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Phase-space dynamics of Bose condensates: Interference versus interaction
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We study theoretically the macroscopic interference of two independent Bose condensates released from a
double potential trap. The observation of fringes could serve as a test for the paradigm of broken gauge
symmetry. By numerical solution of the nonlinear Salinger equation in three dimensions, the consecutive
stages of expansion, overlap, and interference are investigated in order to facilitate the design of future
experiments. The phase-space dynamics of the condensates is analyzed by means of the Wigner function. It
turns out that the distance of interference fringes grows linearly in time with a velocity inversely proportional
to the initial distance of the two condensates. The collisional reduction of the fringe visibility is estimated.
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I. INTRODUCTION although the total number of particles is altered by the mea-
surement in a definite way, its distribution among the two
In view of the recent progress in preparing Bose con-condensates becomes more and more uncdarih
densed ultracold atomic gases2], the question of interfer- More generally, the notion of spontaneously broken gauge
ence of Bose condensates is of fundamental interest. THeymmetry should be replacdd] by a suppressed decay of
interference of independent atomic sources appears to be taultitime correlation functions of the condensate modes, of
most convincing manifestation of a so-called macroscopidhe form(a'(t)a(t+ 7)). Although a vanishing decay of this
wave function Corresponding to the broken gauge SymmetryorrEIation is assumed in the thermOdynamiC limit, no reli-
in Bose-Einstein condensation. This effect has been showfble quantitative results are known up to now to determine
previously only by the Josephson interference of supercon‘IS behavior in a_flnlte system in the presence of interactions.
ducting currents. By comparison with condensed matter sygX" @nswer to this question might be obtained by the current

tems, the physics of dilute atomic gases is in much Cbse?xperiments and is of utmost importance for the envisioned

agreement with the perturbative theory of the atom-atom inUS€ Of & Bose condensate as a coherent source of atoms.
g P y We have already proposed [i] to address the question

teractions. This fact makes quantitative simulations of ex- i . .
: ! . of coherence experimentally by studying the interference of
periments possible and attractive.

The notion of broken gaude symmetrv or the existenc Fwo independent Bose condensates. Visibility of these
. f gt' ge symmetry ort ﬁ_e ste et())l ringes (“high phase stability’) requires a negligible decay
a macroscopic wave tunction, I.€., a nonvanishing ensembigt yne apove correlation function for the experimental obser-

average of the field operatdw/(x))#0, proved to be an vation timer.

extremely useful concept in describing phase transitions in A major obstacle to the experimental accessibility of the
degenerate quantum liquids. Strictly speaking, howeverringe pattern is the limited spatial resolution. For example, it
breaking of gauge invariance requires breaking of particlavas shown in4] that fringes that might have existed in a
conservation and can therefore be formulated consistentlgrevious double-trap experiment of Ketteflg would have
only in the thermodynamic limit. In view of the small atom been much narrower than the optical resolution @fi8. It is
numbers collected in atomic traps, the applicability of such gherefore one goal of this paper to develop a more detailed
concept is not immediately obvious. It seemed particularlyinsight into the fringe formation in finite physical systems.
puzzling that interference phenomena as predicted in a clag+is insight could facilitate the optimization of the experi-
sical field theory should be observed for fixed atom numbemental setup so as to achieve fringes of an observable size. It
N since a definite relative phase between independent coitdrns out that it should be possible, given the technology of
densates cannot be assumed. The incompatibility betweegurrent experiments, to achieve fringe periods larger than 10
these two views could recently be resolved by the investigaxm, provided that the decay of the correlation is sufficiently
tion of correlation function$3,4], which is the natural ap- slow. In addition, our predictions should help to discern ex-
proach since it is the correlation that is observed experimerpected fringes from possible other oscillatory density varia-
tally. Interference fringes between condensates \fiitite  tions of the atomic clouds.

particle number can be expected in single runs of the experi- Interference with finite Bose condensed ensembles is
ments even though the average over many runs does nbblding great promise for new matter wave interferome-
show fringes. An analysis of such a situation in terms ofters. Of course, matter wave interference with highly popu-
continuous measurement thedry] has shown in addition lated quantum states depends heavily on particle-particle in-
that only the distribution of the relative phase between thederactions. While such interactions, for instance, vanish for
condensates undergoes spontaneous breaking of the gauggherent light waves interfering in vacuum, they cannot be
symmetry due to the measurement. This reflects the fact thaemoved for coherent matter waves. Even though the atom-
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atom interactions in gases are weak compared to those in ake populated byN; and N, identical bosonic atoms. The

other Bose condensed systems studied up to now, they tumany-particle wave function is simply written #$;,N,). It

out to be still strong enough to change the dynamics substaiis a straightforward extension of the work|[i] to show that

tially compared to the noninteracting case. the density distribution, seen in a single run of such an ex-
In this paper we treat the interactions in the mean-fieldoeriment, is besides some unavoidable shot noise given by

approximation, neglecting finite-temperature and dissipative

effects. Propagation, overlap, and interference of two inde- Nt = N[y, 1)[>  (N=N;+Nj)

pendent Bose condensates released from two minima of an,

optically plugged magnetic trap are well described by simuWith

lations of the nonlinear Schdinger equatiofNLSE). Un- N N
like hydrodynamical similarity solutions based on the Pa(X,0)= /—lul(x,t)+ei¢’w /—zuz(x,t). 2.0
Thomas-Fermi approad8,9], the NLSE is capable of de- N N

scribing the purely wave mechanical effect of interference. . - .
The expansion of the cloud before and during the inter—Her_ed’ is an equally dl_stnbuted random phase V"?‘”ab'e that
ries only between different runs of the experiment, and

ference depends on the initial confinement and geometry of2 . : o .
the sample. For large initial separation of the condensates tH& A*:t) are solutions of the linear Scldmger equation
potential energy is completely transformed into kinetic en-With U1(X) as initial condition. In the absence of interac-

ergy before the condensates overlap. In an anisotropic codlons all statesy,(x,t) are degenerate. This many-particle
figuration, the more rapid transverse expansion of the corinterference is a truly quantum statistical effect and leads to

densate reduces the nonlinearity of the evolution quickly!TiNges between the two condensates, with the spatial phase

Most of our numerical results apply for conditions where thed€términed by the random value ¢f
interactions thus play only a minor role during the formation _ [N single-atom interference experiments, however, a

and expansion of the fringes. In this regime we found thafiNgle-atom wave function is coherently split up into two
the fringe period grows in time with a velocity inversely Parts and spatially recombined later, thereby interfering with

proportional to the distance of the two condensates. ThdSelf. The final wave function is then also described by Eq.

above situation is currently realized in the loffe trap experi-(2-D, With N;/N being replaced by the appropriate beam

ments at MIT[10] and at JILA, Boulder. splitter ratio. The d'|fference from Fhe snuapon of indepen-
The outline of the paper is as follows. In Sec. Il, the de;nt condensates is that the relative phasis only deter-

interference of two Gaussian wave packets is presented iined by the geometry of the setup and does not change

terms of Wigner functions, neglecting interactions. The timgP€tween different runs.

dependence of the spacing between consecutive interference With these remarks in mind, we proceed to calculate the

fringes is derived. In Sec. Ill, the time-dependent nonlineaffinges arising for two freely expanding wave packets in the

Schradinger equation is applied to study the interplay of in_gbsence of interactions. In order to visualize the quantum

terference and interaction in the propagation of two overlaplntérference, both in the absence and presence of interac-

ping condensates. The full three-dimensional treatment of §0ns, the use of the familiar Wigner functidi1] is well

nonsymmetric propagation necessitates the use of some fauited. . ) )

torization methods for the NLSE. The comparison with a A second quantized form of the Wigner function would

fully numerical treatment in two dimensions and with the réad

predictions for noninteracting atoms is carried out. In Sec. 1

IV, we discuss the dynamics of a single dense atom cloud, W(X,p)= _f dy e P/ {/,’r(x_ X) P x+ Y )

dominated by nonlinear effects. In the initial stage, the non- 2 2 2

linearity results in a slow adjustment of the wave function to 2.2

the temporally varying external potentials. We finally discus

the limitation of the present description by collisionally in-

duced decoherence in Sec. V.

When a macroscopic wave function is employed to charac-
terize a single run of the experiment, the corresponding
Wigner function also has the single-particle form.

Il. INTERFERENCE OF NONINTERACTING ATOMS A. Fringe spacing for interfering Gaussian wave packets

We start by presenting the propagation of two Gaussia®f two Gaussian functions of equal amplitude centered at
wave packets centered at different points in one-dimensionaf 9:

—_d)2 2

interference maxima as a function of time and to provide a P(X) = —— exy{ _ (x—d) )+ex;{ _ (x+d) +ig ”
precise and informative visualization of the overlap and in- \//T/’ 2072 207 s
case of interacting atoms. Next, we want to revisit the issue _ _ _
of the relative phase of the condensate as discusded far ~ with a free spatial phasebs. Here this phase is merely a

In the case of two noninteracting, independent Bose confor overlap reads N= Jm20[1+ cospexp(—do?)], and
densates, consider an initial Fock state such that two orthe phase dependence.®tvanishes for well separated con-

IN PHASE SPACE Consider an initial one-dimensional wave function made
space. Our purpose here is to calculate the spacing between
terference of the wave packets for later comparison with the (2.3
the case of propagating wave packets considered here. ~ parameter of the wave function. The normalizatiahowing
thogonal states having the mode functiangx) andu,(x) densatesr<d. The corresponding Wigner function reads
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W(z,p) = /dy exp (—ipy/F) (x+ )¢ ( _ %)

e () 1l (_(w;_zd)ﬁ)mp <_<xj_2d)2>+2exp (7) cos(2pd/h — $,)

T [1 + cos ¢, exp (——
interference term
(2.9
|
In addition to the two peaks at= *+d, the initial Wigner h\2v
function shows an interference pattern along the momentum p P % o §2rriy g2rilyy

axis with momentum period\p=7/d, located atx=0.
The central maximum of this pattern is shifted by the spatial
phase¢. Neglecting interactions, the envelopes of all three 2.7)
terms are Gaussian. At tinte=0, the interference pattern at

For classical particles, of course, only the0 term on the

x=0 does not contribute to the position density since |ts

right-hand side contributes, and the classical Liouville equa-
integral over momentum vanishes in the central zone. Thi '%on is regained. For a single particle, the first quantum cor-
interference zone is a clear feature of the nonlocal quantum ctions occur only in the third-order terfi3]. This has the

nature of the initial phase space density, absent in the case i
) L . ; consequence that quantum and classical mechanics yield
classical positive Gaussiahsee Fig. 1a)].

. ; S identical results for a linear or a quadratic potential, provided
From the point of view of many-patrticle interference, the - . o :
equal-time expectation value that_ the initial Wigner fungtlon is non-negative a_nd can thus
be interpreted as a classical phase space distribution. How-
ever, the Wigner functiori2.4) is not completely amenable
1 y y toa cla_ssical_interpretation d_ue to its interferen(_:e term. The
(W(O,p)>=—f dyeipy/h< [/,’r( __> ::0(—)> (2.5) latter gives rise to nonclassical interference fringes in the
2m 2)7\2 position distribution when the two wave packets overlap.
Nevertheless, th&ime evolutionof the Wigner function
does obey in a certain sense “classical mechanics.” More
is some generalization of the so-called off-diagonal long-precisely, during time evolution the initial interference zone
range order, conventionally characterizing broken symmetrys transformed into a linearly expanding fringe pattern ac-
in a Bose condensate. Remarkably, the notion of the “phaseording to Eq.(2.6). Equation(2.6) thus describes how a
of the condensate” renders a straightforward, intuitive un-momentum distribution is turned into a position space distri-
derstanding of the capability to detect interference fringes irpution for timet—oc. Such measurements of the momentum
the present situation. Assuming brokerilsymmetry for  distribution are actually performed in the expansion experi-
the states of the condensates, the spatial phasels  ments[1,2,10.
identified with the relative phase of the two macroscopic  One of the main results of this paper is the conclusion that
wave functions of the condensate. The ensemble averagge fringe spacing ipositionspace increases with a velocity
performed in Eq(2.5) corresponds to averaging over equally proportional to the initial fringe spacingp in momentum
distributed phases in E@2.4). The phase-averagetlvigner  space,
function shows no more correlations, the oscillations near
x=0 vanish as well as the fringes in the position distribution Ap 4w
for all later times. Utiinge™ " T md”
During time evolution the initial distribution deforms and
gives rise to a modulation of the position space density. Theor a given time the spacing is thus inversely proportional to
time evolution of noninteracting free atoms is given in phasghe distance between the initial wave packets. The fringes
space by the exact solution become visible in the position space density, obtained by
integrating over the momenturp, when the expanding
Gaussians overlap. This happens roughly at a time
WX, p,t) =W(x—pt/m,p,0). (260 7y=mdo/%. At this time the first fringes with a spacing on
the order of

m aX)W(X,pt E 2V+1)| (9X2V+1 (9p2V+1

(2.9

This is shown easily by considering the Liouville—von Neu- Apry/m=o

mann equation for the Wigner function. By Taylor expansion

of this equation one proves the well-known reqske, e.g., become visible. This last result fortuitously coincides with an
[12]) that the motion of a particle in a potentisl(x) de-  a priori guess that the fringe period should be related to the
pends only on odd derivatives of the potential: initial Gaussian momentum spre&do. As the arguments
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—150 -100 =50 O 50 100 150 FIG. 2. (a) External potential of the double loffe trap, with the
x[pem] same parameters as in Fig.(b) Self-consistent mean-field poten-

tial for interacting atoms. For a total atom numberNo#5x 10P,

FIG. 1. Initial Wigner function for interfering wave packets in the minima are still well separated.
phase space. Only contours of the positive part are plotted for clar-
ity. The momentum scale is given in wave vector utkits-p,/%.  However, these conclusions are modified through the inter-
The initial spatial separation =47 um ando=4.1 um. The true  gctions.
ground state in the slightly asymmetric potential wells of the double
loffe trap has been calculated numerically, neglecting interactions.
The harmonic frequencies of the unperturbed loffe trap are 19 Hz B. The case of the divided loffe trap
and 250 Hz for the axial and transverse motion, maximum light
shift Vo=hXx25 kHz, and beam waist of the laser bearg=30
um. The interference region ne&r 0 displays the fringes in the

All of the above features can be recognized in Fig. 1. For
the sake of comparison with the interacting case we have
momentum distribution at=0 (&), which are transformed into chosen a SIIgh’_[Iy different initial dIStr.Ib.u.tlon’ hoyvever. In-
fringes at a later timé=38.2 ms(b). The fringes in position space stead of Gaussian wave pac_:kets, th(.e initial state is the. ground
are obtained by integrating over momentuniihand display well- sFa.te of the external potential, as given by the experlmental
resolved fringes in the position distributido). c_hwded loffe trap employed b{_fl4]. In the loffe configura- _
tion the atoms are collected in a cigar-shaped trap that is
are based only on Heisenberg’s uncertainty relationthe ~ €asily divided in two halves by a sheet of far-blue detuned,
absence of interactiopsit is solely the ratio of distancd  ©ff-resonant laser light. The total potential is sketched in Fig.
and width o that determines the numbe¥; of resolvable 2(@. The transverse and longitudinal frequencies are
fringes at timer,, 0y,=2m19 Hz and oy ,=27250 Hz, respectively. The
asymmetry of the half traps is clearly reflected by the asym-
Nocd/ o metric Wigner function peaks at=*d in Fig. 1(a). The
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central interference zone is plotted discarding the negative h2A _ )
part of the Wigner function, for clarity. The linear deforma- 1% —-d(r,t)=| - %+V(r)+u|1p(r,t)| P(r,t).
tion of the Wigner function due to the temporal evolution 3.4

(2.6) is displayed in Fig. (b). Figure 1c) shows the result-

ing position space interference fringes. The expansion hag; simulation is based on the assumption that the initial
not yet produced complete overlap and the fringe spacing igtate is a pure state and remains pure under the influence of

still smaller than the initial widtho. the mean field for a sufficiently long time. We do not imply
that the time evolution of the condensate does not give rise to
ll. INTERFERENCE VERSUS INTERACTIONS excitations, but simply start from an initial state at zero tem-

perature with no quasiparticles excited. Note that quasiparti-
cle creation through collisions is slow for small atom densi-
In order to simulate the recent experime[td] we now  ties and is not contained in the solution of the NLSE. For
turn to the properties of interference under the influence ofinjte-temperature effects, i.e., the influence of nonconden-
weak repulsive interactions. The dynamics of a trappedate atoms in the initial state, we refer [4]. There, the

weakly interacting atomic gas is well described by Bogoly-preakdown of the visibility has been shown for the noninter-
ubov’s formulation of the Hartree-Fock approximation for anacting gas as the temperature approadhes

atomic gas far below the condensation temperaftlité To
establish the fundamental physics involved we write down
the effective grand canonical Hamiltonian

A. Mean-field description

B. Initial state

For an interacting atom cloud, the shape of the interfer-
ence fringes will depend on the initial conditions, i.e., the
initial confinement of the cloud due to the external potential.
As a first approximation to the initial state we determine the

ﬂ—mzf dr §(n) (THV— ) 1)

2mah? . . . .
+ dr Tt O e ). (3.1 so-called Thomas-Fermi solution of the Gross-Pitaevskii
m J PP g(r). (3.1) equation(3.2)
The effective 6-function interaction actually represents a pm—V(r) 3.5

properly renormalized two-particle interaction, i.a.stands p(r,0)= T

for the correct scattering amplitud&.represents the kinetic

energy and/ the trap potential. The standard procedure is toThe external potentia¥(r) in the double-trap configuration
determine a stationary self-consistent wave function of thgg displayed in Fig. @). In the Thomas-Fermi approxima-
condensate by solving a nonlinear Salinger equation, the  tjon, the atomic density distribution mirrors the external po-

Gross-Pitaevski equation tential, such that the self-consistent potential is flat, as is
sketched in Fig. @). It is apparent that for an atom number
h2A ~ 5 of N=5X10°, the sum of external and interaction potential

pp(r)=| = 5= +VIO)+U[PO*|§(r), (32 still provides a suitable separation of the initial condensates,

visible by the maximum in the middle of the trap. It is also
apparent that the shape of the potential is not even nearly
harmonic. To allow for the kinetic energy and obtain a more
realistic initial condition, we have to replace the Thomas-
4mh2a Fermi solution by a numerical solution of the Gross-
m (3.3 Pitaevskii equation. An efficient method to solve this prob-
lem is imaginary time propagation. By the substitution

=it one obtains the imaginary time equation

with the chemical potentigk and

U=

For the time-dependent problem, the initial wave function is”
calculated from this equation. Based on the correlation func- 2

tion treatment of4] it is a reasonable ansatz to describe also 3 — y(r, r)=—| — Q +V(r)+G| W(r,7)|2| (r, 7).

two independent condensates by one combined macroscopic 97 2m

wave function(2.1), for characterizing a single run of the (3.6
experiment. The arbitrary relative phagebetween them is s . _ _

set to zero here. The lowest “eigenstate” of the nonlinear Hamilton operator

In the usual perturbation theory, excitations out of the®" the rhs will have the smallest “eigenvalue™ and thus

condensate are defined by splitting off a stationary expectq[;urviveft?r:nporal Ftrogagation, pfrovid%d grqper renormatlliza-
tion value z://(r)zw(r)+'5\z//(r). By contrast to this ansatz lons ot the ampTiude are performed dufing propagation.

whereys(r) does not vary with time, we will explicitly allow Thus the ground state
for a nonstationarycondensate wave functio(r,t). The

time evolution starts after the initial potential(r) is $o=lim
switched off, or modified, such that(r) remains. In the To®
time-dependent mean-field approximation we calculate the

expansion and overlap of two independent condensates by obtained from any initial wave functiof(0) with even
solution of the NLSE, parity. The solutions in Fig.(®) are obtained by this method.

exp(— THIR) ¥
|lexp(— 7H/%) ]|

(3.7)
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C. Three-dimensional expansion of a single condensate 400 . [ 1

It is straightforward to characterize the time evolution of g
the condensates after switching off the trap as a ballistic 200t

expansion driven by the repulsive interaction energy stored =3

in the trapped cloud. Its final free-flight stage is amenable to S :
the simple phase space mechanics of @) when the den- = 200¢
sity has become low enough. % :

Previous studies of the expansion of interacting conden- 100k
sates have employed similarity solutions in order to describe
the invariant features of the expanding clo@j9]. Such a
solution is obtained by a scaling transformation of the initial
distribution, reading here

p(r,t)=\"%p(A(r,1),0) (3.8 , , .
FIG. 3. Expansion of a single condensate after switching off the

with the map A(f,t)=2i3:1€%[fi/)\i(t)] and trap. We plot the axial X) and transversey(z) diameter of the

N3 T3 ). : s distribution calculated using the factorization approach. The data
(1) =111 Ai(1) to be determined. After a short initial stage agree very well both with experimental data and with the scaling

of the _evqlutlon thg expansion is well described by an as'equations fron{9]. Trap parameters are the same as in Fig. 1.
ymptotic linear scaling

~ The nonlinearity is determined by the maximum density
Ni(D)— At (3.9 |#/;(r ma |- Though deviations of the factorization ansatz be-
ome obvious for non-Gaussian wave functions, it turns out
o0 yield the correct ratio of the expansion rates in the differ-
ent directions. Thus we can keep the numerical effort trac-

The above ansatz can be combined with the so-calle
Thomas-Fermi solution, to givie3,9]

Mo w2r2 table and still allow for the interference fringes which are not
u—=> ——- included in any Thomas-Fermi-type solution.
29 Nt i izati -
= 1A 31 As a first test of the factorization scheme we have com
p(r.t)= ~ ' (3.10 puted the expansion of a single condensate initially trapped
Ul;[ Aj(1) in an anisotropic trap. By contrast to a thermal ensemble, the

expansion continues to be anisotropic on the time scale of

Equation(3.10 gives surprisingly good agreement with the the observat;:)n. 'Lhe calculgteq darl]-'ag.d?)) d|§playfthe cir-
experimentally measured distributions. While allowing forCl"mStaane that t ekexterr;smn in t'e '|recr:]t|onr? n;gxmym
the interaction it neglects the wave mechanical nature of th§oMPression overtakes the extension In the other directions
center-of-mass motion, in the same way as &), and is at an _early time, due to the steep _|n|t|a_l density gradlent in
therefore not capable of describing interference fringes. Th IS d.|rec_t|on. The re;ults showr) In Fig. 3 Obta'ﬂed from
shape-invariant expansion of an initial Thomas-Fermi soluf@ctorization agree with the prediction of the scaling equa-

tion is correct in the case of a parabolic initial distribution. 10N for a cigar-shaped trap, = w,= w, > wy,

Higher order derivatives of the potential which might con- w2 w2
tribute to the Liouville equatiorf2.7) do not occur for the N = 3L D W . (3.13
given quadratic shape of the potential. AT Ay NTAY

In order to allow also for the interference, an exact solu- . L )
tion of the NLSE must be sought. Only a direct numericalS€cond, to independently check the validity of the factoriza-
solution of the NLSE can both allow for the interference andtion We have also compared the separation ansatz with a

provide evidence for the applicability of the scaling trans-Selution allowing for two dimensions exactly and only fac-
form ansatz. A quantum-mechanical generalization of thdorizing a third degree of freedom. Besides the curvature, the

scaling transforni9] does not avoid the inseparability of the 9eneral features of the nonlinear propagation seem to be well
three-dimensional NLSE. We therefore extend the onel®Produced by the factorization approdétig. 4a]. How-
dimensional NLSE to the three-dimensional case by using §V€". Py the two-dimensional calculation the correct two-

factorization method. The factorization amounts to separatdimensional curvature of the density contours is achieved
ing the mean-field Hamiltonian into a sum of Hamiltonians Fig. 4b)]. For the calculation of the interference fringes the

for each dimensiot =3 H, , where factorization approach is applicable as long as this curvature
does not wash out the fringe pattern, when integrated over
52 92 - the transverse degrees of freedom. For the experimentally
Hi=- ﬁerVi(riHUWi(ri)lzil;Ij |;(1 max) | relevant parameters this is not the case.
(3.1) _ ) . )
D. Fringe spacing for interacting atoms

with the following product ansatz for the wave function: We now use the solutions of the NLSE to investigate the
spatiotemporal structure of the evolving interference fringes

¢(r)=H Uy (r)). (3.12 in phase space. The purpose of using Wigner function plots

i

is to facilitate the comparison of the data obtained by the
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NLSE with the data for the noninteracting atoms. Recall that
a freely expanding phase-space distribution undergoes a
shearing deformation along the position atgfockwise for
our choice of coordinatesA rapid outward acceleration cor-
responds to a shearing deformation along the momentum
E axis (counterclockwisg while a deceleration is visualized as
—150-100 =50 O 50 100 150 a shearing in the opposite sense.
x [um] Figure 5 displays the evolution of the phase-space distri-
bution of interacting atoms in the trap already considered in
] Figs. 1 and 2. The initial statfFig. 5@)] displays strong
] position-momentum correlations of the atoms, in particular
the Wigner function oscillations due to the sharp decrease of
the position space wave function, between 30 um and
x=50 um. In Fig. §b), after a very short stage of a rapid
: ‘ acceleration at=1.3 ms the momentum distribution has
—150-100 =50 O 50 100 150 broadened considerably, from less thar/iuin ™! to about
x [pm] 2fium™ ! [note the changed momentum scale in Fitp)§
and sheared clockwise. The inner part of the distribution is

FIG. 4. Averaged density distribution of two overlapping con- deformed much stronger, as the spatial gradient, and thus the
densates in thex(z) plane, corresponding to the experimental situ- aCceleration is stronger than on the outer wing. Whereas due
ation of Ref.[2]. The interference structures were averaged out forto the repulsion atoms are accelerated away from the maxima
better visibility of the effect of factorizationa) The distribution as x= *d, by contrast, atoms approaching the overlap zone
calculated using the factorization approach E&y12. (b) A two- x=0 are decelerated.
dimensional solution of the NLSE, to be multiplied by a one- This has to be compared with Fig(k) where, in the
dimensional solution for the remaining degree of freedom, for theghsenceof interactions, both the interference zone and the
same parameters. source zones expand without acceleration, i.e., in the same
way. As a consequence, the spatial width of a single conden-
sates extends over nearly 4p0n in Fig. 5c), i.e., roughly
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FIG. 5. Wigner function for interacting atoms in phase space, for the same trap parameters as in Fig. 1, but including interactions of
N=5x10° atoms.(a) Initial state.(b) Early stage of the expansioti=1.3 ms. Note the different momentum scal@.t=238.2 ms. The
interference fringes near=0 are displayed with a much higher amplitude, due to earlier overlap of the density profiles. Spatially resolved
fringes are displayed with a very narrow fringe spacing in the position distrib@tiprcorresponding tdc).
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TABLE I. Trap parameters for the divided loffe trap, corre-

sponding to curvea—g in Fig. 6(a). The maximum light shifl/, is
= given in frequency units, the laser beam waisjim.
3
? Curve wo (um) V,/127h (kHz) N
o]
o a 9.3 25 1.510°
° b 9.3 25 6x 10°
g c 18.3 25 6x 10°
- d 30 25 6x 10°
e 30 125 6x 10°
f 30 7000 6x 10°
g 67.2 25 ex 10°
0.40 _ ) s oo E The r?u.merical data for the asymptotic expansign velocity are
: =2 ] surprisingly well reproduced by a d/law, as displayed in
= 0.30F « N=1.5x10 E Fig. 6(b). Note that this result holds only for the combination
E : ] E)f Sjl harmonic potential well with a Gaussian barrier, as in
£ : 14].
= 0.20¢ E We finally mention the case of not-well-resolved conden-
> ] sates. For an insufficient light shift or a too large number of
0.10F E atoms, the Thomas-Fermi self-consistent potential does not
E ] display a clear potential barrier at=0. In this case the
0.00¢ : : : ' ' : ] initial density mirrors the total potential, i.e., shows a single
20 40 60 80 100 120 140 160 two-peaked distribution along. Also in the case of nonin-

(<x> d)* [um] teracting atoms, we find a decreasing number of interference

_ _ _ fringes asd— o, and the two sources merge to give a single

FIG. 6. (a) Time dependence of the width of the central inter- 5o rce. This is in agreement with the conclusion of Sec. II.
ference fringe. Asymptotic lines are fitted for cuneesndb. The However, in the case of interacting atoms the condensates

propagation was calculated using the factorized NLSE. For paramg, yanq more rapidly, and more density oscillations show up
eters, see Table (b) Dependence of asymptotic expansion velocity on the wings of the overlap region after the bulk of the con-
[slopes of the curves ife)] on the quantityd from Eq. (3.14). densates have passed each other.

fOUI’ tlmeS broader than the dlStl’IbutIOﬂ |n quc)l fOI’ the E. Expansion and interference Of a s|ng|e Condensate
expansion timet=38.4 ms. Thus, due to the above- in a wedge-shaped potential
mentioned rapid acceleration of the atoms, a complete over-

lap of the condensates has occurretag8.4 ms, and many densate after suddenly switching the potential from a para-

more fringes are V'S'ple n F|g.(6). . bolic into a wedge-shaped potential=v|x|, where
For comparison with the noninteracting case, we evalu-

. . . . . vol27h=40 Hz um™ L. By temporally switching between
ated the fringe distance as a function of time for d'fferemdifferent external potentials a single condensate can be

parameterssee Table)l The data displayed in Fig. 6 indeed y,rmeq into a coherently excited superposition state that may
support the validity of a scaling description of the expansiongit 5 into two separate parts that recombine later on. The
for large time. For large light shifts, the shape of the indi-\\5ye_packet dynamics is strongly influenced by the nonlin-
vidual condensates is nearly parabolic, and the velocity ofgr gispersion, in the case of interacting atoms. The observa-
expansion qf the .fr|r.19es, as well as t'he actual fringe spacingon of coherent wave-packet dynamics would also depend
at a given time, is inversely proportional to the spacthg o the maintenance of coherence during the observation
Thus after the initial expansion the dynamics mirrors that of;q
a noninteracting gas. For small light shifts, however, the po- - ¢,ite subtle aspects of the nonlinear dynamics come into
tential wells are not symmetric with respect to the local,|ay here, which have no classical or quantum mechanical
minima, and also the position of the minimum does not Co-4na10g. In the initial stage of the expansion, the condensate
incide with the center of gravity of the distribution. In this apparently “adapts” its shape to the new potential. An
situation the fringe spacing does not depend on the d'Stan%alogous and very fundamental phenomenon has been
d between the minima, but on a lengthcharacterizing an  found in the initial propagation of Gaussian wave packets in
averaged initial distance between the condensates. The slopgnlinear media. For positive dispersion and negative Kerr
of the_lines in Fig. 6 is evaluated and compared with coefficient, a(self-attracting soliton constitutes the funda-
fir/md [see Fig. @)]. We have found empirically that the mental form-invariant propagation mode of the system. For
modified distancel that allows best for the shifted center of nonsoliton initial wave packets, the different components of
gravity (|x|)= [3xp(r) of the interacting atoms is given by the initial wave packet disperse in such a way that asymp-
_ totically the self-reproducing soliton survivgs7]. The am-
d=Vd({|x|). (3.149  plitude of the Gaussian that is not contained in this asymp-

We finally study the coherent evolution of a single con-
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the part of the amplitude that does not fit into the self-
consistent shape. The reflection at the outer potential slope
again creates density oscillations, however, of much reduced
period and amplitude. Under suitable conditions the observa-
tion of fringes from a single condensate might provide novel
evidence for the wave-packet dynamics of a many-particle
system.

0.12

IV. COLLISIONAL LOSS OF COHERENCE

As mentioned above, all conclusions derived from the
NLSE are based on the assumption that the condensate can
be described by a single macroscopically occupied one-
particle state. However, thermalizing collisions will play a
crucial role for long expansion times. Regrettably, no viable
theory exists for the treatment of the dynamics of inhomoge-
neous condensates in such a nonequilibrium situation. In or-
der to obtain a preliminary estimate for the influence of col-
lisions on the interference, we resort to the following
considerations, which are based on the homogeneous situa-

0.010 .
tion.
- The basic assumption of our treatment above is that the
l ) ) ! . ;
0.008 [ / macroscopic wave functions of the two independent conden-

sates can be added coherently with an arbitrary but fixed
phase Eq(2.1). The detailed analysis in terms of correlation
functions[4] showed that a visible interference between the
two condensates requires the criteria Eg@sl) and (4.2) to

be fulfilled. The condition

(ala;)~(ala,)~N/2 (4.1

implies that the occupation of the two condensate modes
(i=1,2) has to be comparable to the total number of atoms
N. In addition,N has to be so large that a clearly recogniz-
able spatial pattern can be resolved in a single run of the
=o experiment.
oo It is not obvious that a condition like Ed4.1) will be
fulfilled for arbitrary times in the presence of collisions. The
equilibrium in free space is characterized by incoherent su-
erpositions of plane waves, to which the initial state cannot
evolve by the NLSE. Eventually, thermalizing collisions in
the overlap zone will smooth out the momentum distribution.
As a result the phase space density might decrease below the

totical wave packet has been “radiated” away, i.e., it hasd :
. . . 00 egeneracy threshold. However, as mentioned above, a
propagated dispersively such that its contribution has be:

come negligible compared to the soliton. It is now interestin guantitative description of this process is still lacking. We

. . D Yestimated that the collision rates in a thermal cloud with
to investigate whether similar phenomena are present here, TS :
. comparable velocity distribution and density would have de-
In the case of the wedge-shaped potential we compare th . L .
) ) . pleted about half of the condensates in our situation. This
results for different values of the nonlineari(gtom num- . . o
DL . would still leave a fringe visibility of about 50%. We expect
ben. The transverse trapping field is assumed to remain co

stant such that the nonlinearity does not decrease due tonthat this rather overestimates the effect since collisions back
) y . : ifto the condensate are favored by the bosonic enhancement

transverse \{,z) expansion. For small nonlinearity, the am- factors

plitude _that IS propagating outward in thedirection Inter- The second condition for visible interference justifies the

feres with the amplitude that has been reflected at the linear ... <"~ " roken gauge symmetry in Bose-Einstein con-

;Iope of the_ potential, resu_ltin_g in large scal.e fringe; movmgdensation although coherent states do not exist for atoms

in the position space densif¥ig. 7(a)]. For high nonlinear- ' '

ity, the wave function of the interacting atoms looks different

—Foo 55

=4
7
*locarry 7 oo Foo Foo

FIG. 7. Expansion and interference after sudden switch to
wedge potential(a) Solution of NLSE forN= 2400 atoms(b) So-
lution of NLSE forN=5x 10 atoms.

T
[Fig. 7(b)]. Initially, the condensate displays a “creeping” (al(hai(t+ )] ~ (4.2
motion such that the shape of the cloud seems to gradually (ajay)

adapt to the new potential form. This behavior simulates the
soliton filter effect mentioned above. However, as the potenk requires that the phase coherence has to be large during the
tial rises to infinity, there is no possibility of radiating away observation timer, in which the spatial pattern is recorded.
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Note that7 refers only to the exposure time and not to the In accordance with the notion of a broken gauge symme-
full expansion time that precedes the recording of the pattry, the above mechanism of phase diffusion vanishes in the
tern. thermodynamic limit. However, in our finite situation, the
It turns out that conditior{4.2) should be much easier to correlation time would be only somewhat larger than the full
fulfill, since the relative phase between the condensatesxpansion time. Since the exposure timezquired to shoot
needs to be stable only during the exposure timef the  a single picture of the condensate is much shorter, this de-
pattern image, which is normally much shorter than the fullcorrelation mechanism should not affect the visibility of the
expansion time. Therefore, incoherent processes should n&itnges.
be able to violate conditiof¥.2) as long as they fulfill the Therefore, we conclude that the phase decoherence Eq.
much more stringent conditiof@.1) on the time scale of the (4.6) due to the nonlinearity of the Hamiltonian should not
full expansion. However, it has been obseryéd7,16 that  inhibit the visibility of the interference. In contrast, the effect
even the nondissipative NLSE is able to induce a phase disf an incoherent depopulation due to collisions might already
persion. The corresponding self-interaction for a single conbe detrimental in our situation. It could possibly be over-
densatei(=1,2) is come by adiabatically widening the trap, before releasing the
atoms.

H; =ia7a7a-a- (4.3
int 2V (I B Rt B .
V. CONCLUSION

In addition, cross coupling terms between the condensates . . | h field d .
exist, but do not contribute to the phase diffusion. The above Summ;nzmg our maén resg tsl, tde ”.‘ef"?”l'l 1€ld- dynamics
Hamiltonian induces phase factors that depend on the actud] €XPanding Bose condensed clouds, initially at zero tem-
number of particles in the condensate. Atom number fluctugPerature, is characterized by the fast transformation of inter-

tions thus lead to a phase diffusion since subensembles wi ctior! energy into kinetic. energy. Afte_r this Initial stage a
a larger atom number exhibit a faster oscillation. The correlr€€ flight stage follows, with the extension of the condensate

lation function of condition(4.2) therefore evolves due to increasing Iine:?\rly with time. Interferen.ce fringes occur in
the overlap region between two expanding atom clouds. The

* U fringe spacing increases linearly in time as well, at a velocity
(af(t)ai(t+ 7))= 2 NiP(Ni)exp< —i ﬁ—(Ni - 1)7) , inversely proportional to the initial distance between the con-
Ni=1 v densates. The Wigner representation of the phase space den-
(4.4) sity provides a clear understanding of the condensate dynam-

whereP(N) is the number distribution for the correspond- ics, both in the noninteracting and interacting case, that is not

ing condensate. Assuming a Poissonian number distributiofS simply obtained from the positior! space distributions. It
P(Ni)=exp(—Ni)Ni'\"/Ni!, this reduces to may also allow the problems of spatial and temporal coher-

ence of the condensate to be tackled.
N; An observation of the predicted interference fringes
would unambiguously prove the existence of a quantum me-

N— _UT
ieX |W

N — — - chanical many-particle superposition state. In other words, it
(i ()ai(t+7)=Niexp(— Ni)NZO NI is evidence for the macroscopic population of a single atomic
' B ' center-of-mass quantum state. From calculations of collision

=N_iexp:N_i(e“ (UAV) _1)]. (4.5  rates we have inferred that the decay of the first order coher-

ence function, the “phase relaxation” of the condensate
After an initial decay of the correlation function, revivals wave function, would be slow compared to the interaction
[6,7] will be visible aﬁerTmﬁV/D’ which, however, is ar- time considered here. In the long-time limit, however, colli-
bitrarily long in the thermodynamic limit. It is therefore rea- sions between the counterpropagating condensates will in-

sonable to expand the second exponential up to second ordéfease the phase space volume filled by the condensate, i.e.,
thus obtaining decrease the phase-space density inevitably.

ACKNOWLEDGMENTS

H.W., A.R., and M.N. thank R. Chiao for fruitful discus-
where we have expressed the quantization volyhigy the  sions on the properties of solitons. Financial support by the
densityn; and the particle numbe¥;, so as to indicate the Deutsche Forschungsgemeinsch@tants No. Wa 727/4-1
proper extension to inhomogeneous situations. and No. Wa 727/6-1is acknowledged.

(] (at+m)| p(_ ﬁﬁr)Z) o
(ajay) —° 2h2N; |’ '

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, [3] J. Javanainen and S. M. Yoo, Phys. Rev. L&8.161(1996.
and E. A. Cornell, Scienc269, 198(1995. [4] M. Naraschewski, H. Wallis, A. Schenzle, J. I. Cirac, and P.
[2] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, Zoller, Phys. Rev. A64, 2185(1996.
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. [5] J. I. Cirac, C. W. Gardiner, M. Naraschewski, and P. Zoller,
75, 3969(1995. Phys. Rev. A54, 3714(1996.



55 PHASE-SPACE DYNAMICS OF BOSE CONDENSATES: ... 2119

[6] Y. Castin and J. Dalibar¢unpublished (1996.
[7] T. Wong, M. J. Collett, and D. F. Walls, Phys. Rev. 54, [11] E. Wigner, Phys. Rew0, 749 (1932.

3718(1996. [12] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner,
[8] Y. Kagan, E. L. Surkov, and G. Shlyapnikov, Phys. Re\b4\ Phys. Rep106, 121 (1984.
1753(1996.

[13] Second-order terms occur, however, for dissipative systems,
[9] Y. Castin and R. Dunfunpublishedl describing quantum fluctuations.

[10] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, [14] W. Ketterle (unpublishegl
D. M. Kurn, and W. Ketterle, Phys. Rev. Le#t7, 416(1996; [15] A. L. Fetter, Phys. Rev. A3, 4245(1996.
M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, [16] M. Lewenstein and L. You, Phys. Rev. Left7, 3489(1996.
D. S. Durfee, C. G. Townsend, and W. Ketteildd. 77, 988  [17] D. Burak and W. Nasalski, Appl. Op83, 3969(1994).



