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Threshold law for ionization cross sections in the Temkin-Poet model
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An integral representation of wave functions for the Temkin-Poet model of electron impact on atomic
hydrogen is given. Approximate wave functions are evaluated analytically for large hyperradius to extract the
ionizationS-matrix element. An ionization cross section of the form exp@2aE21/61bE1/6#, wherea andb are
positive constants, is derived. The exponential suppression of ionization for smallE appears to be the quantum
counterpart of the delayed onset of ionization in the classical theory for this model.@S1050-2947~97!03703-7#

PACS number~s!: 34.80.2i
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I. INTRODUCTION

Electron correlations are central to excitation and ioni
tion of atoms by electrons and photons. A wave picture
dynamical correlations has been given by Fano@1#, using
insights derived from the classical Wannier theory@2#, the
semiclassical analysis of Rau@3# and Peterkop@4#, and the
adiabatic hyperspherical representation of Macek@5#. In
Fano’s picture, an outgoing Schro¨dinger wave in the hyper
radius R5Ar 121r 2

2 emerges from the region where bo
electron coordinatesr 1 andr 2 are of the order of 1 a.u. As i
propagates to larger values ofR, part of the wave branche
off into waves concentrated in the potential valleys wh
r 1!r 2 or r 2!r 1. Waves concentrated in potential valle
represent excitation and the corresponding adiabatic s
will be referred to as ‘‘valley’’ states@1#. A complimentary
part of the wave localized in the regionr 1'r 2 continues to
infinite distance and corresponds to ionization. This p
propagates on the ridge of the potential and states con
trated here will be referred to as ‘‘ridge’’ states.

A complete theory must represent the dynamical evo
tion of both types of states, a task that has proved difficult
conventional atomic theory. Classical@2,6# and semiclassica
methods@3,4,7# have been able to account for the asympto
behavior of that part of the wave function which propaga
on the ridge. Completeab initio quantal calculations hav
not yet been able to reproduce the Wannier threshold l
although Crothers@8# has adapted the semiclassical wa
functions of Peterkop@4# to conventional expressions fo
transition amplitudes and has computed absolute ioniza
cross sections near the threshold. This was the first calc
tion to obtain both the threshold law and the normalizat
constant. Rost@6# has solved the one-dimensional line
model, where 1/r 12 is replaced by 1/(r 11r 2), classically and
obtained the energy variation of the cross section for to
energyE between 0 and 0.4 a.u. The classical calculatio
did not obtain absolute cross sections, but the energy va
tion agrees well with the experiments of McGowan a
Clarke@9#. Close-coupling calculations using a discrete ba
@10,11# to represent the continuum have given accurate t
cross sections for energies greater than 0.3 a.u. above
551050-2947/97/55~3!/2024~12!/$10.00
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ionization threshold, but fail to obtain the Wannier thresho
law. Hyperspherical close-coupling calculations using 10
300 channel functions@12# are consistent with the Wannie
power law forE.0.05 a.u. These are the most comple
calculations to date in the threshold region which emp
well-established, but numerically intensive, methods. Mo
basis states are apparently needed to push the calculatio
still lower energy. It appears that completelyab initio meth-
ods will eventually succeed in reproducing the known cro
sections in the Wannier threshold region. For photoioni
tion of helium, Shakeshaft@13# has actually succeeded i
obtaining the Wannier threshold law using a basis
outgoing-wave Sturmian functions.

None of the theories cited above incorporate Fano’s p
ture of wave propagation. Direct solution of the Schro¨dinger
equation in hyperspherical coordinates by Bohn@14# has
yielded eigenphases which support the existence of a pa
the wave that remains on the ridge, but cross sections
measurable processes were not obtained. Solution of
time-dependent Schro¨dinger equation using a wave-pack
representation has proved feasible for energies of the o
of 0.5 a.u. above threshold@15,16#. While the Wannier
threshold law is not obtained, the wave function does app
to propagate in accord with Fano’s picture. A surprising
pect of these calculations is that when the exact electr
electron interactionV1251/ur12r2u is replaced by the
Temkin-Poet ~TP! @17–20# model potential V1251/r. ,
wherer. is the larger ofr 1 or r 2, the basic picture of wave
propagation changes very little, yet it is expected th
‘‘ridge’’ states should play no role. In the TP model a thres
old law appropriate for a product state of one Coulomb wa
and a free-particle function, i.e.,s}E1.5, is expected@18#. A
further surprising result is that purely classical calculatio
@21# obtain ionization cross sections that vanish in the reg
0,E,1/6 a.u., even though ionization is energetically
lowed. The quantal cross sections for the TP model dif
considerably from the classical results and may corresp
to a power law with a slightly lower exponent of 1.4 rath
than 1.5@15#.

While the TP model employs a simplified electro
electron interaction, it plays an important role in an altern
2024 © 1997 The American Physical Society
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55 2025THRESHOLD LAW FOR IONIZATION CROSS SECTIONS . . .
tive picture of threshold ionization@19# which considers tha
ionization as well as excitation corresponds to waves pro
gating in the valleys where the two electron coordinates
not at all equal. It is also supposed that the electron veloc
are quite different. In addition to the 1/r. potential of the TP
model, the faster electron also moves in the dipole poten
of the nucleus and the slower electron. When the dipole
tential is taken into account, a power law modified by
oscillating factor emerges.

Ionization cross sections for the TP model have be
computed by three different groups using three quite diff
ent methods. Bray and Stelbovics@10# employ the conver-
gent close coupling method, Meyer, Greene, and Bray@22#
use theR-matrix method, and Ihraet al. @15# compute the
time evolution of a Schro¨dinger wave. For energies abov
about 0.4 a.u., all of the cross sections agree within 10%.
lower energies in the threshold region, the three differ
methods disagree somewhat, especially with respect to
variation of the cross section with energy. This disagreem
near threshold makes it difficult to determine if theori
which emphasize wave propagation in the valleys of the
tential represent viable alternatives to the Wannier theor
some energy range close to the threshold. The contradic
between classical and quantal theories remains unexpla
since there is apparently no quantal counterpart for the c
sical shift of the ionization onset.

The linear model also employs an approximate electr
electron interaction. The main difference between the mod
is that the linear model uses an approximate interaction c
sistent with propagation on the ridge, while the TP and
pole models employ potentials appropriate for propagatio
the valleys. The purpose of the present manuscript is to
rive a threshold law for the TP model using a recently d
veloped theory@23,24# for systems whose total potential e
ergy V is factorable in hyperspherical coordinat
V5RC(V), whereV is a set of hyperangles. The quanti
C(V) will be referred to as the scaled potential. In paral
with the derivation for the TP model, the threshold law f
the linear model will be obtained. It is known that the Wa
nier threshold law emerges in the linear model, and it will
verified that the theory of Ref.@24# obtains this result to
within small corrections. Quantities referring to the line
model will be labeled with the subscriptW and those refer-
ring to the Temkin-Poet model with the subscript TP.

A key feature of threshold laws is that they factor t
cross section into a part that relates to wave motion i
region, called the reaction zone by Wannier, where all e
tron coordinates are small and a part that relates to a reg
called the Coulomb zone, where the electron coordinates
large but the Coulomb potentials are still important. The f
tor that comes from the inner region is an analytic funct
of the total energyE but the factor that relates to the Co
lomb zone is not. In the usual derivations of the Wann
threshold law this latter factor is simply a power ofE. The
method of Ref.@24# identifies this power ofE as the first
term in an asymptotic expansion of a functions(E). Reten-
tion of more terms in the asymptotic expansion gives
threshold law which is more general than a power law an
often valid over a wider energy range than the simple po
law. The functions(E) has the dimensions of a cross secti
and differs from the absolute cross section only by a dim
a-
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sionless, multiplicative analytic functionPinner(E). The form
of the functions(E) is the main focus of this manuscript.

The theory of Ref.@24# is briefly reviewed in Sec. II. An
expansion in angle-Sturmian eigenfunctions is a key fea
of this theory. These eigenfunctions are defined by replac
the hyperradiusR by an eigenvaluer j (n) in the equation
defining adiabatic hyperspherical eigenfunctions, namely

@L21r j~n!2C~V!#Sj~n;V!5~n221/4!Sj~n;V!,
~1.1!

whereL2 is the generalized angular momentum operatorn
is a parameter,r j (n) is the Sturmian eigenvalue, an
Sj (n;V) the angle-Sturmian eigenfunction.

The angle-Sturmian functions are used to represent
kernelF(n,V) in the Kontorovich-Lebedev transform@25#
of the exact wave function

C~R,V!5E
c
F~n,V!R1/2Zn~KR!d~n2/2!. ~1.2!

The subscriptc denotes a contour in the complex-n plane
chosen to fit boundary conditions,Zn(KR) is a Bessel func-
tion, and K5A2E. The coefficients in the expansion o
F(n,V) in the angle-Sturmian basis are determined
three-term recurrence relations which are solved appr
mately using the methods of Braun@26#. A relatively simple
integral expression for the approximate wave function th
emerges. The asymptotic form of this wave function is o
tained and the approximate Jost matrix extracted.

The Jost matrix is used to compute the transition ma
elements. A notable feature of this theory is that, ev
though only one basis function is employed, an approxim
value for everyS-matrix element is obtained. In essence, t
theory is complete at every level of approximation. At t
lowest level of approximation employed here, indications
that the theory may be accurate to within 10%@24#. The
lowest level approximate theory is known as the ‘‘hidd
crossing’’ theory and was first developed in connection w
ion-atom collisions by Solov’ev@27#.

Fano’s picture of wave propagation emerges naturally
this theory, but only the factoring of the potential plays a k
role. The exact structure of the potential determines the
tails of the threshold law, but the emergence of a Wann
type threshold law does not. It is therefore useful to see w
threshold law emerges in the case of one-dimensional po
tials such as the TP and linear models. In both cases
scaled potentialC(V) is a function of only the hyperangle
a5arctan(r2 /r1).

A single Sturmian is employed here so thatC(R,a) is
approximated by

C~R,a!'E
2`

`

A~n!S~n;a!R1/2Hn
~1!~KR!d~n2/2!,

~1.3!

where



b
a

n
g

s

w

r

ver
re
gle
ge

ost
la-
-

the

en

in

ith

n-

e
ri-
ture
to
di-

n
ls.

es

th
lu
e
e

2026 55J. H. MACEK AND W. IHRA
A@n~r!#5
1

A4 @2@Er~n!22n2#

3expF i En~r!

arcsinS n8

r~n8! Ddn8G , ~1.4!

and an outgoing wave Bessel functionHn
(1)(KR) is used. The

subscriptj on the eigenfunctions and eigenvalues is omitte
since only one eigenfunction is employed.

We can easily see the role of valley and ridge states
considering the general properties of the Sturmian eigenv
ues and eigenfunctions. The scaled potentialC(a) is shown
in the lower part of Fig. 1. For large negativen2, the eigen-
value r is approximately given byr2(n)'(n221/4)/2«n
where n is the principal quantum number of an electro
bound in a one-electron state of the ion with binding ener
«n . The corresponding Sturmian eigenfunctionS(n;a) is
just a one-electron hydrogenic radial functionPn(ra). It fol-
lows that the integral over negativen2 in Eq. ~1.3! goes over
a region where the Sturmian represents a valley state. T
horizontal line in the valley region of Fig. 1~a! represents the
product«r for r58 andn51. The wave functions for the
valley states are essentially identical for the two potential

Alternatively, whenn2 is large and positive,r must be-
come negative. For negativer the potential term in Eq.~1.2!
effectively changes sign as represented by the upper t

FIG. 1. Plot of the scaled potential@sgn(r)C(a)# for positive
r, lower figure, and for negativer, upper figure. The solid curve
shows the scaled potential for the Temkin-Poet model, and
dashed curve for the linear model. The adiabatic energy eigenva
for uru58 a.u. are indicated by horizontal lines. The lower figur
illustrates the energy eigenvalue for a ‘‘valley’’ state and the upp
figure illustrates the energy eigenvalue for a ‘‘ridge’’ state.
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scaled potential curves in Fig. 1~b!. The bound states fo
negativer are concentrated in the regiona'p/4 and repre-
sent ridge states for both model potentials. The integral o
positiven2 in Eq. ~1.1! therefore goes over a region whe
the Sturmian eigenfunction represents a ridge state. A sin
angle-Sturmian function represents both valley and rid
motion and, for that reason, Eq.~1.1! accurately describes
electron dynamics. Furthermore, it seems to be the m
natural way to represent Fano’s picture of electron corre
tions. As shown in Ref.@23#, it gives a version of the Wan
nier threshold law where the Wannier indexzW5 1.127 is
approximated by an ‘‘adiabatic’’ valuezW

ad5 1.104.
To extract the threshold law it is necessary to compute

adiabatic energy eigenvalue«(r) for large negativer. The
eigenvalue is computed in Sec. II. This eigenvalue is th
used in the general cross section formula given in Ref.@24#
to compute the threshold law. For the TP model we show
Sec. II that

s}exp@2aE21/61bE1/6#, a56.87, b53.688,
~1.5!

a surprising expression, but one that may be in accord w
the classical value of 0 forE,1/6 a.u.@21#. Note that expo-
nentially vanishing probabilities often emerge in the qua
tum theory for processes that are classically forbidden.

The formula Eq.~1.5! can only be compared with mor
conventional calculations for this model. It has no expe
mental significance, but seems to indicate that Fano’s pic
of ionization via propagation on the ridge is to be traced
the factorization of the potential in hyperspherical coor
nates, rather than to the detailed structure ofC(a). The as-
ymptotic functionsTP(E) is compared with theab initio cal-
culations of Refs.@10,15,22# in Sec. III.

II. REVIEW OF THE ANGLE-STURMIAN
REPRESENTATION

In this section we briefly review the angle-Sturmia
theory of Ref.@24# as it applies to the TP and linear mode
The angle-Sturmian functions are defined as

F d2da2 22r~n!C~a!1n2GS~n;a!50, ~2.1!

wherer is an eigenvalue andn is a parameter. For the TP
model the scaled potentialC(a) is given by

C~a!5H 21/sin~a! if a,p/4

21/cos~a! if a.p/4,

and for the linear model by

C~a!52
1

sin~a!
2

1

cos~a!
1

1

sin~a!1cos~a!
. ~2.2!

BecauseC(a) is negative definite, the Sturmian eigenvalu
rn(n) and eigenfunctions are real for realn2 and are normal-
ized according to

2E
0

p/2

S~n;v!2C~a!da51. ~2.3!
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55 2027THRESHOLD LAW FOR IONIZATION CROSS SECTIONS . . .
The negative sign is used in Eq.~2.3! since2C(a) is posi-
tive definite.

The angle-Sturmian eigenfunctionsS(n;a) and eigenval-
ues r(n) relate to the more common adiabatic functio
w(r;a) and energy eigenvalues«(r) according to

2«@r~n!#r~n!25n221/4,

w@r~n!;a#5NS~n;a!, ~2.4!

where

N5A2
]r~n!

2n]n
. ~2.5!

To compute ionization probabilities, the energy eigenv
ues«(r) for large, negativer are needed. The computatio
of these quantities is carried out in Appendix A with th
result

«TP,asy~r!'
C0,TP

~2r!
1

C1,TP8

~2r!4/3
1

C2,TP

~2r!5/3
, ~2.6!

where

C0,TP5A2, C1,TP8 51.018 81, C2,TP50.795 37,
~2.7!

and where the subscript TP,asy indicates the asymptotic
pression for the TP model. For the linear model one has
usual Wannier result@24#

«W,asy~r!'
C0,W

~2r!
1

C1,W

~2r!3/2
, ~2.8!

where now

C0,W53/A2, C1,W5225/4A11. ~2.9!

In both Eqs.~2.6! and ~2.8! it must be remembered tha
2r5exp(2ip)r is a positive number. The branch of21 is
chosen so that2r has a phase of 0 rather than 2p when
r5exp(ip)uru.

For purposes of interpretation it is convenient to chan
variables fromn2/2 to r in Eq. ~1.3!. Substituting Eqs.~2.4!
and ~2.5! into Eq. ~1.3! gives

C~R,V!5E
2`

`

B~r!w~r,a!R1/2Hn~r!
~1! ~KR!dr,

~2.10!

where an outgoing wave Bessel function is chosen and
coefficientB(r) is

B~r!5A2
2n]n

]r
A@n~r!#. ~2.11!

III. DERIVATION OF THE THRESHOLD LAW

The integral in Eq.~2.10! is evaluated for largeR using
asymptotic approximations. For sufficiently large negat
r less than some value2rQ , w(r;a) and n(r) are re-
placed by their asymptotic values Eqs.~2.6! and ~2.8!,
l-

x-
e

e

e

e

C~R,V!'E
2`

2rQ
B~r!wasy~r;a!R1/2Hnasy~r!

~1! ~KR!dr

1E
2rQ

`

B~r!w~r;a!R1/2Hn
~1!~r!~KR!dr.

~3.1!

Both terms on the right-hand side are then evaluated in
stationary phase approximation and it is found@24# that both
terms have points of stationary phase atr5R. For the sec-
ond term, the functions«(r) and w(r;a) are equal to the
adiabatic quantities«n(R) andwn(R;a), respectively, where
the value ofn specifies the branch of the function«n(R).
Different branches are reached by different paths of integ
tion in the complex plane and the final result involves a s
over different paths. As shown in Ref.@24#, this gives the
amplitude for excitation of a particular bound staten.

In the first term, the functionwasy(R;a) at r5R corre-
sponds to the asymptotic function, defined for negativer in
Eq. ~A7!, analytically continued to positiver. This function
is real and exponentially damped for negativer but is com-
plex and represents a wave that propagates outward from
ridge ata5p/4 for positiveR, as is seen most directly fo
the linear model where@24#

wasy~r;a!'exp@2cA2r~a2p/4!2#, r,0,

wasy~R;a!'exp@ icAR~a2p/4!2#, r5R.0. ~3.2!

It follows that the first term in Eq.~3.1! asymptotically
describes the ionization component of the one-Sturm
wave function. Explicit evaluation of this component in th
stationary phase approximation@24# gives the probability for
ionization in the form

P~E!5Pinner~E!Pasy~E!, ~3.3!

where

Pinner~E!5 (
paths

expF22 ImE
r0

rQA2@E2«~r!21/4r2#

2A2@E2«asy~r!21/4r2#drG , ~3.4!

Pasy~E!5exp@Q~E!#, ~3.5!

Q~E!522 ImE
r0

`
A2@E2«asy~r!21/4r2#dr. ~3.6!

The constantr0 is a real value ofr on the branch of the
function «(r) corresponding to the initial state. The su
over paths in Eq.~3.4! indicates that the amplitudes for a
paths that connectrQ and r0 in the complex plane are
summed coherently.

Both Pinner(E) andPasy(E) depend uponr0 but the prod-
uct does not. For this reason the exact value is immateria
the total cross section, although not for the factorPasy(E)
which is the main focus of the present work. The value
r054 a.u. used here follows from consideration of where
angle-Sturmian function takes on characteristics of
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2028 55J. H. MACEK AND W. IHRA
n52 state nearr'4 a.u. The value ofrQ is only relevant to
the calculation ofPinner(E) and is not needed here. For com
pleteness, it is nonetheless useful to note therQ is complex
and large enough so thatPinner(E) is insensitive to the exac
value. The calculations of Ref.@24# use a value of
rQ'50 exp(ip/4), since terms of the order of 1/r2 are neg-
ligible at that point.

The quantityP(E) gives the probability for populating
the first ‘‘ridge’’ state whose asymptotic eigenvalue is sho
in Fig. 1. The corresponding ionization cross section is

ds~E!

daE
5Pinner~E!

ds~E,aE!

daE
, ~3.7!

where

ds~E,aE!

daE
5

p

2E11
uwasy~RE ,aE!u2Pasy~E!, ~3.8!

and the angleaE is given in terms of the wave vectorsk1 and
k2 of the two electrons according to@28#

aE5arctan~k2 /k1!. ~3.9!

The factorPinner(E) relates to electron motion in a region
called the reaction zone, where both electrons are close to
nucleus. Reference@23# computes this quantity with the ex
act electron-electron interaction. It could be computed us
the same methods, butPinner(E) is not needed to extrac
threshold laws and will not be evaluated from first princip
here. Values for this quantity do emerge in the next sec
by fitting the cross sections of Ref.@22# to the expression Eq
~3.7! integrated over relative electron energy.

Notice that, even though«asy(r) andwasy(r,a) are real
for negativer, they are complex for positiver. In contrast,
«(r) andw(r,a) are real for allr. For this reason the ion
ization channels only emerge when«(r) and w(r,a) are
first replaced by«asy(r) andwasy(r,a) beforethe stationary
phase approximation is employed. Presumably, they wo
also emerge when the integral is evaluated exactly or
alternative asymptotic approximations.

The quantityRE is of the order of the Wannier radiu
C0 /E and is shown in Ref.@29# to be given by

RE54C0 /E ~3.10!

for the Wannier theory. Equation~3.10! will also be used for
the TP model.

The magnitude of the asymptotic functionw(RE ,aE) is
independent ofaE for the linear model so that

uwW, asy~RE ,aE!u25uNW~RE!u2. ~3.11!

Equation~3.11! then predicts a flat distribution inaE . Pe-
terkop and Liepinsh@30# show that a more precise evaluatio
of the asymptotic function introduces a multiplicative fact
of sin2aE so that the distribution is actually flat in the ener
E1 of one electron@31#. This factor has not been verified fo
the TP model. The distribution for this model will be give
as it emerges from the present theory, i.e., without
sin2aE factor.
n

he

g

n

ld
y

e

To compute the energy distribution for the TP model, it
necessary to analytically continue the asymptotic adiab
function wTP, asy(r,a) from negativer to positiveRE . For
large negativer, the eigenfunctionwTP, asy(r,a) is concen-
trated in the classically allowed region neara5p/4. For
both the linear and the TP models, the classically allow
region becomes vanishingly small for large negativer,
and the wave function in the classically forbidden regi
determines the relative electron energy distribution. In b
the allowed and forbidden regions, the wave function
larger is given in terms of Airy functions Ai(z) in Appen-
dix A,

wTP,asy~r;a!5NTP~RE!Ai ~zE22D!, ~3.12!

where

zE5A2@exp~2 ip!RE#1/3~p/42a! ~3.13!

and22D is the first zero of Ai8(z).
The distribution is integrated overaE to obtain the total

cross section. The integral is evaluated in Appendix B, w
the result

E
0

p/2

uwTP,asy~RE ,aE!u2daE

5
uNTPu2

2pA6DRE
1/3
exp~21/4A3pDRE

1/6223/4A3/pRE
21/6!.

~3.14!

For comparison, the corresponding result for the line
model is

E
0

p/2

uwW,asy~RE ,aE!u2sin2aEdaE5uNWu2. ~3.15!

The normalization constant for the linear model is know
from Ref. @24# while the normalization constant for the T
model is derived in Appendix A. Substituting Eq.~3.10! into
Eq. ~A11! gives

uN~RE!u25H S 2C1,W

p D 1/2RE
1/4, linear model

ARE
1/3, TP model

so that Eq.~3.14! becomes

E
0

p/2

uwTP,asy~RE ,aE!u2daE5
A

2pA6D
exp@21/4A3pDRE

1/6

223/4A3/pRE
21/6#, ~3.16!

whereA5 2.419 is a constant.
The factorPasy(E) is computed using the approximatio

ImA2@E2«~r!#'2
Im@«asy~r!#

A2@E1C0 /r#
, ~3.17!

where
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Im«~r!5H 2C1,Wr23/2, linear model

2
A3
2

@C1,TPr
24/31C2,TPr

25/3#, TP model
~3.18!
e
to

on

o

in

ions
an

is

ot
in

q.

rm.
ster
y in-
hold.
for r.0. Terms of order«asy(R)
2 are neglected. We hav

verified that these terms give only small corrections
sTP(E) for E.1023 a.u.

These approximations are substituted into Eq.~3.6! and
the integral overr evaluated using the identity

f ~b,C0 ,E![E
r0

` dr

rb11A2@E1C0 /r#

5
r0

2b

bA2E2F1~1/2,b;b11;2C0 /r0E!.

~3.19!

For b51/2 the right-hand side of Eq.~3.19! diverges loga-
rithmically asE→0,

f ~1/2,C0 ,E!5
2r0

21/2

A2E 2F1~1/2,1/2;1/211;2C0 /r0E!

5A 2

C0
lnFA C0

Er0
1A11

C0

Er0
G , b51/2

~3.20!

but for b,1/2 it diverges asEb21/2 since

f ~b,C0 ,E!5
r0

2b

bA2E2F1~1/2,b;b11;2C0 /r0E!

5
r0

2b

A2~b21/2!AE1C0 /r0

32F1@1/2,1;3/22b;E/~E1C0 /r0!#

1
1

A2
G~b!G~1/22b!

G~1/2!
C0

2bEb21/2. ~3.21!

Substituting Eqs.~3.13!–~3.21! into the definition Eq.~3.6!
of Q(E), we get

QW~E!5C1,WA 2

C0,W
F lnE22 lnSAC0,W

r0
1AE1

C0,W

r0
D G

~3.22!

for the linear model and

QTP~E!52A3@C1,TPf ~1/3,C0,TP,E!1C2,TPf ~2/3,C0,TP,E!#
~3.23!

for the TP model.
The results for the differential cross section functi

dsW are
dsW
daE

5
2p

2E11
A2C1,W

p
C0,W
1/4E21/4exp@QW~E!#sin2aE

~3.24!

in the linear model and

dsTP
daE

5
Ap

2E11
25/6E21/3exp@QTP~E!#uAi ~zE22D!u2,

zE524/3exp@2 ip/3#E21/3~p/42aE! ~3.25!

in the TP model.
The integrated cross section functions are

sW~E!5
2p

2E11
A2C1,W

p
C0,W
1/4E21/4exp@QW~E!#

~3.26!

and

sTP~E!5
A

2E11

1

2A6D
exp@QTP~E!#

3exp~22/3A3pDE21/6221/3A3/pD2E1/6!.

~3.27!

In the limit asE→0, the ionization cross sections in the tw
models become

sW5Pinner~E!sW~E!}E1.104, ~3.28!

sTP5Pinner~E!sTP~E!}exp@26.870E21/613.680E1/6#,
~3.29!

where Eq.~3.16! has been used. When higher order terms
Eq. ~3.17! are included, the coefficient ofE1/6 changes to
2.45.

It must be emphasized that the asymptotic express
Eqs. ~3.29! only give the ionization cross sections up to
undetermined, slowly varying, functionPinner(E). This is a
feature of all threshold law theories, but present theory
unique in that an explicit expression Eq.~3.4! is given for
this undetermined factor. Computation of this factor is n
germane to the threshold law itself and is not attempted
this paper.

IV. RESULTS AND COMPARISONS
WITH OTHER CALCULATIONS

The energy distribution for the TP model given by E
~3.25! is shown in Fig. 2 for three energies, namelyE5 2,
0.2, and 0.001 a.u. In all cases the distribution is nonunifo
The electrons concentrate in the valleys where one is fa
than the other, as supposed at the outset. This tendenc
creases markedly as the energy decreases toward thres
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2030 55J. H. MACEK AND W. IHRA
It must be emphasized that this distribution is uncertain ow
ing to the possible presence of the factor sin2aE , which was
deduced for the linear model on the basis of classical calc
lations @30#. Because there are no classical trajectories lea
ing to ionization nearE'0, the methods of Ref.@30# cannot
be used for this model. We can, however, compare with cla
sical calculations forE.0.17 a.u.

The classical dynamics of the Temkin-Poet model hav
been studied in detail in Refs.@21,32#. We shall only give a
brief outline here in order to understand how the classic
energy distribution arises.

Classically, the onset of the total energy where both ele
trons can ionize is larger than the quantum mechanic
thresholdE50. The ratioE/uE2u of the total energy to the
absolute value of the energy of the initially bound electro
must exceed a certain valueb so that both electrons can
ionize. The effect is most pronounced forZ51 whereb has
the value 1/3. For helium,Z52, b50.169 777. The classi-
cal onset of ionization is determined by this ratio only an
not by the total energyE itself because the classical equa
tions of motion can be scaled to an energy-independent fo
@21#.

FIG. 2. Relative energy distribution of electrons from Eq.~3.25!
for the TP model. The relative electron energy distributions fo
three energiesE52, 0.2, and 0.01 a.u. are shown. The distribution
are normalized to unity ataE5p/4.
-
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s-

e

l

c-
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m

The finite threshold energy effect in the classical vers
of the Temkin-Poet model can be understood as follows:
electron 1 be the incoming~outer! one (r 1.r 2) with positive
energy, and let electron 2 be bound to the nucleus initia
The motion is separable as long as the electrons do not h
equal distancesr 1 andr 2 from the nucleus. Energy exchang
between the two electrons only happens when an encou
on the diagonalr 15r 2 takes place. In Ref.@21# it had been
shown that, as a necessary condition for double escape,
electrons must have positive energy after the first encoun
It had also been shown that, if a second encounter ta
place, the originally bound electron 2 will be rebound to t
nucleus. In this case electron 1, which is now again the o
one, moves away rather rapidly from electron 2. A third e
counter, which would be necessary for an energy excha
is not possible and as a result only single ionization ta
place. Double ionization can only happen if a trajectory sta
in the regionr 2.r 1 after the first encounter. This secon
necessary condition for double escape can only be fulfi
for E/uE2u.b @21#.

To calculate classical properties from a representative
of trajectories, it is sufficient to characterize a set of init
conditions by two independent parameters@32#. One can be
chosen to be the partitioningE1 /uE2u of the initial energies
of the electrons. At given binding energyE2 this determines
the total energy. Another independent condition is given
the starting time: At the starting time the incoming electron
passes a fixed distancer 15d from the nucleus, while elec
tron 2 performs bound oscillations in its radial coordina
r 2 ~prior to the first encounterr 15r 2). The starting time
defines the asymptotic phase of the incoming electron w
respect to the oscillatory motion of the bound electron. F
the calculations, an equal distribution in the starting times
the set of trajectories is assumed.

Figures 3~a! and 3~b! present classical results taken fro
Ref. @32# for the electron distribution in the Temkin-Poe
model for the caseZ52. To take the indistinguishability o
the electrons into account only the smaller of the energie
the escaping electrons is recorded. The escape energye of
the slower electron is measured in units of the total ene
E thus ranging from 0 to 0.5 a.u. This interval is divided in

r

al

ts

r

e

FIG. 3. Energy distribution
probability P« of Ref. @21# for
double escape near the classic
threshold. The escape energy«/E
of the slower of both electrons is
recorded and is measured in uni
of the total energyE. By taking
the indistinguishability of the elec-
trons into account,P« is symmet-
ric with respect to«/E50.5. The
energy distributions are plotted fo
different values of the ratioE/E2

of the total energy to the absolut
energy of the initially bound elec-
tron. ~a! Asterisks: E/uE2u50.2,
rhombi: E/uE2u50.5. ~b! Aster-
isks: E/uE2u55.0, rhombi:
E/uE2u59.0.
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50 equally spaced parts, and for each partial interval
fraction of the total ionization probability is determined.

If the energy transfer from the incoming electron to t
initially bound electron at the first encounter is not suf
ciently large, a second encounter takes place and the ele
will be rebound as described in the above scenario. Thus
electron which is the outer one after the first encounter m
have at least a minimum fractionxE(0,x,1) of the total
energy E. The energy of the inner electron then
Ein5(12x)E. Close to the classical ionization thresho
x is large and thereforeEin is small. Distributions with
Ein.(12x)E and thus symmetric energy distributions a
not possible. Figure 3~a! shows that forE/uE2u50.2 and
E/uE2u50.5, which is slightly above the classical ionizatio
thresholdE/uE2u50.169 77, the energy distribution is ap
proximately constant frome/E5 0 to its maximum allowed
valueEin . There it drops to zero abruptly. This is in stron
contrast to the behavior of the classical energy distribution
the collinear model for energies near threshold where a
distribution with a slight maximum at equal energ
e/E50.5 is observed@6#. At higher energies of the incomin
electron Fig. 3~b! shows that a maximum appears at the co
pletely unsymmetric energy distributione/E50, which be-
comes more pronounced as the energy of the incoming e
tron increases.

Although the classical energy distributions were calc
lated for e21He1, i.e., Z52, the results forZ51 are ex-
pected to be quite similar, the only difference being t
higher classical ionization threshold. The preferred uneq
sharing of energy near the threshold in the Temkin-P
model seems to be the classical counterpart of the quan
mechanical result which also prefers an unequal sharing.
main difference is that the energy distribution function in t
quantum mechanical case is still a smooth function in
hyperangleaE or e/E, respectively, contrary to the abrup
drop to zero in the classical case.

The classical relative energy distributions are proportio
to

ds

d«2
5

ds

dae

1

sin2aa
~4.1!

since«25E sin2ae asymptotically@28#. Equation~4.1!, to-
gether with the quantal distributions of Fig. 2, show that
quantal energy distributions differential ind«2 are singular
at ae50, whereas the classical results are not. This sugg
that the approximate quantal distributions are incorrect n
ae50, as they are in the conventional Wannier theory@30#.
For E sufficiently above the classical threshold, it appe
that the correct quantal distribution should incorporate a f
tor of sin2ae. For energies below the classical threshold, i
necessary to employ a more accurate asymptotic repres
tion of the Sturmian functions for positiven, and possibly to
employ more than one Sturmian in the representation of
~1.3! to obtain this factor. These improvements are not
pected to affect the exponential factors in Eq.~3.5! signifi-
cantly, but could introduce a more complicated energy
pendence in Eq.~3.16!.

The total ionization cross section functionss(E) for the
two models are compared over an extended energy rang
1 a.u. in Fig. 4. The two cross sections differ by a factor o
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over most of the energy range, but they differ substantially
shape only between 0,E,0.1 a.u., where ionization in the
TP model is dramatically suppressed. This suppression
be the quantal counterpart of the vanishing classical cr
section between 0,E,0.167 a.u. Also shown is the class
cal cross section in the TP model. It departs significan
from sTP(E), indicating that classical calculations are unr
liable near the threshold for ionization.

The classical cross section in the linear model is
known absolutely, but Ref.@6# reports normalized classica
cross sections over a 0.3 a.u. energy range. The ratio o
classical cross section of Ref.@6# to sW(E) for the linear
model is shown in Fig. 5. The ratio never departs from un
by more than 5%. For this model the classical and asym
totic quantal cross sections agree very well. The good ag
ment with the asymptotic quantal cross section indicates
the classical calculation succeeds because most of the en
variation comes from the statistical factor (2E11)21 and
Pasy(E). The latter factor pertains only to a region where t
potential is well approximated by a harmonic oscillator p
tential, and it is known that classical and quantal results
such potentials are often nearly identical. In general, ho

FIG. 4. Comparison of threshold ionization cross sections. T
solid curve is the asymptotic cross section functionsTP(E) of Eq.
~3.25! for the Temkin-Poet model, the dashed curve issW(E) of Eq.
~3.24! for the linear model, the dotted curve usesE1.4 for the ion-
ization probability, and the dot-dashed curve is the classical c
section of Ref.@21#.

FIG. 5. Ratio of the classical cross sections of Ref.@6# for the
linear model tosW(E) vs energy. The ratio has been normalized
unity atE50.15 a.u.
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2032 55J. H. MACEK AND W. IHRA
ever, classical calculations are unreliable near threshold,
do agree when the potential for negativer has the harmonic
oscillator form.

The quantal cross section that we obtain can only
tested by comparing with other calculations. Ihraet al. @15#
have fitted quantal cross sections for the TP model in
threshold region to anE1.4 power law. While it is clear that
this power law cannot match the expression that we obtai
the region 0,E,0.04, it may fit at higher energies. If we fi
the cross section between 0.1,E,0.2 a.u. to a power law
we find a power of 1.44, but a fit to the cross section in
range 0.1,E,0.3 gives 1.39. It seems that a power of 1
agrees reasonably well in the latter range, as shown by
dotted curve in Fig. 4.

Since the asymptotic functions(E) is determined by the
region of intermediate and largeR, it only gives the cross
section up to a multiplicative, slowly varying functio
Pinner(E),

s~E!5Pinner~E!s~E!. ~4.2!

To compare the present theory with availableab initio cal-
culations of Refs.@10,15,22# we plot the ratios(E)/s(E) vs
E in Fig. 6.

For the time-dependent calculations the ratio is linear
E over the range 0.1 a.u.,E,0.25 a.u., but there are onl
three points in this range so a fit to this cross section does
test the threshold law. In addition, the lowest energy poin
E50.05 a.u. is outside of a fit to a linear function.

The convergent close coupling ratio is linear over t
wider energy range 0.05 a.u.,E,0.35 a.u., and include
nine computed points. Only the two lowest points very clo
to threshold are outside a linear fit. For this cross section
fitted functionPinner(E) is found to be

Pinner, CCC~E!53.753~121.073E!,

0.05 a.u.,E,0.35 a.u. ~4.3!

The R-matrix ratio is also a linear function down to a
energy of the order of 0.08 a.u., which is somewhat hig

FIG. 6. Comparison of the ratio of computed cross secti
s(E) to the asymptotic cross section functionssTP(E) vs E. The
solid circles employ cross sections of Ref.@15# computed using the
time-dependent method, open squares employ the convergent
coupling results of Ref.@10#, and the open circles use th
R-matrix results of Ref.@22#.
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than for the convergent close coupling ratio. Alternative
this ratio is linear up to a much higher energy and includ
many more computed points. We find that the fit

Pinner,R~E!52.43~120.333E! ~4.4!

holds within a few percent up to the surprisingly high ener
of 1.5 a.u.

The fitted and computed cross sections are compare
Fig. 7. Except for the lowest energy points, whereab initio
methods would have difficulty computing the exponentia
small cross sections that we predict, the available data ar
agreement with our threshold law over an energy range
the order of 0.3 a.u. Better agreement with a threshold
cannot be expected, however we note that such better ag
ment emerges for theR-matrix calculations. Here the fit is
seen to be excellent over a 1.0 a.u. energy range. Furt
more, both the normalization constant and the coefficien
the linear term are much smaller for this cross section t
for the other two, indicating a significant difference betwe
the ab initio calculations. Our analytic threshold law favo
theR-matrix calculations, but is consistent with all calcul
tions except for the lowest energy points.

A slow variation ofPinner,R(E) with E is expected near
threshold, but a rapid variation is seen in Fig. 6, most like
because theR-matrix calculations are not well-adapted to th
threshold region. It is also possible that our asymptotic r
resentation of the integrated cross section is in error owin
uncertainties in the relative energy distributions. Even so,
ratio never varies by more than 75%.

It is also possible that any reasonable functions(E) might
show similar agreement. To demonstrate that this is not
case, the ratio~not shown! of sR(E) to sW(E) was computed
and found to vary by a factor or 15 betweenE50 and 0.08
a.u., and by a factor of 3 betweenE50.08 and 0.5 a.u. On
this basis it is apparent that the good agreement seen in
7 is not accidental.

It must be emphasized that the good agreement over
extended energy range tests the complete functionsTP(E) of
Eq. ~3.27! and not just the threshold law given by Eq.~3.29!.
The good agreement with theR-matrix calculations suggest
that the complete expression Eq.~3.27! accurately represent
effects of electron motion in the Coulomb zone.

s

ose

FIG. 7. Plot of the fitted cross sectionsPinner(E)sTP(E) vs E.
The data are as in Fig. 6, the dashed curve is the fit to the con
gent close coupling cross section, and the solid curve is the fit to
R-matrix calculations.
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The slow variation ofPinner,R(E) seen in Fig. 6 over an
extended energy range suggests that the ‘‘top-of-barri
mechanism responsible for the standard Wannier thres
law also operates for the simple Temkin-Poet model. T
mechanism is not identified in any of the reported calcu
tions, but the eigenphase method of Ref.@14# could provide
independent evidence for Fano’s picture of wave propaga
that emerges from our derivation ofsTP,asy. If our surmise
that ionization proceeds via wave propagation on the ridg
correct, then an eigenphase characteristic of such mo
should be evident for the TP model as it is for the real tw
electron interaction@14#.

Note added.Klaus Bartschat has informed us that rece
CCC andR-matrix calculations@33# for this model obtain
more reliable cross sections between 0.1 and 1 eV above
ionization threshold. Except for the point at 0.1 eV, the n
R-matrix calculations agree well with our analytic expre
sion.
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APPENDIX A: ASYMPTOTIC EIGENVALUES AND
EIGENFUNCTIONS FOR THE TEMKIN-POET MODEL

The adiabatic eigenvalues are solutions of

F2
1

2r2
d2

da2 2
1

r
C~a!2«~r!2

1/4

r2 Gw~a!50, ~A1!

where

C~a!5
1

sina
, a,p/4,

C~a!5
1

cosa
, a.p/4 ~A2!

with the boundary conditions

dw

da U
a5p/4

50 ~A3!

for spin zero states. We will solve this equation for negat
r to find the eigenvalues pertinent to ionization.

ExpandingC(a) abouta5p/4, introducing the variable
x5p/42a, and definingDTP(r) according to
’’
ld
is
-

n

is
on
-

t

he

-

l
o.
y

9
t
.

l

n

e

«~r!5A 2

~2r!
12

DTP~r!

~2r!4/3
2
1/4

r2
~A4!

gives

F d2dx2
22A2~2r!S x1

3

2
x2D14DTP~r!~2r!2/3Gw50,

x.0. ~A5!

The variablex is scaled according to

z581/6~2r!1/3x5A2~2r!1/3x, ~A6!

so that the Schro¨dinger equation becomes

F d2dz2 2z2
3

2A2~2r!1/3
z212DTP~r!Gw50, z.0.

~A7!

For sufficiently large (2r) the quadratic potential term i
neglected, in first approximation andDTP(r)'D, whereD is
independent ofr. Then Eq. ~A7! becomes a differentia
equation for the Airy function Ai(z22D) and the eigenvalue
is determined by the requirement that the derivative of
function vanishes atz50;

Ai 8~22D!50. ~A8!

Numerical solution of this equation for the first zero
Ai 8(22D) gives 2D51.0188. The adiabatic wave functio
wTP,asy(R;a) is then given by

wTP,asy~r;a!5N~r!Ai ~z22D!. ~A9!

The normalization integral is evaluated numerically f
rp/4→` with the result

E
0

`

Ai ~z22D!2dz50.292 322 ~A10!

so that the square of the normalization constant is given

N2~r!5A~2r!1/3, ~A11!

whereA51/0.292 322A25 2.419 00.
The contribution of thex2 term in Eq.~A5! to DTP(r) is

computed in first order perturbation theory. The expectat
value ofx2 is

^x2&52E
0

`

N2Ai2~z22D!x2dx

5
2N2

2A2~2r!
E
0

`

Ai2~z22D!z2dz5
N2

A2~2r!
0.219 21,

~A12!

where the last line follows from direct numerical evaluati
of the integral,

E
0

`

Ai ~z22D!2z2dz50.219 207. ~A13!
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We then have

2DTP~r!51.01881
3

4~2r!2/3
2A2~2r!

N2

A2~2r!
0.219 27

~A14!

51.01881
3

2~2r!1/3
0.219 21A51.01881

0.795 37

~2r!1/3
.

~A15!

Substituting this result into the expression for«TP,asy(r)
gives

«TP,asy~r!5
C0,TP

2r
1

C1,TP8

~2r!4/3
1

C2,TP

~2r!5/3
, ~A16!

where

C0,TP5A2, C1, TP8 51.0188, C2,TP50.795 37.
~A17!

APPENDIX B: EVALUATION OF AN INTEGRAL

The differential equation for Ai(z22D), where
z5xe2 ip/3, with x andD real, can be written

F d2dx2
1x12De2 i2p/3GAi50. ~B1!

Using this equation for Ai and its complex conjugate, o
has from Green’s theorem that

e2 ip/3Ai* Ai 82eip/3AiAi 8*

12D~e22ip/32e2ip/3!E uAi u2dx50. ~B2!

Equation ~B2! holds as an indefinite integral. Fo
x5A2RE

1/3(p/42aE) with the integration range
0,aE,p/4, and using Ai8(22D)50, we have from the
above equation the result

@e2 ip/3Ai ~X!* Ai 8~X!2eip/3Ai ~X!Ai 8~X!* #

24D i sin~2p/3!A2RE
1/3E

0

p/4

uAi u2daE50, ~B3!
where the Airy functions are evaluated atX5X022D with
X05A2eip/3RE

1/3p/4.
For large values ofRE we may use the asymptotic form

of the Airy functions in the surface term. With the neglect
a small correction of the order ofD/(2RE

1/3), we have from
Eqs.~10.4.59! and ~10.4.61! of Ref. @34# the result

1

2p
exp@2zE2zE* #22DA6RE

1/3E
0

p/4

uAi u2daE50,

~B4!

where

zE5
2

3
~X022D!3/2. ~B5!

This expression is then used to write the integral o
uwTP,asy(RE ,aE)u2 as

E
0

p/2

uwTP,asyu2daE52E
0

p/4

uwTP,asyu2daE

5
A

2pA6D
exp~2zE2zE* !. ~B6!

For X0@D we may expandzE in powers of the small
quantityD/X0 to obtain

zE1zE*'22D~X0
1/21X0*

1/2!1D2~X0
21/21X0*

21/2!

5222/3A3pDE21/6121/3A3/pD2E1/6. ~B7!

This gives the desired expression

2E
0

p/4

uwTP,asyu2daE5
A

iA6D
@e2 ip/3Ai ~X!* Ai 8~X!

2eip/3Ai ~X!Ai 8~X!* #

'
A

2pA6D
exp~22/3A3pDE21/6

221/3A3/pD2E1/6!. ~B8!
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