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Zero-temperature properties of a trapped Bose-condensed gas:
Beyond the Thomas-Fermi approximation
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We consider the leading corrections to the Thomas-Fermi approach to the description of the properties of a
magnetically trapped, Bose-condensed cloud of atoms. Simple analytical expressions are derived for the kinetic
energy in terms of an effective cutoff length, which we calculate numerically by considering the one-
dimensional problem for a linear-ramp potential. We also determine the lowest angular velocity at which it is
energetically favorable for a vortex to enter the cloud. For large clouds, our results are in excellent agreement
with available numerical calculations.@S1050-2947~97!07003-0#

PACS number~s!: 03.75.Fi, 03.65.Db, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

The realization by Andersonet al. @1# of Bose condensa
tion in magnetically trapped87Rb gas has generated consi
erable excitement and stimulated interest in the ground-s
properties of the dilute Bose gas. For a system so dilute
depletion of the condensate can be neglected, the wave f
tion, c(rW), of the condensed state in an external poten
V(rW) is given by the Gross-Pitaevskii~GP! equation@2#

F2
\2

2m
¹21V~rW !1

4p\2a

m
uc~rW !u2Gc~rW !5mc~rW !, ~1!

wherem is the chemical potential. The effective two-bod
interaction is 4p\2a/m, wherea is the scattering length an
m is the particle mass. It was shown recently by Baym a
Pethick @3# that the ground-state properties of the trapp
Bose gas with repulsive interactions may be described q
accurately for a sufficiently large number of particles by
Thomas-Fermi~TF! approach, in which the kinetic energy
neglected. The density is then given by

uc~rW !u25
m

4p\2a
@m2V~rW !# for V~rW !<m.

This approach does not, however, take properly into
count the decay of the wave function near the outer edg
the cloud, and the Thomas-Fermi wave function con
quently leads to unphysical behavior for some propert
most notably the kinetic energy. This is easily seen sinc
the outer edge the wave function varies as the square ro
the distance from the turning point, and therefore its deri
tive varies inversely as the square root of the distance. A
consequence, the kinetic energy diverges logarithmically
the end point of the integration approaches the turning po

In this paper we show how to evaluate the leading corr
tions to the Thomas-Fermi approach for large drops.
shall consider two different cases. The first is that of non
tating drops, where the kinetic energy is all important for t
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form of the wave function at the outer edge of a cloud
atoms. The second situation where the role of the kine
energy is crucial is in determining the structure of a vort
line in a cloud of atoms. In both cases the basic philosop
will be the same: the Thomas-Fermi approximation is go
except in a limited volume of space where the kinetic ene
operator is important. In the first case this region is close
the classical turning points at the edge of the cloud, while
the latter case it is the region near the vortex line. Our
proach is to graft solutions of the GP equation onto those
the TF equation, thereby enabling us to derive analytical
pressions for quantities of interest. These will be compa
with the results of numerical calculations for both these s
ations that have been performed by Dalfovo and String
@4#.

The plan of the paper is as follows. In Sec. II we consid
nonrotating clouds, and show that the structure of the w
function at the outer edge is given by the solution of the
equation for motion in a linear potential. We then apply th
result to calculate the kinetic energy of clouds of atoms in
anisotropic harmonic oscillator potential. In Sec. III we d
cuss properties of vortex lines, and derive expressions for
critical angular velocity at which it becomes energetica
favorable for a vortex line to enter a cloud.

II. NONROTATING CLOUDS

The basic idea of our approach is that for large drops,
wave function is close to the Thomas-Fermi result, exc
near classical turning points, where the kinetic energy te
cannot be neglected. As one can see from the differen
equation, the characteristic length associated with the st
ture near the turning point is of order (\2/2mF)1/3, where
F5u¹W Vu is the force acting on a particle at the turning poin
This length is the same as that which enters the Airy funct
solution for the wave function of a particle in a linear-ram
potential. Thus if the dependence of the wave function
small in directions perpendicular to¹W V, the GP equation in
2126 © 1997 The American Physical Society
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55 2127ZERO-TEMPERATURE PROPERTIES OF A TRAPPED . . .
the vicinity of the classical turning point reduces to that fo
linear-ramp potential@5#. We therefore solve the nonlinea
GP equation for a linear-ramp potential. When the kine
energy is included, the wave function acquires a tail a
extends smoothly beyond the classical turning point.
shall consider the effect of this tail on the momentum dis
bution.

A. The linear-ramp potential

For a linear-ramp potential the GP equation is

F2
\2

2m

d2

dx2
1Fx1

4p\2a

m
uc~x!u2Gc~x!5mc~x!, ~2!

where the coordinatex measures distances in the direction
2¹W V, and the origin is chosen to be at the classical turn
point.

After introducing a scaled length variabley5x/d where
d is given by\2/2md25Fd, or d5(\2/2mF)1/3 and a scaled
wave function given byC5c/b whereb25Fmd/4p\2a or
b25(2Fm/\2)2/3/8pa, we obtain

C95yC1C3, ~3!

where the prime denotes differentiation with respect toy.
The corresponding Thomas-Fermi approximation is

C5A2y for y<0, C50 for y.0. ~4!

Note that the derivative of the TF wave function diverges
y→02, as in the general case.

Before we discuss the numerical solution of Eq.~3! we
consider the behavior foruyu@1. Fory@1 we may linearize
Eq. ~3! and obtain by neglecting the cubic term the asym
totic solution

C.
C

y1/4
e22y3/2/3, ~5!

which is just the asymptotic behavior of the Airy functio
Fory!21 the TF solutionC.A2y is approximately valid.
In order to determine the leading correction to this, we wr
C5C01C1 and linearize Eq.~3!, thereby finding

2C191yC113C0
2C15C09 . ~6!

UsingC0
252y andC0951/4yA2y we arrive at

C1.2
1

8y2A2y
, ~7!

where the second derivative ofC1 has been neglected, sinc
it contributes to terms of higher order in 1/y. The asymptotic
solution is thus

C5A2yS 11
1

8y3D . ~8!

The numerical solution is shown in Fig. 1, where we a
show the asymptotic behavior for largeuyu. From the numeri-
c
d
e
-

f
g

s

-

e

cal result we find that the constantC entering Eq.~5! is
approximately equal to 0.3971.

Let us now calculate the kinetic energy associated w
this solution. One question that immediately comes up
which operator one should use to do this. Two possibilit
are (\2/2m)*d3r u¹W cu2 and 2(\2/2m)*d3rc*¹2c, and
provided the wave function vanishes or has zero gradien
the boundary of the volume over which the integration
performed, the two expressions will lead to identical resu
However, for the ramp potential the product of the wa
function and its gradient tends to a constant for large ne
tive values ofy. This apparent difficulty is removed by rec
ognizing that, in realistic physical situations, the potent
will not be a linear ramp in the whole of space, and theref
one has to match the solution for the linear ramp to the w
function for some other more general potential, for exam
that for a harmonic oscillator in the problem of experimen
interest. The answer for the total kinetic energy will not d
pend on the form of the operator used, provided t
c*¹c vanishes rapidly enough at large distances, but h
one assigns the kinetic energy to various parts of space
depend on the choice of operator. This reflects the fact
the kinetic energy density operator is not uniquely define

We now evaluate the contribution to the kinetic ener
for the wave function for the linear ramp, and for definit
ness we shall write this as

^p2&
2m

52
\2

2mE d3rc*¹2c. ~9!

Let us first use the Thomas-Fermi wave function~4! for the
calculation of the kinetic energy. We expect this to be va
in the regionx!2d. Because of the square-root behavior
the wave function~4! the integration must be cut off at
distancel ~of orderd) from the turning point. In evaluating
the mean value of the square of the momentum,p2, using the
wave function~4!, we introduce a lower cutoff atx52L and
integrate from2L to x52 l ,

^p2&52\2
*2L

2 l dxcc9

*2L
2 l dxc2 .

\2

2L2
ln
L

d
1OS \2

L2D . ~10!

The term of order\2/L2 may be evaluated from the numer
cal solution to Eq.~3! which we show in Fig. 1. The mea
value of the square of the momentum is obtained from

FIG. 1. The numerical solution for the linear-ramp potent
~full line! together with the various asymptotic solutions.
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^p2&52\2
*2L

` dxcc9

*2L
` dxc2 . ~11!

In Fig. 2 we plot the dependence of^p2&L2/\2 on ln(L/d).
For large values of ln(L/d) the dependence is fitted by th

linear function1
2ln(L/d)20.28725 1

2 ln(L/1.776d).
We conclude that one obtains the correct asymptotic

havior of the kinetic energy, if one cuts off the integration
the Thomas-Fermi approach at

l51.776d, ~12!

where we have restored the length scale introduced ab
Eq. ~3!. As we shall demonstrate below, the same effect
cutoff may be used for calculating the kinetic energy in mo
general situations.

Note that whenL is slightly less thand the contribution to
^p2& exhibited in Fig. 2 turns negative, the wave functi
and its second derivative having the same sign over mos
the region of integration. This is not a problem, since
total kinetic energy for a physically acceptable wave fun
tion will be positive. Here, however, we are interested o
in the region of large lnL in order to determine the effectiv
cutoff lengthl .

B. The isotropic harmonic oscillator

We now turn to the system of physical interest, a cloud
atoms which is trapped in a three-dimensional harmonic
cillator potential. For simplicity, we first consider the isotr
pic case, where the potential isV(r )5mv2r 2/2, leaving the
anisotropic case to Sec. II C. The GP equation for the gro
state wave function is

F2
\2

2mr2
d

dr S r 2 ddr D1
1

2
mv2r 21

4p\2a

m
uc~r !u2Gc~r !

5mc~r !. ~13!

By the substitutionx5rc we obtain

2
\2

2m

d2x

dr2
1
1

2
mv2~r 22R2!x~r !1

4p\2a

mr2
ux~r !u2x~r !

50, ~14!

FIG. 2. The figure shows the dependence of^p2&L2/\2 on
ln(L/d). For large values of ln(L/d) the dependence is linear an
given approximately by12ln(L/1.776d).
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wherem5mv2R2/2. The TF solution is

xTF5
mvrAR22r 2

A8pa\2
. ~15!

By approximatingr 22R2.2R(r2R) and replacingr by
R in the interaction term we arrive at an equation of the fo
~3!. The characteristic length scaled is obtained by equating
the energy\2/2md2 to the forcemv2R times the distance
d, resulting ind35\2/2m2v2R or

d

R
5
1

2 S \v

m D 2/3, ~16!

where we have used the fact thatm5mv2R2/2.
As before, we may work out the correction to the T

wave function forr much less thanR . Writing x5x01x1
we obtain to leading order inr /R that the corresponding
value ofc(5x/r ) is reduced by the factor

12
3\2

2m2v2R4

at the origin, relative to the value of the TF wave function f
the same value ofm.

For the TF wave function the mean-square momentum

^p2&52\2
*0
R2 ldrxx9

*0
Rdrx2 .

\2

R2 S 154 ln
2R

l
2
5

2D , ~17!

where we have introduced a cutoff atR2 l as in one dimen-
sion. In Fig. 3 we exhibit the result of numerically integra
ing Eq.~14! and calculatinĝp2& by integrating from zero to
infinity. These numerical results are compared with t
simple Thomas-Fermi formula~17! with l given by the result
~12! obtained from the linear ramp in one dimension, wh
the characteristic lengthd is given by Eq.~16!. It is seen that
the simple formula agrees well with the numerical result
ln(R/d) greater than 3, the relative difference being less th
2.5%. For the87Rb experiment this corresponds to the nu
ber of atoms exceeding 33105. Using a somewhat differen
approach Dalfovoet al. @5# have independently obtained
result similar to formula~17!.

FIG. 3. A comparison of analytical and numerical results for t
kinetic energy of the isotropic three-dimensional oscillator.
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C. The anisotropic harmonic oscillator

In the experiments reported in@1# the cloud of87Rb atoms
was magnetically confined in a TOP trap, an effective thr
dimensional harmonic oscillator potential with angular fr
quenciesvz

0 in the axial direction~taken to be thez axis! and
v'
05vz

0/A8 in the transverse direction~the x-y plane!. The
corresponding characteristic lengths are denoted
az5(\/mvz)

1/2 anda'5(\/mv')
1/2,m being the mass of a

87Rb-atom.
In the following we perform an analytical calculation o

the mean kinetic energy for such a potential, in terms of
effective cutoff lengthl derived in Sec. II A. The kinetic
energy is determined as a function of the parameterl speci-
fying the ratio between the axial and the transverse oscill
frequencies according to

vz5lv' . ~18!

Finally, we evaluate our expression for the kinetic energy
the casel5A8 appropriate to@1# and compare our result
with the numerical calculations performed in@4#.

In cylindrical coordinates the potentialV(r,z) is thus
given by

V5
1

2
mv'

2 ~r21l2z2!. ~19!

The corresponding Thomas-Fermi wave function is

c5AAR22r22l2z2 ~20!

with A5(8pa'
4a)1/2, while R is related to the chemical po

tentialm by m5mR2v'
2 /2. Using the wave function~20! we

obtain

2c¹2c5A2
~21l2!R22~11l2!r222l2z2

R22r22l2z2
. ~21!

In evaluating the total kinetic energy we first integrate E
~21! over r from 0 to r0(z)2 l (z), with r0(z)
5AR22l2z2, while l (z) is thez dependent effective cutof
length. Thez dependence ofl (z) arises from two sources
First, in the direction perpendicular to the surface the cu
length is inversely proportional to the cube root of the ma
nitude of the potential gradient,u¹V(rW)u, evaluated at the
surfacer5r0(z) and hence to@11(l42l2)(z/R)2#21/6.
Second, since we integrate overr, the effective cutoff is
increased by the inverse of the cosine of the angle betw
the r axis and the direction of the potential gradient at t
surface. Together, these two effects imply that

l ~z!5 l ~0!
@12~l221!l2~z/R!2#1/3

@12l2~z/R!2#1/2
. ~22!

In calculating the kinetic energy we first integrate overr.
The ensuingz integration of lnl(z) involves elementary inte
grals. The final result for the mean kinetic energy per part
may be written as

K p22m L 5
\2

2mR2
F~l,N,a,a'!, ~23!
-
-

y

e

or

r

.

ff
-

en

e

where

F5
5

4
~l212!ln

2R

l ~0!l2/3

2
5

18S 6tan21Al221

Al221
12l211D , l.1, ~24!

for oblate traps and

F5
5

4
~l212!ln

2R

l ~0!l2/3

2
5

18S 3

A12l2
ln
11A12l2

12A12l2
12l211D , l,1, ~25!

for prolate traps. For an isotropic trap these results reduc
the one given in the previous subsection. The integrati
leading to the results~23!–~25! can alternatively be per
formed by scaling the coordinates associated with the p
cipal axes of the ellipsoid so that the region of integrati
becomes the unit sphere.

In evaluating Eqs.~23!–~25! it is convenient to relateR
andd to the number of atomsN, the scattering lengtha, and
the oscillator parametersa' andl according to

R

a'

5S 15Nla

a'
D 1/5 ~26!

and

R

d
521/3S 15Nla

a'
D 4/15. ~27!

In Fig. 4 we show our result for the kinetic energy as
function of N for the parameter valuesl5A8 and
a/a'54.3331023 appropriate for the experiment of@1#, to-
gether with the results of the numerical calculations of@4#.
For the case ofN5104, our approximate expression for th

FIG. 4. The kinetic energy per particle, Eq.~23!, in units of
\v' as a function of the particle numberN for parameters appro
priate to the87Rb experiment:l5A8 anda/a'54.3331023. The
data points are the results of the numerical integrations of Ref.@4#.
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kinetic energy per particle gives 0.38\v' which compares
favorably with the result of the numerical calculation
0.45\v' .

III. THE ENERGY OF A VORTEX

We now calculate the energy of a single vortex in a Bo
condensed cloud. This quantity is important for estimat
the lowest angular velocity for which it is favorable for
vortex to enter the cloud. In a uniform medium, the ene
per unit length of a vortex with a single quantum of circu
tion 2p\/m lying along the axis of a cylindrical container o
radiusb is given by

e5pn
\2

m
ln
1.464b

j
, ~28!

where j is the coherence length. This result was first o
tained by Ginzburg and Pitaevskii@6#. The coherence length
j is defined in the usual manner by

\2

2mj2
5
4pa\2n

m
, ~29!

wheren5ucu2 is the density of the uniform medium. For
large cloud of atoms of radiusR this implies that the coher
ence length at the center is given by

j

R
5

\v

2m
~30!

since the chemical potential is related to the central den
n(0) by m54p\2an(0)/m.

If the characteristic dimensions of the cloud are lar
compared with the coherence length at the center of
cloud, we may determine the energy in a simple way
using the result~28! to calculate the energy out to a radiu
r1 satisfying j!r1!R and then calculate the energy
larger distances in a purely hydrodynamic manner. Firs
all, let us consider the two-dimensional problem, in whi
we neglect thez dependence. The energy per unit length
then given by

e5pn0
\2

m
ln
1.464r1

j0
1
1

2Er1

R

mn~r!v2~r!2prdr.

~31!

Heren0 is the particle density forr→0 in the absence o
a vortex, whilej0 is the coherence length evaluated for th
density. Since the velocityv is given in magnitude by
\/mr and the density in a harmonic trap varies
(12r2/R2) in the Thomas-Fermi approximation, one find

e5pn0
\2

m
ln
1.464r1

j0
1pn0

\2

mE
r1

R rdr

r2 S 12
r2

R2D
.pn0

\2

m S ln1.464Rj0
2
1

2D , ~32!

where the integral has been evaluated forr1!R, with terms
of higher order inr1 /R being neglected. The logarithmi
term is the result for a medium of uniform density, while t
,

-
g

y

-

ty

e
e
y

f

s

t

21/2 reflects the lowering of the kinetic energy due to t
reduction of particle density caused by the presence of
trapping potential. Thus the energy per unit length is giv
by an expression similar to Eq.~28! but with a different
numerical constant 1.464/e1/250.888,

e5pn0
\2

m
ln
0.888R

j0
. ~33!

The angular momentumL per unit length is just\ times
the total number of particles per unit length. ForR@j the
latter may be evaluated in the Thomas-Fermi approximat
and one finds

L5n0\E
0

RS 12
r2

R2D2prdr5
1

2
n0pR

2\. ~34!

The critical angular velocityVc1 for a vortex to be energeti
cally favorable is given by the conditione2Vc1L50, and
therefore, by combining Eqs.~33! and ~34!,

Vc152
\

mR2
ln
0.888R

j0
. ~35!

Let us now consider the three-dimensional problem. If
semiaxis,Z, of the cloud in thez direction is much greate
than the coherence length, one may estimate the energ
the cloud by adding the energy of horizontal slices of t
cloud. The total energy is then given by Eq.~33!, integrated
over the vertical extent of the cloud,

E5
p\2

m E
2Z

Z

dzn0~z!ln
0.888R~z!

j~z!
. ~36!

For a harmonic trap n0(z)5n00(12z2/Z2), while
R(z)5R(12z2/Z2)1/2 and j(z)5j(z50)@n00/n0(z)#

1/2.
The energy is then given simply as

E5
p\2n00
m E

2Z

Z

dzS 12
z2

Z2D lnF0.888Rj0
S 12

z2

Z2D G .
~37!

Using the fact that*0
1dy(12y2)ln(12y2)5(12ln2210)/9

we obtain the final result

E5
4pn00
3

\2

m
Z ln

0.671R

j0
, ~38!

wherej05j~z50!.
The total angular momentum is

L5n00\E S 12
r2

R2 2
z2

Z2Ddz2prdr5
8p

15
n00R

2Z\

~39!

and therefore the lower critical angular velocity is given b

Vc15
5

2

\

mR2
ln
0.671R

j0
. ~40!

In Fig. 5 we show the results for the critical angular v
locity for the parametersl5A8 anda/a'54.3331023 ap-
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propriate for the experiment of Ref.@1#, together with the
results of the numerical integrations of the GP equation@4#.
For N5104 we find that the critical angular velocity i
0.323v' , which agrees extremely well with the result of th
numerical calculations.

IV. DISCUSSION

In this paper we have derived analytical expressions
the kinetic energy and lower critical angular velocity f

FIG. 5. The critical angular velocity, Eq.~40!, in units ofv' as
a function of the particle numberN for parameters appropriate fo
the 87Rb experiment:l5A8 and a/a'54.3331023. Again, the
data points are taken from the numerical calculations of Ref.@4#.
an
r

large clouds of Bose-condensed atoms. For experimen
realizable conditions, our results are a good approximatio
those obtained by solving the Gross-Pitaevskii equation
merically. Our methods for calculating the kinetic ener
may readily be applied to more general traps, such as
monic traps with no axis of symmetry.

We remark that our starting point, the Gross-Pitaevs
equation, may be used with confidence since, for the co
tions in experiments to date, depletion of the condensate
to particle interactions is extremely small. This may easily
seen from the fact that for the uniform Bose gas, t
fractional depletion of the zero momentum state
(8/3p1/2)(n0a

3)1/2, which is of the order of 1%.
For the conditions in the experiment@1# the agreement

between the analytical results and the results of numer
integrations is even better for the critical angular veloc
than it is for the kinetic energy. This is a consequence of
fact that the largest contribution to the kinetic energy com
from motion in the direction in which the cloud is thinnes
thez direction, for which our semiclassical wave function
less accurate than for the motion in the other directio
which dominates the result for the critical angular velocit
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