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Zero-temperature properties of a trapped Bose-condensed gas:
Beyond the Thomas-Fermi approximation
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We consider the leading corrections to the Thomas-Fermi approach to the description of the properties of a
magnetically trapped, Bose-condensed cloud of atoms. Simple analytical expressions are derived for the kinetic
energy in terms of an effective cutoff length, which we calculate numerically by considering the one-
dimensional problem for a linear-ramp potential. We also determine the lowest angular velocity at which it is
energetically favorable for a vortex to enter the cloud. For large clouds, our results are in excellent agreement
with available numerical calculationsS1050-29477)07003-0
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[. INTRODUCTION form of the wave function at the outer edge of a cloud of

atoms. The second situation where the role of the kinetic

The realization by Andersoet al.[1] of Bose condensa- energy is crucial is in determining the structure of a vortex
tion in magnetically trapped’Rb gas has generated consid- line in a cloud of atoms. In both cases the basic philosophy
erable excitement and stimulated interest in the ground-staigill be the same: the Thomas-Fermi approximation is good
properties of the dilute Bose gas. For a system so dilute thatxcept in a limited volume of space where the kinetic energy
depletion of the condensate can be neglected, the wave fungperator is important. In the first case this region is close to
tion, (r), of the condensed state in an external potentiathe classical turning points at the edge of the cloud, while in

V(F) is given by the Gross-PitaevskiGP) equation[2] the latter case it is the region near the vortex line. Our ap-
proach is to graft solutions of the GP equation onto those of

h? ) . 4mhla . ol - - the TF equation, thereby enabling us to derive analytical ex-

“omV VN +— [p(I*|¢(r)=pip(r), (1) pressions for quantities of interest. These will be compared

with the results of numerical calculations for both these situ-

where 1 is the chemical potential. The effective two-body ations that have been performed by Dalfovo and Stringari
interaction is 4r%2a/m, wherea is the scattering length and [4].
m is the particle mass. It was shown recently by Baym and The plan of the paper is as follows. In Sec. Il we consider
Pethick [3] that the ground-state properties of the trappednonrotating clouds, and show that the structure of the wave
Bose gas with repulsive interactions may be described quittunction at the outer edge is given by the solution of the GP
accurately for a sufficiently large number of particles by aequation for motion in a linear potential. We then apply this
Thomas-Ferm{TF) approach, in which the kinetic energy is result to calculate the kinetic energy of clouds of atoms in an
neglected. The density is then given by anisotropic harmonic oscillator potential. In Sec. Il we dis-
cuss properties of vortex lines, and derive expressions for the
- 1o m - - critical angular velocity at which it becomes energetically
(D=2 [u=V(N)]  for V(H=p. favorable for a vortex line to enter a cloud.

This approach does not, however, take properly into ac-
count the decay of the wave function near the outer edge of II. NONROTATING CLOUDS
the cloud, and the Thomas-Fermi wave function conse-
quently leads to unphysical behavior for some properties,

most notably the kinetic energy. This is easily seen since at’ : . X S
the outer edge the wave function varies as the square root ar classical tuming points, where the kinetic energy term
the distance from the turning point, and therefore its derivapa:';gz:ethneegfgggfeﬁstig?eenCf‘hn assii;;otr; q t\r/]v?chdltggrg?rﬂil-
tive varies inversely'as Fhe square root of the distanpe. As qre nea} the tuming point is gf ordeti2mF) 2. where
consequence, the kinetic energy diverges logarithmically a S _ i e )
the end point of the integration approaches the turning point- =|VV/| is the force acting on a particle at the turning point.
In th|s paper we ShOW hOW to eva|uate the |eading Correc]—h|s Iength IS the same as that Wh|Ch enters the All‘y fUnCt|On
tions to the Thomas-Fermi approach for large drops. wesolution for the wave function of a particle in a linear-ramp
shall consider two different cases. The first is that of nonroPotential. Thus if the dependence of the wave function is

tating drops, where the kinetic energy is all important for thesmall in directions perpendicular 0V, the GP equation in

The basic idea of our approach is that for large drops, the
ave function is close to the Thomas-Fermi result, except
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the vicinity of the classical turning point reduces to that for a 25 T T T T —T
linear-ramp potentia[S]. We therefore solve the nonlinear N““‘fﬂgﬁiﬁ‘ﬁﬁ _____
GP equation for a linear-ramp potential. When the kinetic 2 TF -+ leading correction

Airy asymptote, Eq.(5)

energy is included, the wave function acquires a tail and
extends smoothly beyond the classical turning point. We 15 1
shall consider the effect of this tail on the momentum distri- ¥
bution. 1F _
A. The linear-ramp potential 051 » T
For a linear-ramp potential the GP equation is 0 L ] L
-5 -4 -3 2 1 0 1 2 3 4

A2 d? 47h2a 2
“om gl T T [0 [0 = pik(x), ()

FIG. 1. The numerical solution for the linear-ramp potential
(full line) together with the various asymptotic solutions.
where the coordinate measures distances in the direction of
—~VV, and the origin is chosen to be at the classical turningcal result we find that the constaft entering Eq.(5) is
point. approximately equal to 0.3971.

After introducing a scaled length variabje=x/ 6 where Let us now calculate the kinetic energy associated with
5is given by#2/2mé&?=F &, or 5= (h%/2mF)Y®and a scaled this solution. One question that immediately comes up is
wave function given by¥ = /b whereb?=Fmé/4mh2a or  which operator one should use to do this. Two possibilities

b®=(2Fm/#%)*"/8ra, we obtain are (:22m)[d3r|Vy|? and —(A%2m)[d% ¢* V24, and
, 3 provided the wave function vanishes or has zero gradient on
WI=yw 4w, @ the boundary of the volume over which the integration is

performed, the two expressions will lead to identical results.
However, for the ramp potential the product of the wave
function and its gradient tends to a constant for large nega-
tive values ofy. This apparent difficulty is removed by rec-
ognizing that, in realistic physical situations, the potential
will not be a linear ramp in the whole of space, and therefore

Note that the derivative of the TF wave function diverges aS he has to match the solution for the linear ramo to the wave
y—07, as in the general case. P

) . . function for some other more general potential, for example
Before we discuss the numerical solution of E&) we 9 P P

i ) . ' that for a harmonic oscillator in the problem of experimental
consider the behavior fdy|>1. Fory>1 we may linearize . e :
) . . interest. The answer for the total kinetic energy will not de-
Eq. (3) and obtain by neglecting the cubic term the asymp- d he f f th d ided th
totic solution pend on the form of the operator used, provided that
* Vi vanishes rapidly enough at large distances, but how
one assigns the kinetic energy to various parts of space will
V=—pe (5)  depend on the choice of operator. This reflects the fact that
y the kinetic energy density operator is not uniquely defined.
We now evaluate the contribution to the kinetic energy
for the wave function for the linear ramp, and for definite-
ness we shall write this as

where the prime denotes differentiation with respectyto
The corresponding Thomas-Fermi approximation is

V=,-y for y<0, ¥=0 fory>0. 4

- 2y3/2/3
1

which is just the asymptotic behavior of the Airy function.
Fory< —1 the TF solution¥ = \/—y is approximately valid.
In order to determine the leading correction to this, we write
v =v,+W¥,; and linearize Eq(3), thereby finding (p?) %2
P — 3p,*x 2

— W +yW + 3PV, =T, (6)
Let us first use the Thomas-Fermi wave functidh for the
calculation of the kinetic energy. We expect this to be valid
in the regionx<< — 6. Because of the square-root behavior of
_ 1 7) the wave function(4) the integration must be cut off at a

8y2\/-y’ distance (of order §) from the turning point. In evaluating

the mean value of the square of the momentpfusing the

where the second derivative ¥, has been neglected, since wave function(4), we introduce a lower cutoff at=—L and
it contributes to terms of higher order inyl/The asymptotic  integrate from—L to x=—1,

solution is thus [~'d ” 2
2 _ _ 327 "L Xy ~h_ E
(PY) =" gg? ~ 225 O

Using W3=—y and¥j=1/4y\/—y we arrive at

\Iflz

h2
F) . (10

w=-y

1 8y3 : (8
The term of Ol’d(i‘f'LZ/L2 may be evaluated from the numeri-

The numerical solution is shown in Fig. 1, where we alsocal solution to Eq(3) which we show in Fig. 1. The mean
show the asymptotic behavior for largd. From the numeri- value of the square of the momentum is obtained from
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FIG. 2. The figure shows the dependence(pf)L?/%2 on FIG. 3. A comparison of analytical and numerical results for the

In(L/8). For large values of In(d) the dependence is linear and kinetic energy of the isotropic three-dimensional oscillator.
given approximately byﬁln(L/l.776§).

where u=mw?R?/2. The TF solution is
JEdxyy”
2\ _ _ 32
(p%)y=—" [Zdxy? (1)  mor JRZ—r?
XTF J8mahn?

(15
In Fig. 2 we plot the dependence ¢62)L%/%2 on In(L/d).
For large v_alules of Ingd) the d?pendence is fitted by the By approximatingr?— R2~2R(r —R) and replacingr by

linear functionzn(L/6)—0.2872=3In(L/1.776). R in the interaction term we arrive at an equation of the form

We conclude that one obtains the correct asymptotic bes). The characteristic length scadeis obtained by equating
havior of the kinetic energy, if one cuts off the integration in the energyn2/2ms? to the forcemw?R times the distance

the Thomas-Fermi approach at 8, resulting ins®=#2/2m2w?R or
[=1.7765, (12 S 1/hw\23
_ =3 —) , (16)
where we have restored the length scale introduced above R 2\ u

Eq. (3). As we shall demonstrate below, the same effective

cutoff may be used for calculating the kinetic energy in morewhere we have used the fact that mw?R?/2.

general situations. As before, we may work out the correction to the TF
Note that wherl is slightly less thars the contributionto ~ wave function forr much less thamR . Writing x = xo+ x1

(p?) exhibited in Fig. 2 turns negative, the wave functionwe obtain to leading order in/R that the corresponding

and its second derivative having the same sign over most ofalue of (= x/r) is reduced by the factor

the region of integration. This is not a problem, since the

total kinetic energy for a physically acceptable wave func- 3hr2

tion will be positive. Here, however, we are interested only 1= 52a?Re

in the region of large Ib in order to determine the effective

cutoff lengthl. at the origin, relative to the value of the TF wave function for

_ _ _ _ the same value of..
B. The isotropic harmonic oscillator For the TF wave function the mean-square momentum is
We now turn to the system of physical interest, a cloud of

atoms which is trapped in a three-dimensional harmonic os- o _
cillator potential. For simplicity, we first consider the isotro- (p)= f('?dr)(z T R?
pic case, where the potential \gr) =mw?r?/2, leaving the
anisotropic case to Sec. Il C. The GP equation for the grounnere we have introduced a cutoffRt-1 as in one dimen-
state wave function is sion. In Fig. 3 we exhibit the result of numerically integrat-

¥ dryx” #2(15 2R 5
—ﬁz Zh’]l——z s (17)

22 d d 1 Arhla ing Eq.(14) and calculating p?) by integrating from zero to
~5m2 —( r2 |+ s mo?r?+ ()] |(r) infinity. These numerical results are compared with the
2mredri dr/ 2 m simple Thomas-Fermi formuld.7) with | given by the result
=ui(r). (13  (12) obtained from the linear ramp in one dimension, while
the characteristic lengthi is given by Eq(16). It is seen that
By the substitutiony=r y we obtain the simple formula agrees well with the numerical result for
In(R/6) greater than 3, the relative difference being less than
2 d?y 1 5 o Amhla ) 2.5%. For the®’Rb experiment this corresponds to the num-
“omarz T aMme (r =ROx(r)+ W—|X(f)| x(r) ber of atoms exceeding>310°. Using a somewhat different

approach Dalfovcet al. [5] have independently obtained a
=0, (14  result similar to formulg17).
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C. The anisotropic harmonic oscillator

0.8 1 I I I

In the experiments reported fit] the cloud of®’Rb atoms +
was magnetically confined in a TOP trap, an effective three- 0.7 .
dimensional harmonic oscillator potential with angular fre- +
quencie&og in the axial directior(taken to be the axis) and 0.6 - 7]
w?= w28 in the transverse directiofthe x-y plane. The os L * i
corresponding characteristic lengths are denoted by 3 +
a,=(himw,)?anda, = (A/mw,)*? mbeing the massofa < o4} + g
8/Rb-atom. &

In the following we perform an analytical calculation of 031 B
the mean kinetic energy for such a potential, in terms of the 0a |
effective cutoff lengthl derived in Sec. Il A. The kinetic
energy is determined as a function of the paramegtspeci- o1l .
fying the ratio between the axial and the transverse oscillator . . 1 .
frequencies according to 0 5000 oy p— 20000

w,=\w, . (19

. . o FIG. 4. The kinetic energy per particle, E@3), in units of
Finally, we evaluate our expression for the kinetic energy for; , 4 a function of the particle numbar for parameters appro-

the case = /8 appropriate tq1] and compare our results priate to the®’Rb experiment\ = \/8 anda/a, =4.33x1073. The

with the numerical calculations performed [ih]. data points are the results of the numerical integrations of [Rgf.
In cylindrical coordinates the potentidl(p,z) is thus
given by where
v=3mw2( 2+ 0\22%) (19 F=E()\2+2)In 2R
2 P ' 4 IO
The corresponding Thomas-Fermi wave function is 5 tan }\2—1
~ 18 6————+2\°+1|, A>1, (29
l//:A /R2_p2_)\222 (20) \/)\ -1

with A= (8mafa)/?, while R is related to the chemical po- for oblate traps and

tential u by u=m szf/Z. Using the wave functiof20) we

' F= 2 (24 2)n 1
obtain _Z( )HW
(2+N?)R?=(1+\?)p?—2\?Z* 3
V2= A2 5 3 1+V1-x
YVEP=A S 21) > In FoN2+1], A<l (25
18] J1-2%2 1-1-\?

In evaluating the total kinetic energy we first integrate Eq. i i
21) over p from 0 to po(2)—1(2), with po(2) for prolate traps. For an isotropic trap these results reduce to

= JRZ—\%Z, while 1(2) is thez dependent effective cutoff the one given in the previous subsection. _The integrations
length. Thez dependence off(z) arises from two sources. leading to the results23)~(25) can alternatively be per-

First, in the direction perpendicular to the surface the cutofformed by scaling the coordinates associated with the prin-

length is inversely proportional to the cube root of the mag_C|paI axes of the ellipsoid so that the region of integration

- becomes the unit sphere.
nitude of the potential gradientVV(r)|, evaluated at the :

surface p=pq(z) and hence td 1-+(\*—x?)(2/R)?] ¥ In evaluating Eqs(23)—(25) it is convenient to relat®
=po ]

. ) \ * andé to the number of atomd, the scattering length, and
Second, since we integrate ovpr the effective cutoff is

) ; ; the oscillator parametews, and\ according to
increased by the inverse of the cosine of the angle between P * g

the p axis and the direction of the potential gradient at the R 15NNa\ L
surface. Together, these two effects imply that a | Ta (26)
(2)=10 [1-(\2=DAX(ZR)?R by  and
(Z)_ ( ) [1_)\2(Z/R)2]1/2 ( )
R, 15N a| e
In calculating the kinetic energy we first integrate oyer 522 a, (27)

The ensuing integration of Ih(2) involves elementary inte-

grals. The final result for the mean kinetic energy per particldn Fig. 4 we show our result for the kinetic energy as a
may be written as function of N for the parameter values\= J8 and
ala, =4.33x 10 appropriate for the experiment fif], to-
gether with the results of the numerical calculationd 43f
For the case oN=10* our approximate expression for the

p*\ _ _#°
<ﬁ>:mF()\,N,a,aL), (23
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kinetic energy per particle gives 088, which compares —1/2 reflects the lowering of the kinetic energy due to the
favorably with the result of the numerical calculations, reduction of particle density caused by the presence of the
045w, . trapping potential. Thus the energy per unit length is given
by an expression similar to Eq28) but with a different
IIl. THE ENERGY OF A VORTEX numerical constant 1.464¥2=0.888,

We now calculate the energy of a single vortex in a Bose- #2 0.88R
condensed cloud. This quantity is important for estimating €= W”OE'” & (33
the lowest angular velocity for which it is favorable for a
vortex to enter the cloud. In a uniform medium, the energy The angular momentuni per unit length is just times
per unit length of a vortex with a single quantum of circula-the total number of particles per unit length. FR® ¢ the
tion 27rA/m lying along the axis of a cylindrical container of latter may be evaluated in the Thomas-Fermi approximation,
radiusb is given by and one finds

h? 1.465 R p? 1 )
e=77nmln F (28 £=n0ﬁJO 1—¥ 27Tpdp=§n07TR fi. (39

where £ is the coherence length. This result was first ob-The critical angular velocitf), for a vortex to be energeti-
tained by Ginzburg and Pitaevskb]. The coherence length cally favorable is given by the conditioa—Q.,£=0, and

¢ is defined in the usual manner by therefore, by combining Eq$33) and (34),
72 _ 47ah?n 29 A 0.88R
W_ m (29 chz2mln & (35

wheren=y|? is the density of the uniform medium. For a | et us now consider the three-dimensional problem. If the
large cloud of atoms of radiuR this implies that the coher-  semiaxis,z, of the cloud in thez direction is much greater
ence length at the center is given by than the coherence length, one may estimate the energy of
the cloud by adding the energy of horizontal slices of the
éz ﬁ_“’ (30) cloud. The total energy is then given by E§3), integrated
R 2u over the vertical extent of the cloud,

since the chemical potential is related to the central density Th? [z 0.88R(2)

n(0) by u=4=#2an(0)/m. E= TJ' dZFb(Z)mw- (36)
If the characteristic dimensions of the cloud are large z

compared with the coherence length at the center of the,. 5  harmonic trap no(z) =neo(1—22/22), while

cloud, we may determine the energy in a simple way byR(Z)zR(l_zz/Zz)llz and £(2) = &(z=0)[ngy/No(2) ]2

using the result28) to calculate the energy out to a radius The energy is then given simply as

py satisfying £<p;<<R and then calculate the energy at

larger distances in a purely hydrodynamic manner. First of whNgg (2 72\ [0.88R 72
all, let us consider the two-dimensional problem, in which E= f dz| 1- 72 In e 1->2
we neglect the dependence. The energy per unit length is z 0 37
then given by
) Using the fact thaf $dy(1—y?)In(1—y?)=(12In2—10)/9
h* 1464, 1 (R g )
e=mNng—In : + Ef mn(p)v2(p)2mpdp. we obtain the final result
m 0 P1
(31 e 47Tn00h22 | 0.67R a8

Hereng is the particle density fop— 0 in the absence of
a vortex, while¢, is the coherence length evaluated for that\yhere )= g(z=0).
density. Since the velocity is given in magnitude by The total angular momentum is
hlmp and the density in a harmonic trap varies as

(1—p?/R?) in the Thomas-Fermi approximation, one finds p? 72 8
£=nooﬁf - 72 d2277pdp=EnooRZZﬁ
ﬁzl 1.464)1+ h2 (R pdp( pz) (39
€=mNg—In————=+anyg— -
"mT g Tml, et R N .
and therefore the lower critical angular velocity is given by
h? | 1.46R 1 -
=mo | I — =3/, (32 5 4 0.67R

QCl:E mmg—o (40)

where the integral has been evaluateddp& R, with terms
of higher order inp,/R being neglected. The logarithmic In Fig. 5 we show the results for the critical angular ve-
term is the result for a medium of uniform density, while the locity for the parameters = V8 anda/a, =4.33x 102 ap-
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FIG. 5. The critical angular velocity, E§40), in units ofw, as
a function of the particle numbeX for parameters appropriate for
the 8Rb experimentA =8 anda/a, =4.33x 10" 3. Again, the
data points are taken from the numerical calculations of Ref.

propriate for the experiment of Reffl], together with the
results of the numerical integrations of the GP equafin
For N=10* we find that the critical angular velocity is

large clouds of Bose-condensed atoms. For experimentally
realizable conditions, our results are a good approximation to
those obtained by solving the Gross-Pitaevskii equation nu-
merically. Our methods for calculating the kinetic energy
may readily be applied to more general traps, such as har-
monic traps with no axis of symmetry.

We remark that our starting point, the Gross-Pitaevskii
equation, may be used with confidence since, for the condi-
tions in experiments to date, depletion of the condensate due
to particle interactions is extremely small. This may easily be
seen from the fact that for the uniform Bose gas, the
fractional depletion of the zero momentum state is
(8/3m?) (nya®) Y2, which is of the order of 1%.

For the conditions in the experimefit] the agreement
between the analytical results and the results of numerical
integrations is even better for the critical angular velocity
than it is for the kinetic energy. This is a consequence of the
fact that the largest contribution to the kinetic energy comes
from motion in the direction in which the cloud is thinnest,
the z direction, for which our semiclassical wave function is
less accurate than for the motion in the other directions

0.323w, , which agrees extremely well with the result of the \hich dominates the result for the critical angular velocity.

numerical calculations.

IV. DISCUSSION
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