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Phase-space dynamics of Bose condensates: Interference versus interaction

H. Wallis, A. Röhrl, M. Naraschewski, and A. Schenzle
Max-Planck-Institut fu¨r Quantenoptik, Hans-Kopfermann-Strabe 1, D-85748 Garching, Germany

and Sektion Physik, Ludwig-Maximilians-Universita¨t München, Theresienstrabe 37, D-80333 Mu¨nchen, Germany
~Received 11 September 1996!

We study theoretically the macroscopic interference of two independent Bose condensates released from a
double potential trap. The observation of fringes could serve as a test for the paradigm of broken gauge
symmetry. By numerical solution of the nonlinear Schro¨dinger equation in three dimensions, the consecutive
stages of expansion, overlap, and interference are investigated in order to facilitate the design of future
experiments. The phase-space dynamics of the condensates is analyzed by means of the Wigner function. It
turns out that the distance of interference fringes grows linearly in time with a velocity inversely proportional
to the initial distance of the two condensates. The collisional reduction of the fringe visibility is estimated.
@S1050-2947~97!09502-4#

PACS number~s!: 03.75.Fi, 05.30.Jp
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I. INTRODUCTION

In view of the recent progress in preparing Bose co
densed ultracold atomic gases@1,2#, the question of interfer-
ence of Bose condensates is of fundamental interest.
interference of independent atomic sources appears to b
most convincing manifestation of a so-called macrosco
wave function corresponding to the broken gauge symm
in Bose-Einstein condensation. This effect has been sh
previously only by the Josephson interference of superc
ducting currents. By comparison with condensed matter s
tems, the physics of dilute atomic gases is in much clo
agreement with the perturbative theory of the atom-atom
teractions. This fact makes quantitative simulations of
periments possible and attractive.

The notion of broken gauge symmetry or the existence
a macroscopic wave function, i.e., a nonvanishing ensem

average of the field operator^ĉ(x)&Þ0, proved to be an
extremely useful concept in describing phase transitions
degenerate quantum liquids. Strictly speaking, howev
breaking of gauge invariance requires breaking of part
conservation and can therefore be formulated consiste
only in the thermodynamic limit. In view of the small atom
numbers collected in atomic traps, the applicability of suc
concept is not immediately obvious. It seemed particula
puzzling that interference phenomena as predicted in a c
sical field theory should be observed for fixed atom num
N since a definite relative phase between independent
densates cannot be assumed. The incompatibility betw
these two views could recently be resolved by the invest
tion of correlation functions@3,4#, which is the natural ap-
proach since it is the correlation that is observed experim
tally. Interference fringes between condensates withfinite
particle number can be expected in single runs of the exp
ments even though the average over many runs does
show fringes. An analysis of such a situation in terms
continuous measurement theory@5# has shown in addition
that only the distribution of the relative phase between
condensates undergoes spontaneous breaking of the g
symmetry due to the measurement. This reflects the fact
551050-2947/97/55~3!/2109~11!/$10.00
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although the total number of particles is altered by the m
surement in a definite way, its distribution among the tw
condensates becomes more and more uncertain@6,7#.

More generally, the notion of spontaneously broken gau
symmetry should be replaced@4# by a suppressed decay o
multitime correlation functions of the condensate modes
the form^a†(t)a(t1t)&. Although a vanishing decay of thi
correlation is assumed in the thermodynamic limit, no re
able quantitative results are known up to now to determ
its behavior in a finite system in the presence of interactio
An answer to this question might be obtained by the curr
experiments and is of utmost importance for the envision
use of a Bose condensate as a coherent source of atom

We have already proposed in@4# to address the questio
of coherence experimentally by studying the interference
two independent Bose condensates. Visibility of the
fringes ~‘‘high phase stability’’! requires a negligible deca
of the above correlation function for the experimental obs
vation timet.

A major obstacle to the experimental accessibility of t
fringe pattern is the limited spatial resolution. For example
was shown in@4# that fringes that might have existed in
previous double-trap experiment of Ketterle@1# would have
been much narrower than the optical resolution of 8mm. It is
therefore one goal of this paper to develop a more deta
insight into the fringe formation in finite physical system
This insight could facilitate the optimization of the expe
mental setup so as to achieve fringes of an observable siz
turns out that it should be possible, given the technology
current experiments, to achieve fringe periods larger than
mm, provided that the decay of the correlation is sufficien
slow. In addition, our predictions should help to discern e
pected fringes from possible other oscillatory density var
tions of the atomic clouds.

Interference with finite Bose condensed ensembles
holding great promise for new matter wave interferom
ters. Of course, matter wave interference with highly pop
lated quantum states depends heavily on particle-particle
teractions. While such interactions, for instance, vanish
coherent light waves interfering in vacuum, they cannot
removed for coherent matter waves. Even though the at
2109 © 1997 The American Physical Society
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atom interactions in gases are weak compared to those i
other Bose condensed systems studied up to now, they
out to be still strong enough to change the dynamics subs
tially compared to the noninteracting case.

In this paper we treat the interactions in the mean-fi
approximation, neglecting finite-temperature and dissipa
effects. Propagation, overlap, and interference of two in
pendent Bose condensates released from two minima o
optically plugged magnetic trap are well described by sim
lations of the nonlinear Schro¨dinger equation~NLSE!. Un-
like hydrodynamical similarity solutions based on t
Thomas-Fermi approach@8,9#, the NLSE is capable of de
scribing the purely wave mechanical effect of interferenc

The expansion of the cloud before and during the int
ference depends on the initial confinement and geometr
the sample. For large initial separation of the condensates
potential energy is completely transformed into kinetic e
ergy before the condensates overlap. In an anisotropic
figuration, the more rapid transverse expansion of the c
densate reduces the nonlinearity of the evolution quick
Most of our numerical results apply for conditions where t
interactions thus play only a minor role during the formati
and expansion of the fringes. In this regime we found t
the fringe period grows in time with a velocity inverse
proportional to the distance of the two condensates.
above situation is currently realized in the Ioffe trap expe
ments at MIT@10# and at JILA, Boulder.

The outline of the paper is as follows. In Sec. II, th
interference of two Gaussian wave packets is presente
terms of Wigner functions, neglecting interactions. The ti
dependence of the spacing between consecutive interfer
fringes is derived. In Sec. III, the time-dependent nonlin
Schrödinger equation is applied to study the interplay of
terference and interaction in the propagation of two overl
ping condensates. The full three-dimensional treatment
nonsymmetric propagation necessitates the use of some
torization methods for the NLSE. The comparison with
fully numerical treatment in two dimensions and with t
predictions for noninteracting atoms is carried out. In S
IV, we discuss the dynamics of a single dense atom clo
dominated by nonlinear effects. In the initial stage, the n
linearity results in a slow adjustment of the wave function
the temporally varying external potentials. We finally discu
the limitation of the present description by collisionally i
duced decoherence in Sec. V.

II. INTERFERENCE OF NONINTERACTING ATOMS
IN PHASE SPACE

We start by presenting the propagation of two Gauss
wave packets centered at different points in one-dimensio
space. Our purpose here is to calculate the spacing betw
interference maxima as a function of time and to provid
precise and informative visualization of the overlap and
terference of the wave packets for later comparison with
case of interacting atoms. Next, we want to revisit the is
of the relative phase of the condensate as discussed in@4# for
the case of propagating wave packets considered here.

In the case of two noninteracting, independent Bose c
densates, consider an initial Fock state such that two
thogonal states having the mode functionsu1(x) andu2(x)
all
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are populated byN1 andN2 identical bosonic atoms. The
many-particle wave function is simply written asuN1 ,N2&. It
is a straightforward extension of the work in@4# to show that
the density distribution, seen in a single run of such an
periment, is besides some unavoidable shot noise given

nf~x,t !5Nucf~x,t !u2 ~N5N11N2!

with

cf~x,t !5AN1

N
u1~x,t !1eifAN2

N
u2~x,t !. ~2.1!

Heref is an equally distributed random phase variable t
varies only between different runs of the experiment, a
u1,2(x,t) are solutions of the linear Schro¨dinger equation
with u1,2(x) as initial condition. In the absence of intera
tions all statescf(x,t) are degenerate. This many-partic
interference is a truly quantum statistical effect and leads
fringes between the two condensates, with the spatial ph
determined by the random value off.

In single-atom interference experiments, however,
single-atom wave function is coherently split up into tw
parts and spatially recombined later, thereby interfering w
itself. The final wave function is then also described by E
~2.1!, with Ni /N being replaced by the appropriate bea
splitter ratio. The difference from the situation of indepe
dent condensates is that the relative phasef is only deter-
mined by the geometry of the setup and does not cha
between different runs.

With these remarks in mind, we proceed to calculate
fringes arising for two freely expanding wave packets in t
absence of interactions. In order to visualize the quant
interference, both in the absence and presence of inte
tions, the use of the familiar Wigner function@11# is well
suited.

A second quantized form of the Wigner function wou
read

Ŵ~x,p!5
1

2pE dy e2 ipy/\ĉ†S x2
y

2D ĉS x1
y

2D .
~2.2!

When a macroscopic wave function is employed to char
terize a single run of the experiment, the correspond
Wigner function also has the single-particle form.

A. Fringe spacing for interfering Gaussian wave packets

Consider an initial one-dimensional wave function ma
of two Gaussian functions of equal amplitude centered
6d,

c~x!5
1

AN FexpS 2
~x2d!2

2s2 D1expS 2
~x1d!2

2s2 1 ifsD G ,
~2.3!

with a free spatial phasefs . Here this phase is merely
parameter of the wave function. The normalization~allowing
for overlap! readsN5Ap2s@11cosfsexp(2d2/s2)#, and
the phase dependence ofN vanishes for well separated con
densatess!d. The corresponding Wigner function reads
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In addition to the two peaks atx56d, the initial Wigner
function shows an interference pattern along the momen
axis with momentum periodDp5\p/d, located atx50.
The central maximum of this pattern is shifted by the spa
phasefs . Neglecting interactions, the envelopes of all thr
terms are Gaussian. At timet50, the interference pattern a
x50 does not contribute to the position density since
integral over momentum vanishes in the central zone. T
interference zone is a clear feature of the nonlocal quan
nature of the initial phase space density, absent in the ca
classical positive Gaussians@see Fig. 1~a!#.

From the point of view of many-particle interference, t
equal-time expectation value

^Ŵ~0,p!&5
1

2pE dye2 ipy/\K ĉ†S 2
y

2D ĉS y2D L ~2.5!

is some generalization of the so-called off-diagonal lon
range order, conventionally characterizing broken symme
in a Bose condensate. Remarkably, the notion of the ‘‘ph
of the condensate’’ renders a straightforward, intuitive u
derstanding of the capability to detect interference fringes
the present situation. Assuming broken U~1! symmetry for
the states of the condensates, the spatial phasefs is
identified with the relative phase of the two macroscop
wave functions of the condensate. The ensemble ave
performed in Eq.~2.5! corresponds to averaging over equa
distributed phases in Eq.~2.4!. Thephase-averagedWigner
function shows no more correlations, the oscillations n
x50 vanish as well as the fringes in the position distributi
for all later times.

During time evolution the initial distribution deforms an
gives rise to a modulation of the position space density. T
time evolution of noninteracting free atoms is given in pha
space by the exact solution

W~x,p,t !5W~x2pt/m,p,0!. ~2.6!

This is shown easily by considering the Liouville–von Ne
mann equation for the Wigner function. By Taylor expansi
of this equation one proves the well-known result~see, e.g.,
@12#! that the motion of a particle in a potentialV(x) de-
pends only on odd derivatives of the potential:
m
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]t
1

p

m

]

]xDW~x,p,t !5 (
n50

` S \

2i D
2n

~2n11!!

]2n11V

]x2n11

]2n11W
]p2n11 .

~2.7!

For classical particles, of course, only then50 term on the
right-hand side contributes, and the classical Liouville eq
tion is regained. For a single particle, the first quantum c
rections occur only in the third-order terms@13#. This has the
consequence that quantum and classical mechanics
identical results for a linear or a quadratic potential, provid
that the initial Wigner function is non-negative and can th
be interpreted as a classical phase space distribution. H
ever, the Wigner function~2.4! is not completely amenable
to a classical interpretation due to its interference term. T
latter gives rise to nonclassical interference fringes in
position distribution when the two wave packets overlap.

Nevertheless, thetime evolutionof the Wigner function
does obey in a certain sense ‘‘classical mechanics.’’ M
precisely, during time evolution the initial interference zo
is transformed into a linearly expanding fringe pattern a
cording to Eq.~2.6!. Equation~2.6! thus describes how a
momentum distribution is turned into a position space dis
bution for timet→`. Such measurements of the momentu
distribution are actually performed in the expansion expe
ments@1,2,10#.

One of the main results of this paper is the conclusion t
the fringe spacing inpositionspace increases with a velocit
proportional to the initial fringe spacingDp in momentum
space,

v fringe5
Dp

m
5

\p

md
. ~2.8!

For a given time the spacing is thus inversely proportiona
the distance between the initial wave packets. The frin
become visible in the position space density, obtained
integrating over the momentump, when the expanding
Gaussians overlap. This happens roughly at a ti
t05mds/\. At this time the first fringes with a spacing o
the order of

Dpt0 /m5s

become visible. This last result fortuitously coincides with
a priori guess that the fringe period should be related to
initial Gaussian momentum spread\/s. As the arguments
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are based only on Heisenberg’s uncertainty relation~in the
absence of interactions!, it is solely the ratio of distanced
and widths that determines the numberNf of resolvable
fringes at timet0,

Nf}d/s.

FIG. 1. Initial Wigner function for interfering wave packets
phase space. Only contours of the positive part are plotted for
ity. The momentum scale is given in wave vector unitskx5px /\.
The initial spatial separation isd547mm ands54.1mm. The true
ground state in the slightly asymmetric potential wells of the dou
Ioffe trap has been calculated numerically, neglecting interactio
The harmonic frequencies of the unperturbed Ioffe trap are 19
and 250 Hz for the axial and transverse motion, maximum li
shift V05h325 kHz, and beam waist of the laser beamw0530
mm. The interference region nearx50 displays the fringes in the
momentum distribution att50 ~a!, which are transformed into
fringes at a later timet538.2 ms~b!. The fringes in position space
are obtained by integrating over momentum in~b! and display well-
resolved fringes in the position distribution~c!.
However, these conclusions are modified through the in
actions.

B. The case of the divided Ioffe trap

All of the above features can be recognized in Fig. 1. F
the sake of comparison with the interacting case we h
chosen a slightly different initial distribution, however. In
stead of Gaussian wave packets, the initial state is the gro
state of the external potential, as given by the experime
divided Ioffe trap employed by@14#. In the Ioffe configura-
tion the atoms are collected in a cigar-shaped trap tha
easily divided in two halves by a sheet of far-blue detun
off-resonant laser light. The total potential is sketched in F
2~a!. The transverse and longitudinal frequencies
vx52p19 Hz and vy,z52p250 Hz, respectively. The
asymmetry of the half traps is clearly reflected by the asy
metric Wigner function peaks atx56d in Fig. 1~a!. The

r-

e
s.
z
t

FIG. 2. ~a! External potential of the double Ioffe trap, with th
same parameters as in Fig. 1.~b! Self-consistent mean-field poten
tial for interacting atoms. For a total atom number ofN553106,
the minima are still well separated.
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55 2113PHASE-SPACE DYNAMICS OF BOSE CONDENSATES: . . .
central interference zone is plotted discarding the nega
part of the Wigner function, for clarity. The linear deform
tion of the Wigner function due to the temporal evolutio
~2.6! is displayed in Fig. 1~b!. Figure 1~c! shows the result-
ing position space interference fringes. The expansion
not yet produced complete overlap and the fringe spacin
still smaller than the initial widths.

III. INTERFERENCE VERSUS INTERACTIONS

A. Mean-field description

In order to simulate the recent experiments@14# we now
turn to the properties of interference under the influence
weak repulsive interactions. The dynamics of a trapp
weakly interacting atomic gas is well described by Bogo
ubov’s formulation of the Hartree-Fock approximation for
atomic gas far below the condensation temperature@15#. To
establish the fundamental physics involved we write do
the effective grand canonical Hamiltonian

Ĥ2mN̂5E dr c†~r !~T1V2m!c~r !

1
2pa\2

m E dr c†~r !c†~r !c~r !c~r !. ~3.1!

The effective d-function interaction actually represents
properly renormalized two-particle interaction, i.e.,a stands
for the correct scattering amplitude.T represents the kinetic
energy andV the trap potential. The standard procedure is
determine a stationary self-consistent wave function of
condensate by solving a nonlinear Schro¨dinger equation, the
Gross-Pitaevski equation

mc~r !5S 2
\2D

2m
1V~r !1Ũuc~r !u2Dc~r !, ~3.2!

with the chemical potentialm and

Ũ5
4p\2a

m
. ~3.3!

For the time-dependent problem, the initial wave function
calculated from this equation. Based on the correlation fu
tion treatment of@4# it is a reasonable ansatz to describe a
two independent condensates by one combined macrosc
wave function~2.1!, for characterizing a single run of th
experiment. The arbitrary relative phasew between them is
set to zero here.

In the usual perturbation theory, excitations out of t
condensate are defined by splitting off a stationary expe
tion value ĉ(r )5c(r )1dĉ(r ). By contrast to this ansat
wherec(r ) does not vary with time, we will explicitly allow
for a nonstationarycondensate wave functionc(r ,t). The
time evolution starts after the initial potentialV(r ) is
switched off, or modified, such thatṼ(r ) remains. In the
time-dependent mean-field approximation we calculate
expansion and overlap of two independent condensate
solution of the NLSE,
e

as
is

f
d
-

n

o
e

s
c-
o
pic

a-

e
by

i\
]

]t
c~r ,t !5S 2

\2D

2m
1Ṽ~r !1Ũuc~r ,t !u2Dc~r ,t !.

~3.4!

Our simulation is based on the assumption that the ini
state is a pure state and remains pure under the influenc
the mean field for a sufficiently long time. We do not imp
that the time evolution of the condensate does not give ris
excitations, but simply start from an initial state at zero te
perature with no quasiparticles excited. Note that quasipa
cle creation through collisions is slow for small atom den
ties and is not contained in the solution of the NLSE. F
finite-temperature effects, i.e., the influence of noncond
sate atoms in the initial state, we refer to@4#. There, the
breakdown of the visibility has been shown for the nonint
acting gas as the temperature approachesTC .

B. Initial state

For an interacting atom cloud, the shape of the interf
ence fringes will depend on the initial conditions, i.e., t
initial confinement of the cloud due to the external potent
As a first approximation to the initial state we determine t
so-called Thomas-Fermi solution of the Gross-Pitaevs
equation~3.2!,

r~r ,0!5
m2V~r !

Ũ
. ~3.5!

The external potentialV(r ) in the double-trap configuration
is displayed in Fig. 2~a!. In the Thomas-Fermi approxima
tion, the atomic density distribution mirrors the external p
tential, such that the self-consistent potential is flat, as
sketched in Fig. 2~b!. It is apparent that for an atom numbe
of N553106, the sum of external and interaction potent
still provides a suitable separation of the initial condensa
visible by the maximum in the middle of the trap. It is als
apparent that the shape of the potential is not even ne
harmonic. To allow for the kinetic energy and obtain a mo
realistic initial condition, we have to replace the Thoma
Fermi solution by a numerical solution of the Gros
Pitaevskii equation. An efficient method to solve this pro
lem is imaginary time propagation. By the substitutio
t5 i t one obtains the imaginary time equation

\
]

]t
c~r ,t!52S 2

\2D

2m
1V~r !1Ũuc~r ,t!u2Dc~r ,t!.

~3.6!

The lowest ‘‘eigenstate’’ of the nonlinear Hamilton operat
on the rhs will have the smallest ‘‘eigenvalue’’ and th
survive temporal propagation, provided proper renormali
tions of the amplitude are performed during propagati
Thus the ground state

f05 lim
t→`

exp~2tH/\!c

uuexp~2tH/\!cuu
~3.7!

is obtained from any initial wave functionc(0) with even
parity. The solutions in Fig. 5~a! are obtained by this method
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C. Three-dimensional expansion of a single condensate

It is straightforward to characterize the time evolution
the condensates after switching off the trap as a balli
expansion driven by the repulsive interaction energy sto
in the trapped cloud. Its final free-flight stage is amenable
the simple phase space mechanics of Eq.~2.6! when the den-
sity has become low enough.

Previous studies of the expansion of interacting cond
sates have employed similarity solutions in order to desc
the invariant features of the expanding cloud@8,9#. Such a
solution is obtained by a scaling transformation of the init
distribution, reading here

r~r ,t !5l̄23r„L~r ,t !,0… ~3.8!

with the map L(r ,t)5( i51
3 ei@r i /l i(t)# and

l̄3(t)5) i51
3 l i(t) to be determined. After a short initial stag

of the evolution the expansion is well described by an
ymptotic linear scaling

l i~ t !→l̃i t. ~3.9!

The above ansatz can be combined with the so-ca
Thomas-Fermi solution, to give@8,9#

r~r ,t !5

m2
m

2(
j

v j
2r j

2

l j
2~ t !

Ũ)
j

l j~ t !

. ~3.10!

Equation~3.10! gives surprisingly good agreement with th
experimentally measured distributions. While allowing f
the interaction it neglects the wave mechanical nature of
center-of-mass motion, in the same way as Eq.~3.5!, and is
therefore not capable of describing interference fringes.
shape-invariant expansion of an initial Thomas-Fermi so
tion is correct in the case of a parabolic initial distributio
Higher order derivatives of the potential which might co
tribute to the Liouville equation~2.7! do not occur for the
given quadratic shape of the potential.

In order to allow also for the interference, an exact so
tion of the NLSE must be sought. Only a direct numeric
solution of the NLSE can both allow for the interference a
provide evidence for the applicability of the scaling tran
form ansatz. A quantum-mechanical generalization of
scaling transform@9# does not avoid the inseparability of th
three-dimensional NLSE. We therefore extend the o
dimensional NLSE to the three-dimensional case by usin
factorization method. The factorization amounts to sepa
ing the mean-field Hamiltonian into a sum of Hamiltonia
for each dimensionH5( iHi , where

Hi52
\2

2m

]2

]r i
2 1Vi~r i !1Ũuc i~r i !u2)

iÞ j
uc j~rmax!u2

~3.11!

with the following product ansatz for the wave function:

c~r !5)
j

c j~r j !. ~3.12!
f
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The nonlinearity is determined by the maximum dens
uc j (rmax)u2. Though deviations of the factorization ansatz b
come obvious for non-Gaussian wave functions, it turns
to yield the correct ratio of the expansion rates in the diff
ent directions. Thus we can keep the numerical effort tr
table and still allow for the interference fringes which are n
included in any Thomas-Fermi-type solution.

As a first test of the factorization scheme we have co
puted the expansion of a single condensate initially trap
in an anisotropic trap. By contrast to a thermal ensemble,
expansion continues to be anisotropic on the time scale
the observation. The calculated data~Fig. 3! display the cir-
cumstance that the extension in the direction of maxim
compression overtakes the extension in the other direct
at an early time, due to the steep initial density gradien
this direction. The results shown in Fig. 3 obtained fro
factorization agree with the prediction of the scaling equ
tions for a cigar-shaped trapvy5vz5v'@vx ,

l̈'5
v'
2

l'
3lx

, l̈x5
vx
2

l'
2lx

2 . ~3.13!

Second, to independently check the validity of the factori
tion we have also compared the separation ansatz wi
solution allowing for two dimensions exactly and only fa
torizing a third degree of freedom. Besides the curvature,
general features of the nonlinear propagation seem to be
reproduced by the factorization approach@Fig. 4~a!#. How-
ever, by the two-dimensional calculation the correct tw
dimensional curvature of the density contours is achie
@Fig. 4~b!#. For the calculation of the interference fringes t
factorization approach is applicable as long as this curva
does not wash out the fringe pattern, when integrated o
the transverse degrees of freedom. For the experimen
relevant parameters this is not the case.

D. Fringe spacing for interacting atoms

We now use the solutions of the NLSE to investigate
spatiotemporal structure of the evolving interference fring
in phase space. The purpose of using Wigner function p
is to facilitate the comparison of the data obtained by

FIG. 3. Expansion of a single condensate after switching off
trap. We plot the axial (x) and transverse (y,z) diameter of the
distribution calculated using the factorization approach. The d
agree very well both with experimental data and with the scal
equations from@9#. Trap parameters are the same as in Fig. 1.
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FIG. 4. Averaged density distribution of two overlapping co
densates in the (x,z) plane, corresponding to the experimental si
ation of Ref.@2#. The interference structures were averaged out
better visibility of the effect of factorization.~a! The distribution as
calculated using the factorization approach Eq.~3.12!. ~b! A two-
dimensional solution of the NLSE, to be multiplied by a on
dimensional solution for the remaining degree of freedom, for
same parameters.
en-
NLSE with the data for the noninteracting atoms. Recall t
a freely expanding phase-space distribution undergoe
shearing deformation along the position axis~clockwise for
our choice of coordinates!. A rapid outward acceleration cor
responds to a shearing deformation along the momen
axis ~counterclockwise!, while a deceleration is visualized a
a shearing in the opposite sense.

Figure 5 displays the evolution of the phase-space dis
bution of interacting atoms in the trap already considered
Figs. 1 and 2. The initial state@Fig. 5~a!# displays strong
position-momentum correlations of the atoms, in particu
the Wigner function oscillations due to the sharp decreas
the position space wave function, betweenx530 mm and
x550 mm. In Fig. 5~b!, after a very short stage of a rapi
acceleration att51.3 ms the momentum distribution ha
broadened considerably, from less than 0.5\mm21 to about
2\mm21 @note the changed momentum scale in Fig. 5~b!#,
and sheared clockwise. The inner part of the distribution
deformed much stronger, as the spatial gradient, and thus
acceleration is stronger than on the outer wing. Whereas
to the repulsion atoms are accelerated away from the max
x56d, by contrast, atoms approaching the overlap zo
x50 are decelerated.

This has to be compared with Fig. 1~b! where, in the
absenceof interactions, both the interference zone and
source zones expand without acceleration, i.e., in the s
way. As a consequence, the spatial width of a single cond
sates extends over nearly 400mm in Fig. 5~c!, i.e., roughly

r

e

ctions of

solved
FIG. 5. Wigner function for interacting atoms in phase space, for the same trap parameters as in Fig. 1, but including intera
N553106 atoms.~a! Initial state.~b! Early stage of the expansion,t51.3 ms. Note the different momentum scale.~c! t538.2 ms. The
interference fringes nearx50 are displayed with a much higher amplitude, due to earlier overlap of the density profiles. Spatially re
fringes are displayed with a very narrow fringe spacing in the position distribution~d!, corresponding to~c!.
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four times broader than the distribution in Fig. 1~c!, for the
expansion time t538.4 ms. Thus, due to the abov
mentioned rapid acceleration of the atoms, a complete o
lap of the condensates has occurred att538.4 ms, and many
more fringes are visible in Fig. 5~d!.

For comparison with the noninteracting case, we eva
ated the fringe distance as a function of time for differe
parameters~see Table I!. The data displayed in Fig. 6 indee
support the validity of a scaling description of the expansi
for large time. For large light shifts, the shape of the in
vidual condensates is nearly parabolic, and the velocity
expansion of the fringes, as well as the actual fringe spac
at a given time, is inversely proportional to the spacingd.
Thus after the initial expansion the dynamics mirrors that
a noninteracting gas. For small light shifts, however, the
tential wells are not symmetric with respect to the loc
minima, and also the position of the minimum does not
incide with the center of gravity of the distribution. In th
situation the fringe spacing does not depend on the dista
d between the minima, but on a lengthd̃ characterizing an
averaged initial distance between the condensates. The s
of the lines in Fig. 6~a! is evaluated and compared wit
\p/md̃ @see Fig. 6~b!#. We have found empirically that th
modified distanced̃ that allows best for the shifted center
gravity ^uxu&5*0

`xr(r ) of the interacting atoms is given by

d̃5Ad^uxu&. ~3.14!

FIG. 6. ~a! Time dependence of the width of the central inte
ference fringe. Asymptotic lines are fitted for curvesa andb. The
propagation was calculated using the factorized NLSE. For par
eters, see Table I.~b! Dependence of asymptotic expansion veloc
@slopes of the curves in~a!# on the quantityd̃ from Eq. ~3.14!.
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The numerical data for the asymptotic expansion velocity
surprisingly well reproduced by a 1/d̃ law, as displayed in
Fig. 6~b!. Note that this result holds only for the combinatio
of a harmonic potential well with a Gaussian barrier, as
@14#.

We finally mention the case of not-well-resolved conde
sates. For an insufficient light shift or a too large number
atoms, the Thomas-Fermi self-consistent potential does
display a clear potential barrier atx50. In this case the
initial density mirrors the total potential, i.e., shows a sing
two-peaked distribution alongz. Also in the case of nonin-
teracting atoms, we find a decreasing number of interfere
fringes asd→s, and the two sources merge to give a sing
source. This is in agreement with the conclusion of Sec.
However, in the case of interacting atoms the condens
expand more rapidly, and more density oscillations show
on the wings of the overlap region after the bulk of the co
densates have passed each other.

E. Expansion and interference of a single condensate
in a wedge-shaped potential

We finally study the coherent evolution of a single co
densate after suddenly switching the potential from a pa
bolic into a wedge-shaped potentialV5v0uxu, where
v0 /2p\540 Hz mm21. By temporally switching between
different external potentials a single condensate can
turned into a coherently excited superposition state that m
split up into two separate parts that recombine later on. T
wave-packet dynamics is strongly influenced by the non
ear dispersion, in the case of interacting atoms. The obse
tion of coherent wave-packet dynamics would also dep
on the maintenance of coherence during the observa
time.

Quite subtle aspects of the nonlinear dynamics come
play here, which have no classical or quantum mechan
analog. In the initial stage of the expansion, the conden
apparently ‘‘adapts’’ its shape to the new potential. A
analogous and very fundamental phenomenon has b
found in the initial propagation of Gaussian wave packets
nonlinear media. For positive dispersion and negative K
coefficient, a~self-attracting! soliton constitutes the funda
mental form-invariant propagation mode of the system. F
nonsoliton initial wave packets, the different components
the initial wave packet disperse in such a way that asym
totically the self-reproducing soliton survives@17#. The am-
plitude of the Gaussian that is not contained in this asym

-

TABLE I. Trap parameters for the divided Ioffe trap, corr
sponding to curvesa–g in Fig. 6~a!. The maximum light shiftVl is
given in frequency units, the laser beam waist inmm.

Curve w0 (mm) Vl /2p\ ~kHz! N

a 9.3 25 1.53105

b 9.3 25 63106

c 18.3 25 63106

d 30 25 63106

e 30 125 63106

f 30 7000 63106

g 67.2 25 63106
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totical wave packet has been ‘‘radiated’’ away, i.e., it h
propagated dispersively such that its contribution has
come negligible compared to the soliton. It is now interest
to investigate whether similar phenomena are present he

In the case of the wedge-shaped potential we compare
results for different values of the nonlinearity~atom num-
ber!. The transverse trapping field is assumed to remain c
stant such that the nonlinearity does not decrease due
transverse (y,z) expansion. For small nonlinearity, the am
plitude that is propagating outward in thex direction inter-
feres with the amplitude that has been reflected at the lin
slope of the potential, resulting in large scale fringes mov
in the position space density@Fig. 7~a!#. For high nonlinear-
ity, the wave function of the interacting atoms looks differe
@Fig. 7~b!#. Initially, the condensate displays a ‘‘creeping
motion such that the shape of the cloud seems to gradu
adapt to the new potential form. This behavior simulates
soliton filter effect mentioned above. However, as the pot
tial rises to infinity, there is no possibility of radiating awa

FIG. 7. Expansion and interference after sudden switch t
wedge potential.~a! Solution of NLSE forN52400 atoms.~b! So-
lution of NLSE forN553106 atoms.
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the part of the amplitude that does not fit into the se
consistent shape. The reflection at the outer potential s
again creates density oscillations, however, of much redu
period and amplitude. Under suitable conditions the obse
tion of fringes from a single condensate might provide no
evidence for the wave-packet dynamics of a many-part
system.

IV. COLLISIONAL LOSS OF COHERENCE

As mentioned above, all conclusions derived from t
NLSE are based on the assumption that the condensate
be described by a single macroscopically occupied o
particle state. However, thermalizing collisions will play
crucial role for long expansion times. Regrettably, no via
theory exists for the treatment of the dynamics of inhomo
neous condensates in such a nonequilibrium situation. In
der to obtain a preliminary estimate for the influence of c
lisions on the interference, we resort to the followin
considerations, which are based on the homogeneous s
tion.

The basic assumption of our treatment above is that
macroscopic wave functions of the two independent cond
sates can be added coherently with an arbitrary but fi
phase Eq.~2.1!. The detailed analysis in terms of correlatio
functions@4# showed that a visible interference between t
two condensates requires the criteria Eqs.~4.1! and ~4.2! to
be fulfilled. The condition

^a1
†a1&'^a2

†a2&'N/2 ~4.1!

implies that the occupation of the two condensate mo
( i51,2) has to be comparable to the total number of ato
N. In addition,N has to be so large that a clearly recogn
able spatial pattern can be resolved in a single run of
experiment.

It is not obvious that a condition like Eq.~4.1! will be
fulfilled for arbitrary times in the presence of collisions. Th
equilibrium in free space is characterized by incoherent
perpositions of plane waves, to which the initial state can
evolve by the NLSE. Eventually, thermalizing collisions
the overlap zone will smooth out the momentum distributio
As a result the phase space density might decrease below
degeneracy threshold. However, as mentioned above
quantitative description of this process is still lacking. W
estimated that the collision rates in a thermal cloud w
comparable velocity distribution and density would have d
pleted about half of the condensates in our situation. T
would still leave a fringe visibility of about 50%. We expe
that this rather overestimates the effect since collisions b
into the condensate are favored by the bosonic enhance
factors.

The second condition for visible interference justifies t
notion of a broken gauge symmetry in Bose-Einstein c
densation, although coherent states do not exist for atom

u^ai
†~ t !ai~ t1t!&u

^ai
†ai&

'1. ~4.2!

It requires that the phase coherence has to be large durin
observation timet, in which the spatial pattern is recorde

a
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Note thatt refers only to the exposure time and not to t
full expansion time that precedes the recording of the p
tern.

It turns out that condition~4.2! should be much easier t
fulfill, since the relative phase between the condensa
needs to be stable only during the exposure timet of the
pattern image, which is normally much shorter than the
expansion time. Therefore, incoherent processes should
be able to violate condition~4.2! as long as they fulfill the
much more stringent condition~4.1! on the time scale of the
full expansion. However, it has been observed@6,7,16# that
even the nondissipative NLSE is able to induce a phase
persion. The corresponding self-interaction for a single c
densate (i51,2) is

H int5
Ũ

2V
ai
†ai

†aiai . ~4.3!

In addition, cross coupling terms between the condens
exist, but do not contribute to the phase diffusion. The ab
Hamiltonian induces phase factors that depend on the ac
number of particles in the condensate. Atom number fluct
tions thus lead to a phase diffusion since subensembles
a larger atom number exhibit a faster oscillation. The cor
lation function of condition~4.2! therefore evolves due to

^ai
†~ t !ai~ t1t!&5 (

Ni51

`

NiP~Ni !expS 2 i
Ũ

\V
~Ni21!t D ,

~4.4!

whereP(Ni) is the number distribution for the correspon
ing condensate. Assuming a Poissonian number distribu
P(Ni)5exp(2N̄i)N̄i

Ni/Ni!, this reduces to

^ai
†~ t !ai~ t1t!&5N̄iexp~2N̄i ! (

Ni50

` F N̄iexpS 2 i
Ũt

\VD GNi
Ni !

5N̄iexp@N̄i~e
2 i ~Ũt/\V!21!#. ~4.5!

After an initial decay of the correlation function, reviva
@6,7# will be visible aftert'\V/Ũ, which, however, is ar-
bitrarily long in the thermodynamic limit. It is therefore rea
sonable to expand the second exponential up to second o
thus obtaining

u^ai
†~ t !ai~ t1t!&u

^ai
†ai&

5expS 2
~ n̄i Ũt!2

2\2N̄i
D , ~4.6!

where we have expressed the quantization volumeV by the
densityn̄i and the particle numberNi , so as to indicate the
proper extension to inhomogeneous situations.
an

n,
tt.
t-

es

ll
ot

is-
-

es
e
al
a-
ith
-

n

er,

In accordance with the notion of a broken gauge symm
try, the above mechanism of phase diffusion vanishes in
thermodynamic limit. However, in our finite situation, th
correlation time would be only somewhat larger than the f
expansion time. Since the exposure timet required to shoot
a single picture of the condensate is much shorter, this
correlation mechanism should not affect the visibility of t
fringes.

Therefore, we conclude that the phase decoherence
~4.6! due to the nonlinearity of the Hamiltonian should n
inhibit the visibility of the interference. In contrast, the effe
of an incoherent depopulation due to collisions might alrea
be detrimental in our situation. It could possibly be ove
come by adiabatically widening the trap, before releasing
atoms.

V. CONCLUSION

Summarizing our main results, the mean-field dynam
of expanding Bose condensed clouds, initially at zero te
perature, is characterized by the fast transformation of in
action energy into kinetic energy. After this initial stage
free flight stage follows, with the extension of the condens
increasing linearly with time. Interference fringes occur
the overlap region between two expanding atom clouds.
fringe spacing increases linearly in time as well, at a veloc
inversely proportional to the initial distance between the c
densates. The Wigner representation of the phase space
sity provides a clear understanding of the condensate dyn
ics, both in the noninteracting and interacting case, that is
as simply obtained from the position space distributions
may also allow the problems of spatial and temporal coh
ence of the condensate to be tackled.

An observation of the predicted interference fring
would unambiguously prove the existence of a quantum m
chanical many-particle superposition state. In other words
is evidence for the macroscopic population of a single ato
center-of-mass quantum state. From calculations of collis
rates we have inferred that the decay of the first order co
ence function, the ‘‘phase relaxation’’ of the condensa
wave function, would be slow compared to the interacti
time considered here. In the long-time limit, however, co
sions between the counterpropagating condensates wil
crease the phase space volume filled by the condensate
decrease the phase-space density inevitably.
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