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Stabilization against ionization via high-Rydberg states
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An analytical study is presented of two models of intense-laser ionization from an isolated initial state via a
band of high-Rydberg states in a system which bears many features of the hydrogen atom. The models differ
in the way the population from the directly excited Rydberg states can migrate to the states of higher angular
momenta. In one of them it migrates via nonresonant and in the other via resonant degenerate Raman coupling.
Within these models we draw conclusions about the efficiency of migration, the initial-state lifetime, the
redistribution of population, the laser intensities stabilizing the atom against ionization, the effect of the initial
state on the threshold stabilizing intensity, as well as about stabilizing mechanisms versus the initial-state
choice.[S1050-294{@7)03202-3

PACS numbd(s): 42.50.Hz, 32.80.Rm

[. INTRODUCTION states to Rydberg states of higher-angular-momentum quan-
tum number. We included the above-mentioned migration
One of the most intriguing phenomena in the currentsince it was shown to be essential in the related processes

high-intensity laser-atom physics is stabilization of the atom{transfer of population from the prepared léwstate to
against ionizatiofiL]. With the recent experiment of de Boer Nigheri states of the same principal quantum number
et al[2] this phenomenon has left the phase of theoretica% ;iigtilgnhzgiﬂzr%\% %’h%%gé?gesntagt;t??;e mfﬁi%h?ﬁgn
predictions ano! specqlat!ong. In this expenment, Stablllzatlo':lnodel, we derive analytical solutions for laser pulses shorter
was observed in the ionization of the circulag §eon state  j, 4,ration than the representative Kepler period of the band
with a single-photon energy being nearly four times the elecyt highly excited Rydberg states, though the formal solution
tron binding energy. Thus the photon energy fulfilled what isfor |onger pulses poses no problems within our procedure.
usually referred to as the high-frequency conditi@h Un-  with this solution quantitative results are presented for ion-
der this condition the measured stabilizing intensitigsv-  ization of the model hydrogen atom from differdnstates
eral times 1&W/cn? in a 100-fs pulsgwere found to be in  but of the sama=4 by a linearly polarized 100-fs pulse of
conformity with the recent calculations of Potvliege andthe frequency resonant to the=4—n=40 transition. The
Smith for hydrogen[4]. In the high-frequency ionization, initial states are intentionally chosen in such a way that ei-
like the measured one, stabilization is determined by théher nonresonant or resonant migration of population to
initial-state evolution only and transitions to other boundhigheri Rydberg states takes place. From the results ob-
states do not play a role. This is quite opposite to what taketined, we draw conclusions about the initial-state lifetime,
place in ionization by low frequencief.e., the below- redistribution of population versus laser intensity, efficiency
ionization-threshold frequencigeshe process we shall study Of migration to higheil- Rydberg states, threshold laser in-
within a model hydrogen atom in the present paper. tensities stabilizing the model atom against ionization, and
Precisely, we shall study nominal two-photon ionizationthe stabilizing mechanisms versus the initial-state choice.

from an isolated initial state by light of a frequency ensuring__OUr Paper is organized as follows. Section Il is devoted to

a band of high-Rydberg states to be an intermediary in thgresentation of a formal theory. In Sec. Il A we introduce the
transition to the continuum. The inclusion of transition via model of ionization via high-Rydberg states, in which only

. . . nonresonant migration of population to higheRydberg
high-Rydberg states is what makes our paper different fro . : ;
the recent oneg5—8]. The other difference is that we de_"%tates via degenerate Raman coupling takes place. It is also

ibe th hol ithi ticall vabl shown in this section how to calculatenalytically, in prin-
scribe the whole process within an analytically solvableq;,ie) the Raman coupling parameters. In Sec. Il B this
model. Such an approximate analytical solution of the proby,qqe| is solved in terms of continued fractions and the rela-

lem was possible only under appropriate modeling of thgjop, to the above-threshold-ionization problem of Deng and
band of highly excited Rydberg states and the couplings begperly [12] is pointed out. Section Il C concerns the model
tween the states of the model. The present model is an egy which the population from the directly excited Rydberg
sential generalization of two recent analytical model§, On&states of a fixed migrates to Rydberg states bincreased
proposed by Ivanof@] and the other by Woik and Parzyn by 2 through a state degenerate with the initial state of the
ski [10], and the conclusions drawn from it are based ormprocess. In Sec. Ill the analytical solutions are applied to
realistically calculated, representative atom-field couplingdifferent initial states in the model hydrogen atom and com-
parameters. The generalization consists in the inclusion gbarative studies are performed with emphasis on stabiliza-
both nonresonant and resonant Raman-like migration ofion. We end the paper by presenting in Sec. IV the main
population from the directly excited band of high-Rydbergconclusions derived from our model studies.
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sitions involving both discrete and continuum states of the
appropriate angular momenta as intermediaries. These de-
generate Raman transitions are schematically shown by
dashed arrows in Fig. 1. In the basic model, no resonant
intermediate state is assumed to be involved in the Raman
Fho th Fho =h coupling between Rydberg states from the neighboring qua-
E E sicontinua. Specifically, this assumption is satisfied always if

the initial state is a circular stat®)=|nglo=my=ny—1)
(but not only in this cage A generalization of the basic
model to include an intermediate resonance in the Raman
coupling between the firstj & 1) and secondjE=2) quasi-
=l L1 k2 3 Lt LS . continua will be considered later on.

We shall describe the nonresonant Raman coupling be-
, X ) tween any two high-lying Rydberg states by
10)=1nolomo) via & band of high-lying Rydberg statesx1),  p _(i/z)M,. whereM,, is the standard Raman matrix

e e e oot ramglEment provile by the Second-order peruration theory
ach high-lying Rydberg state is specified by

transitions(dashed arrows The sign at the photon energy corre- . .
( W g P 9y n>ng, I=Iy+(2j—1), andm=mg, under our assumptions

jsiolrjg’s- to ja’\llthi;eabf,:lggltlor;—)(/)dg;rzmlzfjl:;s;%tic:uz pg?to;r']g?far_ _con_cemi_ng the choice of th_e initial state an_d the Iight_polar—
momentum quantum numbeés o+ (2] —1). ization (linear along thez axis). Specifically, in the applica-
tion of our model we will concentrate later ay=4 and

Il. THEORY n=40 corresponding to the exciting-photon energy
hw="TRI/16=0.85eV whereR is the Rydberg constant. The
two high-lying Rydberg statesné&40) which are Raman
) _ ) coupled can belong either to the same quasicontinuum of a
~ Figure 1 shows the basic model of nominal two-photongiyen| or to two neighboring quasicontinua differing by two
ionization of the hydrogen atom from an initial state jn | put both states undergo one-photon ionization, with
|0>:|”o|omo} via a band of high-lying Rydberg states of continuum-continuum transitions ignored in our model. As a
n>1. The principal quantum numbep of the initial state is  resylt, the second-order matrix elemeWt,, acquires an

assumed to be low enough for this state to satisfy the condimaginary part and,, is generally expressible #31]
tion of being well isolated from all other lower- and higher-

lying states. The choice of this initial state is made so that Dpa=(1+1i0pa) V¥ Yal2, (1)

after absorption of one electric-dipole photon only those

higher-lying Rydberg states could be excited whose angulamwhere yy,) stands for Fermi’s golden rule ionization rate of
momentum quantum numberis increased by one with re- |b)(|a)) to the continuum that is common for these two Ry-
spect tol, of the initial state. An exemplifying initial state dberg states. Ifb) and|a) belong to two neighboring qua-
ensuring this conditiofbut not the only onkgis the so-called sicontinua, there exist intermediate continuous states of only
circular statg/0)=|ngl,=my=ny—1) exposed to light lin- one angular momentum. However, fdr) and|a) from the
early polarized along the axis. Photons of such light leave same quasicontinum, intermediate continuous states of two
the magnetic quantum numbaer, of the atomic state un- different angular momenta are accessible and thgg must
changed, thus closing tHg—I,—1 excitation channel. In be understood as a sum over partial ionization rates. By
our model, photons are provided by a rectangular opticaf],, Wwe denoted the Fano-like parameter defined as

pulse turned on at=0. This pulse interacts with the atom
through the Hamiltonian taken in the momentum form,

V=(—e/ms)A-p, where the vector potential is spatially
independent. The term with® was rejected in the above Gba= VYo Yal? '
. . . . . . a

interaction Hamiltonian as it shifts all states equally by the

ponderomotive energ;eZA§/4mec2. By absorbing one pho- where the sum is extended over rotating-wave and counter-
ton, the atom from its initial stat®) =|ngl my) is excited to  rotating-wave terms, as well as over all bound and free
a band of Rydberg states with the momenturiy+1, lying  atomic states with the preclusion of the resonant ones.
slightly below the ionization threshold. These Rydberg states The above-mentioned summation over intermediate states
with n>1 form what will be referred to as the first Rydberg can be performed exactly by the use of the Coulomb Green’s
guasicontinuum. This quasicontinuum will be labeled byfunction[6]. In this paper, we prefer, however, an approxi-
j=1.By V1 we denote the matrix element for the coupling mate approach based on the fact that the energy of the pho-
between the initial state and anstate in thg =1 quasicon- ton involved (~0.85eV) is much higher than the energy dif-
tinuum. The essential point of the model is that the populaference between high-lying and even moderately high-lying
tion which reached th¢=1 quasicontinuuml¢=1,+1) is  Rydberg states. Exploiting this fact, we formally split the
allowed to migrate to higher-angular-momentum Rydbergspace of intermediate states into two groups, namely, the
guasicontinuum, namely, to thg§=2 quasicontinuum discrete states with their principal quantum numtrem and
(I,=1,+3), then to thej=3 quasicontinuumlg=1,+5), the rest of the states. For a fixed photon enetgy,n is

and so orfl;=1o+(2j—1)], due to degenerate Raman tran- chosen to be large enough for the relatjé) — E,| <% to

CONTINUUM

|0) = |n, I, m,)

FIG. 1. The model of ionization from a low-lying atomic state

A. The model with nonresonance migration
and coupling parameters

(1h)> + izl (VpiVia (Ea—Ei*hiw)]

@
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be well fulfilled. Up ton=n we explicitly compute the sum sential part of the leading term turns out to be reduced to a
in the numerator of Eq(2), but for n>n we expand the simple form and we shall show it now. According to the
summand in the inverse powers bt and retain only the procedure described above, we first replace the two-photon
leading term. The last step in this procedure is what is usumatrix element from the numerator of E&) by its approxi-

ally referred to as the high-frequency approximation. An es+mate form:

VpiVia 1
: 2( eAO) [E (PIbi(Pia—=— — w2 +F

=i#zr E,—Efho 2meC |:n ai
X(EI (P2)bi(P2ia®ia— 2 (P2bi(P2)ia®ia— E (P2) br(pz)rawra>] ()]
i)
|
where wg,=(Eg—E,)/%. Then, we use the relation [(1+1)—
(Py)iawia= |(pz),a—|((9V/(92)la, valid for an atomic po- Bo:m- 9

tential V, to find that

Thanks to the summation rule established and using the re-

N d\* lation (p,) go=iMew g4Zg,, We finally ex th ired
(DYoo= —%] = L Ba=1Me®gaZg0 y express the require
2 (PIoi(PDiavia h( 9z az)ab @ matrix element from Eq(2) as

For the hydrogenic potential{= —e?/r, the resulting single VbiVia

matrix element is calculated straightforwardly by applying<7#r Ea—Ei*fiw@
standard techniques of angular-momentum algebra. For the 02A2
states specified ag)=|nIm) and |b)=|n"l"'m’=m), one ~_2ao( 2R\ e“Aq

obtains in this way the off-diagonal sum rule hw 4mec2

2
e (agd |+ sy 42

Z (PIbi(PLiawia= —1

1d
X (b ta oy jota 62| = Zdr
nl,n’l’

1d
ta 6y - 2)( dr) +[Bodi +(1+3) a6y 42— (1=2)a_d 2]
nl,n'l’ 2
1 mg )
+[ﬁ05I’,I+(I+3)a+5I’,I+2 X(r_S) _ﬁ( Er: WprWyaZprZra
1 nl,n’l’
—(|—2)a5|',|2](r_3) }
Wpiw
L +E _Z—Zblzla (10)
©) S e

where [f(r)]nn=SoRE(NT(r)Ry/(r)rédr is a purely  wherea, and 2R are the atomic units of length and energy,
radial matrix elementg, is the Kronecker symbol reflecting respectively, whilee?A2 5/(4mgc?) is the quiver(ponderomo-

the selection rules for two-photon electric-dipole transitionstive) energy of the free electron in an electromagnetic field.
and the rest are the angular-momentum-algebra coefficients Equation (10) is convenient for two reasons. First, the

of the form incorporated radial matrix elements can be found analytically
for hydrogen and, secondly, the value of the sum owen is
21(1+1)—1—-2m? not too sensitive to the choice ofand for optical photons a
=T IC1)(21+3) (6)  rather lown ensures correct estimation of the sum. More-

over, Eqg. (100 has correct marginal behavior for
|b)=|a)=|nIm). In that diagonal case, the first two terms in

_ 1 (Ld+ 1)2=m?][(1+2)*~m?]\ Y2 0 the large square brackets take a particularly simple form be-
“+T20+3 (21+1)(21+5) ’ cause then
1d 1
w =t (P m*)[(1— 12— m?]) ®) <_2d_) =— 5RA(0)=—2/(na) 5
-2l (21+1)(21-3) ’ rar i
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and mined byl;=1,+(2j—1), and all these states are labeled by
s a3 the same magnetic number as the initial state because of the
(r ) m=211(1+1)(21 +1)n°ag assumed linear polarization of light along thexis.

With only these two terms retained, E4.0) reduces to

2 |Vai|2

* i#r Ea—Eiiﬁw

B. Approximate solution of the model
with nonresonance migration

It is impossible to find an exact analytical solution in a

eZAS 2R\? 4 compact form to the set of Eqil2)—(14) if the laser pulse is
= amc? %) 3n3 short and of high intensity, because an extremely high num-
ber of Rydberg states is generally excited due to both large
. 3m*—1(1+1) laser bandwidth and ionization broadening of the states. It is
x| Gt Cl+1)(21-1)(21+1)(21+3) )" 1D thus unavoidable to simplify appropriately the set of Egs.

(12—(14) if one wants to treat the process within an analyti-
which is the 30-year-old result of Rit43,14 (in fact, di-  cal procedure. The main problem in finding a compact ana-
minished by the ponderomotive energy due to our neglect oftical solution to the set of interest is the actualdepen-
the A% term in the interaction Hamiltonian dence of the included Raman couplings. We have

We will use Eq.(10) when calculating the two-photon inyestigated this dependence. Precisely, exploiting (EQ),
matrix elements inherent iy, [Eq. (2)], and apply the re- \ye calculated these couplings for a band of Rydberg states
cent prescription of Feldman, Fulton, and JUdd] when  5.4,ndn=40, assuming photon energy resonant with the
finding the needed ionization rates from high-Rydberg stateshoz4_>n=40 transition. For the Raman couplings between
In this way, we will complete all Raman couplind,, of Rydberg states within the same quasicontinuum
our model. These Raman couplings play the role of Iinking(|a>:|n|,m0>’ IbY=|n’l:my)), we found thaD,, changed
parameters in the appropriate equations of motion for the, jiye onJIy whenn andn’ were varied around 40, and it did
Schralinger population amplitudes of _high—Rydberg_ states, ot giffer significantly fromD,,, i.e., whenn=n’. Such
Let by stand for the Schdinger amplitude of the initial popavior encouraged us to replace all Raman couplings

state, andy,; for the Schrdinger amplitude of am state in \yithin a given quasicontinuum by a single coupling repre-
the j quasicontinuum. We write the evolution equations forganiative for this quasicontinuum, preciselp,; . by

the amplitudes in the rectangular-pulse and rotating-wave ay . |n the case of the coupling between the states from the
proximations and then apply to them the Laplace tranSformaﬁé]ighboring quasicontinuda) =|nlmg), [by=|n"l;,,mo)),
tion (t—s, bo—bg andb,;—by)). It leads to an infinite set \ye gistinguish between the casesofn’ andn=n’. In the
of coupled algebraic equations. The appropriate Laplacgyst casep,, is small as the summation rule of E&) gives
equation for the initial state is obtained along this line as  zerg, In the second casB,,, behaves similarly to the cou-
i plings between states within the same quasicontinuum. On
sbp=1— ~> Vonibn1, (120  this basis we neglect the interquasicontinuum coupling be-
([ ’ tween states of the sanme and replace all other couplings
between two neighboring quasicontinua by a single coupling
whereas the equation for the first quasicontinuuf®1)  representative for a given pair of quasicontinua, namely,

looks like Dyjnjs by Djjr. Briefly, both the intraquasicontinuum and
| interquasicontinuum couplings are approximated tabe-
(S—i8,1)bny=— gan,obo—E Dnin 1Bt dependent .but they are still left to bedependent. As the
n’ representative couplings we choose those between the Ryd-

berg states with the principal quantum numbers equal to 40

—> Dyynobya,s (13 ~and 41. As a matter of fact, the above approximation of
n’ ’ Raman couplings is justified if only those Rydberg states are
populated whose principal quantum number do not depart

while for the next quasicontinug £2) we have markedly fromn=40. In practice, it is the case of not too
short and not too intense laser pulse. If a laser pulse does not
N = = fulfill these limitations, states with principal quantum num-
s—id,)bpi=— Dpinribnri— Dyinicibpriz e S :
( i) Pnj nz npniEnd nz R I bers differing significantly frorn=40 will be populated as

well. The appropriate Raman couplings between these addi-
_2 Do )i b (14) tional states will, even considerably, differ from the chosen
< TnniEEntE L representative couplings due to the rougmiv()®? depen-
dence. However, we will apply the approximation of the rep-
where &,; is the field-free detuning from one-photon resentative couplings also in this case, being aware that the
(j=1) or Raman multiphoton j&2) resonance, and atom we deal with ceases to be a real hydrogen atom and
Dnj,nrj should be understood as the Raman coupling bebecomes a model one. To assess how far the behavior of this
tween then state in thg quasicontinuum and the' state in  model atom departs from that of the real hydrogen atom, in a
the )’ gquasicontinuum. We remind the reader that the angushort highly intense-laser pulse, numerical simulations are
lar momentum of states in a given quasicontinuum is deternecessary.
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According to the above approximation of the Raman cou-Starting with this condition, we create step by s8g_;

pling parameters, we simplify Eq§l2)—(14) to the follow-
ing set:

shy=1—iQK;, (15)
(5—18n1)bpy=—1Qby—D1;K;— D1 K5, (16)

(8= 6n))bpj=2= _Dijj_Djj*1Ki*1_DJi+1KJ’+1’(l
where

K,-:; b (18)

and(} is the representative Rabi frequency for the transition
from the initial state to the first quasicontinuum. The essen-

tial point is that the set of approximate Eq45)—(17) is

from Gy, Gy_» from Gy_1, ..., andfinally G, from G,.
By the use of Eq(22), we then expresK, by K; and sub-
stitute thisk, into Eq.(19). After this substitution, Eq19)
and(15) form a set with respect tby, andK;. When solved,
this set gives

~ 1
b= 0%,6,” 29
K1=—iQP1G150. (26)

Applying this solution, we find from Eq4$16) and(17) that
forall j=1,2,... N,

; 1 K 5

structurally similar to the set obtained by Deng and Eberlywhere, in conformity with Eqs(22) and (26),

[12] for their model of a different phenomenon, namely,

above-threshold ionizatiogATI) with infinite sequence of

continua. Formally, their equations can be obtained from

ours by neglecting the diagonal Raman couplinDs; €0),

and replacing the remaining off-diagonal Raman couplingq;orma”y,
Dj;-, by usual one-photon free-free couplings, precisely;
Djj+1 by iVjj=1. Recognizing the above-stated structural
similarity, we adopt the solution procedure of Deng and

Eberly to the problem of our interest. Following their line,
we divide Eq.(16) by s—id,; and Eq.(17) by s—id,; and
then sum the results over all Rydberg states. Equatib@s
and(17) are then transformed into
(1+ PlDll)K1:_|QP160_P1D12K2, (19)
(1+PDj)Kj=2=—PiDjj1Kj 1= PDjj 11K} 1,
(20

where

o_ 1
j n S_|5n]

(21)

We solve Eq(20) by the method of subsequent eliminations,
first eliminating the last Rydberg quasicontinuum with standard

j=N. Forj=N, the second right-hand side term in Eg0)
vanishes and we can exprdég by Ky _ ;. Having expressed
Kn by Ky_1, we then expresKy_, by Ky_», and so on. In
this way one finds from E20) the recursion relation

Kj=2=—PjGiDjj-1Kj-1, (22

with G; having the form of a continued fraction. For all

(alsoj=1), G; can be expressed by the recurrence formula(with “

1
7 14+PDjj(1~ (D} 1 4/D}))P;+1Gj 1)
fulfilling the boundary condition
1
Gn=r (24)
1+ P\Dnn

-1

j
I1 Dkk+l)(]._.[ Pka>bo- (29)
k=1 k=1

Kj;2=<—1>m(

Eq.(28) can be extended to include the case of
j=1 as well, if we assume thﬁ[E:1 is equal to 1. Equations
(25 and(27), along with Eqs(28), (23), and(21), constitute
the solution of our model in the Laplace domain.

Analytical transformation of the above Laplace solution
to the time domain needs additional approximations. Follow-
ing the paper§9,16] on the related subjects, we approximate
the Rydberg energy structure for=>>1 by an equidistant
structure. The limitations of this harmonic approximation are
as those of the previous approximation of representative Ra-
man couplings. We simply writé,;= 6;+ vA;, with J; be-
ing the detuning from the Rydberg state closest to resonance
in the j quasicontinuumA; the appropriate spacing, and
v=0,+1,+2,... theindex numbering the states up and
down from the resonant one 0). Then, we seA;=A and
6;=0=0 forall j=1,2,... N because of the actual orbital
degeneracy in hydrogen and the assumed resonance between
the initial statg0) and the Rydberg state of=40 to which
v=0 is ascribed. These assumptions allow us to apply the
coth representation foP; [17], namely,
Pi=P=(m/A)(1+ un)/(1—u), where u=exp(—Ts), with
T=2m/A having the sense of the classical Kepler period of
the resonant state of
n=40 (A=6.46x10" s"1-=T=9.7 ps). With thisP, we
follow the prescription of Stey and Gibbefd7], i.e., we
expand bothb, andb,; in a power series ofx and then
transform each term of this expansion. The first témith
1) is known to contribute to all times, the second term
1) to times longer than the Kepler period, the third
term (with «?) to times longer than twice the Kepler period,
and so on. We assume the laser pulse duration to be shorter
than the Kepler period, and thus retain only the first term in
this expansion. The transformation of this term to the time
domain is straightforward and results in the following Sehro
dinger amplitudes:

bo=e"%""", (29
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j
b,i=0,( r)e‘WA,-kl]l G(0), (30)

CONTINUUM

wherer=t/T=<1 is the pulse duration in units of the Kepler
period, G(0) is the value of the continued fractidby at
n=0, and

ji—1
Aj=i2(=mull (Dca/a) (A= —i2mu),

3D [0) = |ng ly my) e} = |ny 1;+2 my)

1— e 2m(p+inr 1= I,+1 1,+2 1,+3 1,+4 1+5

9,(7) 2@(p+iv) (32) FIG. 2. The model of ionization from a low-lying atomic state
|0)=|nglym,) via a band of high-lying Rydberg statess 1), in
p=muGy(0), u=(Q/A)>. (33 which resonance migration of population from the first to second

Rydberg quasicontinua takes place due to the existence of the state

Thus, after a short optical pulse of1, the population that le) of angular momentuniy+2 degenerate with the initial state
has been left in the initial state of the process isl®)=IMoloMo)-

2_ _ ; ;
|b°| exi —4m7Re(p)], while the population transferred C. The model with resonance migration and its solution

to thej quasicontinuum, obtained by integratifty,;|? over
v, amounts to Retaining the approximations introduced in the preceding
section, we now generalize the model to include the case
r<1 j 21 _ g 4mrRep) when the Rydberg states from the first quasicontinuum can
W = |A; H Gi(0) A7Rep) (39 be resonantly coupled to a sta® degen.er-ate with the ini-
k=1 p tial state|0) (see Fig. 2 For example, this is the case of the

i _ |0)=4s initial state. In this case, the degenerate companion
These simple formulas deserve four comments. First, th y=4d opens the resonance channel of migration

exponential decay law of the initial state holds only in thenpﬂ4dﬂnf from the first to second Rydberg quasicon-
short-pulse scale of<1. It breaks for longer pulses of 4.

7>1 due to the higher-order terms which would have to be According to Fig. 2, we denote b§, the representative
included in the Stey-Gibberd expansion of the Laplace solug4p; frequency for the transition between the init)l state
tion. Secondly, the decay rate of the initial state in the shortz 4 the first Rydberg quasicontinuum, and®y,s, the ap-

pulse scale amounts to propriate representative Rabi frequencies for the transition
between the resonaf¢) state and the firstsecond quasi-
continua. The resonamé) state must be treated now on the
20 same footing as the initig0) state and, as a result, instead of
= 7|V0,1|2(hA)‘1Re[Gl(O)] (35)  the previous Eqs(15)—(17) we have the generalized set

Ro=2ARé&p)=27UARE G4(0)]

. . . shy=1-i10K,, (36)
and, after recognizingi(A) ~! as the density of states, it can
pe interpreted_ as Fermi’; .golden rule exci_tation rate of the SBe:_iQZKl_iQSKZv (37)
first quasicontinuum modified by R&,(0)], i.e., the effect
of nonresonant Ramqn cou_plings in the modgl. This modifi— (S—i5n1)gn1= _ml”b‘o_mz’ge_ DK, — DKoy,
cation is, obviously, intensity dependent. Thirdly, there is (39)
evident formal resemblance of the final short-pulse formulas
of our model to the corresponding formulas of Deng and  (s—i§,,)b,,= — i Q3be— D Ky— D 1Ky — DK,
Eberly [12] for their model of ATl with a sequence of con- (39)
tinua. This formal resemblance becomes obvious if one real-
izes that our first Rydberg quasicontinuum, of the actual dis- (S—i5nj)5nj>3= —DjK;j=Djj—1Kj- 1= Djj+1Kj 1.
crete structure not resolved by a short pulse, is a counterpart (40)
of the first ATl continuum, and our higher-angular- . o
momentum quasicontinua are counterparts of the subsequehfis new set can be solved along the line similar to that we
ATI continua. Needless to say, in this context bound-boundtPplied previously in Sec. Il B. Briefly, we first divide Egs.
Raman couplings of our model obviously differ from one- (38)—(40) by s—id,; and then sum the resulting equations
photon free-free couplings of the ATl model. Finally, due to ©ver alln. In this way, one obtains from Eq36)—(40) a set
the approximations of representative Raman couplings antdr the variableshy,b,K4,K,, andK;-3. Because the ob-
equal spacing of high-Rydberg states, H@9)—(34) can be  tained equation foK;- is of the same structure as Eg0),
considered as only a rough analytical description of thets solution is still given by Eq(22) with the only change
population redistribution in a real hydrogen atom by a shortthat nowj=3. Applying this solution, we find by subsequent
intense-laser pulse. eliminations that



2150 A. WOJCIK, R. PARZY’l\SKl, AND A. GRUDKA 55

~ 1
b0=6[s+ P1G1(Q,—D15P2Go03) %+ P,G,07],

~ 1
be=— c P1G1Q1(Q5—D15P2G505),
i
Ki=— c P1G1Q4(s+P,G,0)),

i )
Kj;zza(_1)191[5+(9293/D12)]

X

fire)

i-1
I] Dyt
k=1

where
C=(s+P,G,09)(s+P,G,03)
+P1G1(Q,—D1,P,G,03)%s.

(41)

(42

(43

(44)

(49)

With this result, we obtain from Eq§38)—(40) the following

Laplace solution for Rydberg states:

- 1 K,

b“j:s—iéan_j'

When transforming the above Laplace solutions to the
time domain, we again focus on the short-pulse case only

(46)

(r<1Pj—m/Aj=m/A) and assume exact0)—n=40

resonance. In this case, cQr{Eq. (45)] becomes a quadratic
equation with respect to the Laplace variabléAs a result,
the time originals are found straightforwardly in the form

<1

1
bo = [[X;+a—7G(0)u]e®™+ —[x_+a

Xy —X_
—wG1(0)u,]e?™-1],

<

be

e2‘rr)<+ T_ eZﬂ'X_T
X

X+_X_

<1 G1(0)\uy

b 1= _e—i27TVT
v

X4 —X_
X[[X4++7G2(0)uz]g(v—ix, ,7)

—[X_+7G,(0)uzlg(v—ix_,7)],

<1 A] i
k=1

— ie—i27TVT
2 (X —X_)

VUzU3 .
D12/A g(V_|X+ \7)

X4+

usus .
DL,/A g(v—ix_,7) |,

X_+

1 D
= mG1(0) g VU~ 7G(0) Vg3

I1 G0

(47)

(48)

(49

(50

whereu,=(Q,/A)? for k=1,2, and 3A| is defined by Eq.
(31) with the changai—uy,

eiZWT(V—iXt)_ 1

g(V_iXilT): ’ (51)

V—iXi

and x. are the roots of the quadratic equation
x2+ ax+ B=0 with the coefficients

2
a=7TG1(0) U1+ \/U_2_7TG2(O) U3DT12 +7TG2(O)U3,
(52
B=m"G1(0)Go(0)u 3. (53

Integrating the squared modulus of the amplitudes
over v, we arrive at the following total populations trans-
ferred to the subsequent Rydberg quasicontinua:

<1 Gl(O) 2
Wl = 7Tul X+—X7

) 47TTRdX+)_1
X\ Xy + 76, (0)ug| ——————

| + 2( ) 3| qu+)
4777Rdx,)_1

2
+|X,+’7TG2(0)U3| RdXi)

_4R{ [X+ + 7TG2(O)U3][X_ + WGz(O)U:;]*

X

e27TT(X+ +Xt) -1
— | { (54)

X4 +x*

=<1 1 2

Wj>2 =

j
Ajk1:[l Gy(0)

A|x, +x_|?

/U2U3 2e4ﬂTTRdX+)_1
XY Xy +

T DyplA Re(x )

\/@ 2 e47'rTRdX_)_ 1
“"DJA|  Rex)

P

DA D.J/A
e27-r7(x++xf)_1

+|X

X4+

]. (55

X4 +X*

One evident effect of the resonant st between the first
and second quasicontinua is that no simple exponential de-
cay law of the initial stat¢0), with the rateR, given by Eq.
(35), is valid any longer. Other effects ¢é) on the redistri-
bution of population are the subject discussed in Sec. lll.

Ill. RESULTS

Now we apply the theory developed in Sec. Il to the ion-
ization processes starting from different initial states. The
initial states under further considerations are chosen to share
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FIG. 3. Lifetime, 1R,, of the circular 4(my=3) initial state
versus laser intensity. The light beam is assumed to be linearly FIG. 4. The population of the initial staj@)=4f(my=3), the
polarized of a frequency resonant to thg=4—n=40 transition i first Rydberg quasicontinuuf®C) of | =4, and the continuum ver-
hydrogen. sus laser intensity, for a 100-fs laser pulse. The polarization and
frequency of light are as in Fig. 3.

the same principal quantum numbey=4 but to differ with
respect to the angular-momentum quantum nunipe©One  zation and we see from the figure that the critical intensity
group of the initial states is formed by the circular for the 4f (my,=3)-state stabilization to begin in our model is
4f(my=3) state and thed(my=2) state. The initial states |=2.5x 10"W/cn?. It is worth noting that this critical in-
of this group fulfill the conditions of the model with nonreso- tensity is of the order |,/4%=(3.5x10'%4%)W/cn?
nance migration of population to higher-angular-momentum=5_3x 10"*W/cn?, i.e., it corresponds to the electric field of
Rydberg quasicontinugSec. 1l B). The other group encom- the pulse roughly equal to the Coulombic electric field expe-
passes the initial statesplmy=1) and 4, the states that rienced by the initial-state electron from the nucleus in the
fulfill the conditions of the model with resonance migration real hydrogen atom. At this critical intensity the initial-state
of the population from the lowest-angular-momentum Ryd-lifetime drops to its minimum value (R),,=98 fs. The
berg quasicontinuum to the higher-angular-momentum Rydeorresponding maximum width of the initial state#R,,,)
berg quasicontinuuntSec. 11 Q. For the models with the appears to be two orders of magnitude smaller than the dis-
above initial states, we now present in a graphical form thaance of the initial state from the neighboring state with its
final results obtained for light of linear polarization and fre- principal quantum number equal to 5. Under such a condi-
quency resonant to the,=4—n=40 transition. These re- tion the initial state ohy=4 is well isolated from all other
sults are based on the representative atomic parametesgates ofn+ny, as it was required in our model.
Djjr and() calculated along the line described in Sec. Il A. Now, we choose appropriately the pulse duration and for
the duration chosen we study the effect of laser intensity on
the population of different states of the model. We let the
initial state 4(my=3) survive the pulse assuming the pulse
The essence of these models is nonresonance migration déiration not to exceed significantly the minimum lifetime of
population to higher-angular-momentum Rydberg quasiconthis state. Precisely, we choose 100-fs pulse duration, nearly
tinua and in this case we rely on the solution of Sec. Il B. Incorresponding to 0.01 of the Kepler period of the excited
the short-pulse scale, i.e., for pulse duratiorghorter than Rydberg states aroumi=40, or to 20 optical cycles of the
the Kepler period of the band of the excited Rydberg statetight employed. The spectral width of the pulse of this dura-
aroundn=40(t<2x/A=9.7ps), the initial state was shown tion is found to be smaller than the energy gap between the
to decay exponentially at the rai, given by Eq.(35). In  excited Rydberg states arount=40 and the ionization
this case, Ry means the initial-state lifetime and in Fig. 3 threshold. The fulfillment of the condition like that is neces-
we show the lifetime of the circularf4my,=3) state in its sary because no direct one-photon ionization of the initial
dependence on laser intensityAt low intensities, the func- state is allowed in the model. For the 100-fs pulse duration
tion ReG,(0) involved in 1R, is of the order of 1 and thus we show in Fig. 4 the effect of laser intensity on the popu-
the lifetime initially decreases as the inverse of intensity.lation of the 4 (my=3) initial state, the first Rydberg qua-
This is a purely perturbative tendency characterized by thsicontinum ofl =4, and the atomic continuum. In the scale
straight line in the log-log plot of Fig. 3. At higher intensi- of Fig. 4, it was impossible to include the appropriate curves
ties, the effect of R&,(0), i.e., of degenerate Raman cou- for the higher-angular-momentum Rydberg quasicontinua
plings in the model consists in changing this tendency, i.e.gdue to negligible population of these guasicontinua. For ex-
in increasing the lifetime with increasing intensity up to ample, the maximum population of the second quasicon-
some asymptotic intensity-independent value. Such a chand@uum was calculated to be smaller than that of the first
of the tendency means the high-intensity initial-state stabili-quasicontinuum by as many as four orders of magnitude. It is

A. The 4f(my=3) and 4d(my=2) initial-state models
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] o FIG. 6. The population of the initial staf@)=4s, the resonant
~ FIG. 5. The population of the initial sta{®)=4p(mo=1), the  state|e) = 4d(m=0), the first and second Rydberg quasicontinua of
first and second Rydberg quasicontinudf2 and 4, respectively, |=1 and 3, respectively, and the continuum versus laser intensity,

the resonant state)=4f(m=1), and the continuum versus laser for 4 100-fs laser pulse. The polarization and frequency of light are
intensity for a 100-fs laser pulse. The polarization and frequency ofs in Fig. 3.

light are as in Fig. 3.

. . o the first to the second Rydberg quasicontinuum through the
thus evident that in the case of thé(dn,=3) initial state, 4f or 4d state, respectively. We thus apply the solution of

when no resonance migration of population to higher- ; . .

. ! ) . Sec. Il C and, assuming the same pulse duration as previ-

angular-momentum Rydberg quasicontinua is possible, the . .

. A . ously (100 f9, we study the population of different states of

dynamics of the ionization is completely determined by the . v ) .

N . ! . . "the models with resonance migration versus laser intensity.
initial state and the first Rydberg quasicontinuum which i

directly coupled to this state. What we see in Fig. 4 is, that iiThe results for the g(mo=1) initial-state mode] are shown

the perturbative regime of low intensities, the initial state ismhtl):le?ﬁ |5n ' I\:A: her6eal.? J\?azs?mfogst:i::r;glzlﬁzt\zt?n Tr?gilcglr: of
the stronger depleted the higher the intensity and the popu; 9. o P

lation removed from this state is transferred mainly to the hese figures the curves relevant for the third and next qua-

first quasicontinuum, with only a little population being sentz'r%(;ﬂt'g;? ek))(:r?ulsée tr:gemg?(?nﬂ?rﬂono tﬁgﬁger:rfeictﬁeéhf mthI:
to_the continuum. After passing the critical intensity of third .uasicontin%uﬁl turned out to Eeimallerb three ozjers
2.5x 10" W/cn? this tendency is reversed. In this strongly quas °r by .

of magnitude when compared to the maximum population

nonperturbative regime, the initial state is the weaker dez . ieq by the resonantly coupled first and second quasi-
pleted the higher the intensity. At the same time, the amoungoﬂtinua y Y P |

of the population transferred to the first quasicontinuum de- Let us comment on Fig. 5 first. As seen, the curves for the

creases with increasing intensity down to zero in the high- . . - ; ) :
intensity limit. Consequently, the ionization stabilizes at theInltlal state 4(mo=1), the first Rydberg quasicontinuum of

level of 0.06 probability when intensity passes the threshol&zz’ and the continuum look quahtanyely the same as the
value of about 15 Wicm?. At this threshold intensity, corresponding curves for the model with nonresonance mi-

some amount of population is still kept in the first quasicon—gr"’.Itlon (compar.e W'th Fig. 4 However, there are tW(.) new:
tinuum, but for intensities well above this threshold the Sup_pomts. One point is that now the se<_:ond_ quasicontinuum is
: éaopulated as well, mainly at intermediate intensities, with the
maximum population being approximately ten times smaller
an that of the first quasicontinuum. The other point is that

e 4f(m=1) state, being the resonant intermediary in the

survival. Obviously, the level to which the ionization is sup-
pressed depends on the pulse duration and we checked triE

for the longest pulse allowed by our solution of Sec. Il Bde enerate Raman transition between the first and second
(7=1, corresponding to 9.7 ps in the case stugieal high- 9 ; . . .
Rydberg quasicontinua, also gains population. The popula-

intensity ionization suppression took place, i.e., the ioniza-. :
tion was complete. tion transferred to this resonant state saturates at the level of

For the other initial stated(my=2), we found the results 0.05. As a result, the observed high-intensity suppression of

comparable even qualitatively to those shown in Figs. 3 anc'1Dnlzatlon IS now a combln_ed effect of r_naln_ly the initial-
o " tate survival and the trapping of population in the resonant
4. This is why these additional results are not presented herg. .

e) state. It makes a difference when compared to the model
with nonresonance migration. Finally, let us note that the
threshold intensity stabilizing the ionizatignow at the level
Contrary to the previously considered models, now thereof 0.09 is of the same order of magnitudéabout

is open the resonance channel of population migration frord0** W/cn?) as it was in the previously discussed models

B. The 4p(my=1) and 4s initial-state models
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with nonresonance migratiaisee Fig. 4. related model in which the population was considered to
Figure 6, valid for the 4 initial-state model, shows re- migrate from the initially prepared 28tate in hydrogen to
sults which differ markedly from those in Fig. 5. First of all, higher{ states of the same principal quantum number under
the second quasicontinuum is now populated significantly athe action of laser pulse of quite different time and intensity
intermediate intensitieup to 0.22. The next difference is parameters.
that the initial-state population versus intensity does not Since the nonresonance Raman migration of population to
show a so well-pronounced minimum and the high-intensityhigher! Rydberg states appeared to be very weak in our
initial-state survival probability is on a much lower level model, we found no evidence that it affects stabilization. In
(0.23. Also, the resonantdi state, as the intermediary in the this case, the bound-state subspace which plays the dominant
degenerate Raman coupling between the first and secomdle in the ionization process is formed by the initial state
guasicontinua, traps a significant amount of populatiorand the Rydberg states directly coupled to it. The degenerate
which at high intensities even exceeds the population surRaman redistribution of the population between the directly
vived in the initial state. Finally, the high-intensity ionization excited Rydberg states of the saieut differentn, pointed
is much less suppressdtb 0.53 only and the threshold out by Fedorov and co-workef46], is in this case important
stabilizing intensity is now higher by over an order of mag-for stabilization to appedisee alsd6,7,9,1Q). In our model
nitude (above 16* W/cn?). with no resonance migration to highkestates, we found the
initial-state survival as the main cause of the high-intensity
stabilization, with only a small effect of trapping of popula-
IV. CONCLUSIONS tion in high-Rydberg states.
) ) ) In the case when the population from the directly excited
Wg hellve.performed model analytlc_al stud|e§ of '”teﬂseRydberg states could migrate resonantly to highBsdberg
laser ionization from an isolated atomic state via a band ofiates through a state orbitally degenerate with the initial
high-Rydberg states, including the possible degenerate Rgne 3 different cause of stabilization was found. Mainly, it
man migration of population from the directly excited Ryd- \ya5 the combination of the initial-state survival with the
berg states to the Rydberg states of higher angular momegy,n5ing of population in the resonant state being the inter-
tum. Our studies suffer from the approximations of nediary in the Raman transition between Rydberg states dif-
representativen-independent Raman couplings and equakering by 2 in the orbital quantum number. A significant
spacing of high-Rydberg states. These two approximationgmount of the population was found to be trapped in the
should be removed in the first turn in future more sophisti-gsonant state at high intensities. In the case when the chan-
cated studies to make our model atom a better imitation ofg| of resonance migration of population between different-
the real hydrogen atom. We are afraid, however, that withou high-Rydberg states was opened, a profound effect of the
these approximations an analytical solution to the problemytia|-state orbital quantum number on redistribution of
will not probably be possible. population by laser pulse, stabilizing intensities, and the
The results obtained within our models suggest that afeye| of stabilization was found.
effective migration of population from lower- to higher-  pqr 5 100-fs pulse assumed by us, the threshold intensities
angular-momentum Rydberg statesnsf 1 due to degener-  siapilizing our model atom against ionization via high-
ate Raman coupling is likely to occur only if the Raman Rydberg states were found to be at the level of
process is resonant. Whether it is resonant or not depends Q@3 \n/cn? at the optimum choice of the initial state. This
the choice of the initial state. We believe that Fhe populationyeshold intensity is of the same order as that observed ex-
transferred resonantly to a band of h'gher'angmar'perimentally by de Boeet al. [2] for a quite different pro-

momentum Rydberg states could be detected in an experiass namely, the high-frequency stabilization of the circular
ment consisting in measuring the photoelectron angular dlssg state in neon.

tributions versus laser intensity. At the intensity ensuring

efficient migration, the spherical harmonic of the angular-
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