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We describe an approach of spectral type for numerically integrating the time-dependenliiRgrequa-
tion associated to the interaction of a one active electron atom with an electromagnetic pulsed field whose
polarization may be arbitrary. The wave function is represented on a Coulomb-Sturmian basis. The time
propagation method is based on a parallel-iterated Runge-Kutta method of predictor-corrector type. This
method is in fact fully implicit and of very high order, ensuring a high stability of the time propagation.
Moreover, it has the following advantages: it provides a scheme for an adaptive time step and it is particularly
well suited to parallel computing. We discuss the performance of the present approach and compare it to
already existing ones. In the case of linearly polarized fields, most of our results are in good agreement with
those obtained with other approaches. In the case of circularly polarized fields, we compare our results with
those obtained by, so far, the only existing method which is based on the single state Floquet approximation.
Finally, and for the sake of illustration, we treat the case of the interaction of atomic hydrogen with a strong
pulsed electromagnetic field whose polarization depends on fBi€©50-294{®7)02902-§

PACS numbds): 32.80.Rm, 42.65.Ky

I. INTRODUCTION for the sake of illustration the ionization of atomic hydrogen
by a strong ultrashort electromagnetic pulse whose polariza-
The role of numerical simulations is now becoming in-tion depends on time. Besides this example, it is worth men-
creasingly important in the study of the dynamics of a broadioning that the present approach has been successfully ap-
spectrum of complex physical procesdds. Multiphoton  plied to the study of the interaction of a Rydberg atom with
processes resulting from the interaction of an atom with @&oth a linearly polarized half-cycle pul§g] and a circularly
pulsed electromagnetic field are typical exampl8% In-  polarized microwave pulsgs].
deed, given the short time scales over which these phenom- There are basically two types of methods to solve numeri-
ena can now be observed, it is expected that tremendowuslly the time-dependent Scliinger equation: grid7] and
insight may be gained by following their entire time evolu- spectral methodg3]. Schematically, grid methods consist in
tion. Furthermore, simulations based on the direct numericaime propagating the total wave function defined in terms of
integration of the Schidinger equation turned out to be ex- its finite difference representation on a spatial grid. Usually,
tremely useful in predicting new effects such as, for instancethe time propagation is carried out by means of a second
the adiabatic stabilization of a one-electron system in arder implicit scheme which allows the time propagator to be
strong pulsed high frequency laser fig¢R&l. expressed in terms of tridiagonal matrid€g. In that case,
Considerable efforts have been put into the developmerthe calculations are greatly simplified and the computational
of numerical methods to solve the time-dependent Schroeffort is linear in the total number of grid poinfgiven in the
dinger equation associated to the interaction of a one- andase of a linear polarized field by the product of the number
even two-electron system with a strong pulsed electromagef angular momentum values and the number of radial grid
netic field. Although it is undeniable that some of thesepointy. The final state distribution for the electron both
methods are extremely efficient, it is clear, however, that thevithin the bound state manifold and in the continuum is
amount of computational effort imposes serious limitationseasily obtained from the knowledge of the wave function at
to their domain of applicability even in the case of a one-the end of the interaction with the pulse. This type of method
electron system. The interaction of a one-electron systemevealed itself very efficient and provided many res[diS]
with a circularly or elliptically polarized pulsed field is only [concerning the ionization vyield, the electron above-
one among various examples. The purpose of the presettireshold ionization(ATl) spectra, the harmonics spectra,
contribution is twofold. First, we show that many of the etc] in the case of the interaction of a linearly polarized field
problems related to stability, time step control, and hencevith a one-electron system initially in its ground state or a
accuracy and speed of the time propagation procedure uséalw excited state. According to the previous discussion, it is
in many of the already existing methods may be solved byclear, however, that if the initial state is a high lying state or
introducing a recent advanced algorith#. We then study if the field is circularly or elliptically polarized, the size of
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the grid as well as the number of grid points is expected to-(1/c)(d/dt)A(t). Note that sincé\(t) does not depend on

increase dramatically, making _thg problem very difficult. ¢ we do not take into account in ER) the term propor-
SP"—‘C”?' type met_hods conS|s_t In eXpaF‘d'”g the total WaVEisnal to A2 which can be eliminated from the total Hamil-

function in a basis of functions which, usually, are tonian by a phase transformation of the wave function

L2-integrable for the radial coordinates and spherical har-qf - hat the electric field lies in th
monics for the angular coordinates. The total wave function® ("+1)- Here, we assume that the electric field lies in the

is then propagated in time by means of either an explicit o"Y Plane. The corresponding vector potential is defined as
implicit scheme[11]. Here, we stress that by contrast to what . = - . -

is usually written in the literature, the computational effort is A1) =A1f1(D)COS w1+ dy) &+ Aafa(t)sin(wyt + ‘1’2)531;1
not necessarily proportional to the third power of the number (

of basis functions which if it turned out to be the case, would\,\,her(_:‘A1 f,, wy, and ¢, are, respectively, the amplitude
lead to unmanageably large calculations. In fact, we show ife hyise envelope, the frequency, and the initial phase of the
this contribution that with a proper choice of the basis ofy component of the vector potential; the same quantities with
L“-integrablefunctions and of the time integration scheme,j,qex 2 correspond to thg component. Whem, = w,, the

the computational effort is drastically reduced and scales asg|arization of the field may be linear, circular, or elliptical
the first power of the total number of basis functions Wh'Ch'depending on the value oA, A, &, and ¢,. Time-

in the same time, can be significantly decreased when comyenendent polarization may be obtained for instance, when
plex scaling m_ethods are used. _ w1 Is close but different fromw,.
The paper is organized as follows: we first start by for- ~\. order to solve Eq(1), we now expand the total wave

mulating (tjhehpr?blllem Wm} some emfphhasis on the bﬁSis usellnction on a discrete set af-integrablefunctionsF,,(r)
to expand the full wave function of the system. Then, Weg, e radial coordinate and spherical harmonic¥, ()
discuss and show how to optimize the choice of a particular '

Sturmian basis. The fourth section is devoted to the timdor the angular coordinate:

propagation method. In particular, we show why this method

is appropriate for parallel computing and why it provides a V(rt)= > an,l,m(t)Fn,l(r)YI,m(?)- (5)
very good scheme for an adaptative time step. The calcula- n,l,m

tion of various observables is described in the next section. ) ) .

We then compare some of our results with those obtained byhis transforms Eq(1) into a set of coupled ordinary differ-
other existing methods for both linearly and circularly polar-ential equations for the coefficienss, | (t). The choice of
ized fields. Finally, for the sake of illustration, we treat the basis ofL?-integrablefunctionsF,(r) is crucial in or-
briefly the problem of the interaction of atomic hydrogen der to keep the computational effort within reasonable limits.

with a strong pulsed electromagnetic field whose polarizatiorf he system of equations should be sparse and banded, with
depends on time. the smallest possible bandwidth. Various types of

L 2-integrable functions have been used so far: essentially
spline [12], and Sturmian function$13]. In the case of
atomic hydrogen, the Sturmian functions are the most appro-
The time evolution of the wave functioff(r,t) describ-  Priate ones to meet the above requirement since the matrix

ing a hydrogenic system interacting with a pulsed electroassociated to the atomic Hamiltonian is tridiagonha#|
magnetic field is given by the Schiimger equation which While each block of the block matrix associated to the inter-

reads(unless stated, we use atomic units and the Gaussiadction Hamiltonian is either bidiagonal fot,

IIl. FORMULATION AND PRELIMINARY REMARKS

i OF pentadi-
system for the fields agonal forH:,. Furthermore, all matrix elements may be
written in a very simple compact analytical forfsee the
Appendix. The reason for these properties of the Sturmian
functions comes essentially from the fact that these functions
denoted bySj |(r) are actually eigenfunctions of the radial
whereH is the total Hamiltonian defined as the sumhbf;  hydrogenicSturm-Liouville eigenvalue problefi5]:

and H;,;, the atomic and interaction Hamiltonian, respec-

tively. Within the dipole approximatiorfand provided that 1d> 1(1+1) a «?

no further approximation is maglethe interaction Hamil- _EWJF 212 _?“L? Shi(n=0, ©

tonianHim(F,t) may be written in two equivalent forms: ei- -
ther in itsvelocityform denoted byHY,(r t) or in itslength ~ With the boundary conditions; (0)=S;,(«)=0. In the
form denoted byH: (F t): above equation, theoupling constar_lta is the elgenval_ue
LA equal tokn and the energy £ «2/2) is fixed and negative
) 1. R ensuring the discreteness of the eigenvalue spectnuisa
Hi\,’“(r,t)= EA(t) P, (2) positive integer always larger tharithe angular momentum
quantum numberand related to the number of nodes of
L= .. Shi(r). As for hydrogenic wave functions, the Sturmian
Hin(r, ) =E(t)-r, (3 functions may be expressed in terms of confluent hypergeo-
metric functions as follows:

i%\lf(F,t)zH(F,t)\If(F,t), (1)

c is the speed of light. The electric fiel%(t) is related to the |
vector potential A(t) by the usual relation E(t)= Shi(r)=Np r1" Ve " Fi(=n+1+1;21+1;2«r), (7)
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where Ny | is a normalization factor. Note that in order to we use a standard explicit method to time propagate the so-

ensure the right behavior OIf(Ft) at the origin, we must lution, one has to decrease the time step if the number of
write F, (r)=S;,(r)/r in Eq. (5). Before discussing the _equat|ons(|n qther words, the number of basis .fu.nct@nss
Sturmian functions anv further. it is worth mentionin thatmcreased. This of course represents a severe limitation of the
y ! 9 explicit time propagation methods. Physically, the origin of
fhe stiff character of the system of equations satisfied by the

number of bands depending on the degree of the spline fun%’oefficientsan . may be explained as follows: let us sup-

tion. In general, one has to use rather high order spline func- . >
tions to obtain a reasonable accuracy so that the matric pse that _havmg _expandgd the total wave func_tlt_(m,t) In
e Sturmian basis we switch to the atomic basis in which the

associated to the full Hamiltonian operator are less SParse -y associated to the atomic Hamiltoniein, is diagonal,

than n the case of Sturmian functlong. However, the Sp!meSince the size of the discrete basis is finite, the spectrum of
functions offer the advantage of leading to sparse MatriCe§,is matrix contains a finite number of negative energy ei-

for any type of _potentiaﬂr_mt necessarily Coulombic as in the genvalues and a finite number of positive ones which may be
case of Sturmian functionsMoreover, by contrast to the yery high. The value of the highest ones increases when both
Sturmian functions, the spline functions are not necessarily, g9 N, the number of Sturmian functions per angular
“localized” around the origin 16]; this may be of interestin  omentuml, increase. Now, in the atomic basis, the total

calculating eleptron energy speg{nﬂ]. . wave function\P(F,t) is written as follows:
If the Sturmian basis were infinite, the choice of the wave

number « would be irrelevant. In practice, the size of the

basis is finite and it is therefore important to choose the value W(r,t)= E { E b1 m(H)Rn (1)

of k in order to make the basis the most adapted one to the hm 0

physical situation in hand. For instance, we see from(BQ. -

that in the case where high excited states play an important + bEiI,m(t)REiI]YI,m(r)a (8)

role in the physical process, the valueothould be rather '

small since solutions of Eq6) for small x and hence small . .
energies represent states which have the same behavior whereR,, and Re, are the radial bound and continuum
Rydberg hydrogenic states. We discuss in detail how to ophydrogenic eigenstate wave functions taken into account.
timize bothx and the size of the basis in the next section. The —amplitudes bg | ,(t) may be written as

Although « has been assumed real so far, nothing prebEi,I,m(t):BEi vlvm(t)e_iEit and similarly for the bound state

vents us from making: complex in Eq(7). Thi_s has in fact amplitudesb,, | (t). Note that unless the coupling with the
important consequencés8]. It allows the basis function to ternal field 'is verv stron '5 varies smoothlv with
have an asymptotic behavior which is suited to the physica? y Pe, 1.m y

boundary conditions of the problefa9]. Indeed, by choos- time. Therefore we expect that the_ time st_ep should be at
ing the wave numbek in the lower right quadrant of the '€ast smaller than Ef,,, where En,y is the highest energy
complex plane, the factoe*" has the character of both el_genvalue. On the other hand, in most of the physical situ-
closed channel and outgoing wave open channel function. ftions, the very high energy eigenvalues do not play any role
« were chosen real, the basis would have only the charact@nd it is perfectly safe to drop the corresponding amplitudes
of closed channels. As a result, the norm of the total wavd'OM expansion(8). One has, however, to stress that if one
function would be conserved in time. In other words, pe-Works in the atomic basis, the matrix associated to the inter-
cause of theL2 integrability of the basis functions, such a action Hamiltonian is full, causing storage problems and in-
basis would describe the system over a restricted region €asing significantly the computational effort. Since a given
space, say, a sphere of some characteristic régijsHence Sturmla_n function may be gxpressed as a linear superposition
any probability density flux reaching the surface of theo_f atomic wave functlons,_ it is cIe_ar that each of the expan-
sphere over the time interval of interest would reflect fromSion coefficientsa, | (t) will contain many rapidly oscillat-
the surface and return to the interior of the sphere. Such /9 components which by contrast to the atomic basis cannot
spurious reflection, which is a common problem for all spec€ eliminated. The only way to solve this problem is to use
tral methods(as well as grid methogdiscan of course be an |mpl_|c_|t time propagation s_cheme. This pr(_)ble_m is treated
avoided by enlarging the basier the grid sizg However, N d(_etall in Sec. IV. l\/_leanwhﬂe, let us examine in the ne_xt_
we can instead use complex basis functions which effecS€ction some properties of the Sturmian basis and how it is
tively make the surface of the sphere an absorbing wall. InPossible to choose and Ns to make the basis the most
deed, on a complex basis, the norm of the wave function i§dapted one to the physical situation in hand.
not conserved but instead represents at long asymptotic times
the probability for the system to stay bouf&l]. In practice, . OPTIMAL CHOICE OF A STURMIAN BASIS
this means that the size of the Sturmian basis does not need ) . )
to be excessively large since it is supposed to describe prop- AS We saw before, the expansiéh) leads to a discretized
erly the system inside the sphere only. Typical values ofPectrum of the atomic HamllltontlJan. For each angular mo-
N, the number of basis functions needed per angular momentuml, this spectrum containdg negative eigenenergies
mentum, are given in Sec. VIl where we discuss an exampléand N¢ positive ones. To each of these eigenenergies corre-
A serious numerical problem common to all spectralsponds an eigenstate wave function which may be written as
methods is the so-callestiffnessof the system of equations a linear superposition of a finite number of Sturmian func-
satisfied by the coefficiemt, | ,,. In practice, it means that if tions. Among theNg bound eigenstate wave functiom‘ttsJ
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some of the basic properties of the Sturmian functi28.
The Sturmian functions which are solution of the eigenvalue
problem(6) satisfy the orthogonality relation:

® 1
<S§,||SSq|>Ef0 ﬁ,|(f)FS§,',(r)dr=O, n=n’. (9)

In the following, we assume that these functions are normal-
ized in such a way that the diagonal elements of the overlap
matrix S are equal to unity. This matrix is in fact symmetric

SNk -

m
: H\ above convention, the matrid ., associated to the atomic

1000 HamiltonianH, may be expressed in terms of the overlap
matrix S as follows:

v ool cvnd vl vl el o

square of wave function
4

radial distance (a.u.)
2

P 5 K
3 H.=« |—KN—7S, (10
-1 Coulomb
10 ¢ . . .
i T~ ﬂ whereN is a diagonal matrix whose elements are ahd|
g the unit matrix.
L Sturmian In the Sturmian basis, the eigenvalues of the atomic

Hamiltonian are obtained by solving the following general-
ized eigenvalue problem:
®

square of wave function
I

0w (Ham ESP=0, (11)
| Lol C bl L1 ik
o1 1 10 whereE is the eigenvalue and the eigenvector. This prob-
. . lem may be easily solved by using E40). Let us mention,
radial distance (a.u.) however, that if we are only interested in the distribution of

the eigenvalues, i.e., in the number of eigenvalues whose

FIG. 1. Square of the radial Coulomb wave function of angularValué belongs to a given interval, there is no ne,ed to solve
quantum numbek=0, for an energy of 0.0497 a.u. as a function of th€ above system. Instead, we can use Dean’s algorithm
the radial distance in a.u. This function is compared to the correWhich provides the number of eigenvalues less than a given

sponding superposition of Sturmian functionskoparameter equal numb_er in the case of a symmetri_c mgtEBG]. Let us now
to 0.5 a.u., the number of Sturmian functidwsbeing equal to 500; €xamine how the number of negative eigenvalues varies with

(a) large scale behavior, anth) behavior around the origin. Note & andNg. The results are presented fet 0 in Fig. 2 where
that in (a), the curve associated to the radial Coulomb function iswe give the number of negative eigenvalues as a function of
truncated where the corresponding superposition of Sturmian funck for variousNg. As we see, there are striking regularities
tions vanishes. that we can exploit to extract an empirical formula. We find
that the number of negative eigenvalues is given by
coincide within the accuracy of the computer, with the exact
hydrogenic eigenstate wave functions. Similarly, for each b \/N\S
positive eigenenergy, the associated eigenstate wave function Ng=max Ns;1.22 w |
reproduces, within a normalization constant, the correspond-
ing radial Coulomb function. In Flg 1 we compare the I’adia“\]ote that if k is complex, it should be replaced by its real
Coulomb function for an energf=0.0497 a.u. with the part in the above formula. This formula has been checked for
corresponding superposition of Sturmian functions; in thisg wide range of values of (from 0.01 to 1 in a.).and N
case, the angular momentum quantum nunibed, the x  (from 50 to 500. In all cases, the error between the exact
parameter is equal to 0.5 a.u., aNg=500. We clearly see number of negative eigenvalues and the estimated result
that up to a radial distance of about 1000 a.u., both the Cougiven by Eq.(12) is extremely small. One might wonder
lomb function and its corresponding superposition of Sturwhether or not this result could be derived analytically. In
mian functions differ only by a normalization factor. Beyond fact one knows that there is a relation between the position of
this radial distance of 1000 a.u., the superposition of Sturthe eigenvalue€ and the location of the zeros of Pollac-
mian functions goes to zero rapidly due to their zek’s polynomials[14]. However, as far as we know, the
L2-integrablecharacter while the Coulomb function extends existence of an analytical expression for the calculation of
to the infinity. The question we address in this section is thehe zeros of Pollaczek’ polynomials is still an open question
following: what are, for a given physical situation, the values[24]. On the other hand, it turns out that in all cases, 75% of
of x and N leading to an appropriate distribution of the the negative eigenvalues coincide with the exact hydrogenic
positive eigenvalues required for the calculation of the eleceigenvalues within less than 1%. Finally, let us mention that,
tron energy spectrum while keepirh@ﬁ sufficiently large. although not reproduced here, a similar study may be carried
Before examining this question in detail, let us recallout for|+0.

(12
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FIG. 2. Percentage of negative eigenenergies of atomic hydro- F|G. 4. Density of positive eigenenergies for various values of
gen resulting from the diagonalization of the corresponding Hamilthe Sturmiark parameter for the same case as in Fig. 3.
tonian matrix calculated in a basis of Sturmian functions. This per-

centage is plotted as a function of the Sturmiaparameter for two . .

different values ofNg, the number of Sturmian functions used in deno_ted byD M_"Ch may be |nt_erpreted as a measure of the
the basis. We assume that the angular quantum nuhibe&qual to density of positive eigenenergies:

0; similar results are obtained for different valued of

1

Let us now examine the distribution of the positive eigen- D=——c————.
P J IN(E;+1/E)

values. In Fig. 3 we show the position of the positive eigen-
values for variousc parameters; the angular quantum num-
ber =0 and Ns=250. First, we see that the number of Thjs quantityD as a function of the eigenenergi&s is
eigenenergies increases withand secondly, it is clear that p|otted in Fig. 4 for various values of and forNg=250. As
the distribution shifts towards higher energies whenn- iy Fig 3, we clearly see that the maximum of this density
creases. It is convenient to introduce the following quantityshifis towards larger energies asncreases. Moreover, Fig.

5 indicates that the energy corresponding to the maximum of

(13

— — T T T this density is a linear function ot in a log-log plot. The
. o ] reason for this striking behavior is still an open question.
—_ El
s 01 F - E Gl 10—1 B |
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FIG. 3. Positive eigenenergies in a.u. of atomic hydrogen result-
ing from the diagonalization of the corresponding Hamiltonian ma- ¥ (a.u.)
trix calculated in a basis of Sturmian functions. These eigenenergies
are plotted for various values of the Sturmiarparameter. As in FIG. 5. Position of the maximum density in a.u. of positive

the previous figure, the angular quantum numibierassumed to be eigenenergies as a function of the Sturmiarparameter for the
0. Ng, the total number of Sturmian functions, is equal to 250.  same case as in Figs. 3 and 4.
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Im(z2)
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Re(z)

FIG. 6. Typical behavior of the stability functioR(Z) in the Z-complex plane. The hatched zones correspondR{@)|<1. Outside
these zonegR(Z)|>1 and at the bordeftR(Z)|=0. This stability function is associated to a given Runge-Kutta method. Three cases are
considered{a) an explicit method(b) an implicit method of Gauss type, aific) an implicit method of non-Gauss type.

IV. TIME PROPAGATION METHOD dimensionN whereN is the total number of Sturmian func-

) tions, while for a fully implicit method only one system has
In the Sturmian basis, the Scldinger equation we have to be solved, but of dimensiosN.

to solve may be written as follows: Before discussing our specific choice of the Runge-Kutta
q methods for the predictor and the corrector, it is interesting
‘as‘l’(‘) =H(H)W (1), (14) to briefly analyze the behavior of the so-called stability func-

tion associated to a given Runge-Kutta method. For the sake

. , ) . of illustration, we consider the following standard test prob-
whereW is a vector which contains the coefficiersts, n;

H is a block tridiagonal matrix associated to the total Hamil- em

tonian. The diagonal blocks are tridiagonal and correspond to dy

the atomic Hamiltonian. The off-diagonal blocks correspond E:)\y’ Re(\)=<0. (17)
to the interaction Hamiltonian: they are either bidiagonal in

the case ofH,(r,t) or pentadiagonal in the case of Equation(14) reduces to the above equation if we assume
Hi';,t(F,t). Details about the expression of the correspondinghe vector potential&(t) constant and if the total Hamil-
matrix elements may be found in the Appendix. As we men-onian is diagonal. Under these conditions, one can show that
tioned in Sec. Il, the above systemgff, requiring an im-  [26]

plicit scheme to time propagate the solution. The procedure

which is briefly described here has been developed by van Y(th+1) =R(2)Y(tn), (18
der Houwen and Sommeij€25]; it is of predictor-corrector . ] .
type and is based on implicit Runge-Kutta methods. where Z is defined as the product of and the time step

The general Runge-Kutta method to propagate the sold=tn+1—t,. R(Z), called the stability function, is defined
tion of Eq. (1) over a time stefh from, say.t, until t,,, is s follows:

given by def1-ZA+Zeb']

s R2)=—Gef1-zA]

\If(tm):llf(tn)—ih_Zl biSTIH(t)W(t), (15

(19

A is a matrix whose elements are thg; andb a vector

s whose components are the coefficients[see Eqs(15) and
W(t)=W(t,)—ih>D a;STIH(t)W(t), i=1,...s (16)], 1 is the unit matrix, ane=(1,11... )", As a result,
i=1 we see that the norm of vector is conserved when
(16)  |R(Z)|=1 (in this case, we assume that the basis functions

b; and a;; are the coefficients defining the Runge-Kuttaare real. Furthermore,

method;s, the number of mesh points, is called the num- IR(Z)|>1 — lim Y(t,) = (20)
ber of stagesW¥(t;) is the state vector at timg. A Runge- " '
Kutta method is said to be explicit &;=0 for j=i. It is
said to be diagonally implicit ifa;;=0 for j>i and fully |R(Z)|<1—limY(t,)=0. (21
implicit in all other cases. If the method is explicit, the n—oo

W(t;) are not coupled in Eq(16) and can be obtained by

simple matrix vector multiplications. In the case of implicit Figure 6 shows the typical behavior dR(Z) in the
methods, on the other hand, the vecrat timet; is ob-  Z-complex plane for three casdg) an explicit method and
tained by solving large systems of linear equations. For di{b), (c), two implicit methods. The hatched zones are char-
agonally implicit methods, one has to solsesystems of acterized byR(Z)|<1, outside the this zonéR(Z)|>1 and

n—oe



2138 HUENS, PIRAUX, BUGACOV, AND GAJDA 55

at the border|R(Z)|=1. The full dots give the position of V. OBSERVABLES
hA when the basis is real. Note that because of factoiEq.
(14), \ is purely imaginary. The empty dots give the position
of hA when the basis is complex. In Fig(e, we examine
the case of an explicit scheme; according to the previou
discussion and given the position bk, it is clear that the
only way to conserve the norm when the basis is real is to S=LLT, (22)
impose a time step going to zero. In practice, the time step
is finite. Therefore, since there are always valuesofon — Wherel is a lower triangular matrix with only two nonzero
the positive imaginary axis, the solution will diverge after abands, the diagonal and the first subdiagonal. In these con-
while. In Fig. 6b), we consider the case of an implicit ditions the generalized eigenvalue probléhl) may be re-
Runge-Kutta method of Gauss tyfeharacterized by the fact Written in the following way:
that the order of the method is twice the number of mesh 1 \-1
KNS) L

pointy. A typical example is the widely used Cranck-
Nicholson algorith{27]. If the basis is real, we see that the

norm of vectorY is always conserved. If the basis is COM- The matrix between large parentheses on the left hand side of
plex, the norm decreases as expected. However, one hasQ, equation is tridiagonal and symmetiic.the eigenvalue,

be very careful because, as we experienced, the timehstepjs re|ated to the atomic eigenenergyby
has to be very small to ensure a reasonable accuracy if the

order of the method is low as for the Cranck-Nicholson 1
method. Finally, in Fig. &), we analyze the case of a high A= E/i2+ L
order implicit Runge-Kutta metho@f non-Gauss type We 2

see that the norm is not necessarily conserved if the basis [$aving found the eigenvectots'¢ of Eq. (23), it is easy to

real, but on the other hand, it is clear that the time step doeshow thatW,,, the state vector in the atomic basis, may be

not need to be so small to ensure a reasonable accuracy. obtained fromW;, the state vector in the Sturmian basis, by
In the present case, it is sufficient to use a two-point di-using the following relation:

agonally implicit method for the predict28]. For the cor-

rector, we use a four-point fully implicit method of Runge- V=YL, (25)

Kutta type which is of order 7. In order to avoid the high cost

of solving a large system of dimensiorN4 we used a

meth ij -
ethod developed by van der Houwen and Sommeijer anis real or complex. The coefficients of the state vedloy

which exploits parallelism across the metj@8). It consists are the amplitudeb,, ., for the bound states aritk. | , for

in solving the large system of algebraic equations iteratively;

: - ; 2
at each iteration, one has to solve four systems of dimensiofPtinuum states as defined in E@). [by, n|* represents

N which, being independent, may be solved in parallel. Not he 'pr(.)bability for thg system. to b.e in 'glmel M state. I.f the
that this procedure does not work when the Runge-Kutt asis is complex, this result is still valid and one minus the
method is of Gauss type. The systems are solved by measym of all these probabilities is of course the ionization
. . . 2 oy
of the biconjugate gradient algorithf29]. In the present yield. If the basis is real,bEi 1.m|” represents the probability

case, this algorithm, which is iterative, converges quicklyfor the system to be in a continuum state of angular momen-

after fewer than ten iterations regardless of the size of th umI,C?ZémuchI quantuml nuwbem,l and energE between
basis. This, with the fact that the matrix associated to the fulfi, 8N Ei+1. AS a Tesu L, the electron energy spectrum
Hamiltonian is sparse, explains why the number of opera; (E) which represents a probability density may be calcu-
tions grows only linearly with the size of the basis. lated as follows:

Besides the parallelism across the method, this time b: 2

. . . . | |+1,I,m|

propagation algorithm provides a scheme for a step size con- P(E)= E . _E
trol based on the speed of convergengeof the iterative A

procedure: after having propagated with a given time step |t is important to note that knowing the state vector
from sayt; tot;,;, we calculate the next step size by multi- Ww(t) in any basigSturmian or atomig we are able to com-
plying the previous one by an appropriate factor which depute the expection value of any physical observable. This is
pends orv.. This procedure has been tested in many differ-true whether or not the basis is real. However, if it is com-
ent physical situations, and turned out to be crucial in ordeplex, one has to use analytical continuation techniques like
to optimize the execution time, while keeping the accuracy athe Padeapproximants to get convergence when the contri-
a reasonable level. It has to be stressed that the problem bfitions of all components d¥(t) and especially the con-
the choice of the time step is difficult; indeed, in many casestinuum ones, are summed up. This remark is of course cru-
it is impossible to define its magnitudepriori. If the sys- cial for the calculation of electron energy spectra with a
tem, for instance, emits high harmonics of the driving field atcomplex basi§21]. By contrast, the use of a complex basis
the beginning of the interaction, then the step size has to b® calculate the acceleration of the dipole does not lead to
at least smaller than the period of the highest order harmoniparticular problems since in this case the dominant contribu-
though the field intensity is not necessarily very higo]. tion comes in general from lower lying bound states.

After the time propagation, the squtioP\(F,t) of Eq. (1)
has to be projected on the atomic basis. We proceed as fol-
lows: sinceS, the overlap matrix, is symmetric and positive
aefinite, we can perform a Choleski decompositiorSof

LT 1—

(LTE)=N(LTH. (23

(24

whereY is the matrix whose columns are the eigenvectors
th. This simple procedure is valid whether or not the basis

Ei<E<Ei,;. (26)
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FIG. 7. lonization probability as a function of the peak electric E h =
field in a.u. resulting from the interaction of atomic hydrogen with = - 3
a sharply turned on and offtep function linearly polarized elec- ,? 0.8 E e 3
tromagnetic pulse of duration equal to ten optical cycles. Atomic 3 s i 3
hydrogen is assumed initially in its ground state and we consider ] = 3
. 2o 06 F =
two photon energieg,: 1 a.u. and 1.5 a.u. o = 3
2 & 3
VI. COMPARISON WITH OTHER CALCULATIONS £ 04 F © 3
In the case of linear polarization, where comparison is § ? m=0 ;
possible, our results agree with those obtained by means of 'g 02 E =
grid methods as developed by Kuland@&d]. In a recent = : 3
paper abOUt adlabatlc Stablllzatlon Of atomlc hydrogen ex- I|IIlIII‘IIIII|III||IIIIII|I|IIIIIIIII|IIII|IIII§

posed to a strong field, Kulandet al. [3] mentioned that
stabilization cannot be achieved when the electric field is 0.2 04 0.6 0.8
sharply turned or{turn-on time less than five optical peri- peak electric field (a.u.)
ods. This seems, however, to disagree with our results
shown in Fig. 7 where the ionization yield is shown as a

function of the peak electric field for two different photon SRR Ea< et Loty AL R
energieq1 a.u. and 1.5 a.).the time profile of the electric = ST E
field being a step function. Since the amount of population 0.8 = i . 3
trapped in excited states is rather significant as expected & T E : . 3
(about 22% of the total population in the case where 1 = E 3
a.u), we expect that, in the presence of a strong high fre- S 06 F E
guency electric field, those excited states should easily stabi- E 5,’:‘ $ 3
“Zel' , - : g 045" © 3
n the case of circular polarization, no other time- = = E
dependent calculations exist as far as we know. However, it g = m=+1 3
is interesting to compare our results with independent Flo- 'g 02 B =
guet type calculations performed by Zakrzewski and Delande = t 3
[32]. These results are presented in Fig. 8 where ionization é.”.....l.]....”.l.......,.ll,......l|...,....§
yields are shown as a function of the peak electric field in
atomic units for the following case: atomic hydrogen is ini- 02 04 06 08
tially in then=2, [ =1 state, the azimuthal quantum number peak electric field (a.u.)

m being either—1, 0 or+1; the atom is exposed to a sinus

square pulse of duration equal to 20 optical cycles, the fre- g g |onization probability as a function of the peak electric
quency of the field being 0.25 a.u. The dashed line correfigid in a.u. resulting from the interaction of atomic hydrogen with
sponds to the Floquet results and the markers to ours. The sine square circularly polarizedr{) electromagnetic pulse of
agreement between both results is impressive. However, ifluration equal to 20 optical cycles. Atomic hydrogen is initially in
the case ofn=+1, we observe some discrepancy when theann=2, I=1 and(a@ m=-1, (b) m=0, and(c) m=+1. The
electric field is larger than 0.4 a.(which is about six times photon energy is 0.25 a.u. The dashed lines correspond to the re-
the electric field on the=2 orbif). This discrepancy is ex- sults obtained by Zakrzewski and Delande by means of the single
plained as follows: Zakrzewski and Delande calculations aretate Floquet approximation. The markers correspond to our results.
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based on a single Floquet state approximation while wes kept more than one order of magnitude smaller than the

showed that in the present cak#3], many states, in this optical period associated to the harmonic of the highest or-

intensity regime, are populated leading to the strong stabilider.

zation effect observed in Fig(®. In Fig. 11, we analyze as a function of time the
“1 s-state population,” namely, the projection of the full
time-dependent wave function onto the bare dtate of

VI ILLUSTRATION atomic hydrogen. Although the concept of stationary state
loses its meaning during the time the system is interacting

In this section, we consider the interaction of atomic hy- . ' . . / . ,
drogen initially in its ground state with a pulsed eIectromag-W'th the f_|eld_, this quantity nevertheless gives information on
the localization of the wave packet close to the nucleus at a

netic field whose polarization depends on time. A t|mev;/gi:/en time. We see that this projection onto the basesthte

dependept polgrization may be. achieved. by superposing Whibits  fast oscillations at the average frequency
perpendicular fields which oscillate at slightly different fre- @=(w,+w,)/2 when the field is linearly polarized. In this

quenciesw; andw,. The vector potential associated to suchase the wave packet oscillates back and forth through the

a field reads nucleus. The “squeeze” of the curve arouré0 and
+400 a.u. arises because at these times, the polarization of
:&(t)=A0f(t)[00iwlt)éx+Sin(wzt)éy], (27)  the field is circular, preventing the oscillation of the wave

packet through the nucleus.

where A, is the amplitude of the vector potentia, and VIIl. CONCLUSIONS

ey the unit vectors along the andy axis, respectively, and We have described an approach of spectral type for nu-
f(t) a slowly varying time envelope. In the present case, it ismerically integrating the time-dependent Sainger equa-

a sine square function centered at tib#e0 and starting at
aboutt=—500 a.u. In all our calculations, we used the ve-
locity form for the interaction Hamiltoniaf34]. In Fig. 9,

we show the electric field polarization at some characteristic
times: att=*400 a.u., the polarization is circular{ po-
larization, at t=—200 a.u., the polarization is linear with
the field oscillation along thg= —x axis, att=0, polariza-

tion becomes circular again with the electric field rotating
counterclockwise ¢* polarization and finally, att=200
a.u., the field is linearly polarized and oscillates along the
y=X axis; at other times, the polarization is elliptical. The
calculations have been performed with a complex basis using
82 000 atomic states (40 angular momenta are included and
100 radial Sturmian functions for eacrand m value. It is
interesting to analyze the time step during the propagation of
the solution. The results are presented in Fig. 10. At the
beginning of the interaction, the time step is small because time (a.u.)

we impose the relative error on each component of the state

\{ector\II to be of the order of 1Q8' We also observe that the . FIG. 10. Time step adjusted by the time propagation algorithm
time step decreases systematically when the polarization ig 5 function of time in a.u. for the following case: atomic hydrogen
circular. This is clear since while keeping the relative errorpjtially in its ground state is exposed to a pulsed field whose po-
of each component at the same level, the number oOfyization changes in time as described in Fig. 8. For both field
(I,m,n) states which are effectively accessed is much largegomponents, the pulse envelope is flat with sine square two optical
than in the case of linear polarization. When the field iScycle turn on and off, the full duration being equal to 20 optical

linearly polarized, we know that high order harmonics arecycles. For both field components, the corresponding peak intensity
emitted[35]. Although the time step increases in that case itis 10" W/cm?.
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APPENDIX: MATRIX ELEMENTS

% % OF THE INTERACTION HAMILTONIAN
0.8 2— —§ In this appendix, we give a list of the nonzero matrix
§ 0'73_ 3 elements(Sy | [H"(r.0)[S) ).
5 E E
g 06 % % 1. Velocity form
2 05 ? E The interaction Hamiltonian in the velocity form is given
% 04 E =3 by the following expression:
*,f" = g 1
03 E = - S -
= E : HiA(F.H) = ZA®)-p. (A1)
02 .
0.1 g_ _g For a field linearly polarized along the axis, the vector
Euulumsh s dm ol b dunb @ pOtential can be written as
—400  -200 0 200 400
time (a.u.) A=A, (e, . (A2)

FIG. 11. Projection of the full time-dependent wave function on The corresponding matrix elementsto},, are related to the
the bare % state of atomic hydrogen as a function of time in a.u. for overlap matrix of the Sturmian functions:
the same case as described in Fig. 9.
A A . A ) <Sg,IYI,m|Hi¥n|SS/,|rYI’,m’>
tion associated to the interaction of a one active electron
atom with an electromagnetic pulsed field whose polarization yp 1
may be arbitrary. The wave function, represented on a =—in /—K(n— N){(SISS ) =ALL)
Coulomb-Sturmian basis, is propagated by means of a 3 ’ e
parallel-iterated Runge-Kutta method. This method is in fact
fully implicit and of very high order, ensuring a high stability

of the time propagation. Moreover, it has the following ad'where(l m|Y,dl’,m’) is the angular part of the matrix el-
vantages: it provides a scheme for an adaptive time step ar ' Lot

X{I,m|Yydl”,m’), (A3)

o . . . ent.

it is particularly well suited to par.allel computing. The The interaction couples states whose angular momenta
method has been successfully used in many cases and Whec{n?fer by one,l —1'|=1, but it does not mix states of differ-
comparison was possible, our results are in good agreemenl[ X '

ent azimuthal quantum numbens The size of the Hamil-

with other calculations. So far, this method has turned out t(% . .
_ . tonian matrices depends only on the number of angular mo-
be extremely efficient and enabled us to solve the time-

dependent Schidinger equation for the interaction of atomic menta and number of Sturmian functions taken into account.
, e . The diagonal blocks of the Hamiltoniake=1', have three-
hydrogen with a strong pulsed electromagnetic field of arb"banded structure but for the off-diagonal blocks (' +1 or
trary polarization. The generalization of this method to theI 11 v di | and dgl di el i
case of the Dirac equation for the treatment of relativistic . ) only diagonal and second lower diagonal elements
effects in strong fields as well as to the case of the interactiof < dlffergnt from zero. T
of a two active electron atom with a laser pulse is presently For a field of an arbitrary polarization in they plane
in progress. o - -
A=A (D) gt Ay(Dey . (A4)
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The interaction couples not only states of different angular A

momentum/l — 1’| =1, but also mixes states of different azi-  (S%,Y|.m/Hird Sh 1 Yirm ) =E(1) \/?<S{"n|r|5{‘,,n,>
muthal quantum numbergm—m’|=1. The off-diagonal

blocks (#1’) can be divided into subblocks corresponding X{A,m|Y1dYy m).  (AL9)

to different azimuthal quantum numbersandm’. The off-

diagonal blocks are no longer square matrices as the numbE&pr a field of an arbitrary polarization in they plane

of different m values depends on the angular momentum . . .

The size of the Hamiltonian matrices depends on the number E() =Ex(t)ex+Ey(t)ey. (A20)
of Sturmian functions, on the number of angular momenta

taken into account as well as on the number of involvedThe corresponding matrix elementsldf, read

azimuthal quantum numbers for a given angular momentum;

K L K
therefore it grows quadratically with Below, we give a list (S5 Y1,ml Hind Sn’,lle’,m'>
of matrix elements of the overlap matrix wich are needed for
the construction of the Hamiltonian matrix. A/ (Salr]SS AE™ (), m]Yy 1", m")

Diagonal blocks:
—ET()(I,m|Yy 4|l m")], (A21)

(Shilshn=1, (A8)
whereE™ (t) andE ™~ (t) are defined as

1 [+1)(n—1I
<ss,|lss+1,|>=—§\/%, (A9) E*(1)=E(0) +iE(1), (A22)

E™ (1) =E,(1)—iE(t). (A23)

C lex 1 /(n+1)(n—=1-1)
<Sn,l|sn71,l>: 2 W (A10) As it follows from the above expressions the Hamiltonian is

given in terms of the matrix elements of the position operator
in the Sturmian basis. Below, we present the list of the non-
vanishing elements:

(ShilShn+=5 \/(n+|+1n+nlj;|+2), a1y (SnlrlShize)
(n=I-L)(n=1-2)(n—=1=3)(n+1)

Off-diagonal blocks:

(n+1+1)(n—1—1) 4k n(n—2) :
(ShilShi+="— 2 . (A12) (A24)
(n+1+1)(n+1+2)
(n_l_ )(n—1-2) (SilrlShy ) =5_(2n— J
Sy L= . (A13 : , 2k n(n+1)
CHIESTINE \/ = (A13) 25
— — 3
SIS D=5\ iy A18 (SIS )=~ 5 T, (A26)
— . . B 1 (n=I=1)(n—=1-2)
<S || I 1>:_‘/M2n_l), (A15) <Sn,l|r|sn—1,|+l>_ﬂ(2n+l)\/ n(n—1) )
n (A27)
. (n+D(n+1-1) Shlr|Se_o 4+
(ShilSh-1+0)= 2N hnn (A16) Sh 2143
_ 1 (n=1=1)(n=1=2)(n=1=3)(n+1)
2. Length form 4K n(n—2) ,(A28)
The interaction Hamiltonian in the length form is given
by the following expression: (ShilrIShs21-1)
Hi(r,)=E(t)-r. (A17) 1 =1+ 2)(n—T+D(n—(n+1+1)
. _ _ T 4k n(n+2) :
For a field linearly polarized along theaxis, we have (A29)

E(t)=E,(t)e,. (A18) [(n=1+1)(n—1)
(Ve (ShilrIShi1 -1 = (2n+|+1) D)

The corresponding matrix elements of ﬂ=|¢;1t are (A30)
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(S5l185 1 2)= ~ 50D (nay SISz

o 1 CEENGED 1 [t (nt-D(nih(n-1-1)

<Sn,l|r|sn—1,l—l>_z(2n_l_1) ~ nin-1 __ﬂ\/ n(n—2) '
(A32) (A33)
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