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Numerical studies of the dynamics of multiphoton processes with arbitrary field polarization:
Methodological considerations
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We describe an approach of spectral type for numerically integrating the time-dependent Schro¨dinger equa-
tion associated to the interaction of a one active electron atom with an electromagnetic pulsed field whose
polarization may be arbitrary. The wave function is represented on a Coulomb-Sturmian basis. The time
propagation method is based on a parallel-iterated Runge-Kutta method of predictor-corrector type. This
method is in fact fully implicit and of very high order, ensuring a high stability of the time propagation.
Moreover, it has the following advantages: it provides a scheme for an adaptive time step and it is particularly
well suited to parallel computing. We discuss the performance of the present approach and compare it to
already existing ones. In the case of linearly polarized fields, most of our results are in good agreement with
those obtained with other approaches. In the case of circularly polarized fields, we compare our results with
those obtained by, so far, the only existing method which is based on the single state Floquet approximation.
Finally, and for the sake of illustration, we treat the case of the interaction of atomic hydrogen with a strong
pulsed electromagnetic field whose polarization depends on time.@S1050-2947~97!02902-8#

PACS number~s!: 32.80.Rm, 42.65.Ky
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I. INTRODUCTION

The role of numerical simulations is now becoming i
creasingly important in the study of the dynamics of a bro
spectrum of complex physical processes@1#. Multiphoton
processes resulting from the interaction of an atom wit
pulsed electromagnetic field are typical examples@2#. In-
deed, given the short time scales over which these phen
ena can now be observed, it is expected that tremend
insight may be gained by following their entire time evol
tion. Furthermore, simulations based on the direct numer
integration of the Schro¨dinger equation turned out to be e
tremely useful in predicting new effects such as, for instan
the adiabatic stabilization of a one-electron system in
strong pulsed high frequency laser field@3#.

Considerable efforts have been put into the developm
of numerical methods to solve the time-dependent Sch¨-
dinger equation associated to the interaction of a one-
even two-electron system with a strong pulsed electrom
netic field. Although it is undeniable that some of the
methods are extremely efficient, it is clear, however, that
amount of computational effort imposes serious limitatio
to their domain of applicability even in the case of a on
electron system. The interaction of a one-electron sys
with a circularly or elliptically polarized pulsed field is onl
one among various examples. The purpose of the pre
contribution is twofold. First, we show that many of th
problems related to stability, time step control, and he
accuracy and speed of the time propagation procedure
in many of the already existing methods may be solved
introducing a recent advanced algorithm@4#. We then study
551050-2947/97/55~3!/2132~12!/$10.00
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for the sake of illustration the ionization of atomic hydrog
by a strong ultrashort electromagnetic pulse whose polar
tion depends on time. Besides this example, it is worth m
tioning that the present approach has been successfully
plied to the study of the interaction of a Rydberg atom w
both a linearly polarized half-cycle pulse@5# and a circularly
polarized microwave pulse@6#.

There are basically two types of methods to solve num
cally the time-dependent Schro¨dinger equation: grid@7# and
spectral methods@8#. Schematically, grid methods consist
time propagating the total wave function defined in terms
its finite difference representation on a spatial grid. Usua
the time propagation is carried out by means of a sec
order implicit scheme which allows the time propagator to
expressed in terms of tridiagonal matrices@9#. In that case,
the calculations are greatly simplified and the computatio
effort is linear in the total number of grid points~given in the
case of a linear polarized field by the product of the num
of angular momentum values and the number of radial g
points!. The final state distribution for the electron bo
within the bound state manifold and in the continuum
easily obtained from the knowledge of the wave function
the end of the interaction with the pulse. This type of meth
revealed itself very efficient and provided many results@10#
@concerning the ionization yield, the electron abov
threshold ionization~ATI ! spectra, the harmonics spectr
etc.# in the case of the interaction of a linearly polarized fie
with a one-electron system initially in its ground state or
low excited state. According to the previous discussion, i
clear, however, that if the initial state is a high lying state
if the field is circularly or elliptically polarized, the size o
2132 © 1997 The American Physical Society
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the grid as well as the number of grid points is expected
increase dramatically, making the problem very difficult.

Spectral type methods consist in expanding the total w
function in a basis of functions which, usually, a
L2-integrable for the radial coordinates and spherical ha
monics for the angular coordinates. The total wave funct
is then propagated in time by means of either an explici
implicit scheme@11#. Here, we stress that by contrast to wh
is usually written in the literature, the computational effort
not necessarily proportional to the third power of the num
of basis functions which if it turned out to be the case, wo
lead to unmanageably large calculations. In fact, we show
this contribution that with a proper choice of the basis
L2-integrablefunctions and of the time integration schem
the computational effort is drastically reduced and scale
the first power of the total number of basis functions whic
in the same time, can be significantly decreased when c
plex scaling methods are used.

The paper is organized as follows: we first start by f
mulating the problem with some emphasis on the basis u
to expand the full wave function of the system. Then,
discuss and show how to optimize the choice of a particu
Sturmian basis. The fourth section is devoted to the ti
propagation method. In particular, we show why this meth
is appropriate for parallel computing and why it provides
very good scheme for an adaptative time step. The calc
tion of various observables is described in the next sect
We then compare some of our results with those obtained
other existing methods for both linearly and circularly pola
ized fields. Finally, for the sake of illustration, we tre
briefly the problem of the interaction of atomic hydrog
with a strong pulsed electromagnetic field whose polariza
depends on time.

II. FORMULATION AND PRELIMINARY REMARKS

The time evolution of the wave functionC(rW,t) describ-
ing a hydrogenic system interacting with a pulsed elec
magnetic field is given by the Schro¨dinger equation which
reads~unless stated, we use atomic units and the Gaus
system for the fields!

i
]

]t
C~rW,t !5H~rW,t !C~rW,t !, ~1!

whereH is the total Hamiltonian defined as the sum ofHat
and H int , the atomic and interaction Hamiltonian, respe
tively. Within the dipole approximation~and provided that
no further approximation is made!, the interaction Hamil-
tonianH int(rW,t) may be written in two equivalent forms: e
ther in itsvelocity form denoted byH int

V (rW,t) or in its length

form denoted byH int
L (rW,t):

H int
V ~rW,t !5

1

c
AW ~ t !•pW , ~2!

H int
L ~rW,t !5EW ~ t !•rW, ~3!

c is the speed of light. The electric fieldEW (t) is related to the
vector potential AW (t) by the usual relation EW (t)5
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2(1/c)(d/dt)AW (t). Note that sinceAW (t) does not depend on
rW, we do not take into account in Eq.~2! the term propor-
tional toA2 which can be eliminated from the total Hami
tonian by a phase transformation of the wave funct
C(rW,t). Here, we assume that the electric field lies in t
x-y plane. The corresponding vector potential is defined

AW ~ t !5A1f 1~ t !cos~v1t1f1!eW x1A2f 2~ t !sin~v2t1f2!eW y ,
~4!

whereA1, f 1, v1, andf1 are, respectively, the amplitude
the pulse envelope, the frequency, and the initial phase of
x component of the vector potential; the same quantities w
index 2 correspond to they component. Whenv15v2, the
polarization of the field may be linear, circular, or elliptic
depending on the value ofA1, A2, f1, and f2. Time-
dependent polarization may be obtained for instance, w
v1 is close but different fromv2.

In order to solve Eq.~1!, we now expand the total wav
function on a discrete set ofL2-integrablefunctionsFn,l(r )
for the radial coordinater and spherical harmonicsYl ,m( r̂ )

for the angular coordinaterŴ:

C~rW,t !5 (
n,l ,m

an,l ,m~ t !Fn,l~r !Yl ,m~rŴ !. ~5!

This transforms Eq.~1! into a set of coupled ordinary differ
ential equations for the coefficientsan,l ,m(t). The choice of
the basis ofL2-integrablefunctionsFn,l(r ) is crucial in or-
der to keep the computational effort within reasonable lim
The system of equations should be sparse and banded,
the smallest possible bandwidth. Various types
L2-integrable functions have been used so far: essentia
spline @12#, and Sturmian functions@13#. In the case of
atomic hydrogen, the Sturmian functions are the most app
priate ones to meet the above requirement since the m
associated to the atomic Hamiltonian is tridiagonal@14#
while each block of the block matrix associated to the int
action Hamiltonian is either bidiagonal forH int

V or pentadi-
agonal forH int

L . Furthermore, all matrix elements may b
written in a very simple compact analytical form~see the
Appendix!. The reason for these properties of the Sturm
functions comes essentially from the fact that these functi
denoted bySn,l

k (r ) are actually eigenfunctions of the radi
hydrogenicSturm-Liouville eigenvalue problem@15#:

S 2
1

2

d2

dr2
1
l ~ l11!

2r 2
2

a

r
1

k2

2 DSn,lk ~r !50, ~6!

with the boundary conditionsSn,l
k (0)5Sn,l

k (`)50. In the
above equation, thecoupling constanta is the eigenvalue
equal tokn and the energy (2k2/2) is fixed and negative
ensuring the discreteness of the eigenvalue spectrum.n is a
positive integer always larger thanl ~the angular momentum
quantum number! and related to the number of nodes
Sn,l

k (r ). As for hydrogenic wave functions, the Sturmia
functions may be expressed in terms of confluent hyperg
metric functions as follows:

Sn,l
k ~r !5Nn,l

k r ~ l11!e2kr
1F1~2n1 l11;2l11;2kr !, ~7!
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whereNn,l
k is a normalization factor. Note that in order

ensure the right behavior ofC(rW,t) at the origin, we must
write Fn,l(r )5Sn,l

k (r )/r in Eq. ~5!. Before discussing the
Sturmian functions any further, it is worth mentioning th
banded matrices are also obtained with spline functions,
number of bands depending on the degree of the spline f
tion. In general, one has to use rather high order spline fu
tions to obtain a reasonable accuracy so that the matr
associated to the full Hamiltonian operator are less sp
than in the case of Sturmian functions. However, the sp
functions offer the advantage of leading to sparse matr
for any type of potential~not necessarily Coulombic as in th
case of Sturmian functions!. Moreover, by contrast to the
Sturmian functions, the spline functions are not necessa
‘‘localized’’ around the origin@16#; this may be of interest in
calculating electron energy spectra@17#.

If the Sturmian basis were infinite, the choice of the wa
numberk would be irrelevant. In practice, the size of th
basis is finite and it is therefore important to choose the va
of k in order to make the basis the most adapted one to
physical situation in hand. For instance, we see from Eq.~6!
that in the case where high excited states play an impor
role in the physical process, the value ofk should be rather
small since solutions of Eq.~6! for smallk and hence smal
energies represent states which have the same behavi
Rydberg hydrogenic states. We discuss in detail how to
timize bothk and the size of the basis in the next section

Although k has been assumed real so far, nothing p
vents us from makingk complex in Eq.~7!. This has in fact
important consequences@18#. It allows the basis function to
have an asymptotic behavior which is suited to the phys
boundary conditions of the problem@19#. Indeed, by choos-
ing the wave numberk in the lower right quadrant of the
complex plane, the factore2kr has the character of bot
closed channel and outgoing wave open channel functio
k were chosen real, the basis would have only the chara
of closed channels. As a result, the norm of the total w
function would be conserved in time. In other words, b
cause of theL2 integrability of the basis functions, such
basis would describe the system over a restricted regio
space, say, a sphere of some characteristic radius@20#. Hence
any probability density flux reaching the surface of t
sphere over the time interval of interest would reflect fro
the surface and return to the interior of the sphere. Suc
spurious reflection, which is a common problem for all sp
tral methods~as well as grid methods!, can of course be
avoided by enlarging the basis~or the grid size!. However,
we can instead use complex basis functions which ef
tively make the surface of the sphere an absorbing wall.
deed, on a complex basis, the norm of the wave functio
not conserved but instead represents at long asymptotic t
the probability for the system to stay bound@21#. In practice,
this means that the size of the Sturmian basis does not
to be excessively large since it is supposed to describe p
erly the system inside the sphere only. Typical values
Ns , the number of basis functions needed per angular
mentum, are given in Sec. VII where we discuss an exam

A serious numerical problem common to all spect
methods is the so-calledstiffnessof the system of equation
satisfied by the coefficientan,l ,m . In practice, it means that i
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we use a standard explicit method to time propagate the
lution, one has to decrease the time step if the numbe
equations~in other words, the number of basis functions! is
increased. This of course represents a severe limitation o
explicit time propagation methods. Physically, the origin
the stiff character of the system of equations satisfied by
coefficientsan,l ,m may be explained as follows: let us su
pose that having expanded the total wave functionC(rW,t) in
the Sturmian basis we switch to the atomic basis in which
matrix associated to the atomic HamiltonianHat is diagonal.
Since the size of the discrete basis is finite, the spectrum
this matrix contains a finite number of negative energy
genvalues and a finite number of positive ones which may
very high. The value of the highest ones increases when b
k and Ns , the number of Sturmian functions per angul
momentuml , increase. Now, in the atomic basis, the to
wave functionC(rW,t) is written as follows:

C~rW,t !5(
l ,m

H(
n

bn,l ,m~ t !Rn,l~r !

1(
i
bEi l ,m~ t !REi l JYl ,m~rŴ !, ~8!

whereRn,l and REi ,l
are the radial bound and continuu

hydrogenic eigenstate wave functions taken into acco
The amplitudes bEi ,l ,m(t) may be written as

bEi ,l ,m(t)5b̃Ei ,l ,m(t)e
2 iEi t and similarly for the bound state

amplitudesbn,l ,m(t). Note that unless the coupling with th
external field is very strong,b̃Ei ,l ,m varies smoothly with
time. Therefore we expect that the time step should be
least smaller than 1/Emax whereEmax is the highest energy
eigenvalue. On the other hand, in most of the physical s
ations, the very high energy eigenvalues do not play any
and it is perfectly safe to drop the corresponding amplitu
from expansion~8!. One has, however, to stress that if o
works in the atomic basis, the matrix associated to the in
action Hamiltonian is full, causing storage problems and
creasing significantly the computational effort. Since a giv
Sturmian function may be expressed as a linear superpos
of atomic wave functions, it is clear that each of the expa
sion coefficientsan,l ,m(t) will contain many rapidly oscillat-
ing components which by contrast to the atomic basis can
be eliminated. The only way to solve this problem is to u
an implicit time propagation scheme. This problem is trea
in detail in Sec. IV. Meanwhile, let us examine in the ne
section some properties of the Sturmian basis and how
possible to choosek and Ns to make the basis the mos
adapted one to the physical situation in hand.

III. OPTIMAL CHOICE OF A STURMIAN BASIS

As we saw before, the expansion~5! leads to a discretized
spectrum of the atomic Hamiltonian. For each angular m
mentuml , this spectrum containsNs

b negative eigenenergie
andNs

c positive ones. To each of these eigenenergies co
sponds an eigenstate wave function which may be written
a linear superposition of a finite number of Sturmian fun
tions. Among theNs

b bound eigenstate wave functions,Ñs
b
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coincide within the accuracy of the computer, with the exa
hydrogenic eigenstate wave functions. Similarly, for ea
positive eigenenergy, the associated eigenstate wave func
reproduces, within a normalization constant, the correspo
ing radial Coulomb function. In Fig. 1 we compare the radi
Coulomb function for an energyE50.0497 a.u. with the
corresponding superposition of Sturmian functions; in th
case, the angular momentum quantum numberl50, thek
parameter is equal to 0.5 a.u., andNs5500. We clearly see
that up to a radial distance of about 1000 a.u., both the Co
lomb function and its corresponding superposition of Stu
mian functions differ only by a normalization factor. Beyon
this radial distance of 1000 a.u., the superposition of Stu
mian functions goes to zero rapidly due to the
L2-integrablecharacter while the Coulomb function extend
to the infinity. The question we address in this section is t
following: what are, for a given physical situation, the value
of k and Ns leading to an appropriate distribution of the
positive eigenvalues required for the calculation of the ele
tron energy spectrum while keepingÑs

b sufficiently large.
Before examining this question in detail, let us reca

FIG. 1. Square of the radial Coulomb wave function of angul
quantum numberl50, for an energy of 0.0497 a.u. as a function o
the radial distance in a.u. This function is compared to the cor
sponding superposition of Sturmian functions ofk parameter equal
to 0.5 a.u., the number of Sturmian functionsNs being equal to 500;
~a! large scale behavior, and~b! behavior around the origin. Note
that in ~a!, the curve associated to the radial Coulomb function
truncated where the corresponding superposition of Sturmian fu
tions vanishes.
t
h
ion
d-
l
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-
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e

-

l

some of the basic properties of the Sturmian functions@22#.
The Sturmian functions which are solution of the eigenva
problem~6! satisfy the orthogonality relation:

^Sn,l
k uSn8,l

k &[E
0

`

Sn,l
k ~r !

1

r
Sn8,l

k
~r !dr50, nÞn8. ~9!

In the following, we assume that these functions are norm
ized in such a way that the diagonal elements of the ove
matrixS are equal to unity. This matrix is in fact symmetr
and positive definite. In the Sturmian basis, and with
above convention, the matrixH at associated to the atomi
HamiltonianHat may be expressed in terms of the overl
matrix S as follows:

Hat5k2I2kN2
k2

2
S, ~10!

whereN is a diagonal matrix whose elements are 1/n and I
the unit matrix.

In the Sturmian basis, the eigenvalues of the atom
Hamiltonian are obtained by solving the following gener
ized eigenvalue problem:

~Hat2ES!F50, ~11!

whereE is the eigenvalue andF the eigenvector. This prob
lem may be easily solved by using Eq.~10!. Let us mention,
however, that if we are only interested in the distribution
the eigenvalues, i.e., in the number of eigenvalues wh
value belongs to a given interval, there is no need to so
the above system. Instead, we can use Dean’s algor
which provides the number of eigenvalues less than a gi
number in the case of a symmetric matrix@23#. Let us now
examine how the number of negative eigenvalues varies w
k andNs . The results are presented forl50 in Fig. 2 where
we give the number of negative eigenvalues as a function
k for variousNs . As we see, there are striking regularitie
that we can exploit to extract an empirical formula. We fi
that the number of negative eigenvalues is given by

Ns
b5maxSNs ;1.22ANs

k D . ~12!

Note that ifk is complex, it should be replaced by its re
part in the above formula. This formula has been checked
a wide range of values ofk ~from 0.01 to 1 in a.u.! andNs
~from 50 to 500!. In all cases, the error between the exa
number of negative eigenvalues and the estimated re
given by Eq. ~12! is extremely small. One might wonde
whether or not this result could be derived analytically.
fact one knows that there is a relation between the positio
the eigenvaluesE and the location of the zeros of Pollac
zek’s polynomials@14#. However, as far as we know, th
existence of an analytical expression for the calculation
the zeros of Pollaczek’ polynomials is still an open quest
@24#. On the other hand, it turns out that in all cases, 75%
the negative eigenvalues coincide with the exact hydroge
eigenvalues within less than 1%. Finally, let us mention th
although not reproduced here, a similar study may be car
out for lÞ0.
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Let us now examine the distribution of the positive eige
values. In Fig. 3 we show the position of the positive eige
values for variousk parameters; the angular quantum nu
ber l50 and Ns5250. First, we see that the number
eigenenergies increases withk and secondly, it is clear tha
the distribution shifts towards higher energies whenk in-
creases. It is convenient to introduce the following quan

FIG. 2. Percentage of negative eigenenergies of atomic hy
gen resulting from the diagonalization of the corresponding Ham
tonian matrix calculated in a basis of Sturmian functions. This p
centage is plotted as a function of the Sturmiank parameter for two
different values ofNs , the number of Sturmian functions used
the basis. We assume that the angular quantum numberl is equal to
0; similar results are obtained for different values ofl .

FIG. 3. Positive eigenenergies in a.u. of atomic hydrogen res
ing from the diagonalization of the corresponding Hamiltonian m
trix calculated in a basis of Sturmian functions. These eigenener
are plotted for various values of the Sturmiank parameter. As in
the previous figure, the angular quantum numberl is assumed to be
0. Ns , the total number of Sturmian functions, is equal to 250.
-
-
-

y

denoted byD which may be interpreted as a measure of
density of positive eigenenergies:

D5
1

ln~Ei11 /Ei !
. ~13!

This quantityD as a function of the eigenenergiesEi is
plotted in Fig. 4 for various values ofk and forNs5250. As
in Fig. 3, we clearly see that the maximum of this dens
shifts towards larger energies ask increases. Moreover, Fig
5 indicates that the energy corresponding to the maximum
this density is a linear function ofk in a log-log plot. The
reason for this striking behavior is still an open question.

o-
l-
r-

lt-
-
es

FIG. 4. Density of positive eigenenergies for various values
the Sturmiank parameter for the same case as in Fig. 3.

FIG. 5. Position of the maximum density in a.u. of positiv
eigenenergies as a function of the Sturmiank parameter for the
same case as in Figs. 3 and 4.
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FIG. 6. Typical behavior of the stability functionR(Z) in the Z-complex plane. The hatched zones correspond touR(Z)u,1. Outside
these zones,uR(Z)u.1 and at the border,uR(Z)u50. This stability function is associated to a given Runge-Kutta method. Three case
considered:~a! an explicit method,~b! an implicit method of Gauss type, and~c! an implicit method of non-Gauss type.
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IV. TIME PROPAGATION METHOD

In the Sturmian basis, the Schro¨dinger equation we have
to solve may be written as follows:

i
d

dt
SC~ t !5H~ t !C~ t !, ~14!

whereC is a vector which contains the coefficientsan,l ,m ;
H is a block tridiagonal matrix associated to the total Ham
tonian. The diagonal blocks are tridiagonal and correspon
the atomic Hamiltonian. The off-diagonal blocks correspo
to the interaction Hamiltonian: they are either bidiagonal
the case ofH int

V (rW,t) or pentadiagonal in the case o

H int
L (rW,t). Details about the expression of the correspond

matrix elements may be found in the Appendix. As we me
tioned in Sec. II, the above system isstiff, requiring an im-
plicit scheme to time propagate the solution. The proced
which is briefly described here has been developed by
der Houwen and Sommeijer@25#; it is of predictor-corrector
type and is based on implicit Runge-Kutta methods.

The general Runge-Kutta method to propagate the s
tion of Eq. ~1! over a time steph from, say,tn until tn11 is
given by

C~ tn11!5C~ tn!2 ih(
i51

s

biS
21H~ t i !C~ t i !, ~15!

C~ t i !5C~ tn!2 ih(
j51

s

ai jS
21H~ t j !C~ t j !, i51, . . . ,s.

~16!

bi and ai j are the coefficients defining the Runge-Ku
method;s, the number of mesh pointst i , is called the num-
ber of stages.C(t i) is the state vector at timet i . A Runge-
Kutta method is said to be explicit ifai j50 for j> i . It is
said to be diagonally implicit ifai j50 for j. i and fully
implicit in all other cases. If the method is explicit, th
C(t i) are not coupled in Eq.~16! and can be obtained b
simple matrix vector multiplications. In the case of implic
methods, on the other hand, the vectorC at time t i is ob-
tained by solving large systems of linear equations. For
agonally implicit methods, one has to solves systems of
-
to
d

g
-

re
n

u-

i-

dimensionN whereN is the total number of Sturmian func
tions, while for a fully implicit method only one system ha
to be solved, but of dimensionsN.

Before discussing our specific choice of the Runge-Ku
methods for the predictor and the corrector, it is interest
to briefly analyze the behavior of the so-called stability fun
tion associated to a given Runge-Kutta method. For the s
of illustration, we consider the following standard test pro
lem:

dY

dt
5ly, Re~l!<0. ~17!

Equation~14! reduces to the above equation if we assu
the vector potentialAW (t) constant and if the total Hamil
tonian is diagonal. Under these conditions, one can show
@26#

Y~ tn11!5R~Z!Y~ tn!, ~18!

whereZ is defined as the product ofl and the time step
h5tn112tn . R(Z), called the stability function, is define
as follows:

R~Z!5
det@12ZA1ZebT#

det@12ZA#
. ~19!

A is a matrix whose elements are theai , j and b a vector
whose components are thebi coefficients@see Eqs.~15! and
~16!#, 1 is the unit matrix, ande5(1,1,1, . . . ,1)T. As a result,
we see that the norm of vectorY is conserved when
uR(Z)u51 ~in this case, we assume that the basis functio
are real!. Furthermore,

uR~Z!u.1→ lim
n→`

Y~ tn!5`, ~20!

uR~Z!u,1→ lim
n→`

Y~ tn!50. ~21!

Figure 6 shows the typical behavior ofR(Z) in the
Z-complex plane for three cases:~a! an explicit method and
~b!, ~c!, two implicit methods. The hatched zones are ch
acterized byuR(Z)u,1, outside the this zone,uR(Z)u.1 and
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at the border,uR(Z)u51. The full dots give the position o
hl when the basis is real. Note that because of factori in Eq.
~14!, l is purely imaginary. The empty dots give the positi
of hl when the basis is complex. In Fig. 6~a!, we examine
the case of an explicit scheme; according to the previ
discussion and given the position ofhl, it is clear that the
only way to conserve the norm when the basis is real is
impose a time steph going to zero. In practice, the time ste
is finite. Therefore, since there are always values ofhl on
the positive imaginary axis, the solution will diverge after
while. In Fig. 6~b!, we consider the case of an implic
Runge-Kutta method of Gauss type~characterized by the fac
that the order of the method is twice the number of me
points!. A typical example is the widely used Cranc
Nicholson algorithm@27#. If the basis is real, we see that th
norm of vectorY is always conserved. If the basis is com
plex, the norm decreases as expected. However, one h
be very careful because, as we experienced, the time sth
has to be very small to ensure a reasonable accuracy i
order of the method is low as for the Cranck-Nichols
method. Finally, in Fig. 6~c!, we analyze the case of a hig
order implicit Runge-Kutta method~of non-Gauss type!. We
see that the norm is not necessarily conserved if the bas
real, but on the other hand, it is clear that the time step d
not need to be so small to ensure a reasonable accurac

In the present case, it is sufficient to use a two-point
agonally implicit method for the predictor@28#. For the cor-
rector, we use a four-point fully implicit method of Rung
Kutta type which is of order 7. In order to avoid the high co
of solving a large system of dimension 4N, we used a
method developed by van der Houwen and Sommeijer
which exploits parallelism across the method@25#. It consists
in solving the large system of algebraic equations iterative
at each iteration, one has to solve four systems of dimen
N which, being independent, may be solved in parallel. N
that this procedure does not work when the Runge-Ku
method is of Gauss type. The systems are solved by m
of the biconjugate gradient algorithm@29#. In the present
case, this algorithm, which is iterative, converges quic
after fewer than ten iterations regardless of the size of
basis. This, with the fact that the matrix associated to the
Hamiltonian is sparse, explains why the number of ope
tions grows only linearly with the size of the basis.

Besides the parallelism across the method, this t
propagation algorithm provides a scheme for a step size
trol based on the speed of convergencevc of the iterative
procedure: after having propagated with a given time s
from sayt i to t i11, we calculate the next step size by mul
plying the previous one by an appropriate factor which
pends onvc . This procedure has been tested in many diff
ent physical situations, and turned out to be crucial in or
to optimize the execution time, while keeping the accurac
a reasonable level. It has to be stressed that the proble
the choice of the time step is difficult; indeed, in many cas
it is impossible to define its magnitudea priori. If the sys-
tem, for instance, emits high harmonics of the driving field
the beginning of the interaction, then the step size has to
at least smaller than the period of the highest order harm
though the field intensity is not necessarily very high@30#.
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V. OBSERVABLES

After the time propagation, the solutionC(rW,t) of Eq. ~1!
has to be projected on the atomic basis. We proceed as
lows: sinceS, the overlap matrix, is symmetric and positiv
definite, we can perform a Choleski decomposition ofS:

S5LL T, ~22!

whereL is a lower triangular matrix with only two nonzer
bands, the diagonal and the first subdiagonal. In these
ditions the generalized eigenvalue problem~11! may be re-
written in the following way:

FLTS 12
1

kNs
D 21

L G~LTj!5l~LTj!. ~23!

The matrix between large parentheses on the left hand sid
the equation is tridiagonal and symmetric.l, the eigenvalue,
is related to the atomic eigenenergyE by

l5
1

E/k21 1
2

. ~24!

Having found the eigenvectorsLTj of Eq. ~23!, it is easy to
show thatCat, the state vector in the atomic basis, may
obtained fromCst, the state vector in the Sturmian basis,
using the following relation:

Cat5YTLTCst, ~25!

whereY is the matrix whose columns are the eigenvect
LTj. This simple procedure is valid whether or not the ba
is real or complex. The coefficients of the state vectorCat
are the amplitudesbn,l ,m for the bound states andbEi ,l ,m for

continuum states as defined in Eq.~8!. ubn,l ,mu2 represents
the probability for the system to be in then,l ,m state. If the
basis is complex, this result is still valid and one minus t
sum of all these probabilities is of course the ionizati
yield. If the basis is real,ubEi ,l ,mu2 represents the probability
for the system to be in a continuum state of angular mom
tum l , azimuthal quantum numberm, and energyE between
Ei and Ei11. As a result, the electron energy spectru
P(E) which represents a probability density may be calc
lated as follows:

P~E!5
ubi11,l ,mu2

Ei112Ei
, Ei,E<Ei11 . ~26!

It is important to note that knowing the state vect
C(t) in any basis~Sturmian or atomic!, we are able to com-
pute the expection value of any physical observable. Thi
true whether or not the basis is real. However, if it is co
plex, one has to use analytical continuation techniques
the Pade´ approximants to get convergence when the con
butions of all components ofC(t) and especially the con
tinuum ones, are summed up. This remark is of course
cial for the calculation of electron energy spectra with
complex basis@21#. By contrast, the use of a complex bas
to calculate the acceleration of the dipole does not lead
particular problems since in this case the dominant contri
tion comes in general from lower lying bound states.
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VI. COMPARISON WITH OTHER CALCULATIONS

In the case of linear polarization, where comparison
possible, our results agree with those obtained by mean
grid methods as developed by Kulander@31#. In a recent
paper about adiabatic stabilization of atomic hydrogen
posed to a strong field, Kulanderet al. @3# mentioned that
stabilization cannot be achieved when the electric field
sharply turned on~turn-on time less than five optical per
ods!. This seems, however, to disagree with our resu
shown in Fig. 7 where the ionization yield is shown as
function of the peak electric field for two different photo
energies~1 a.u. and 1.5 a.u.!, the time profile of the electric
field being a step function. Since the amount of populat
trapped in excited states is rather significant as expe
~about 22% of the total population in the case wherev51
a.u.!, we expect that, in the presence of a strong high
quency electric field, those excited states should easily st
lize.

In the case of circular polarization, no other tim
dependent calculations exist as far as we know. Howeve
is interesting to compare our results with independent F
quet type calculations performed by Zakrzewski and Dela
@32#. These results are presented in Fig. 8 where ioniza
yields are shown as a function of the peak electric field
atomic units for the following case: atomic hydrogen is in
tially in then52, l51 state, the azimuthal quantum numb
m being either21, 0 or11; the atom is exposed to a sinu
square pulse of duration equal to 20 optical cycles, the
quency of the field being 0.25 a.u. The dashed line co
sponds to the Floquet results and the markers to ours.
agreement between both results is impressive. Howeve
the case ofm511, we observe some discrepancy when
electric field is larger than 0.4 a.u.~which is about six times
the electric field on then52 orbit!. This discrepancy is ex
plained as follows: Zakrzewski and Delande calculations

FIG. 7. Ionization probability as a function of the peak elect
field in a.u. resulting from the interaction of atomic hydrogen w
a sharply turned on and off~step function! linearly polarized elec-
tromagnetic pulse of duration equal to ten optical cycles. Atom
hydrogen is assumed initially in its ground state and we cons
two photon energiesEp : 1 a.u. and 1.5 a.u.
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FIG. 8. Ionization probability as a function of the peak elect
field in a.u. resulting from the interaction of atomic hydrogen w
a sine square circularly polarized (s1) electromagnetic pulse o
duration equal to 20 optical cycles. Atomic hydrogen is initially
an n52, l51 and ~a! m521, ~b! m50, and ~c! m511. The
photon energy is 0.25 a.u. The dashed lines correspond to th
sults obtained by Zakrzewski and Delande by means of the si
state Floquet approximation. The markers correspond to our res
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FIG. 9. Electric field polarization at som
characteristic times in a.u. This electric field
obtained by superposing two perpendicular fiel
oscillating at two slightly different frequencies
v150.118 andv250.110 in a.u.
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based on a single Floquet state approximation while
showed that in the present case@33#, many states, in this
intensity regime, are populated leading to the strong sta
zation effect observed in Fig. 8~c!.

VII. ILLUSTRATION

In this section, we consider the interaction of atomic h
drogen initially in its ground state with a pulsed electroma
netic field whose polarization depends on time. A tim
dependent polarization may be achieved by superposing
perpendicular fields which oscillate at slightly different fr
quenciesv1 andv2. The vector potential associated to su
a field reads

AW ~ t !5A0f ~ t !@cos~v1t !eW x1sin~v2t !eW y#, ~27!

whereA0 is the amplitude of the vector potential,eW x and
eW y the unit vectors along thex andy axis, respectively, and
f (t) a slowly varying time envelope. In the present case, i
a sine square function centered at timet50 and starting at
aboutt52500 a.u. In all our calculations, we used the v
locity form for the interaction Hamiltonian@34#. In Fig. 9,
we show the electric field polarization at some characteri
times: att56400 a.u., the polarization is circular (s2 po-
larization!, at t52200 a.u., the polarization is linear wit
the field oscillation along they52x axis, att50, polariza-
tion becomes circular again with the electric field rotati
counterclockwise (s1 polarization! and finally, at t5200
a.u., the field is linearly polarized and oscillates along
y5x axis; at other times, the polarization is elliptical. Th
calculations have been performed with a complex basis u
82 000 atomic states (40 angular momenta are included
100 radial Sturmian functions for eachl andm value!. It is
interesting to analyze the time step during the propagatio
the solution. The results are presented in Fig. 10. At
beginning of the interaction, the time step is small beca
we impose the relative error on each component of the s
vectorC to be of the order of 1028. We also observe that th
time step decreases systematically when the polarizatio
circular. This is clear since while keeping the relative er
of each component at the same level, the number
( l ,m,n) states which are effectively accessed is much lar
than in the case of linear polarization. When the field
linearly polarized, we know that high order harmonics a
emitted@35#. Although the time step increases in that cas
e
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is kept more than one order of magnitude smaller than
optical period associated to the harmonic of the highest
der.

In Fig. 11, we analyze as a function of time th
‘‘1 s-state population,’’ namely, the projection of the fu
time-dependent wave function onto the bare 1s state of
atomic hydrogen. Although the concept of stationary st
loses its meaning during the time the system is interac
with the field, this quantity nevertheless gives information
the localization of the wave packet close to the nucleus
given time. We see that this projection onto the bare 1s state
exhibits fast oscillations at the average frequen
v̄5(v11v2)/2 when the field is linearly polarized. In thi
case, the wave packet oscillates back and forth through
nucleus. The ‘‘squeeze’’ of the curve aroundt50 and
6400 a.u. arises because at these times, the polarizatio
the field is circular, preventing the oscillation of the wa
packet through the nucleus.

VIII. CONCLUSIONS

We have described an approach of spectral type for
merically integrating the time-dependent Schro¨dinger equa-

FIG. 10. Time step adjusted by the time propagation algorit
as a function of time in a.u. for the following case: atomic hydrog
initially in its ground state is exposed to a pulsed field whose
larization changes in time as described in Fig. 8. For both fi
components, the pulse envelope is flat with sine square two op
cycle turn on and off, the full duration being equal to 20 optic
cycles. For both field components, the corresponding peak inten
is 1014 W/cm2.
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tion associated to the interaction of a one active elect
atom with an electromagnetic pulsed field whose polariza
may be arbitrary. The wave function, represented on
Coulomb-Sturmian basis, is propagated by means o
parallel-iterated Runge-Kutta method. This method is in f
fully implicit and of very high order, ensuring a high stabilit
of the time propagation. Moreover, it has the following a
vantages: it provides a scheme for an adaptive time step
it is particularly well suited to parallel computing. Th
method has been successfully used in many cases and w
comparison was possible, our results are in good agreem
with other calculations. So far, this method has turned ou
be extremely efficient and enabled us to solve the tim
dependent Schro¨dinger equation for the interaction of atom
hydrogen with a strong pulsed electromagnetic field of a
trary polarization. The generalization of this method to t
case of the Dirac equation for the treatment of relativis
effects in strong fields as well as to the case of the interac
of a two active electron atom with a laser pulse is prese
in progress.

ACKNOWLEDGMENTS

One of us~B.P.! is supported in Belgium by the ‘‘Fond
National de la Recherche Scientifique’’; he thanks Ro
Shakeshaft and Marcel Pont for their hospitality and
many fruitful discussions. All the computations have be
performed on the SPP2 Convex supercomputer of the U
versity of Louvain. M.G. is supported in part by the Catho
University of Louvain and by the Polish Commitee for Sc
entific Research under Grant No. 2P03B04209. The aut
are grateful to Kuba Zakrzewski and Dominique Delande
providing them with numerical data. They thank P. J. van
Houwen and B. P. Sommeijer for many valuable discussi
and for having provided them with a research code wh
was of great help for the development of the present meth
Finally, very helpful discussions with A. Magnus and
Meinguet are gratefully acknowledged.

FIG. 11. Projection of the full time-dependent wave function
the bare 1s state of atomic hydrogen as a function of time in a.u.
the same case as described in Fig. 9.
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APPENDIX: MATRIX ELEMENTS
OF THE INTERACTION HAMILTONIAN

In this appendix, we give a list of the nonzero matr
elementŝ Sn,l

k uH int
V,L(rW,t)uSn8,l 8

k &.

1. Velocity form

The interaction Hamiltonian in the velocity form is give
by the following expression:

H int
V ~rW,t !5

1

c
AW ~ t !•pW . ~A1!

For a field linearly polarized along thez axis, the vector
potential can be written as

AW ~ t !5Az~ t !eW z . ~A2!

The corresponding matrix elements ofH int
V are related to the

overlap matrix of the Sturmian functions:

^Sn,l
k Yl ,muH int

V uSn8,l 8
k Yl 8,m8&

52 iA4p

3
k~n2n8!^Sl ,n

k uSl 8,n8
k &

1

c
Az~ t !

3^ l ,muY1,0u l 8,m8&, ~A3!

where^ l ,muY1,0u l 8,m8& is the angular part of the matrix el
ement.

The interaction couples states whose angular mome
differ by one,u l2 l 8u51, but it does not mix states of differ
ent azimuthal quantum numbersm. The size of the Hamil-
tonian matrices depends only on the number of angular
menta and number of Sturmian functions taken into acco
The diagonal blocks of the Hamiltonian,l5 l 8, have three-
banded structure but for the off-diagonal blocks (l5 l 811 or
l5 l 821) only diagonal and second lower diagonal eleme
are different from zero.

For a field of an arbitrary polarization in thex-y plane

AW ~ t !5Ax~ t !eW x1Ay~ t !eW y . ~A4!

The corresponding matrix elements ofH int
V read

^Sn,l
k Yl ,muH int

V uSn8,l 8
k Yl 8,m8&

5 iA2p

3
k~n2n8!^Sl ,n

k uSl 8,n8
k &F1c A2~ t !^ l ,muY1,1u l 8,m8&

2
1

c
A1~ t !^ l ,muY1,21u l 8,m8&G ~A5!

whereA1(t) andA2(t) are defined as

A1~ t !5Ax~ t !1 iAy~ t !, ~A6!

A2~ t !5Ax~ t !2 iAy~ t !. ~A7!

r
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The interaction couples not only states of different angu
momentum,u l2 l 8u51, but also mixes states of different az
muthal quantum numbers,um2m8u51. The off-diagonal
blocks (lÞ l 8) can be divided into subblocks correspondi
to different azimuthal quantum numbersm andm8. The off-
diagonal blocks are no longer square matrices as the num
of differentm values depends on the angular momentuml .
The size of the Hamiltonian matrices depends on the num
of Sturmian functions, on the number of angular mome
taken into account as well as on the number of involv
azimuthal quantum numbers for a given angular moment
therefore it grows quadratically withl . Below, we give a list
of matrix elements of the overlap matrix wich are needed
the construction of the Hamiltonian matrix.

Diagonal blocks:

^Sn,l
k uSn,l

k &51, ~A8!

^Sn,l
k uSn11,l

k &52
1

2
A~n1 l11!~n2 l !

n~n11!
, ~A9!

^Sn,l
k uSn21,l

k &52
1

2
A~n1 l !~n2 l21!

n~n21!
. ~A10!

Off-diagonal blocks:

^Sn,l
k uSn11,l11

k &5
1

2
A~n1 l11!~n1 l12!

n~n11!
, ~A11!

^Sn,l
k uSn,l11

k &52A~n1 l11!~n2 l21!

n2
, ~A12!

^Sn,l
k uSn21,l11

k &5
1

2
A~n2 l21!~n2 l22!

n~n21!
, ~A13!

^Sn,l
k uSn11,l21

k &5
1

2
A~n2 l !~n2 l11!

n~n11!
, ~A14!

^Sn,l
k uSn,l21

k &52A~n1 l !~n2 l !

n2
, ~A15!

^Sn,l
k uSn21,l11

k &5
1

2
A~n1 l !~n1 l21!

n~n21!
. ~A16!

2. Length form

The interaction Hamiltonian in the length form is give
by the following expression:

H int
L ~rW,t !5EW ~ t !•rW. ~A17!

For a field linearly polarized along thez axis, we have

EW ~ t !5Ez~ t !eW z . ~A18!

The corresponding matrix elements of theH int
L are
r

er

er
a
d
;

r

^Sn,l
k Yl ,muH int

L uSn8,l 8
k Yl 8,m8&5Ez~ t !A4p

3
^Sl ,n

k ur uSl 8,n8
k &

3^ l ,muY1,0uYl 8,m8&. ~A19!

For a field of an arbitrary polarization in thex-y plane

EW ~ t !5Ex~ t !eW x1Ey~ t !eW y . ~A20!

The corresponding matrix elements ofH int
L read

^Sn,l
k Yl ,muH int

L uSn8,l 8
k Yl 8,m8&

52A2p

3
^Sl ,n

k ur uSl 8,n8
k &@E2~ t !^ l ,muY1,1u l 8,m8&

2E1~ t !^ l ,muY1,21u l 8,m8&#, ~A21!

whereE1(t) andE2(t) are defined as

E1~ t !5Ex~ t !1 iEy~ t !, ~A22!

E2~ t !5Ex~ t !2 iEy~ t !. ~A23!

As it follows from the above expressions the Hamiltonian
given in terms of the matrix elements of the position opera
in the Sturmian basis. Below, we present the list of the n
vanishing elements:

^Sn,l
k ur uSn12,l11

k &

52
1

4k
A~n2 l21!~n2 l22!~n2 l23!~n1 l !

n~n22!
,

~A24!

^Sn,l
k ur uSn11,l11

k &5
1

2k
~2n2 l !A~n1 l11!~n1 l12!

n~n11!
,

~A25!

^Sn,l
k ur uSn,l11

k &52
3

2k
A~n2 l21!~n1 l11!, ~A26!

^Sn,l
k ur uSn21,l11

k &5
1

2k
~2n1 l !A~n2 l21!~n2 l22!

n~n21!
,

~A27!

^Sn,l
k ur uSn22,l11

k &

52
1

4k
A~n2 l21!~n2 l22!~n2 l23!~n1 l !

n~n22!
,

~A28!

^Sn,l
k ur uSn12,l21

k &

52
1

4k
A~n2 l12!~n2 l11!~n2 l !~n1 l11!

n~n12!
,

~A29!

^Sn,l
k ur uSn11,l21

k &5
1

2k
~2n1 l11!A~n2 l11!~n2 l !

n~n11!
,

~A30!
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^Sn,l
k ur uSn,l11

k &52
3

2k
A~n2 l !~n1 l !, ~A31!

^Sn,l
k ur uSn21,l21

k &5
1

2k
~2n2 l21!A~n1 l21!~n1 l !

n~n21!
,

~A32!
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^Sn,l
k ur uSn12,l21

k &

52
1

4k
A~n1 l22!~n1 l21!~n1 l !~n2 l21!

n~n22!
.

~A33!
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