-
of
is
ex-

lar

-
. 2

55 2153STABILIZATION AGAINST IONIZATION VIA HIGH - . . .
with nonresonance migration~see Fig. 4!.
Figure 6, valid for the 4s initial-state model, shows re

sults which differ markedly from those in Fig. 5. First of a
the second quasicontinuum is now populated significantl
intermediate intensities~up to 0.22!. The next difference is
that the initial-state population versus intensity does
show a so well-pronounced minimum and the high-intens
initial-state survival probability is on a much lower lev
~0.23!. Also, the resonant 4d state, as the intermediary in th
degenerate Raman coupling between the first and se
quasicontinua, traps a significant amount of populat
which at high intensities even exceeds the population
vived in the initial state. Finally, the high-intensity ionizatio
is much less suppressed~to 0.53 only! and the threshold
stabilizing intensity is now higher by over an order of ma
nitude ~above 1014 W/cm2).

IV. CONCLUSIONS

We have performed model analytical studies of inten
laser ionization from an isolated atomic state via a band
high-Rydberg states, including the possible degenerate
man migration of population from the directly excited Ry
berg states to the Rydberg states of higher angular mom
tum. Our studies suffer from the approximations
representativen-independent Raman couplings and eq
spacing of high-Rydberg states. These two approximati
should be removed in the first turn in future more sophi
cated studies to make our model atom a better imitation
the real hydrogen atom. We are afraid, however, that with
these approximations an analytical solution to the prob
will not probably be possible.

The results obtained within our models suggest that
effective migration of population from lower- to highe
angular-momentum Rydberg states ofn@1 due to degener
ate Raman coupling is likely to occur only if the Ram
process is resonant. Whether it is resonant or not depend
the choice of the initial state. We believe that the populat
transferred resonantly to a band of higher-angu
momentum Rydberg states could be detected in an exp
ment consisting in measuring the photoelectron angular
tributions versus laser intensity. At the intensity ensur
efficient migration, the spherical harmonic of the angul
momentum quantum number higher by 2 than the num
determined by the directly excited first Rydberg quasic
tinuum is expected to contribute substantially to the distri
tions. Our conclusion on the migration coincides with th
derived by Grobe, Leuchs, and Rzaz˙ewski @11# from their
an
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related model in which the population was considered
migrate from the initially prepared 28s state in hydrogen to
higher-l states of the same principal quantum number un
the action of laser pulse of quite different time and intens
parameters.

Since the nonresonance Raman migration of populatio
higher-l Rydberg states appeared to be very weak in
model, we found no evidence that it affects stabilization.
this case, the bound-state subspace which plays the dom
role in the ionization process is formed by the initial sta
and the Rydberg states directly coupled to it. The degene
Raman redistribution of the population between the direc
excited Rydberg states of the samel but differentn, pointed
out by Fedorov and co-workers@16#, is in this case importan
for stabilization to appear~see also@6,7,9,10#!. In our model
with no resonance migration to higher-l states, we found the
initial-state survival as the main cause of the high-intens
stabilization, with only a small effect of trapping of popula
tion in high-Rydberg states.

In the case when the population from the directly excit
Rydberg states could migrate resonantly to higher-l Rydberg
states through a state orbitally degenerate with the in
one, a different cause of stabilization was found. Mainly
was the combination of the initial-state survival with th
trapping of population in the resonant state being the in
mediary in the Raman transition between Rydberg states
fering by 2 in the orbital quantum number. A significa
amount of the population was found to be trapped in
resonant state at high intensities. In the case when the c
nel of resonance migration of population between differe
l high-Rydberg states was opened, a profound effect of
initial-state orbital quantum number on redistribution
population by laser pulse, stabilizing intensities, and
level of stabilization was found.

For a 100-fs pulse assumed by us, the threshold intens
stabilizing our model atom against ionization via hig
Rydberg states were found to be at the level
1013 W/cm2 at the optimum choice of the initial state. Th
threshold intensity is of the same order as that observed
perimentally by de Boeret al. @2# for a quite different pro-
cess, namely, the high-frequency stabilization of the circu
5g state in neon.
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