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Threshold law for ionization cross sections in the Temkin-Poet model
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An integral representation of wave functions for the Temkin-Poet model of electron impact on atomic
hydrogen is given. Approximate wave functions are evaluated analytically for large hyperradius to extract the
ionization S-matrix element. An ionization cross section of the form[expE~ 6+ bEY¢], wherea andb are
positive constants, is derived. The exponential suppression of ionization forErappiears to be the quantum
counterpart of the delayed onset of ionization in the classical theory for this M&d€I50-294®7)03703-7

PACS numbd(s): 34.80—i

[. INTRODUCTION ionization threshold, but fail to obtain the Wannier threshold
law. Hyperspherical close-coupling calculations using 100—
Electron correlations are central to excitation and ioniza-300 channel functiongl2] are consistent with the Wannier
tion of atoms by electrons and photons. A wave picture ofpower law for E>0.05 a.u. These are the most complete
dynamical correlations has been given by Faf$ using calculations to date in the threshold region which employ
insights derived from the classical Wannier the2}, the  well-established, but numerically intensive, methods. More
semiclassical analysis of R48] and Peterkop4], and the  basis states are apparently needed to push the calculations to
adiabatic hyperspherical representation of Ma¢8k In  still lower energy. It appears that completealy initio meth-
Fano’s picture, an outgoing Schiiager wave in the hyper- ods will eventually succeed in reproducing the known cross
radius R=\/r12+r22 emerges from the region where both sections in the Wannier threshold region. For photoioniza-
electron coordinatess; andr, are of the order of 1 a.u. As it tion of helium, Shakeshaft13] has actually succeeded in
propagates to larger values Bf part of the wave branches obtaining the Wannier threshold law using a basis of
off into waves concentrated in the potential valleys whereoutgoing-wave Sturmian functions.
r,<<r, or r,<r,. Waves concentrated in potential valleys None of the theories cited above incorporate Fano’s pic-
represent excitation and the corresponding adiabatic statégre of wave propagation. Direct solution of the Salinger
will be referred to as “valley” state§l]. A complimentary equation in hyperspherical coordinates by Bdid] has
part of the wave localized in the regiop~r, continues to Yielded eigenphases which support the existence of a part of
infinite distance and corresponds to ionization. This parthe wave that remains on the ridge, but cross sections for
propagates on the ridge of the potential and states concefreasurable processes were not obtained. Solution of the
trated here will be referred to as “ridge” states. time-dependent Schdinger equation using a wave-packet
A complete theory must represent the dynamical evolufepresentation has proved feasible for energies of the order
tion of both types of states, a task that has proved difficult foof 0.5 a.u. above thresholffl5,1. While the Wannier
conventional atomic theory. Classi¢al6] and semiclassical threshold law is not obtained, the wave function does appear
methodd3,4,7] have been able to account for the asymptoticto propagate in accord with Fano’s picture. A surprising as-
behavior of that part of the wave function which propagategpect of these calculations is that when the exact electron-
on the ridge. Completab initio quantal calculations have electron interactionV,,=1/r;—r,| is replaced by the
not yet been able to reproduce the Wannier threshold lawTemkin-Poet (TP) [17-20 model potential Vi,=1/r .,
although Crotherg8] has adapted the semiclassical wavewherer - is the larger ofr; or r,, the basic picture of wave
functions of Peterkogd4] to conventional expressions for propagation changes very little, yet it is expected that
transition amplitudes and has computed absolute ionizatiolridge” states should play no role. In the TP model a thresh-
cross sections near the threshold. This was the first calculald law appropriate for a product state of one Coulomb wave
tion to obtain both the threshold law and the normalizationand a free-particle function, i.es;xE'®, is expected18]. A
constant. Ros{6] has solved the one-dimensional linear further surprising result is that purely classical calculations
model, where ¥/, is replaced by 1K;+r,), classically and [21] obtain ionization cross sections that vanish in the region
obtained the energy variation of the cross section for totaD<E<1/6 a.u., even though ionization is energetically al-
energyE between 0 and 0.4 a.u. The classical calculationdowed. The quantal cross sections for the TP model differ
did not obtain absolute cross sections, but the energy variaonsiderably from the classical results and may correspond
tion agrees well with the experiments of McGowan andto a power law with a slightly lower exponent of 1.4 rather
Clarke[9]. Close-coupling calculations using a discrete basighan 1.5[15].
[10,17 to represent the continuum have given accurate total While the TP model employs a simplified electron-
cross sections for energies greater than 0.3 a.u. above tledectron interaction, it plays an important role in an alterna-
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tive picture of threshold ionizatiof9] which considers that = sjonless, multiplicative analytic functioBy,(E). The form
ionization as well as excitation corresponds to waves propaef the functions(E) is the main focus of this manuscript.
gating in the valleys where the two electron coordinates are The theory of Ref[24] is briefly reviewed in Sec. II. An
not at all equal. It is also supposed that the electron velocitieexpansion in angle-Sturmian eigenfunctions is a key feature
are quite different. In addition to therl/ potential of the TP  of this theory. These eigenfunctions are defined by replacing
model, the faster electron also moves in the dipole potentighe hyperradiuR by an eigenvalug;(») in the equation
of the nucleus and the slower electron. When the dipole podefining adiabatic hyperspherical eigenfunctions, namely,
tential is taken into account, a power law modified by an
oscillating factor emerges. > P .

lonization cross sections for the TP model have been LA TRI(*)2C()]S(»Q)=(» _1/4)81(V’Q)'(1 )
computed by three different groups using three quite differ- '
ent methods. Bray and Stelbovif$0] employ the conver-
gent close coupling method, Meyer, Greene, and B28]  whereA? is the generalized angular momentum operator,
use theR-matrix method, and lhrat al. [15] compute the is a parameter,p;(v) is the Sturmian eigenvalue, and
time evolution of a Schidinger wave. For energies above S;(v;(2) the angle-Sturmian eigenfunction.
about 0.4 a.u., all of the cross sections agree within 10%. For The angle-Sturmian functions are used to represent the
lower energies in the threshold region, the three differenkernel®(»,Q) in the Kontorovich-Lebedev transforfi25]
methods disagree somewhat, especially with respect to thaf the exact wave function
variation of the cross section with energy. This disagreement
near threshold makes it difficult to determine if theories
which emphasize wave propagation in the valleys of the po- V(R,Q)= f O (v,Q)RY%Z (KR)d(1%2). (1.2
tential represent viable alternatives to the Wannier theory in c
some energy range close to the threshold. The contradiction
between classical and quantal theories remains unexplaineﬂi

since there is apparently no quantal counterpart for the clas—;:e sutlscfr_[[ptt;: de(r;otes a g?i,”tr‘]’gr ;?Rth_e co|r3aneX||aIfane
sical shift of the ionization onset. chosen to fit boundary conditionZ,(KR) is a Bessel func-

The linear model also employs an approximate electrontion, and K=y2E. The coefficients in the expansion of

electron interaction. The main difference between the model® (¥:€}) in the angle—StLljrmian bﬁsii are deltermined by
is that the linear model uses an approximate interaction corf"f€&-térm recurrence relations which are solved approxi-
sistent with propagation on the ridge, while the TP and di-mately using the methods of Bra{iz6]. A relatively simple

pole models employ potentials appropriate for propagation iintegral expression for the approximate wave function then
the valleys. The purpose of the present manuscript is to

de€merges. The asymptotic form of this wave function is ob-
rive a threshold law for the TP model using a recently de

tained and the approximate Jost matrix extracted.
veloped theonfi23,24 for systems whose total potential en- The Jost matrix is used to compute the transition matrix
ergy V is factorable in hyperspherical coordinates

elements. A notable feature of this theory is that, even
V=RC(Q), whereQ is a set of hyperangles. The quantity though only one basis function is employed, an approximate
C(Q) will be referred to as the scaled potential. In paralle

|value for everyS-matrix element is obtained. In essence, the
with the derivation for the TP model, the threshold law for (N€0TY IS complete at every level of approximation. At the
the linear model will be obtained. It is known that the Wan- [0West level of approximation employed here, indications are
nier threshold law emerges in the linear model, and it will bethat the theory may be accurate to within 1Q2]. “The
verified that the theory of Ref.24] obtains this result to lowest level approximate theory is known as the “hidden
within small corrections. Quantities referring to the linear;

crossing” theory and was first developed in connection with

model will be labeled with the subscri¥ and those refer- |on-atorr,1 collisions by Solov ey27]. . .
ring to the Temkin-Poet model with the subscript TP. _Fano’s picture of wave propagation emerges naturally in
A key feature of threshold laws is that they factor thethIS theory, but only the factoring of the.potentlal plays a key
cross section into a part that relates to wave motion in £O|e. The exact structure of the potential determines the de-

region, called the reaction zone by Wannier, where all elec'EaIIS of the threshold law, but the emergence of a Wannier-

tron coordinates are small and a part that relates to a regiortgpe rr%srold law does_ n?r:' Itis therfefore (;J_seful to sele Wthat
called the Coulomb zone, where the electron coordinates afgreshold law emerges in the case of one-dimensional poten-

large but the Coulomb potentials are still important. The fac1alS Such as the TP and linear models. In both cases the

tor that comes from the inner region is an analytic functionScaled potentiaC({2) is a function of only the hyperangle
of the total energyE but the factor that relates to the Cou- ¢~ arctanta/ra). .
lomb zone is not. In the usual derivations of the Wannier A Single Sturmian is employed here so thii(R,a) is
threshold law this latter factor is simply a powerBf The ~ aPProximated by

method of Ref[24] identifies this power oE as the first
term in an asymptotic expansion of a functis(t). Reten-
tion of more terms in the asymptotic expansion gives a ‘P(R,a)%f A(v)S(v;a)RYHD(KR)d(v?/2),
threshold law which is more general than a power law and is o 1.3
often valid over a wider energy range than the simple power ‘
law. The functions(E) has the dimensions of a cross section

and differs from the absolute cross section only by a dimenwhere

©
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6 T scaled potential curves in Fig.d. The bound states for
negativep are concentrated in the regier~ 7/4 and repre-
sent ridge states for both model potentials. The integral over
positive v? in Eq. (1.1) therefore goes over a region where
the Sturmian eigenfunction represents a ridge state. A single
angle-Sturmian function represents both valley and ridge
motion and, for that reason, E¢L.1) accurately describes

i electron dynamics. Furthermore, it seems to be the most
natural way to represent Fano’s picture of electron correla-
tions. As shown in Ref[23], it gives a version of the Wan-
nier threshold law where the Wannier indéy= 1.127 is

o - approximated by an “adiabatic” value(‘}\',’= 1.104.

To extract the threshold law it is necessary to compute the
adiabatic energy eigenvaludp) for large negativep. The
eigenvalue is computed in Sec. Il. This eigenvalue is then
used in the general cross section formula given in R2f]
to compute the threshold law. For the TP model we show in
Sec. Il that

-C(a)
(au) 4F

ocexd —aE" Y+ bEY®], a=6.87, b=23.688,
(1.9

a surprising expression, but one that may be in accord with
the classical value of 0 fdE<1/6 a.u.[21]. Note that expo-
nentially vanishing probabilities often emerge in the quan-
o (radians) tum theory for processes that are classically forbidden.
The formula Eq.(1.5 can only be compared with more

FIG. 1. Plot of the scaled potentipsgn(p)C(«)] for positive ~ conventional calculations for this model. It has no experi-
p, lower figure, and for negative, upper figure. The solid curve mental significance, but seems to indicate that Fano’s picture
shows the scaled potential for the Temkin-Poet model, and thef ionization via propagation on the ridge is to be traced to
dashed curve for the linear model. The adiabatic energy eigenvalughe factorization of the potential in hyperspherical coordi-
for [p|=8 a.u. are indicated by horizontal lines. The lower figure nates, rather than to the detailed structureC¢#). The as-
illustrates the energy eigenvalue for a “valley” state and the uppefymptotic functionstp(E) is compared with theb initio cal-
figure illustrates the energy eigenvalue for a “ridge” state. culations of Refs[10,15,27 in Sec. III.

-6 |
0 0.8 1.6

[ ( )] 1 II. REVIEW OF THE ANGLE-STURMIAN
Al v p)l=
4\/[2[Ep(v)2—1/2] REPRESENTATION

o) , In this section we briefly review the angle-Sturmian
XeXF{iJ' ? arcsW(%)dy’ . (1.4 theory of Ref[24] as it applies to the TP and linear models.

p(v
and an outgoing wave Bessel functidf”’(KR) is used. The

The angle-Sturmian functions are defined as
subscriptj on the eigenfunctions and eigenvalues is omitted
since only one eigenfunction is employed.
We can easily see the role of valley and ridge states byherep is an eigenvalue and is a parameter. For the TP
considering the general properties of the Sturmian eigenvaimodel the scaled potenti@l(«) is given by
ues and eigenfunctions. The scaled poter@igd) is shown ) )
in the lower part of Fig. 1. For large negativé, the eigen- | T Usina) if a<w/4
value p is approximately given by?(v)=~(v?—1/4)/2, Cla)= —1coga) if a>ml4,
where n is the principal quantum number of an electron
bound in a one-electron state of the ion with binding energyand for the linear model by
en. The corresponding Sturmian eigenfuncti®v;«) is
just a one-electron hydrogenic radial functiBp(p«). It fol- Cla)=— 1 -~ 1 i 1 2.2
lows that the integral over negativé in Eq. (1.3) goes over sinfa) coqa) siN(a)+coda)’ '
a region where the Sturmian represents a valley state. The
horizontal line in the valley region of Fig(d) represents the BecauseC(a) is negative definite, the Sturmian eigenvalues
productep for p=8 andn=1. The wave functions for the pn(¥) and eigenfunctions are real for regl and are normal-
valley states are essentially identical for the two potentials.ized according to
Alternatively, whenv? is large and positivep must be-
. . . . w2
come negative. For negatiyethe potential term in Eq1.2) _J S(v;w)2C(a)da=1. 2.3
effectively changes sign as represented by the upper two 0

2

d 2
W—Zp(v)C(a)—F v

S(v;a)=0, (2.9
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The negative sign is used in E@Q.3) since—C(«) is posi- -pg
tive definie. VRO~ [ "B canfpr R (KRYdp
The angle-Sturmian eigenfunctioS§v; «) and eigenval-

ues p(v) relate to the more common adiabatic functions % U2y (D)
¢(p;a) and energy eigenvaluegp) according to +J , B(p)e(p;a)R™H " (p)(KR)dp.
~PQ
2e[p(v)]p(v)2=v?—1/4, (3.)
elp(v);a]=NSv;a), (2.4  Both terms on the right-hand side are then evaluated in the
stationary phase approximation and it is fol@d] that both
where terms have points of stationary phasepatR. For the sec-
ond term, the functions(p) and ¢(p;a) are equal to the
N /_ 0P(V)‘ (2.5 adiabatic quantities,(R) and¢,(R; @), respectively, where
2vdv the value ofn specifies the branch of the functian(R).

Co - ) Different branches are reached by different paths of integra-
To compute ionization probabilities, the energy eigenvaljon, in the complex plane and the final result involves a sum

uese(p) for large, negativep are needed. The computation e different paths. As shown in RgR4], this gives the

of these quantities is carried out in Appendix A with the amplitude for excitation of a particular bound state

result In the first term, the functionp,s(R;a) at p=R corre-

sponds to the asymptotic function, defined for negativia

- =, (2.6) Eq. (A7), analytically continued to positive. This function

—p) (=p) (=p) is real and exponentially damped for negativéut is com-
plex and represents a wave that propagates outward from the
ridge ata= /4 for positiveR, as is seen most directly for

Corr=V2, Ci1p=1.01881, C,7p=0.79537, the linear model wherg24]
2.
@7 Pasf pi@) ~eXiT — C\—pla—mi4)?], <0,
and where the subscript TP,asy indicates the asymptotic ex-

pression for the TP model. For the linear model one has the  ¢as(Ria@)~exficVR(a—m/4)?], p=R>0. (3.2
usual Wannier resu(i24]

Corr Citp Cotp
STP,asy(P) ~ (

where

It follows that the first term in Eq(3.1) asymptotically

Cow Ciw describes the ionization component of the one-Sturmian

Ew,asyfP) =~ m*‘mz, (2.8)  wave function. Explicit evaluation of this component in the
stationary phase approximatip24] gives the probability for
where now ionization in the form
Cow= 3/\/5, Ciw= 2*5/4\/ﬁ_ (2.9 P(E) = Pinnel E) Pas;ﬂ E), (3.3
In both Egs.(2.6) and (2.8) it must be remembered that Where
—p=exp(—im)p is a positive number. The branch efl is ,
chosen so that-p has a phase of 0 rather thanravhen Pinnel E) = 2 exp{—Z Im Q\/Z[E—s(p)—l/4p2]
p=exp(m)|p|- patns Po
For purposes of interpretation it is convenient to change
variables fromy?/2 to p in Eq. (1.3). Substituting Eqs(2.4) — \/Z[E—gas)(p)— l/4p2]dp}, (3.9
and (2.5 into Eqg. (1.3 gives
® P..(E)=ex E)], 3.
\P(R,Q):J B(,D)(P(P,CY)RlleS,%;))(KR)dp, aS)( ) F{Q( )] ( 5
(2.10 QE)=—21Im| \2[E—easfp)—Lidp?]dp. (3.6
where an outgoing wave Bessel function is chosen and the Po
coefficientB(p) is The constanip, is a real value ofp on the branch of the
5 function e(p) corresponding to the initial state. The sum
_ viv over paths in Eq(3.4) indicates that the amplitudes for all
Blp)=\ ~ ap Alv(p)] 21D Jaths that connecpg and p, in the complex plane are

summed coherently.
Both Pinned E) andP . E) depend upom, but the prod-
uct does not. For this reason the exact value is immaterial for
The integral in Eq(2.10 is evaluated for larg®R using  the total cross section, although not for the fadigy(E)
asymptotic approximations. For sufficiently large negativewhich is the main focus of the present work. The value of
p less than some value pg, ¢(p;a) and v(p) are re- po=4 a.u. used here follows from consideration of where the
placed by their asymptotic values Eq2.6) and (2.8), angle-Sturmian function takes on characteristics of the

lll. DERIVATION OF THE THRESHOLD LAW
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n=2 state neap~4 a.u. The value opq is only relevant to To compute the energy distribution for the TP model, it is
the calculation oP;,,(E) and is not needed here. For com- necessary to analytically continue the asymptotic adiabatic
pleteness, it is nonetheless useful to notedhes complex  function ¢1p asfp, @) from negativep to positive Rg. For
and large enough so th&,.(E) is insensitive to the exact large negativep, the eigenfunctionprp a5(p, ) is concen-
value. The calculations of Ref[24] use a value of trated in the classically allowed region near w/4. For
po~50 exp(n/4), since terms of the order of @ are neg- both the linear and the TP models, the classically allowed
ligible at that point. region becomes vanishingly small for large negatwe
The quantityP(E) gives the probability for populating and the wave function in the classically forbidden region
the first “ridge” state whose asymptotic eigenvalue is showndetermines the relative electron energy distribution. In both
in Fig. 1. The corresponding ionization cross section is the allowed and forbidden regions, the wave function for
large p is given in terms of Airy functions Ai) in Appen-

do(E ds(E,a iX A,
e = Pre(E) ey A
®1PasiPs @) =Nrp(Rg)Ai(zg—24), 3.12
where
where
as dli;:E) o [0ufRe ae)PPufE). (38 ze=\Zlexp~imRe A wla—a) (313
and — 2A is the first zero of Ai(z).
and the anglexe is given in terms of the wave vectdks and The distribution is integrated overg to obtain the total
k of the two electrons according {@8] cross section. The integral is evaluated in Appendix B, with

the result
ag=arctarik, /ky). (3.9
2
The factorP;,e(E) relates to electron motion in a region, fo | ¢7p asf Re Jag)|*dag
called the reaction zone, where both electrons are close to the

nucleus. Referende3] computes this quantity with the ex- IN7e2

act electron-electron interaction. It could be computed using — =———"——exp(2"*37ARY*~ 2%4\/3/7R: %)
the same methods, bR;,,(E) is not needed to extract 277\/6ARE

threshold laws and will not be evaluated from first principles (3.14

here. Values for this quantity do emerge in the next section
by fitting the cross sections of R¢R2] to the expression Eq. For comparison, the corresponding result for the linear
(3.7) integrated over relative electron energy. model is

Notice that, even though,s(p) and ¢.fp,a) are real
for negativep, they are complex for positive. In contrast,
e(p) and ¢(p, ) are real for allp. For this reason the ion-
ization channels only emerge whetip) and ¢(p,a) are
first replaced by ,s(p) and ¢,sfp, @) beforethe stationary  The normalization constant for the linear model is known
phase approximation is employed. Presumably, they woulfrom Ref.[24] while the normalization constant for the TP
also emerge when the integral is evaluated exactly or bynodel is derived in Appendix A. Substituting E@.10 into
alternative asymptotic approximations. Eqg. (A11) gives

The quantityRg is of the order of the Wannier radius
Cy/E and is shown in Ref[29] to be given by

w2
fo |ow,asf Re  ag)|?sin2agdag=|Ny|%  (3.19

(2cl,w
IN(Rg)|?= m
ARY®, TP model

1/2
) RY4,  linear model

for the Wannier theory. Equatiai3.10 will also be used for so that Eq.(3.14 becomes

the TP model.
The magnitude of the asymptotic functia(Rg,ag) is 2 A
independent ofvg for the linear model so that J' = asf Re o) |?dag= eXF[21/4\/§ARé/6
0 ' 277\/€A
low, asy Re @)= |Nw(Rg)|?. (3.1

—2%43/7RzY%], (3.1

n WhereA= 2.419 is a constant.
The factorP,¢(E) is computed using the approximation

Equation(3.11) then predicts a flat distribution irg. Pe-
terkop and Liepinsh30] show that a more precise evaluatio
of the asymptotic function introduces a multiplicative factor
of sin2a¢ so that the distribution is actually flat in the energy ML eas0)]
E; of one electro31]. This factor has not been verified for oTE — ol e Easp P

the TP model. The distribution for this model will be given Imy2[E=e(p) J2[E+Colp]’ 3.19
as it emerges from the present theory, i.e., without the

sin2ag factor. where
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—Cywp ¥, linear model
Ime(p)=4 3 (3.19
(p _7[C1,TFp74/3+ CZ,TPP75/3]’ TP mOde|
|
for p>0. Terms of ordersas))(R)2 are neglected. We have dsy 2 C1w
verified that these terms give only small corrections to ——=5=—7+- C”“E Ydexd Quw(E)]sin2ag
— 3 daE 2E+ 1
stp(E) for E>10"° a.u. (3.24
These approximations are substituted into E16) and '
the integral ovep evaluated using the identity in the linear model and
o d dsjp  Am .
f(b.CoB)= | P o= 5 2% Rexi] Qre(E) 1| A (2~ 20) 2
pop°*12[E+Co/p] .

-b

b\2E

ColpoE) .

(3.19

For b= 1/2 the right-hand side of Eq3.19 diverges loga-
rithmically asE—0,

—1/2

2py

f(1/2,Cy,E F.(1/2,1/2;1/2-1;— Cy/poE

( 0,BE)= \/2—2 1( o/poE)
\/ 2 \/C°+\/1+ CO} b=1/2

f— —n —_— —_— s f—

Co Epo Epo
(3.20
but for b<1/2 it diverges a&£®~ 2 since
f(b,Co,E)= P (1/2)b;b+1;— Co/poE)
0 \/EZ 1 o/Po

—b
_ Po
~ J2(b—1/2)JE+Cy/pqg

X ,F1[1/2,1;3/2-b;E/(E+Cq/po)]

1 T(b)[(1/2-b)
TR TR

Substituting Eqs(3.13—(3.21) into the definition Eq(3.6)
of Q(E), we get

2 C
QW(E)=CLW\/vanE 2In<\/ \/ ;OW”

(3.22

CoPEP~ 12 (3.2))

for the linear model and

Qe(E)=—3[Cy16f (1/3,Co1p,E) + CZ,TPf(Zlg’CO,T(PéEzg

for the TP model.

ze=2%exd —i w/3|E" Y wl4— ag) (3.29

in the TP model.
The integrated cross section functions are

2 2C1w
et \| Y E exi] Qu(E)]

Sw(E)=
(3.26
and
A
stp(E) = ET1 2\/—A exd Qrp(E)]
X exp(223\3mAE~ Y0 213,[3/7 A2EVS)
(3.27

In the limit asE— 0, the ionization cross sections in the two
models become

ow= Pinner(E)SW(E)ocEl'lM. (3.28
01p=Pinnel E) Stp(E) cexd — 6.87E ~ 6+ 3.680512 ,29)

where Eq.(3.16 has been used. When higher order terms in
Eq. (3.17 are included, the coefficient d'® changes to
2.45.

It must be emphasized that the asymptotic expressions
Egs.(3.29 only give the ionization cross sections up to an
undetermined, slowly varying, functioR;,,{(E). This is a
feature of all threshold law theories, but present theory is
unique in that an explicit expression E@®.4) is given for
this undetermined factor. Computation of this factor is not
germane to the threshold law itself and is not attempted in
this paper.

IV. RESULTS AND COMPARISONS
WITH OTHER CALCULATIONS

The energy distribution for the TP model given by Eq.
(3.29 is shown in Fig. 2 for three energies, naméy 2,
0.2, and 0.001 a.u. In all cases the distribution is nonuniform.
The electrons concentrate in the valleys where one is faster

The results for the differential cross section functionthan the other, as supposed at the outset. This tendency in-

dsy are

creases markedly as the energy decreases toward threshold.
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20 T T T r The finite threshold energy effect in the classical version
of the Temkin-Poet model can be understood as follows: Let
electron 1 be the incomin@uten one (,>r,) with positive
energy, and let electron 2 be bound to the nucleus initially.
The motion is separable as long as the electrons do not have
equal distances; andr, from the nucleus. Energy exchange
between the two electrons only happens when an encounter
on the diagonat,;=r, takes place. In Ref21] it had been
shown that, as a necessary condition for double escape, both
electrons must have positive energy after the first encounter.
It had also been shown that, if a second encounter takes
0 0.1 0.2 place, the originally bound electron 2 will be rebound to the
o/n nucleus. In this case electron 1, which is now again the outer
one, moves away rather rapidly from electron 2. A third en-
FIG. 2. Relative energy distribution of electrons from E825  counter, which would be necessary for an energy exchange,
for the TP model. The relative electron energy distributions foris not possible and as a result only single ionization takes
three energieE=2, 0.2, and 0.01 a.u. are shown. The distributionsplace. Double ionization can only happen if a trajectory stays
are normalized to unity akg= /4. in the regionr,>r, after the first encounter. This second
necessary condition for double escape can only be fulfilled
It must be emphasized that this distribution is uncertain owfor E/|E,|> 8 [21].
ing to the possible presence of the factor sig2which was To calculate classical properties from a representative set
deduced for the linear model on the basis of classical calcuef trajectories, it is sufficient to characterize a set of initial
lations[30]. Because there are no classical trajectories leadeonditions by two independent parametg3g]. One can be
ing to ionization neaE~0, the methods of Ref30] cannot  chosen to be the partitioning, /|E,| of the initial energies
be used for this model. We can, however, compare with clasaf the electrons. At given binding energy this determines
sical calculations foE>0.17 a.u. the total energy. Another independent condition is given by
The classical dynamics of the Temkin-Poet model havehe starting time: At the starting time the incoming electron 1
been studied in detail in Reff21,32. We shall only give a passes a fixed distance=d from the nucleus, while elec-
brief outline here in order to understand how the classicatron 2 performs bound oscillations in its radial coordinate
energy distribution arises. r, (prior to the first encounter,=r,). The starting time
Classically, the onset of the total energy where both elecdefines the asymptotic phase of the incoming electron with
trons can ionize is larger than the quantum mechanicalespect to the oscillatory motion of the bound electron. For
thresholdE=0. The ratioE/|E,| of the total energy to the the calculations, an equal distribution in the starting times for
absolute value of the energy of the initially bound electronthe set of trajectories is assumed.
must exceed a certain valyg so that both electrons can Figures 3a) and 3b) present classical results taken from
ionize. The effect is most pronounced =1 whereg has  Ref. [32] for the electron distribution in the Temkin-Poet
the value 1/3. For heliunZ=2, 8=0.169 777. The classi- model for the cas@=2. To take the indistinguishability of
cal onset of ionization is determined by this ratio only andthe electrons into account only the smaller of the energies of
not by the total energ¥ itself because the classical equa- the escaping electrons is recorded. The escape ereajy
tions of motion can be scaled to an energy-independent forrthe slower electron is measured in units of the total energy
[21]. E thus ranging from 0 to 0.5 a.u. This interval is divided into

15 F\N e E=2 a.u. T
i - - =FE=0.2 a.u.

TP
a.u.
dor (au) 49

0.5 T T T T 0.5 ' ' ' ' FIG. 3. Energy distribution
probability P, of Ref. [21] for
double escape near the classical
B (b) ] threshold. The escape energiE
° of the slower of both electrons is
L recorded and is measured in units
0.3 of the total energyE. By taking
% the indistinguishability of the elec-
R N trons into accountP, is symmet-
0.2 . 0.2F X . ric with respect toe/E=0.5. The
P x (XK energy distributions are plotted for
* X EATT. different values of the ratid/E,
o1} 00 Ky RKRKKK KKX 0.1} 000 K  HRKRKRK KKK 7] of the total energy to the absolute
oocton K K HE R Poooton K K X energy of the initially bound elec-
A © 00000 X I 0 tron. (a) Asterisks: E/|E,|=0.2,
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50 equally spaced parts, and for each partial interval the
fraction of the total ionization probability is determined.

If the energy transfer from the incoming electron to the
initially bound electron at the first encounter is not suffi-
ciently large, a second encounter takes place and the electron
will be rebound as described in the above scenario. Thus the
electron which is the outer one after the first encounter must
have at least a minimum fractiogpE(0<x<<1) of the total
energy E. The energy of the inner electron then is
Ein=(1—x)E. Close to the classical ionization threshold,
x is large and thereford;, is small. Distributions with
Ein>(1— x)E and thus symmetric energy distributions are
not possible. Figure (8 shows that forE/|E,|=0.2 and

E/|E,|=0.5, which is slightly above the classical ionization 5 4 Comparison of threshold ionization cross sections. The
threshold E/|E,[=0.169 77, the energy distribution is ap- sojig curve is the asymptotic cross section functign(E) of Eq.
proximately constant frora/E= 0 to its maximum allowed (325 for the Temkin-Poet model, the dashed curve¢E) of Eq.

valueE,. There it drops to zero abruptly. This is in strong (3.24 for the linear model, the dotted curve uge’s* for the ion-
contrast to the behavior of the classical energy distribution inzation probability, and the dot-dashed curve is the classical cross

the collinear model for energies near threshold where a flagection of Ref[21].
distribution with a slight maximum at equal energy
e/E=0.5 is observefl6]. At higher energies of the incoming over most of the energy range, but they differ substantially in
electron Fig. 8) shows that a maximum appears at the com-shape only between<QE< 0.1 a.u., where ionization in the
pletely unsymmetric energy distributicsl E=0, which be- TP model is dramatically suppressed. This suppression may
comes more pronounced as the energy of the incoming elebe the quantal counterpart of the vanishing classical cross
tron increases. section between € E<0.167 a.u. Also shown is the classi-
Although the classical energy distributions were calcu-cal cross section in the TP model. It departs significantly
lated fore™ +He", i.e., Z=2, the results foZ=1 are ex- from stp(E), indicating that classical calculations are unre-
pected to be quite similar, the only difference being theliable near the threshold for ionization.
higher classical ionization threshold. The preferred unequal The classical cross section in the linear model is not
sharing of energy near the threshold in the Temkin-Poeknown absolutely, but Ref6] reports normalized classical
model seems to be the classical counterpart of the quantugross sections over a 0.3 a.u. energy range. The ratio of the
mechanical result which also prefers an unequal sharing. Thelassical cross section of Rdi6] to sy(E) for the linear
main difference is that the energy distribution function in themodel is shown in Fig. 5. The ratio never departs from unity
guantum mechanical case is still a smooth function in théby more than 5%. For this model the classical and asymp-
hyperangleag or €/E, respectively, contrary to the abrupt totic quantal cross sections agree very well. The good agree-

Cross Section (a.u.)

0 0.2 0.4 0.6 0.8 1
Energy (a.u.)

drop to zero in the classical case. ment with the asymptotic quantal cross section indicates that
The classical relative energy distributions are proportionathe classical calculation succeeds because most of the energy
to variation comes from the statistical factorg2 1) ! and
PasE). The latter factor pertains only to a region where the
do do 1 potential is well approximated by a harmonic oscillator po-

(4.0 tential, and it is known that classical and quantal results for

such potentials are often nearly identical. In general, how-

d_82 - E sin2a,

since e,=E sirfa, asymptotically[28]. Equation(4.1), to-
gether with the quantal distributions of Fig. 2, show that the
guantal energy distributions differential ate, are singular
at «,=0, whereas the classical results are not. This suggests B 1
that the approximate quantal distributions are incorrect near We 4.1k i
a,=0, as they are in the conventional Wannier thel@g]. Sy
For E sufficiently above the classical threshold, it appears
that the correct quantal distribution should incorporate a fac- 1 .
tor of sinZx,. For energies below the classical threshold, it is e
necessary to employ a more accurate asymptotic representa-
tion of the Sturmian functions for positive and possibly to 0.9 7
employ more than one Sturmian in the representation of Eq. R -
(1.3 to obtain this factor. These improvements are not ex- 0.8 . . .
pected to affect the exponential factors in E8.5) signifi- o 0.1 0.2 0.3 0.4
cantly, but could introduce a more complicated energy de- Energy (a.u.)
pendence in Eq.3.16.

The total ionization cross section functios&E) for the FIG. 5. Ratio of the classical cross sections of R&f.for the
two models are compared over an extended energy range fafiear model tos,(E) vs energy. The ratio has been normalized to
1 a.u. in Fig. 4. The two cross sections differ by a factor of 2unity atE=0.15 a.u.

1.2
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FIG. 7. Plot of the fitted cross sectiof5,,.(E)stp(E) Vs E.

FIG. 6. Comparison of the ratio of computed cross SeCtlonSl'he data are as in Fig. 6, the dashed curve is the fit to the conver-

o(E) to the asymptotic cross section functiosig(E) vs E. The . . . . )

S(§|id) circles em):)IoF))/ cross sections of RE5] comi)uied using the gent close coupling cross section, and the solid curve is the fit to the
. R-matrix calculations.

time-dependent method, open squares employ the convergent close

coupling results of Ref.[10], and the open circles use the

R-matrix results of Ref[22]. than for the convergent close coupling ratio. Alternatively,

this ratio is linear up to a much higher energy and includes

ever, classical calculations are unreliable near threshold, biifany more computed points. We find that the fit

do agree when the potential for negatjivénas the harmonic
oscillator form.

The quantal cross section that we obtain can only bEﬁolds within a few percent up to the surprisingly high ener
tested by comparing with other calculations. lietaal. [15]  ¢15 5, P P prisingly g 9y

have fitted quantal cross sections for the TP model in thé  11a fitted and computed cross sections are compared in
threshold region to a&“* power law. While it is clear that Fig. 7. Except for the lowest energy points, whate initio
this power law cannot match the expression that we obtain ifyethods would have difficulty computing the exponentially
the region G<E<0.04, it may fit at higher energies. If we fit gq) cross sections that we predict, the available data are in
the cross section between 8:E<0.2 a.u. t0 a power law, 4greement with our threshold law over an energy range of
we find a power of 1.44, but a fit to the cross section in th&he order of 0.3 a.u. Better agreement with a threshold law
range 0.5 E<0.3 gives 1.39. It seems that a power of 1.4 .50t pe expected, however we note that such better agree-
agrees reasonably well in the latter range, as shown by thgent emerges for thR-matrix calculations. Here the fit is
dotted curve in Fig. 4. , , , seen to be excellent over a 1.0 a.u. energy range. Further-
Since the asymptotic functios(E) is determined by the qre hoth the normalization constant and the coefficient of
region of intermediate and larg®, it only gives the Cross ine jinear term are much smaller for this cross section than
section up to a multiplicative, slowly varying function for the other two, indicating a significant difference between
Pinne(E), the ab initio calculations. Our analytic threshold law favors
the R-matrix calculations, but is consistent with all calcula-
7(B)=Pine( E)S(E). (4.2 tions except for the lowest energy points.

To compare the present theory with availabke initio cal- A slow variation of Piyner(E) with E is expected near

culations of Refs[10,15,23 we plot the ratior(E)/s(E) vs  threshold, but a rapid variation is seen in Fig. 6, most likely
E in Fig. 6. because th&-matrix calculations are not well-adapted to the

For the time-dependent calculations the ratio is linear irfhreshold region. Itis also possible that our asymptotic rep-
E over the range 0.1 a.uE<0.25 a.u., but there are only resentation of the integrated cross section is in error owing to
three points in this range so a fit to this cross section does nétcertainties in the relative energy distributions. Even so, the
test the threshold law. In addition, the lowest energy point afatio never varies by more than 75%. _ _
E=0.05 a.u. is outside of a fit to a linear function. Itis also possible that any reasonable functoB) might

The convergent close coupling ratio is linear over theShow similar agreement. To demonstrate that this is not the
wider energy range 0.05 asuE<0.35 a.u., and includes C€aSe, the ratiénot shown of og(E) to sy(E) was computed

nine computed points. Only the two lowest points very closg2nd found to vary by a factor or 15 betweBr-0 and 0.08
to threshold are outside a linear fit. For this cross section thé-U-» and by a factor of 3 betwe&n=0.08 and 0.5 a.u. On

Pinnezr,R(E):2-4><(1_0-33>< E) (4.4)

fitted functionP;,e(E) is found to be thi_s basis it _is apparent that the good agreement seen in Fig.
7 is not accidental.
Pinner, ccd E) =3.75X (1— 1.07X E), It must be emphasized that the good agreement over the
extended energy range tests the complete functefE) of
0.05 a.u<E<0.35 a.u. 4.3 Eq. (3.27 and not just the threshold law given by Eg§.29.

The good agreement with tHematrix calculations suggests
The R-matrix ratio is also a linear function down to an that the complete expression E8.27) accurately represents
energy of the order of 0.08 a.u., which is somewhat higheeffects of electron motion in the Coulomb zone.
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The slow variation ofPj,,;r(E) seen in Fig. 6 over an 2 Atp(p)  1/4
extended energy range suggests that the “top-of-barrier” e(p)= m+ WE_F (A4)

mechanism responsible for the standard Wannier threshold
law also operates for the simple Temkin-Poet model. Thigjyes
mechanism is not identified in any of the reported calcula-
tions, but the eigenphase method of Hé&#] could provide
independent evidence for Fano’s picture of wave propagation
that emerges from our derivation ofrp 5. If our surmise
that ionization proceeds via wave propagation on the ridge is x>0. (A5)
correct, then an eigenphase characteristic of such motion
should be evident for the TP model as it is for the real two-The variablex is scaled according to
electron interaction14].

Note addedKlaus Bartschat has informed us that recent 2=8Y%(— p)Y3=2(—p)*, (AB)
CCC andR-matrix calculationq33] for this model obtain
more reliable cross sections between 0.1 and 1 eV above &

d2

3
T2~ 2V2(=p)| x+ 52|+ 48relp) (= p) *°| 9 =0,

2

that the Schiinger equation becomes

ionization threshold. Except for the point at 0.1 eV, the new 42 3
R-matrix calculations agree well with our analytic expres- 7721 9A )|¢=0, z>0.
sion. dz? 2\2(—p)13 (P
(AT)
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prld— < with the result

APPENDIX A: ASYMPTOTIC EIGENVALUES AND .
EIGENFUNCTIONS FOR THE TEMKIN-POET MODEL f Ai(z—2A)2dz=0.292 322 (A10)
0

The adiabatic eigenvalues are solutions of
so that the square of the normalization constant is given by

1 d? 1
_ZZW—I—)C(CL’)_S([))—? QD(CY):O, (Al) NZ(p):A(_p)1/3’ (All)
where whereA=1/0.292 322/2= 2.419 00.
The contribution of the<? term in Eq.(A5) to Ap(p) is
1 computed in first order perturbation theory. The expectation
Cla)=g-, a<ml4, value ofx? is
(64
1 2 :2FN2A'2 —2A)x%d
Cla)= ——, a>mla Az X)=2 ] NAR(Z=2A)dx
cosy
. . 2N2 (= N2
with the boundary conditions = —J’ Ai%(z—2A)z2dz= ———0.219 21,
| 2y2(-p)Jo V2(—p)
2o (A3) (A12)
da a=ml4

where the last line follows from direct numerical evaluation
for spin zero states. We will solve this equation for negativeof the integral,
p to find the eigenvalues pertinent to ionization.

ExpandingC(«) abouta= /4, introducing the variable iji(z—ZA)222d2=0.219 207. (A13)
x=m/4— a, and definingAp(p) according to 0
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We then have

3 N?
2A+15(p)=1.0188+ mz J2(—p)——0.219 27

(=p V2(—p)
(A14)
3 0.795 37
=1.0188+ mo.z:l.g 2A=1.0188t+ Wg
(A15)

Substituting this result into the expression fefp .5 p)
gives

’
Cirp Cop

COTP
: 4/3 5/3»

> )=
TP,aS)(p —p (_P

(A16)

where

CO,TP: \/E, Ci, ™ 10188, CZ,TP: 0.795 37.
(A17)

APPENDIX B: EVALUATION OF AN INTEGRAL

The differential equation for AK—2A), where
z=xe ™3 with x and A real, can be written
d? )
T2t 2Ae 2RI A =0. (B1)
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where the Airy functions are evaluated)at X,—2A with
Xo= 26 "PRY37/4.

For large values oRg we may use the asymptotic forms
of the Airy functions in the surface term. With the neglect of
a small correction of the order (ﬁ/(ZRéB), we have from
Egs.(10.4.59 and(10.4.6) of Ref.[34] the result

1 wl4
Sexd - le—(E]-2A \/EREBJ |Ai|2dag=0,
0
(B4)

where
2 32
§E:§(Xo_2A) . (B5)

This expression is then used to write the integral over
|‘PTP,aS)(RE :aE)|2 as

w2 ’ wl4 2
fo |§DTP,ast daEZZL |‘PTP,aS)L dag

A
:mexp(—k—&)- (B6)

For Xo>A we may expand/g in powers of the small
quantity A/ X, to obtain

Using this equation for Ai and its complex conjugate, one

has from Green’s theorem that
e—iﬂ'/BAi-kAi ’ _ei7r/3AiAi %
+2A(e” 2R~ e2i”’3)f |Ai[?dx=0. (B2)

Equation (B2) holds as an indefinite

x=\2R¥¥(ml4—ag) with the integration

above equation the result

[ ™BAI(X)* Ai’ (X)— e ™3Ai (X)Ai’ (X)*]

4
—4Ai sin(277/3)\/§Ré/3f |Ai|2dag=0, (B3)
0

integral. For
range
O0<ag<w/4, and using Ai(—2A)=0, we have from the

§E+ g’é% _ZA(Xé/2+ Xé 1/2) +A2(X61/2+ Xac *1/2)
= — 2283w AE" Yo+ 2183/mA%EYS. (BY)

This gives the desired expression

4 .
ZJO | @1p,as) dag= [e™"™3AI(X)* Ai" (X)

A
iV/6A
—e ™A (X)AI’ (X)*]
A
27T\/€A

_ 21/3\/%A2E1/6) )

exp(223\37AEV®

(B8)
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