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Determination of scattering phase shifts via the generalized unitarity theorem
for spin-orbit interactions

H. Huber,* D. R. Lun, L. J. Allen, and K. Amos
School of Physics, University of Melbourne, Parkville 3052, Victoria, Australia

~Received 2 July 1996!

The unitarity conditions upon the scattering amplitudes for the elastic scattering of spin-1
2 particles from

spin-0 targets at energies below the first inelastic threshold transcribe to a set of coupled nonlinear integral
equations for the phase functions of two helicity amplitudes and thence, by simple linkage, to the non-spin-flip
and spin-flip scattering amplitudes. From the latter set, by Legendre integrations, one obtains the scattering
phase shifts,d ( l , j5 l61/2) . Input to the study are the differential cross section and the polarization,
$(ds/dV)(u),P(u)%. An iterative method of solution based upon Freche´t derivatives and with generalized
cross validation~GCV! smoothing of the variations between iterates can give convergent, stable, and accurate
results. Two test cases, the first built upon a model set of~small! phase-shift values and the second for an
optical model calculation of 1-MeV neutrons scattered from ana particle, have been used to demonstrate
convergence and accuracy. There are natural ambiguities~fourfold, in fact! for the phase functions of the
scattering amplitudes since data are invariant to complex conjugation of, or the Minami transform on, the phase
shifts of the mirror data set$(ds/dV)(u),2P(u)%, as well as to the combined action of complex conjugation
and Minami transformation of the phase shifts given by the initial solution. Those ambiguities are presented
herein and are shown not to pose numerical problems in solution, provided the initial guesses are not near to
the symmetry ‘‘lines’’ of the four solutions, and the GCV process is used to prevent branch flips occurring at
scattering angles where the allowed solutions intersect.@S1050-2947~97!03603-2#
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I. INTRODUCTION

Phase-shift analyses usually are precursors to the us
inverse scattering methods@1# to obtain ~local! interaction
potentials from scattering data. With fixed energy inve
scattering problems, knowledge of the phase shiftsd l at all
real positive values of the variablel allows unique determi-
nation of the Schro¨dinger potentials. The first problem the
is to specify those phase shifts, first at the physical val
and then, by interpolation, for all values of the angular m
mentum variable. But no technique exists to do that una
biguously. Most commonly,S-matrix fitting procedures are
used and usually, therewith, aspects of ill-posedness an
ambiguities due to local minima in then-parameter hyper-
surface associated with such procedures are ignored.

Our aim has been to obtain phase shifts by a more glo
means, namely by using the unitarity~generalized flux! theo-
rem in application to real cases. Below the first nonela
threshold and for the scattering of spinless particles~or if one
simply ignores any spin-dependent attributes in the sca
ing!, this theorem translates to an integral equation to de
mine the phase function@w(u)# of the scattering amplitude
f (u)5Ads/dV(u)exp@iw(u)#. A solution to that integral
equation not only exists but also, under particular conditio
@2#, is unique. Furthermore, with one of those conditio
~hereafter defined as the Martin condition! being valid, an
iterative method of Newton@3# gives that solution. When
conditions for uniqueness and stability of solution by an
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erated fixed point method are not met, a numerical proced
has been proposed@4,5#. But whatever the chosen method
solution, the cross-section data (ds/dV)(u) must be known
at all ~real! scattering angles. With actual data sets then,
terpolation and extrapolation must be used.

For scattering in which spin-orbit interactions are impo
tant, the generalized flux theorem leads to coupled inte
equations for two unknown phase functions@6#, and while
there are still conditions for uniqueness of the solution
well as of the stability of fixed-point methods of solutio
those conditions are now quite complex in nature. Indee
would seem that the mathematical complexity of the sp
orbit problem is greater than that of the no-spin-orbit scat
ing, two-channel system@7#, but in practice it is not. In mos
cases of two-channel scattering, one or more of the requ
data sets are unavailable. Certainly the problem is more c
plex than the single-channel equation that we studied
cently @4,5# for spinless particle scattering. In fact we ig
nored spin-orbit effects in the unitarity equations for t
systems studied; the process then is an approximation to
coupled equation forms given herein when the polarizati
are set to zero at all scattering angles. As with those ea
studies, herein we again ignore specific Coulomb interac
effects by restricting consideration to scattering from s
tems such that the phase shifts all rapidly decrease with
tial wave value. As a realistic case, we consider low-ene
neutron–a-particle scattering (n-a), and as with our previ-
ous analysis@4# of that scattering, stable solutions cannot
found by using the Newton fixed-point iterative method.
we resort to a method of solution based upon Freche´t deriva-
tives. With that approach, we have found the scattering ph
functions in both a test case and with input based upon
cross sections and polarizations given by a conventional.
2015 © 1997 The American Physical Society
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tical model calculation for low-energy~n2a! scattering@8#.
The fourfold ambiguity due to invariance of results bas
upon both complex conjugation and the Minami transform
studied and the problems such ambiguity may cause in
merical evaluation of the phase shifts are given.

II. UNITARITY AND SPIN- 1
2–SPIN-0 ELASTIC

SCATTERING AMPLITUDES

The scattering amplitudes for a spin-1
2 particle elastically

scattered from a spin-0 target have the form

f t8t~k8,k!5xt8
†

@g~u!1s•n h~u!#xt , n5
k3k8

uk3k8u
,

~1!

where xt are Pauli spin functions with spin projection
t561, andk, k8 are the incoming and outgoing momen
of the projectile (uku5uk8u5k). The non-spin-flip and spin
flip amplitudes,g(u) and h(u), respectively, are define
conventionally by the partial-wave expansions

g~u!5
1

2ik (
l50

`

@~ l11!Sl11 lSl22~2l11!#Pl~cosu! ,

~2!

h~u!5
1

2k(l51

`

@Sl12Sl2#Pl
1~cosu! .

Thereinl6 denote the valuesj5 l61/2 and the expansion
can be recast in terms of scattering phase shifts since the
given byd l6(k)5@1/(2i )# ln@Sl6(k)#. Likewise, the unitar-
ity condition ~the generalized flux theorem! @1#, which has
the form
d
s
u-

are

22pi@ft8t~k8,k)2 f tt8* (k,k8)]

5k(
n
E f t8n~k8,q! f nt8

* ~k,q! dVq , ~3!

may be expressed in terms of the elementsg(u) andh(u),
but it is much more convenient to choose spin quantizat
parallel ton and transversity amplitudes

f̃6,6~u!5S 1kDA6~z!exp~ iF6!5g~u!6h~u!,

f̃7,6~u!50 . ~4!

Therein A6(z) @z5cos(u)# are dimensionless magnitud
functions that can be determined from the unpolarized
ferential cross sectionds/dV and the polarizationP(u)
since

k2A6
2 ~z!5

ds

dV
~16P!5~ ugu21uhu2!S 16

2Re~gh* !

~ ugu21uhu2! D .

~5!

Then if theA6(z) can be specified for all scattering angle
the unitarity condition, Eq.~3!, constitutes two coupled equa
tions @6# for the phase functionsF6(u). Those equations are
nonlinear and can be specified in a convenient form, by
suming F1 ,F2PC@21,1#, defining F[(F2

F1), and then

considering an operatorF[(F2

F1) whose components

F1 , F2 are

F1@F#[A1~z!sin@F1~z!#1A2~z!sin@F2~z!#2K1~z! ,
~6!

and

F2@F#[A1~z!cos@F1~z!#2A2~z!cos@F2~z!#2K2~z! ,
~7!

where, withQ(K) being the Heaviside function,
K1~z!5E E dx dy Q~K !

4pAK (
t,t8561

At~x!At8~y!S 12tt8
xy2z

x̄ ȳ
D cos@Ft~x!2Ft8~y!# ~8!

and

K2~z!5E E dx dy Q~K !

4pAK (
t,t8561

At~x!At8~y!H S tt8
K

x̄ ȳ z̄
D cos@Ft~x!2Ft8~y!#

1S t
xz2y

x̄ z̄
2t8

yz2x

ȳ z̄
D sin@Ft~x!2Ft8~y!#J , ~9!

with

K512x22y22z212xyz

and

ā5A12a2 for aP$21,x,y,z,1% .

The unitarity equations@6# then have the form
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F@F#5S 00D , ~10!

which is useful in seeking a solution by a modification to the fixed-point iterative method of Newton@1#. That modified
method@4,5# involves the Freche´t derivative ofF, which is given by

FF8 @h#5S ]F1

]F1
@h1#1

]F1

]F2
@h2#

]F2

]F1
@h1#1

]F2

]F2
@h2#

D , h[S h1

h2
D , ~11!

where, withh6 being the functionals of variation,

]F1

]F1
@h1#5h1~z!A1~z!cos@F1~z!#2E E dx dy Q~K !

4pAK

3H 2A1~x!A1~y!S 12
xy2z

x̄ ȳ
D sin@F1~x!2F1~y!# @h1~x!2h1~y!#2A1~x!A2~y!S 11

xy2z

x̄ ȳ
D

3sin@F1~x!2F2~y!# h1~x!2A2~x!A1~y!S 11
xy2z

x̄ ȳ
D sin@F1~y!2F2~x!# h1~y!J

5h1~z!A1~z!cos@F1~z!#12E E dx dy Q~K !

4pAK
A1~x!h1~x!H A1~y!S 12

xy2z

x̄ ȳ
D sin@F1~x!2F1~y!#

1A2~y!S 11
xy2z

x̄ ȳ
D sin@F1~x!2F2~y!#J , ~12!

]F1

]F2
@h2#5h2~z!A2~z!cos@F2~z!#12E E dx dy Q~K !

4pAK
A2~x!h2~x!H A2~y!S 12

xy2z

x̄ ȳ
D sin@F2~x!2F2~y!#

1A1~y!S 11
xy2z

x̄ ȳ
D sin@F2~x!2F1~y!#J , ~13!

]F2

]F1
@h1#52h1~z!A1~z!sin@F1~z!#2E E dx dy Q~K !

4pAK FA1~x!A1~y!H 2
K

x̄ ȳ z̄
sin@F1~x!2F1~y!#

3@h1~x!2h1~y!#1S xz2y

x̄ z̄
2
yz2x

ȳ z̄
D cos@F1~x!2F1~y!#@h1~x!2h1~y!#J

1A1~x!A2~y!H K

x̄ ȳ z̄
sin@F1~x!2F2~y!# h1~x!1S xz2y

x̄ z̄
1
yz2x

ȳ z̄
D cos@F1~x!2F2~y!# h1~x!J

1A2~x!A1~y!H K

x̄ ȳ z̄
sin@F1~y!2F2~x!# h1~y!1S xz2y

x̄ z̄
1
yz2x

ȳ z̄
D cos@F1~y!2F2~x!# h1~y!J G

52h1~z!A1~z!sin@F1~z!#22E E dx dy Q~K !

4pAK
A1~x!h1~x!FA1~y!H 2

K

x̄ ȳ z̄
sin@F1~x!2F1~y!#

1S xz2y

x̄ z̄
2
yz2x

ȳ z̄
D cos@F1~x!2F1~y!#J 1A2~y!H K

x̄ ȳ z̄
sin@F1~x!2F2~y!#

1S xz2y

x̄ z̄
1
yz2x

ȳ z̄
D cos@F1~x!2F2~y!#J G , ~14!
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and

]F2

]F2
@h2#5h2~z!A2~z!sin@F2~z!#22E E dx dy Q~K !

4pAK
A2~x!h2~x!FA2~y!H 2

K

x̄ ȳ z̄
sin@F2~x!2F2~y!#

2S xz2y

x̄ z̄
2
yz2x

ȳ z̄
D cos@F2~x!2F2~y!#J 1A1~y!

3H K

x̄ ȳ z̄
sin@F2~x!2F1~y!#2S xz2y

x̄ z̄
1
yz2x

ȳ z̄
D cos@F2~x!2F1~y!#J G . ~15!
th
u

a
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The modified Newton method of solution necessitates
one solves the system of two coupled linear functional eq
tions for two components ofFn11, viz.,

F@Fn#1FFn8 @Fn112Fn#50. ~16!

If the integrals~over y) are approximated by means of
quadrature formula, these equations reduce to a linear sy
with matrix form:

SM11 M12

M21 M22
D S h1

h2
D 5F. ~17!

In the process of solution it is useful to incorporate a se
useful limits of the coupled equations that result from t
constraints specified by Alvarez-Estrada and Carreras@6#,
i.e., asz →61, Q(K)/AK→pd(x7y). Those limits are
as follows:

~1! At z51, Eq. ~6! leads to the optical theorem

sin@F6~1!#5
1

4A1~1!
E

21

1

@A1
2 ~x!1A2

2 ~x!# dx .

~18!

~2! At z521, one has

]F1

]F1
@h1#5h1~21!A1~21!cos@F1~21!#

1E
21

1

A1~x!h1~x!A2~2x!

3sin@F1~x!2F2~2x!# dx , ~19!

]F1

]F2
@h2#5h2~21!A2~21!cos@F2~21!#

1E
21

1

A2~x!h2~x!A1~2x!

3sin@F2~x!2F1~2x!# dx , ~20!

]F2

]F1
@h1#52h1~21!A1~21!sin@F1~21!# ,

and
at
a-

em

f

]F2

]F2
@h2#5h2~21!A2~21!sin@F2~21!# . ~21!

~3! At x521 one has

M11~ i ,1! 5A1~zi !cos@F1~zi !#d i11
A1~21!

2

3$A1~2zi !sin@F1~21!2F1~2zi !#

1A2~2zi !sin@F1~21!2F2~2zi !#% ,

M12~ i ,1! 5A2~zi !cos@F2~zi !#d i11
A2~21!

2

3$A2~2zi !sin@F2~21!2F2~2zi !#

1A1~2zi !sin@F2~21!2F1~2zi !#% ,

M21~ i ,1! 52A1~zi !sin@F1~zi !# d i1 ,

and

M22~ i ,1! 5A2~zi !sin@F2~zi !# d i1 . ~22!

Once the phase functions of the transversity amplitu
have been fixed, so also are the scattering amplitudes,g(u)
andh(u), from which the scattering functions~equivalently
the phase shifts! can be determined by the Legendre integ
tions

Sl1215 ikE
21

1

g~x!Pl~x!dx

1
k

l11E21

1

h~x!Pl
1~x!dx , ~23!

Sl2215 ikE
21

1

g~x!Pl~x!dx2
k

l E21

1

h~x!Pl
1~x!dx

for lÞ0. For thes-wave case, only the equation forS01 has
relevance.

III. NATURAL AMBIGUITIES
OF THE PHASE FUNCTIONS

Alvarez-Estradaet al. @6,7# have specified the set o
uniqueness conditions for a solution,F[$F1(u),F2(u)%
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55 2019DETERMINATION OF SCATTERING PHASE SHIFTS . . .
of the unitarity equations for the problem specified by t
data set$(ds/dV)(u),P(u)%. Those conditions are quit
complex and identify the solution to be unique within a fun
tion domainV. Such a solution, if it exists, we designate
F (1). There is also then a solution to the ‘‘mirrored’’ prob
lem specified by the data set„(ds/dV)(u),2P(u)…, which
we designate hereafter byF̃(1).

Natural ambiguities to those solutions exist, identified
application of the complex conjugate, the Minami, and
combination of the complex conjugate and Minami transf
mations. The complex conjugation transform equates
changing the signs of all of the phase shiftsd l6 one obtains
from the phase functionsF̃(1) ~and fromF (1) for the mir-
rored problem!, which are given by

F~2!5S F1
~2!

F2
~2!D 5S p2F̃2

~1!

p2F̃1
~1!D , ~24!

and similarly forF̃(2). The Minami transform is effected b
an interchange of phase shift sets byd l6⇔d ( l11)7 or by
specification of the new phase functions,F (3), by

F~3!5S F1
~3!

F2
~3!D 5S F̃2

~1!2u

F̃1
~1!1u

D , ~25!

and similarly for F̃(3). A fourth possible solution result
from the combination of transforms whence we find t
phase functionsF (4) ~and similarlyF̃(4)) from

F~4!5S F1
~4!

F2
~4!D 5S p2F1

~1!2u

p2F2
~1!1u

D . ~26!

These natural ambiguities and the links between them
shown schematically in Fig. 1 wherein a finding of Alvare
Estradaet al. is stressed; namely, ifF6

(1)PV, so also is
F̃6
(1) but none of the other solutions are. We show herein t

FIG. 1. A schematic diagram of the natural ambiguities with
phase functions of the~transversity! scattering amplitudes from
spin-12 particles scattering off spin-0 targets. One solution of each
the given and mirrored problem has been assumed to lie in
function spaceV.
-

y
e
-
to
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the combination of complex conjugation and Minami tran
formation gives a new phase function setF6

(4) and F̃6
(4) for

the original and the mirrored data sets, respectively, wh
the two other possible solutions to the original problem
quire the complex conjugation or the Minami transformati
of the solution to the mirrored problem, and vice versa.

IV. RESULTS OF TEST CALCULATIONS

A. Simulated data case

The method has been tested with simulated data that w
generated from the phase shiftsd0520°, d11510°,
d1259°, d2153° and d2252°. For this test case, th
method converges. We display in Fig. 2 the results@for
F6

(1)(u)# found by using the Freche´t derivative and with the
initial functions being constants. After four iterations th
phase functionsF1 andF2 converged with the accuracy o
0.2% error. In Fig. 2 the first, second, third, and final~fourth!
iterates are shown by the dot-dashed, long-dashed, s
dashed, and solid curves, respectively. Note that the pro
we use includes smoothing by generalized cross valida
~GCV! @9# between each iterate. That smoothing was fou
necessary to ensure convergence of the solution for the p
function from the generalized flux theorem for the scatter
of spinless particles@5# and it remains so with these studie
Notably, the smoothing ensures that branch flips in soluti
do not occur, i.e., that for the scattering angles in the vicin
of the crossing of the desired phase function with an alter
tive solution, the numerics maintain convergence to the
sired one and not to the alternative. The final iterate co
cides so very well with the exact solution that the latter is n
displayed separately.

f
e

FIG. 2. The iteration results of the modified Newton meth
applied to the simulated data of spin-0–spin-1

2 scattering. Various
iterate results for the phase functionsF1 andF2 are shown in the
top and bottom panels, respectively. The first, second, third,
final ~fourth! iterates are displayed by the dot-dashed, long-dash
short-dashed, and solid curves, respectively.
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The coupled equations were solved also by using as
initial guess for the phase functions the complex conjug
and Minami transform of the initial conditions~as used
above!. The results of the iterated solution,F6

(4)(u), are
given in Fig. 3 and they are compared with theF6

(1)(u)
solutions. There is a branch point for theF1 solutions as the
two functions F1

(1) and F1
(4) cross near 100° scatterin

angle. No such branch point exists for theF2 solutions,
however. In this case, the branch point caused no difficul
with the numerical solutions of the type encountered in e
lier analyses@5# in part due to GCV smoothing between i
erations. But the initial guess,F0, must not be taken at o
near to the symmetry lines,

F05S F1
0

F2
0 DÞS p

2
2
1

2
u

p

2
1
1

2
u
D , ~27!

as then the problem becomes singular, with the probabili
of the solutions converging toF (1) andF (4) nearly equiva-
lent at all scattering angles.

B. The case of 1 MeVn-a scattering

1. The direct data set {(ds/dV)(u),P(u)}

We have chosen this case because in an earlier stud@5#
in which spin-orbit coupling effects were ignored, the unita
ity equations could be solved without numerical ambigui
For convenience, to specify the data at all scattering ang
we have used the phase shifts for 1 MeVn-a scattering as
given by the optical model analysis that was made
Satchleret al. @8#. Not only does this give a good fit to th
actual measured data but also provides us with the ‘‘exa
phase functions against which we can compare the resul
our unitarity based analysis.

Our first ~of two! guess for the initial phase functions wa
to assume the linear form@in z5cos(u)#

F6
0 5w6

~0!1S w6
~m!2w6

~0!

2 D ~11z! . ~28!

FIG. 3. TheF6
(1) andF6

(4) solutions of the nonlinear equation
based upon the simulated data set for spin-0–spin-1

2 scattering. The
1 and2 solutions are displayed by the solid and dashed curv
respectively.
e
te

s
r-

s

-
.
s,

y

’’
of

With the parameters taken as

w1
~0!54.28 ,

w2
~0!51.21 ,

w1
~m!522.0 , ~29!

w2
~m!51.21 ,

the solutions are identified asF (1). From those phase func
tions, by Legendre integration of the associated comp
scattering amplitude, we obtained the ‘‘recalculated’’ pha
shifts that are compared in Table I with the ‘‘original’’ one
i.e., obtained from the optical potential of Satchleret al. @8#.
The agreement is very good, being of the order of 1 part
1000 for the important partial waves. The initial phase fun
tions and the final results are displayed in Fig. 4 by t
dashed and the solid curves, respectively. The chan
wrought by the iterative method of solution are significant
seen by the variation in cross section and polarization for
scattering given in Fig. 5. Therein the cross section and
larization shown by the dashed curves are the result of u
the phase shifts extracted from the initial phase funct
guess and used in the partial wave summations of Eqs.~2!
while those displayed by the solid curves are the res

s,

TABLE I. The 1-MeV n-a scattering phase shifts as calculat
from the Satchleret al. @8# optical potential~designated ‘‘orig’’!
and as recalculated~‘‘rec’’ ! from the phase functionsF6

(1) , found
by using the linear initial guess functions of Eq.~28!.

l d l
1,orig d l

2,orig d l
1,rec d l

2,rec

0 2.707 2.70683
1 1.007 0.091 1.00688 0.09093
2 0.001 0.0001 0.000104 20.00005
3 0.000 0.000 20.00009 0.00008

FIG. 4. The initial and final,F (1), phase functions for 1-MeV
n-a scattering and based upon the optical potential ‘‘data’’
Satchleret al. @8#. The initial guess functions given by Eq.~28! are
displayed by the dashed curves while the solid curves portray
results of our calculations. The latter coincide extremely well w
the ‘‘exact’’ values of the Satchler optical potential.
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55 2021DETERMINATION OF SCATTERING PHASE SHIFTS . . .
found using the final~40th! iterate. The latter coincide ver
precisely with the calculated results of Satchleret al. @8#, the
input to our calculations.

The second starting phase guess functions were th
given by the complex conjugation and Minami transform
tion of those in Eq.~28!, viz.,

F6
085p2F6

0 7 1
2u . ~30!

With the same parameter set, Eq.~29!, we sought solution of
the phase functionsF6

(4) . The phase shifts then extracted b
Legendre integration of the resultant scattering amplitu
are compared with the complex conjugated, Minami tra
formed set of Satchleret al. @8# in Table II. Again the recal-
culated results agree with the ‘‘data’’ to a few parts per tho

FIG. 5. The differential cross sections~top! and polarizations
~bottom! for 1-MeV n-a scattering as calculated from the pha
shifts specified by using the initial guess phase function of Eq.~28!
and from the phase shifts found using the phase function solutio
the generalized flux equation. The former are shown by the da
curves while the latter, depicted by the solid curves, are in v
good agreement with the calculated results of Satchleret al. @8#.

TABLE II. The 1-MeV n-a scattering phase shifts as calculat
from the Satchleret al. @8# optical potential and after using th
complex conjugation and Minami transformations~designated
‘‘orig’’ ! and those recalculated~‘‘rec’’ ! from the phase functions
F6

(4) , found by using the transforms of the linear initial guess fun
tions of Eq.~28!.

l d l
1,orig d l

2,orig d l
1,rec d l

2,rec

0 20.091 20.0911
1 20.0001 22.707 20.0004 22.7070
2 0.000 21.000 0.0002 21.0058
3 0.000 20.001 20.0003 20.0009
se
-

s
-

-

sand for the important partial waves. The final pha
functions are compared with the initial ones for this case a
with the original,F6

(1) , quantities, in Fig. 6. Therein the1
and 2 phase functions are shown in the top and bott
segments, respectively. The initial guess variations
shown by the dashed lines while the results of our calcu
tions are shown by the solid curves. The symmetry lin
between the two solution sets are shown by the small das
curves. Those symmetry lines also pertain to the two ot
possible solutions of the coupled nonlinear equations for
phase functions, and which are discussed in the next sec
In this case, the solutionsF1

(1) andF1
(4) intersect near 25°

for the scattering angle at which point numerical proble
with ambiguity of solution could result. With GCV smooth
ing between iterations, the process converged to the ‘‘exa
results. There is no such concern with theF2 phase solu-
tions though as the trial guesses and final results forF2

(1) and
F2

(4) do not cross.

2. The mirror data set {(ds/dV)(u),2P(u)}

Two more phase functions for the scattering amplitudes
the $(ds/dV)(u),P(u)% data set are associated with th
phase functionsF (2) andF (3), and are given by the comple
conjugate and the Minami transform of the solution with t
mirror problem data set$(ds/dV)(u),2P(u)%, i.e., F̃(1),
respectively. The mirror problem was solved using the sa

of
ed
y

-

FIG. 6. The (1) ~top! and (2) ~bottom! phase solutions of
F (1) andF (4) as labeled. The starting~guess! phase functions are
portrayed by the dashed lines while the final solutions are shown
the solid curves. Those final solutions are in excellent agreem
with the ‘‘exact’’ ones~original and complex conjugate plus Mi
nami transformed! specified by the Satchleret al. @8# scattering
phase shifts. The symmetry lines of these solutions are displaye
the small dashed lines in these figures.
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TABLE III. The first few partial wave phase shifts obtained from the four phase function solu
associated with the actual$(ds/dV)(u),P(u)% and mirrored$(ds/dV)(u),2P(u)% data sets.

Solution l d l
1~orig! d l

2~orig! Solution l d l
1~mirror! d l

2~mirror!

F6
(1) 0 2.7070 F6

(1) 0 0.1000
1 1.0070 0.9100 1 1.0420 0.0019
2 0.0010 0.0001 2 20.1820 0.0102
3 0.0000 0.0000 3 0.0440 21.0560

F6
(2) 0 20.1000 F̃6

(2) 0 22.7070

1 21.0420 20.0019 1 21.0070 20.9100
2 0.1820 20.0102 2 20.0010 20.0001
3 20.0440 1.0560 3 0.0000 0.0000

F6
(3) 0 0.0019 F̃6

(3) 0 0.9100

1 0.0102 0.1000 1 0.0001 2.7070
2 21.560 1.042 2 0.0000 1.0070
3 0.0000 20.1820 3 0.0000 0.0010
4 0.0000 0.0440 4 0.0000 0.0000

F6
(4) 0 20.9100 F̃6

(4) 0 20.0019

1 20.0001 22.7070 1 20.0102 20.1000
2 0.0000 21.0070 2 1.0560 21.0420
3 0.0000 20.0010 3 0.0000 0.1820
4 0.0000 0.0000 4 0.0000 20.0440
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linear initial conditions. The result is quite different from th
phase function found when either the complex conjugat
or the Minami transform is made upon the Satchler ph
shifts. In those cases the phase functions we identify
F̃(2) andF̃(3), respectively. Then by using these phase fu
tions for the ‘‘data’’ set, the phase shifts that result are co
pared with those extracted from theF (1) andF (4) functions
in Table III. When used in the appropriate partial wave su
mations, Eq.~2!, all four sets give equivalent fits to the cro
section and polarization of the optical potential calculatio

C. The case of vanishing polarization

In the case of vanishing~or ignored! polarization, the four
solutions for the phase function remain, but two are deg
erate. Those two phase functions are distinct, however,
when used to specify the complete scattering amplitude
the Legendre integrations, lead to distinctly different sets
phase shift values. The phase shifts,d l6 , are distinct but still
give zero polarization when used in the partial wave summ
tions for the scattering amplitudes, Eqs.~2!. Thus treating
spin-12–spin-0 scattering, ignoring polarization and equat
to the problem of spinless particle scattering@5#, overlooks a
natural ambiguity of the phase function.

V. CONCLUSIONS

The requirements that scattering functions for quan
scattering at energies below the first inelastic threshold
unitary have been used to specify a process to extract c
plex scattering amplitudes from the data set of the differ
tial cross section and polarization. The generalized unita
equations for the scattering of spin-1

2 particles from spin-0
targets give a coupled set of equations for the phase fu
n
e
s
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-

-

.
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nd
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tions of two helicity amplitudes from which those of th
spin-flip and non-spin-flip scattering amplitudes can
specified. Then, scattering phase shiftsd l6 can be deduced
by Legendre integrations. This method is more rigorous th
conventional phase-shift analyses of the same data but t
are known ambiguities of the solution. Four natural pha
functions are possible with such scattering as data are inv
ant under complex conjugation and the Minami transform
tion. The other two allowed solutions result from applyin
the complex conjugation and the Minami transformati
separately upon solutions of the mirror problem. For vani
ing polarization, the fourfold ambiguity still exists but th
solutions are pairwise degenerate.

We have performed test calculations of the spin-or
scattering problem. First we used trial partial wave pha
shifts. The ambiguous phase function solutions were inve
gated and found not to cause numerical instabilities as t
did not intersect with the original ones at any scatter
angle. Hence no branch point ambiguity existed in this fi
test problem to cause difficulties with numerics. The pha
functions of the second test case did in fact overlap.
chose as the ‘‘exact’’ results against which to assess
method of solution the phase functions specified by the s
tering phase shifts as given by a conventional optical mo
potential calculation for 1-MeV neutrons scattered from t
a particle.

With initial guesses not too different from the exact r
sults, and certainly by avoiding the symmetry ‘‘line’’ of th
possible~four! solutions as the initial guess, the method ga
stable convergent solutions. It is important to note that g
eralized cross validation was used to smooth variation
tween iterates in the method of solution~of the coupled,
nonlinear integral equations for the phases of the helic
amplitudes!, from which the proper spin-flip and non-spin
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flip amplitudes for the scattering were obtained and the ‘‘
act’’ phase shifts reproduced by appropriate Legendre i
gration. The mirror problem was also solved and the th
other natural ambiguity solutions for the phase functio
specified. The numerical procedure was found to be sta
and to converge upon the chosen form of solution even w
those phase functions intersected with one or more of
alternatives.

With an interpolation or extrapolation scheme to spec
the differential cross section and polarization for spin-1

2–
spin-0 particle scattering at all scattering angles, we hav
method to specify the scattering phase shifts,d l6 at energies
to threshold. Thereafter, analyticity with a model prescr
tion for flux loss, or by solution of the additional couple
channel problem, we may seek the most physical phase
values for the scattering at higher energies.
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