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Determination of scattering phase shifts via the generalized unitarity theorem
for spin-orbit interactions

H. Huber* D. R. Lun, L. J. Allen, and K. Amos
School of Physics, University of Melbourne, Parkville 3052, Victoria, Australia
(Received 2 July 1996

The unitarity conditions upon the scattering amplitudes for the elastic scattering 0% spirticles from
spin-0 targets at energies below the first inelastic threshold transcribe to a set of coupled nonlinear integral
equations for the phase functions of two helicity amplitudes and thence, by simple linkage, to the non-spin-flip
and spin-flip scattering amplitudes. From the latter set, by Legendre integrations, one obtains the scattering
phase shifts,&; j-j+15. Input to the study are the differential cross section and the polarization,
{(da/dQ)(6),P(6)}. An iterative method of solution based upon Frectierivatives and with generalized
cross validatiofGCV) smoothing of the variations between iterates can give convergent, stable, and accurate
results. Two test cases, the first built upon a model sdswfal) phase-shift values and the second for an
optical model calculation of 1-MeV neutrons scattered fromoaparticle, have been used to demonstrate
convergence and accuracy. There are natural ambigyfoesfold, in fach for the phase functions of the
scattering amplitudes since data are invariant to complex conjugation of, or the Minami transform on, the phase
shifts of the mirror data s€(da/dQ)(6),—P(8)}, as well as to the combined action of complex conjugation
and Minami transformation of the phase shifts given by the initial solution. Those ambiguities are presented
herein and are shown not to pose numerical problems in solution, provided the initial guesses are not near to
the symmetry “lines” of the four solutions, and the GCV process is used to prevent branch flips occurring at
scattering angles where the allowed solutions inter$8d050-2947®7)03603-3

PACS numbd(s): 34.80—i

[. INTRODUCTION erated fixed point method are not met, a numerical procedure
has been proposdd,5]. But whatever the chosen method of
Phase-shift analyses usually are precursors to the use &6lution, the cross-section datdo{/d(2)(#) must be known
inverse scattering method4] to obtain (local) interaction ~ at all (rea) scattering angles. With actual data sets then, in-
potentials from scattering data. With fixed energy inverseerpolation and extrapolation must be used.
scattering problems, knowledge of the phase skiftat all For scattering in which spin-orbit interactions are impor-
real positive values of the variableallows unique determi- tant, the generalized flux theorem leads to coupled integral
nation of the Schiinger potentials. The first problem then €duations for two unknown phase functioid, and while
is to specify those phase shifts, first at the physical valuef’€re are still conditions for uniqueness of the solution as
and then, by interpolation, for all values of the angular mo-We” as of Fhe stability of f|x¢d-p0|nt me?hods of squtlon,.
mentum variable. But no technique exists to do that unam'Ehose conditions are now quite gomplex n ngture. Indeeq It
biguously. Most commonlyS-matrix fitting procedures are WOl.JId seem t_hat the mathematical compIeX|_ty of _the spin-
used and usually, therewith, aspects of ill-posedness and orbit problem is greater than that of the no-spin-orbit scatter-

biquities d local minima. in the h g, two-channel systefiv], but in practice it is not. In most
ambiguities due to local minima in the-parameter Nyper-  ,qag of two-channel scattering, one or more of the required

surface associated with such procedures are ignored. data sets are unavailable. Certainly the problem is more com-
Our aim has been to obtain phase shifts by a more globgliex than the single-channel equation that we studied re-
means, namely by using the unitariyeneralized fluxtheo-  cently [4,5] for spinless particle scattering. In fact we ig-
rem in application to real cases. Below the first nonelastiGyored spin-orbit effects in the unitarity equations for the
threshold and for the scattering of spinless partiGesf one  systems studied; the process then is an approximation to the
simply ignores any spin-dependent attributes in the scatteicoupled equation forms given herein when the polarizations
ing), this theorem translates to an integral equation to detefgre set to zero at all scattering angles. As with those earlier
mine the phase functiopp(6)] of the scattering amplitude studies, herein we again ignore specific Coulomb interaction
f(6)=do/dQ(0)exdie(h)]. A solution to that integral effects by restricting consideration to scattering from sys-
equation not only exists but also, under particular conditionsems such that the phase shifts all rapidly decrease with par-
[2], is unique. Furthermore, with one of those conditionstial wave value. As a realistic case, we consider low-energy
(hereafter defined as the Martin conditiobeing valid, an  neutron-e-particle scatteringr(-a), and as with our previ-
iterative method of Newtori3] gives that solution. When ous analysi$4] of that scattering, stable solutions cannot be
conditions for uniqueness and stability of solution by an it-found by using the Newton fixed-point iterative method. So
we resort to a method of solution based upon Fredeeva-
tives. With that approach, we have found the scattering phase
*Permanent address: Institutr fidernphysik, Technische Univer- functions in both a test case and with input based upon the
sita Wien, Wiedner Hauptstrasse 8-10/142, A-1040 Wien, Austria.cross sections and polarizations given by a conventional op-
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tical model calculation for low-energin—«a) scattering 8].
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—2milfrr ks, k) — frrr* (KK7)]

The fourfold ambiguity due to invariance of results based

upon both complex conjugation and the Minami transform is
studied and the problems such ambiguity may cause in nu-

merical evaluation of the phase shifts are given.

II. UNITARITY AND SPIN- 3—SPIN-0 ELASTIC
SCATTERING AMPLITUDES

The scattering amplitudes for a spjrparticle elastically
scattered from a spin-0 target have the form

kxk’

fo (k' K)=x"[g(6)+o-n h(O)]x,, n=

where y, are Pauli spin functions with spin projections

r==1, andk, k' are the incoming and outgoing momenta k2A2 (2)= do

of the prOJect|Ie (k| =|k'|=k). The non-spin-flip and spin-
flip amplitudes,g(6) and h(#6), respectively, are defined
conventionally by the partial-wave expansions

1 o0
g(6)= —kg [(1+1)S, +1S,_—(21+1)]P,(cosh) ,
2

=k, fffrxk’,q)f;,(k,q) dQq , @)

may be expressed in terms of the elemeag(tg) andh(6),
but it is much more convenient to choose spin quantization
parallel ton and transversity amplitudes

A+ (2)expi®.)=g(8)*h(0),

~ 1
f:,:(e):(E

t..(6)=0 . €y

Therein A.(z) [z=cos@)] are dimensionless magnitude
functions that can be determined from the unpolarized dif-
ferential cross sectiomlo/d() and the polarizationP(6)
since

2Rggh*) )
ao 1=

— 2 2

Then if theA..(z) can be specified for all scattering angles,
the unitarity condition, Eq(3), constitutes two coupled equa-
tions[6] for the phase function® .. (6). Those equations are
nonlinear and can be specified in a convenient form, by as-

suming @, ,®_e C[—1,1], defining CI)E(if), and then
considering an operatorFE(Ef) whose components

1 F,, F_are
_ = _ 1 . .
h(¢9)—2k§l [S+—S-]1Pj(cosd) . F+[<I>]EA+(2)S|r[<I>+(z)]+A_(Z)S|r{<13_(z)]—Kl(Z)(,)
6
Thereinl = denote the valueg=1=1/2 and the expansions and
can be recast in terms of scattering phase shifts since they al _ _ _
given by 8. (K)=[1/(21)] In[S.(K)]. Likewise, the unitar- F_[0]=A.(2)cof®. (2)]-A_(2)cof @ _(2)] KZ(Z)(7’)
ity condition (the generalized flux theorenil], which has
the form where, with® (K) being the Heaviside function,
dx dy ®(K)  Xy—2
Ki(z)= f f Z A(X)A(Y)| 1—7T Xy cog P (X) =P (y)] ®
and
dx dy .(K) K
ko= | [ = 3 A0A) <w’__4cos{<b7<x>—q>ﬂ<y>]
T—1 XYy z
Xz—y  yz—X|\
T——"7 —=|SiNP(X) =P (Y)]{ . C)
X z y z
with
K=1-x?—y2—72+2xyz
and

1-a® for

The unitarity equationg6] then have the form

ae{—1<x,y,z<1} .



55 DETERMINATION OF SCATTERING PHASE SHIFTS ... 2017

0
F[<b]=(0 , 10

which is useful in seeking a solution by a maodification to the fixed-point iterative method of Néd}oifhat modified
method[4,5] involves the Frechederivative ofF, which is given by

oF ,
o [h+]+3¢ [h-] h,
Folh]l= o , hz(h) (11)

(9F

where, withh.. being the functionals of variation,

IF B B dx dy ©(K)
ﬁ[m]—h+(2)A+(Z)co§L<I>+(2)] ff—mrﬁ
Xy—z\ . Xy—z
—AL()AL(Y) 1—X_—y_) sif®, (x) =@ (y)] [hy(X)—h (Y)]-A,(X)A_(y) 1+X_—y_)

Xsif® (x)=P_(y)] ho(x)—A_(X)AL(y)

xy—z\ .
1+_—_> sif® . (y) =P _(x)] h+(Y)]
Xy

=h,(2)A.(z)co§ D (z)]+2J J'MA (X)h (xX){ AL(y)| 1— Xy—2 sSiMd, (xX)—d,(y)]
=hy + + 477\/R + + +y Xy + +y
xy—z|
+A_(y)| 1+ X_y_>sm[<l>+(X)—<I>_(y)]] : (12
JF ;. 3 dx dy 0(K) _xy—z| B
I ]=h_ @A _(z>]+2”—4WR A_GOh_(0{ A_(y)| 1 X_y_)ar{cb_(x) d_(y)]
Xy—z\ .
+AL(y)| 1+ X_y_>SIr{‘1>(X)—<1>+(y)] (13
e h 1= —h, (DA, (2)sif® @1- | fw AL OAL(Y)] — i, ()~ D (y)]
&<D+[ +]=—=hy + + 47T\/R + +y Xy 2 + +y
x[h, (x) - h+<y>]+(x—_zy—yy___>coqcb+(x> O (y) 1[N (). (y)]
K XZ—y Yyz—X
+A (XA (y){ _Slf{‘b+(X) D_(y)] hy(X)+| —=+ __) co§ P, (x)—D_(y)] h+(X)]
Xy z X z y z
xz—y yz—

K
+A_ (X)A+(y){ _SIr{<D+(y) O _(x)] hy(y)+| ——=+
Xy z X z

= )coiqh(Y) D _(x)] h+(y)H

=—h,(2)A.(2)siN® z—ZJ’fwA(x)h (X)) AL(Y) — K in®,(xX)—d,(y)]
= +(2A (Z)siN P, (2)] 47T\/R + + +y X—y—gs + +y
XZ—y yz—X K .
+ ——|cog§ P (X) =D (Y)] [ TA(Y)| =—=sINP . (X)—P_(y)]
X z y z Xy z
+(XZ LA e )cos{cb (0~ <I>_<y>]] (14
Xz Yy z
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and

dx dy O(K)

e h 1=h_@A_(siM® @12 [ 2 2EA om0
ob_- ~ - - - 477\/R - -
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A_(y)

K
———=siN®_(X)—®_(y)]
Xy z

XZ—y Yyz—X
—( — __) cog® _(X)=@ _(y)]; +AL(Y)
X z y z
K . XZ—y Yyz—X
X[___SIr{¢>_(X)—<D+(y)]—( —+ __>COS[<I>_(X)—<D+(V)]H : (15
Xy z X Z y z

The modified Newton method of solution necessitates that
one solves the system of two coupled linear functional equa-

IF _ ,
o5 [N-1=h-(-DA_(~DsiN®_(~-1)] . (21

tions for two components ab"*?, viz.,

F[O"]+F g @" "1 —D"]=0. (16)

If the integrals(over y) are approximated by means of a

(3) At x=—1 one has

. A (-1
Myy(i,1) =A,(z)cog P, (z)]d1+ —

guadrature formula, these equations reduce to a linear system

with matrix form:

Mll M12 h+>_
(le Mzz)(h— -F 17

X{A (—z)siN®,(—1)—P . (—z)]
+A_(—z)sin®, (-1)—-P_(—2z)]} ,
A_(—1)

My (i,1) =A_(z)co§d_(z)]d1+ _T

In the process of solution it is useful to incorporate a set of

useful limits of the coupled equations that result from the

constraints specified by Alvarez-Estrada and Carr¢éds
ie., asz —*1, O(K)/VK—m8(xFy). Those limits are
as follows:

(1) At z=1, Eq.(6) leads to the optical theorem

1 b2 2
S (1]= 7| [A200+A2 (0] dx
(18)
(2) At z=—1, one has
IF . B
E[M]—m(—l)m(—1)COE{<I>+(—1)]
1
+J AL (X)h (X)A_(—=x)
-1
Xsif® (X)—®_(—x)] dx , (19
IF B
5 [h-1=h_(~DA_(~1co§®_(~1)]
1
+J A_(X)h_(X)AL(—X)
-1
Xsif®_(x)—® . (—=x)] dx , (20
JF

K[MF —h, (=DA, (=DsiN®,(-1)] ,

and

X{A_(=z)siN® _(-1)=P_(-z)]
tAL(=z)siNd_(-1)=D.(-2z)]} ,

Moy(i,1) =—A,(Z)siNP (z)] 61 ,
and

Mao(i,1) =A_(z)siN®_(z)] & - (22

Once the phase functions of the transversity amplitudes
have been fixed, so also are the scattering amplitugled,
andh(6), from which the scattering functiorgquivalently
the phase shifjscan be determined by the Legendre integra-
tions

1
a+—1=ikfflg<x>P.<x>dx

k

+ [
[+1

fl h(x)P{(x)dx, (23
-1

1 k1
SI,—lzikf_lg(x)P,(x)dx— I—J_lh(x)Pll(x)dx

for 1 #0. For thes-wave case, only the equation 8, has
relevance.

IIl. NATURAL AMBIGUITIES
OF THE PHASE FUNCTIONS

Alvarez-Estradaet al. [6,7] have specified the set of
uniqueness conditions for a solutio®={®, (), _(6)}
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Schematic of the ambiguities in the spin-orbit case

Original Problem Mirrored Problem

®) / < /.

C & T %¥®‘>'
o ® NEO)

IO @

@, (rad)

—=  complex conjugate transform 8;'/' - -

————— >> Minami transform +/- J+
8, 61+1
combined transform e s/t

5, 8

FIG. 1. A schematic diagram of the natural ambiguities with the
phase functions of thétransversity scattering amplitudes from
spin-% particles scattering off spin-0 targets. One solution of each of
the given and mirrored problem has been assumed to lie in the
function space).

FIG. 2. The iteration results of the modified Newton method
of the unitarity equations for the problem specified by theapplied to the simulated data of spin-O-spiscattering. Various
data Set{(dgldQ)(e),P(e)}_ Those conditions are quite iterate results for the phase functiohs and® _ are shown in the
complex and identify the solution to be unique within a func-top and bottom panels, respectively. The first, second, third, and
tion domainQ). Such a solution, if it exists, we designate asfinal (fourth) iterates are displayed by thg dot-dashed, long-dashed,
@™, There is also then a solution to the “mirrored” prob- Short-dashed, and solid curves, respectively.

lem specified by the data sgdo/dQ2)(6),—P(6)), which the combination of complex conjugation and Minami trans-

; 1) -
we designate hereafter o). . o formation gives a new phase function se{*) and &) for

N'atur'al ambiguities to those .solutlons eX|§t, |de_nt|f|ed bythe original and the mirrored data sets, respectively, while
appllc_atlo_n of the complex conjugate, the Ml_naml_, and thethe two other possible solutions to the original problem re-
combination of the complex conjugate and Minami transfor-

mations. The complex conjugation transform equates t
changing the signs of all of the phase shiffs one obtains
from the phase function®® (and from® ™) for the mir-
rored probleny which are given by

quire the complex conjugation or the Minami transformation
%f the solution to the mirrored problem, and vice versa.
IV. RESULTS OF TEST CALCULATIONS

_ A. Simulated data case
m— oW

(1
W—CD(Jr)

2
o

(2)=
R P

(24) The method has been tested with simulated data that were
generated from the phase shift§,=20°, §;,=10°,

_ 61-=9°, 6,.,=3° and 6,_=2°. For this test case, the

and similarly for®®). The Minami transform is effected by method converges. We display in Fig. 2 the resiifts

an interchange of phase shift sets By. < J(,1)s or by cb(il)(a)] found by using the Frechelerivative and with the

specification of the new phase functiods®), by initial functions being constants. After four iterations the
@ ~ 1 phase function® , and® _ converged with the accuracy of
@ [P [P0 0.2% error. In Fig. 2 the first, second, third, and fitfalirth)
o= o3| ("I;<+1>+‘9 ' (25 iterates are shown by the dot-dashed, long-dashed, short-

dashed, and solid curves, respectively. Note that the process
we use includes smoothing by generalized cross validation
(GCV) [9] between each iterate. That smoothing was found
necessary to ensure convergence of the solution for the phase
function from the generalized flux theorem for the scattering
of spinless particlef5] and it remains so with these studies.
(26) Notably, the smoothing ensures that branch flips in solutions
do not occur, i.e., that for the scattering angles in the vicinity

o ] of the crossing of the desired phase function with an alterna-

These natural ambiguities and the links between them argye solution, the numerics maintain convergence to the de-
shown schematically in Fig. 1 wherein a finding of Alvarez- sjred one and not to the alternative. The final iterate coin-
Estradaet al. is stressed; namely, e, so also is  cides so very well with the exact solution that the latter is not
@ but none of the other solutions are. We show herein thatlisplayed separately.

and similarly for ®®. A fourth possible solution results
from the combination of transforms whence we find the

phase function®® (and similarly®®) from

" P\ [m-0P-0
R P21 Rl (P
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TABLE I. The 1-MeV n-«a scattering phase shifts as calculated
from the Satchlert al. [8] optical potential(designated “orig’)
and as recalculatedrec” ) from the phase function@&”, found
by using the linear initial guess functions of EGS8).

g | 5|+,orig 5l—,orig 5I+,rec 5l—,rec

S 0 2.707 2.70683
1 1.007 0.091 1.00688 0.09093
2 0.001 0.0001 0.000104 —0.00005
3 0.000 0.000 —0.00009 0.00008

With the parameters taken as

FIG. 3. The®® and®‘® solutions of the nonlinear equations

- : ; . 0 0=4.28
based upon the simulated data set for spin-0—ssicattering. The + e
+ and — solutions are displayed by the solid and dashed curves,
respectively. cp(,o)= 1.21,
The coupled equations were solved also by using as the <P(+m): ~20, 29

initial guess for the phase functions the complex conjugate

and Minami transform of the initial conditionsas used

above. The results of the iterated solutio®¥(6), are e'™=1.21,

given in Fig. 3 and they are compared with tHg}(6)

solutions. There is a branch point for tfe, solutions as the the solutions are identified aB*). From those phase func-

two functions ® and & cross near 100° scattering tions, by Legendre integration of the associated complex

angle. No such branch point exists for tde_ solutions, scattering amplitude, we obtained the “recalculated” phase

however. In this case, the branch point caused no difficultieshifts that are compared in Table | with the “original” ones,

with the numerical solutions of the type encountered in eari.e., obtained from the optical potential of Satché¢ral. [8].

lier analyseg5] in part due to GCV smoothing between it- The agreement is very good, being of the order of 1 part per

erations. But the initial guess®, must not be taken at or 1000 for the important partial waves. The initial phase func-

near to the symmetry lines, tions and the final results are displayed in Fig. 4 by the
dashed and the solid curves, respectively. The changes

m 1 wrought by the iterative method of solution are significant as

o0 2 2 4 seen by the variation in cross section and polarization for this
CI>°=( o |# 1 , (27) scattering given in Fig. 5. Therein the cross section and po-
o- T2 larization shown by the dashed curves are the result of using

2 2 the phase shifts extracted from the initial phase function

. . .. guess and used in the partial wave summations of Ejs.
as then the problem becomes singular, with the probabilitie§ hile those displayed by the solid curves are the results
of the solutions converging t®*) and ®*) nearly equiva-

lent at all scattering angles.

B. The case of 1 MeVn-a scattering
1. The direct data set {(@/dQ)(6),P(6)}

We have chosen this case because in an earlier $6]dy
in which spin-orbit coupling effects were ignored, the unitar-
ity equations could be solved without numerical ambiguity.
For convenience, to specify the data at all scattering angles,
we have used the phase shifts for 1 MaWw scattering as
given by the optical model analysis that was made by ’
Satchleret al. [8]. Not only does this give a good fit to the 23 e
actual measured data but also provides us with the “exact” -1 -0.6  -0.2 0.2 0.6 1
phase functions against which we can compare the results of
our unitarity based analysis.

Our first (of two) guess for the initial phase functions was
to assume the linear forin z=cos(@)]

@ (rad)

FIG. 4. The initial and final®®, phase functions for 1-MeV
n-a scattering and based upon the optical potential “data” of
Satchleret al.[8]. The initial guess functions given by E®8) are
displayed by the dashed curves while the solid curves portray the
(1+2) . (29) results of our calculations. The latter coincide extremely well with

the “exact” values of the Satchler optical potential.

(m) (0)
P+ P+
(DQ: — go(io)‘f' = -




55 DETERMINATION OF SCATTERING PHASE SHIFTS ... 2021

120
- -
o 100 ¢
~—
o - ~—
E  so0 o)
—— o m
% . =
+
B 60 C e
° X
40 |
20
—
> ©
< o
o’
o
0.2 C ' L '
0 45 90 135 180 -
-1 -0.6 -0.2 0.2 0.6 1
0 (deg)

cos(0)
FIG. 5. The differential cross sectioritop) and polarizations
(bottom for 1-MeV n-« scattering as calculated from the phase FIG. 6. The ) (top) and (—) (bottom phase solutions of
shifts specified by using the initial guess phase function of(#8. ~ ®® and®® as labeled. The startinguess phase functions are
and from the phase shifts found using the phase function solution gfortrayed by the dashed lines while the final solutions are shown by
the generalized flux equation. The former are shown by the dasheitie solid curves. Those final solutions are in excellent agreement
curves while the latter, depicted by the solid curves, are in venywith the “exact” ones(original and complex conjugate plus Mi-
good agreement with the calculated results of Satattiex. [8]. nami transformed specified by the Satchlegt al. [8] scattering
phase shifts. The symmetry lines of these solutions are displayed by
found using the fina(40th) iterate. The latter coincide very the small dashed lines in these figures.
precisely with the calculated results of Satctéeal. [8], the
input to our calculations. sand for the important partial waves. The final phase
The second starting phase guess functions were thos@inctions are compared with the initial ones for this case and
given by the .complex co_njugation and Minami transforma-yith the original,®®, quantities, in Fig. 6. Therein the
tion of those in Eq(28), viz., and — phase functions are shown in the top and bottom
segments, respectively. The initial guess variations are
6 . (300 shown by the dashed lines while the results of our calcula-
tions are shown by the solid curves. The symmetry lines
With the same parameter set, ER9), we sought solution of petween the two solution sets are shown by the small dashed
the phase function®'?). The phase shifts then extracted by curves. Those symmetry lines also pertain to the two other
Legendre integration of the resultant scattering amplitudepossible solutions of the coupled nonlinear equations for the
are compared with the complex conjugated, Minami transphase functions, and which are discussed in the next section.
formed set of Satchlest al.[8] in Table II. Again the recal- |n this case, the solution®(? and ®(? intersect near 25°
culated results agree with the “data” to a few parts per thoufor the scattering angle at which point numerical problems
with ambiguity of solution could result. With GCV smooth-
TABLE II. The 1-MeV n-a scattering phase shifts as calculated jng between iterations, the process converged to the “exact”
from the Satchleret al. [8] Optical potential and after using the results. There is no such concern with te phase solu-

complex conjugation and Minami transformationidesignated  yjong though as the trial guesses and final resultfdt and
“orig” ) and those recalculatedrec” ) from the phase functions @ do not cross

<I>(t4) , found by using the transforms of the linear initial guess func-
tions of Eq.(28).

Y =m-0%7

Nl

2. The mirror data set {(&/d€)(6),—P(6)}

| 5|+,0rig 6F,orig 6I+,rec 5r,rec i i )

Two more phase functions for the scattering amplitudes of
0 —~0.091 ~0.0911 the {(do/dQ)(6),P(6)} data set are associated with the
1 00001  -2707  —0.0004  —2.7070 phase function®® and®(®), and are given by the complex
2 0.000 —1.000 0.0002 —1.0058 conjugate and the Minami transform of the solution with the
3 0.000 —0.001 —0.0003 —0.0009 mirror problem data sef(do/dQ)(6),—P(6)}, i.e., D,

respectively. The mirror problem was solved using the same
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TABLE Ill. The first few partial wave phase shifts obtained from the four phase function solutions

associated with the actuf{da/dQ)(6),P(6)} and mirrored{(do/dQ)(6),— P(6)} data sets.

Solution | 57" (orig) 8, (orig) Solution | ;" (mirror) &, (mirror)
od 0 2.7070 od 0 0.1000
1 1.0070 0.9100 1 1.0420 0.0019
2 0.0010 0.0001 2  -0.1820 0.0102
3 0.0000 0.0000 3 0.0440 —1.0560
PP 0 —0.1000 e 0 —2.7070
1 —-1.0420  —0.0019 1 —1.0070 —0.9100
2 0.1820  —0.0102 2 —0.0010 —0.0001
3 —0.0440 1.0560 3 0.0000 0.0000
o 0 0.0019 PP 0 0.9100
1 0.0102 0.1000 1 0.0001 2.7070
2 —1.560 1.042 2 0.0000 1.0070
3 0.0000  —0.1820 3 0.0000 0.0010
4 0.0000 0.0440 4 0.0000 0.0000
PP 0 —0.9100 oY 0 —0.0019
1 —-0.0001  —2.7070 1 —0.0102 —0.1000
2 0.0000  —1.0070 2 1.0560 —1.0420
3 0.0000  —0.0010 3 0.0000 0.1820
4 0.0000 0.0000 4 0.0000 —0.0440

linear initial conditions. The result is quite different from the tions of two helicity amplitudes from which those of the
phase function found when either the complex conjugatiorspin-flip and non-spin-flip scattering amplitudes can be
or the Minami transform is made upon the Satchler phasepecified. Then, scattering phase shifts can be deduced
shifts. In_those cases the phase functions we identify aby Legendre integrations. This method is more rigorous than
®@ and®®), respectively. Then by using these phase funcconventional phase-shift analyses of the same data but there
tions for the “data” set, the phase shifts that result are com-are known ambiguities of the solution. Four natural phase
pared with those extracted from tdg?) and®* functions  functions are possible with such scattering as data are invari-
in Table 1ll. When used in the appropriate partial wave sum-ant under complex conjugation and the Minami transforma-
mations, Eq(2), all four sets give equivalent fits to the cross tion. The other two allowed solutions result from applying
section and polarization of the optical potential calculation. the complex conjugation and the Minami transformation
separately upon solutions of the mirror problem. For vanish-
ing polarization, the fourfold ambiguity still exists but the
solutions are pairwise degenerate.

In the case of vanishin@r ignored polarization, the four We have performed test calculations of the spin-orbit
solutions for the phase function remain, but two are degenscattering problem. First we used trial partial wave phase
erate. Those two phase functions are distinct, however, anghifts. The ambiguous phase function solutions were investi-
when used to specify the complete scattering amplitudes igateéd and found not to cause numerical instabilities as they
the Legendre integrations, lead to distinctly different sets oflid not intersect with the original ones at any scattering
phase shift values. The phase shifls, , are distinct but still angle. Hence no branch_ point amb|.guny eX|s_ted in this first
give zero polarization when used in the partial wave summalest problem to cause difficulties with numerics. The phase
tions for the scattering amplitudes, Eq®). Thus treating functions of the second test case did in fact overlap. We
spin4—spin-0 scattering, ignoring polarization and equatingchose as the “exact” results against which to assess our

to the problem of spinless particle scatter[5g overlooks a Method of solution the phase functions specified by the scat-
natural ambiguity of the phase function. tering phase shifts as given by a conventional optical model

potential calculation for 1-MeV neutrons scattered from the
a particle.

With initial guesses not too different from the exact re-
The requirements that scattering functions for quantabults, and certainly by avoiding the symmetry “line” of the
scattering at energies below the first inelastic threshold beossible(four) solutions as the initial guess, the method gave
unitary have been used to specify a process to extract constable convergent solutions. It is important to note that gen-
plex scattering amplitudes from the data set of the differeneralized cross validation was used to smooth variation be-

tial cross section and polarization. The generalized unitaritgyween iterates in the method of solutidof the coupled,
equations for the scattering of spjnparticles from spin-0 nonlinear integral equations for the phases of the helicity
targets give a coupled set of equations for the phase fun@mplitude$, from which the proper spin-flip and non-spin-

C. The case of vanishing polarization

V. CONCLUSIONS
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values for the scattering at higher energies.
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