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Stability of four-unit-charge systems: A quantum Monte Carlo study
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The family of four-particle systems (M1m1M2m2) has been studied by means of Monte Carlo techniques.
Nonadiabatic explicitly correlated wave functions for different values of the mass ratioM /m have been
obtained using a variational Monte Carlo optimization method. These wave functions have been used in
diffusion Monte Carlo simulations of (M1m1M2m2) to compute exact ground-state energies. Our results
enlarge the stability range of the mass ratio for these and for similar less symmetric systems and address the
problem of the stability of the hydrogen-antihydrogen system. For the special case of the dipositronium
molecule (M5m) we report the ground-state energy, consistent with previous accurate calculations, and
average values of various observables.@S1050-2947~97!05901-5#

PACS number~s!: 36.10.2k, 02.70.Lq
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I. INTRODUCTION

In the last few years attention has been paid to the sta
ity problem of three@1–3# and four@4–15# unit-charge sys-
tems. Accurate results for the energy and other expecta
values have been computed using a nonadiabatic descrip
These results helped to clarify the structure of these syst
and to understand matter-antimatter annihilation. Invest
tions in this field are also concerned with the mass dep
dence of the complex mechanism driving the matter to bu
large aggregates of particles instead of splitting into sma
pieces@2,4,14#.

In molecular physics stability is usually defined in th
framework of the Born-Oppenheimer approximation, e
ploiting the small ratio between electronic and nucle
masses. This possibility is lost if the mass ratio is close
one, and in such a case it is necessary to adopt a nonadia
description of the motion of the particles. Furthermore,
plicitly correlated wave functions are required to obtain a
curate values of the observables. The matrix elements
tween explicitly correlated wave functions are not easy
compute for systems containing more than three partic
unless one resorts to use Gaussian type basis
@5,6,10,11,13,14#. Since a correlated Gaussian does not
produce the cusp conditions, i.e., the behavior of the ex
wave function at small interparticle distances, very large
sis sets must be employed, and also a careful and comp
tionally expensive optimization of the nonlinear paramet
of the trial wave function is required in order to obtain
accurate description.

Few papers have been published on four-particle syst
owing to the difficulty of studing these systems both the
retically and numerically@4–15#. Recently an analytica
proof of the stability of hydrogenlike molecule
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(M1M1m2m2) was given by Richard@4#. His proof relies
on the already established stability of the ground state of
Dipositronium systemPs2 @5,6,9–11,13,14#, i.e., two elec-
trons and two positrons, and on the fact that the bind
energy ~BE! is a concave function ofm/M . In the same
paper Richard extended the stability domain to less symm
ric systems like (M1m1M2m2), exploiting symmetry argu-
ments about the kinetic part of the Hamiltonian. These s
tems remain stable as long as 0.70,s,1.43, s being the
mass ratioM /m: this range was obtained using an estima
of the binding energy of the Dipositronium molecule. A n
merical study on the stability of the same family of syste
(M1M1m2m2) had been previously given by Lee, Vas
ista, and Kalia@12# using diffusion Monte Carlo simulations
These results were used to discuss the effective mass
between an electron pair and a hole pair in some mater
For the same systems, Frolov and Smith@14# discussed the
charge-mass-permutation invariance, proposing interpola
formulas for their ground-state mean energy as a function
the mass ratioM /m: these allow us an approximate comp
tation of the bound-state spectra for the whole family.

In this paper we present a numerical study of the stabi
of the class of systems having the form (M1m1M2m2).
Our main goal is to extend the stability range previou
determined by Richard@4# by optimization of approximate
nonadiabatic wave functions by a variational Monte Ca
technique and subsequent diffusion Monte Carlo simulatio
Since simple scaling arguments based on the variatio
principle allow one to prove that the stability of the system
havingm51 and anyM implies the stability of the family of
systems with the same mass ratios5M /m, we restrict our
computations to the casem51 without any loss of general
ity.

II. TRIAL WAVE-FUNCTION FORM

In the following a numerical subscript denotes a po
tively charged particle, while an alphabetical subscript d
notes a negatively charged one.
200 © 1997 The American Physical Society
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The Hamiltonian operator for these systems has the f

H52
1

2 S ¹1
2

M
1

¹2
2

m
1

¹a
2

M
1

¹b
2

m D 1V~R!, ~1!

whereV(R) is the Coulomb interaction potential

V~R!51
1

rab
1

1

r12
2

1

r1a
2

1

r1b
2

1

r2a
2

1

r2b
~2!

between the four-unit-charge particles,M and m are the
masses of the particles, andR is a point in configuration
space.

The breakup of these systems in a three-particle clu
plus a free particle is not possible because the Coulomb
traction between the two fragments binds them together. T
means that the energy dissociation threshold for this clas
systems, whenm51, is given by@4#

Ethr~M !52
M

4
2
1

4
~3!

corresponding to the splitting in the two species (M1M2)
and (m1m2). The alternative breakup in (M1m2) and
(M2m1) has a higher threshold energy of (2M /11M ).

To approximate the nonadiabatic ground-state wave fu
tion for these systems we propose to use a linear comb
tion of explicitly correlated functions@16#

CT5(
i51

L

ciF i , ~4!

where

F i~R,ki ,pi !5A$Osyme
2ki ,1r1a2ki ,2r1b2ki ,3r2a2ki ,4r2b

3 f ~r 12,r ab ,pi !Q0,0
1,2Q0,0

a,b%. ~5!

In this equationA is the antisymmetrization operato
Osym is an operator used to fix the symmetry of the sta
Q0,0

1,2 and Q0,0
a,b are the spin eigenfunctions with quantu

numberS50 andMs50 for the particles of equal charge. I
the spin free formulation of quantum mechanics, Eq.~5! can
be written as a linear combination of spatial terms with p
ticle indices exchanged, i.e.,

F i~R,ki ,pi !5(
j51

Np

Pjsyme2ki ,1r1a2ki ,2r1b2ki ,3r2a2ki ,4r2b

3 f ~r 12,r ab ,pi !, ~6!

wherePjsym are the exchange operators generated by ac
with A andOsymon the spatial part of Eq.~5! and collecting
all the terms with the same spin function.

The term f (r 12,r ab ,pi) is the correlation factor used t
describe the repulsion between particles having the s
charge and has the analytical form

f ~r 12,r ab ,pi !5e2pi ,1r i ,122pi ,2r i ,ab, ~7!

where

r i ,125e2pi ,3r12 ~8!
m

er
t-
is
of

c-
a-

,

-

g

e

and

r i ,ab5e2pi ,3r ab. ~9!

In the above equationspi andk i are vectors of parameter
for the i th term of the linear expansion. This analytical for
has the correct spin and space symmetry and allows the
wave function to mimic the correct behavior of the exa
wave function at the coalescence point for equal and op
site sign charges. Satisfying the cusp condition usually
celerates the convergence@17# of the linear expansion and
reduces its length for a given accuracy. This is useful
order to reduce the effort needed to optimize the nonlin
parameters, usually a quite heavy task. Since the trial w
function depends only on the interparticle distances,
mean value of the center-of-mass kinetic energy for a gi
linear combination is always zero. This means that the co
puted energy is only the internal energy of the systems,
there is no need to subtract the contribution of the ove
motion of the system in space.

III. MONTE CARLO SIMULATION

The chosen form for the trial wave function makes it im
possible to compute analytically the matrix elements of
Hamiltonian operator of the system and a numerical met
must be used to obtain the energy mean value for a gi
trial wave function. The variational Monte Carlo metho
~VMC! @18# is well suited for this goal since it requires on
the evaluation of the wave function, its gradient, and its L
placian. Since this and others Monte Carlo methods are w
described@18# in the literature, we only summarize the ma
points and equations.

VMC computes expectation values employing the stea
state distributionf5CT

2 that can be obtained simulating th
Fokker-Planck differential equation@18#

2
] f ~R,t !

]t
52 (

i51,2,a,b
Di¹ i

2f ~R,t !

1 (
i51,2,a,b

Di“ i• f ~R,t !Fi~R!, ~10!

where

Fi~R!5¹i ln@CT~R!2# ~11!

is called the quantum force andDi5(2mi)
21 is the diffusion

coefficient for a given particle. The simulation is realize
using the Langevin equation

r i85r i1DitFi~R!1x, ~12!

where x is a three-dimensional Gaussian random varia
with zero mean andt/mi variance. This equation is used t
select an attempted displacement for each particle, but s
this is a discretization of the corresponding Fokker-Plan
equation the mean values obtained from the steady-state
tribution have an error dependent on the value of the ti
stept and are correct only in the zero time step limit. T
avoid an extrapolation the attempted displacement is
cepted with probability
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P~R→R8!5minF1,T~R8→R,t!CT~R8!2

T~R→R8,t!CT~R!2 G , ~13!

where T(R→R8,t) is the transition matrix for the particle
to move fromR to R8. The transition matrix correspondin
to the Langevin equation is

T~R→R8,t!5 )
i51,2,a,b

1

~4Dit!3/2
e2$[ r i82r i2DitFi ~R!] 2/4Dit%.

~14!

The mean energy is computed using

^H&5
*CT

2~R!Eloc~R!dR

*CT
2~R!dR

, ~15!

where

Eloc~Rj !5
HCT~Rj !

CT~Rj !
. ~16!

To optimize the linear and nonlinear parameters in
trial wave function we minimized the functional

m~Er !5
( j51
Ncon fwj@Eloc~Rj !2Er #

2

( j51
Ncon fwj

, ~17!

$Rj% being a set of fixed configurations sampled fromCT
2

All the weightswj were set equal to one, whileEr is an
approximation of the true value of the energy for the syste
This method has been described in detail by Umrigar, W
son, and Wilkins@19# and by Mushinski and Nightingale
@20# and has been proved to be much more stable than
optimization of the energy.

The mean energy values of the optimized trial wave fu
tions are upper bounds to the exact value. In order to ob
the exact ground-state energy, the diffusion quantum Mo
Carlo method~DMC! @21,18# is employed to simulate the
time-dependent Schro¨dinger equation~TDSE! as a diffusion
equation having source and sink terms. In the DMC simu
tion the TDSE, in imaginary time, has the form

2 (
i51,2,a,b

Di¹i
2f ~R,t !1 (

i51,2,a,b
Di“ i• f ~R,t !Fi~R!

1@Er2Eloc~R!# f ~R,t !52
] f ~R,t !

]t
, ~18!

where the only difference with the Fokker-Planck equati
used in VMC, is the additional term@Er2Eloc(R)# f (R,t).
This is simulated varying the population of the configu
tions during the simulation. The formal solution of the TDS
in imaginary time can be written using the eigenfunctio
f i of the Hamiltonian, i.e.,

f ~R,t !5c0CTf0e
2~E02Er !t1(

i51

`

ciCTf ie
2~Ei2Er !t.

~19!
e
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The formal solution shows that the only long term surv
ing contribution is due to the ground state of the system. T
can be used to estimate the energy by means of the m
estimator

E~s!5
* f ~R,`!Eloc~R!dR

* f ~R,`!dR
. ~20!

The wave function optimized using the minimization
the variance of the local energy was used to guide the w
of the configurations in the space, to reduce the fluctuatio
the population simulating the birth-death process descri
by @Er2Eloc(R)#f(R,t), and to compute the energy value b
means of the mixed estimator.

IV. VARIATIONAL AND DIFFUSION MONTE CARLO
RESULTS

To test the capabilities of our analytical ansatz to c
rectly describe Coulomb clusters, the dipositronium m
ecule has been chosen as a nontrivial test case, since fo
system there are several accurate nonadiabatic results,
puted using explicitly correlated Gaussian basis s
@5,6,10,11,13,14#, to compare with. As total symmetry op
erator we assumed

(
j51

Np

Pjsym'11E~1,2 !, ~21!

where E(1,2) is one of the exchange operators betwe
particles having the same mass and opposite charges
shown by Kinghorn and Poshusta@5# this operator is not the
complete symmetry operator for the ground state of the
positronium molecule. Using their theory for the permutati
symmetry of Dipositronium it is possible to prove that o
right-hand term in Eq.~6!, using the approximate Eq.~21!, is
a mixture of states havingA1, B1, andE symmetry,A1 being
the correct ground-state symmetry. This means that the fi
expansion in Eq.~4! could have different mean properties fo
particles with the same mass and equal charge.

A two-term trial wave function was optimized using
fixed sample of 4000 configurations for dipositronium. T
starting set of parameters was forced to have the full cor
symmetry under the exchange between two particles of e
charge, but constraints were not imposed during the opti
zation. In every two to three steps of the optimization p
cess the fixed sample was updated using a VMC run, us
also to monitor the behavior of the optimization process.

The dipositronium molecule VMC mean energy and
binding energy, defined asEthr(s)2E(s), obtained using
the optimized two-term expansion, are shown in Table I a
Fig. 1, together with the results for the systems having m
ratio s<2.2. Comparing our variational value for the d
positronium energy,20.509 67(1) hartree, with the bes
variational value20.516 002 1 hartree obtained by Frolo
and Smith@14#, we note that our short expansion is able
recover more than 98% of the internal energy and that
trial wave function is roughly equivalent to a 16 term expli
itly correlated Gaussian wave function@6#. To assess the
contamination from excited states with different symmetr
we calculated some expectation values for dipositronium
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55 203STABILITY OF FOUR-UNIT-CHARGE SYSTEMS:A . . .
means of a VMC simulation, using the two-terms trial wa
function. These results, reported in Table II together with
accurate results from Refs.@5,15,6#, and@13# as comparison,
clearly show this contamination. To eliminate the proble
the full symmetry operator set of dipositronium must
used, at least if short linear expansions are employed
gether with VMC techniques. DMC does not suffer from th
problem, being capable of projecting out all the compone
of the excited states. As our work is mainly concerned w
the study of the dissociation threshold of (M1m1M2m2),
DMC is our preferred method, giving the ‘‘exact’’ ground
state energy.

From Eq.~2! of Ref. @10# the two-photon annihilation rate
G2g for dipositronium can be written as

G2g54paca0
21^d~r12!&5201.234 961 8

3109^d~r12!&&s21, ~22!

where ^d(r12)&5 1
4$^d(r1a)&1^d(r1b)&1^d(r2a)&

1^d(r2b)&%. Using mean values for̂d(r12)& from Table II
we obtainG2g54.5(2)3109 s21, a value in fair agreemen
with the results given by Frolov, Kryuchkov, and Smith@10#
4.4413109 s21, and by Rebane and Zotev@13# of
4.173109 s21.

The variational results for the systems having mass r
s<2 were obtained starting each optimization from t

TABLE I. VMC energy and binding energy~BE! using a two-
term linear expansion. Standard deviations of the mean values
given in parentheses.

s Energy~hartree! BE ~hartree!

1.0 20.509 67~1! 0.009 67~1!

1.1 20.536 97~3! 0.011 97~3!

1.2 20.559 61~4! 0.009 61~4!

1.3 20.582 65~4! 0.007 65~4!

1.4 20.605 79~4! 0.005 79~4!

1.6 20.652 03~3! 0.002 03~3!

1.7 20.674 87~3! 20.000 13~3!

1.8 20.699 34~3! 20.000 66~3!

1.9 20.724 01~2! 20.000 99~2!

2.0 20.748 98~2! 20.001 02~2!

2.1 20.772 22~1! 20.002 78~1!

2.2 20.793 30~2! 20.006 70~2!
e

,

o-

ts
h

io

wave function obtained for the system with the nearest m
ratio available. The resulting wave functions show the te
dency of the systems to separate into the two subsyst
(M1M2) and (m1m2) on increasing the particle mass rati
This behavior was confirmed also by plotting the interp
ticle distributions obtained during a VMC simulation. Due
this fact we were not able to optimize trial wave functio
for the two systems withs52.1 and 2.2: the variationa
results reported in Table I were obtained using the wa
function optimized fors52.0, but including the correc
mass ratio.

The DMC simulations were performed using these tr
wave functions to project out the remaining components
the excited states for these systems. The dipositronium m
ecule is an optimal test case to check the ability of our DM
code to compute the energy of the systems although
guiding function does not possess the correct total symme
The resulting values for the energy are shown in Table
and Fig. 1. The DMC result for dipositronium molecule a
for systems havings<2 were obtained using a time step
0.005 hartree21. The accuracy of the energy values w
checked using different time steps for the dipositronium m
ecule and for other systems. We estimate that for all
values presented the difference to the exact eigenvalue o
Hamiltonian for a given mass ratio is less than the statist
error associated with the computed value. Fors5 2.1 and
2.2 a complete extrapolation tot50 was carried out to avoid
systematic errors due to the inaccuracy of the trial wa
function.

V. DISCUSSION

In this work we have computed the ground-state ene
for the family of systems (M1m1M2m2) (m51) for
1<s<2.2, using both VMC and DMC simulations. Th
least accurate variational result is for the dipositronium m
ecule, an easily explained outcome as the symmetry oper
does not contain the full symmetry for the ground state.

Our DMC simulations, using different time steps, sho
that the time step bias is negligible for the given statisti
accuracy, i.e., it is smaller than the standard deviation of
mean value of the energy. Our DMC energy value for t
dipositronium molecule,20.516 06(7) hartree, is in optima
agreement with both the best variational estim
20.516 002 1 hartree@14#, and the old DMC calculation by
Lee, Vashista, and Kalia of20.515(1) hartree@12#. Re-
cently El-Gogaryet al. @8# have published a much lowe

re
TABLE II. VMC mean values of various physical properties for the dipositronium system~in atomic
units!.

This work Ref.@13# Ref. @5# Refs.@15# and @6#

^r 1a& 3.765~5! 4.428 4.483
^r 12&5^r ab& 6.009~9! 5.916 6.025
^r 1b&5^r 2a& 5.093~7! 4.428 4.483

^r 1a
2 & 17.59~8! 27.72 29.01 28.88

^r 12
2 &5^r ab

2 & 45.5~2! 43.61 46.17 45.91

^r 1b
2 &5^r 2a

2 & 36.9~1! 27.72 29.01 28.88
d(r12) 0.0222~9! 0.020 65 0.021 85 0.021 95
d(r12)5d(rab) 0.000 64~6! 0.000 68 0.000 634 7 0.000 638
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E520.521 05 hartree. Quantum Monte Carlo~QMC! meth-
ods are able to get the exact energy for nodeless systems
the dipositronium, so this is a puzzling result. Neither o
two-term trial wave function, nor the much simpler one
Lee, Vashista, and Kalia@12# present nodal surfaces th
might give an upper limit to the exact energy value, so b
calculations should give the exact energy within the stati
cal accuracy. We are performing more accurate VMC a
DMC calculations on this system trying to settle this pro
lem: preliminary results@22# are still in agreement with the
present one and with the results by Lee, Vashista, and K
@12#, so the results by El-Gogaryet al. @8# should be re-
garded with some caution.

The DMC results show a small increase of the value
the binding energy for the mass ratios 1.1 and 1.2 compa
with the dipositronium system, followed by a decrease fo
larger mass ratio.

The small increase fors<1.3 can be rationalized invok
ing the Hellmann-Feynman theorem. Puttingm51 in Eq.~1!
we obtain

]E~M !

]M
52

1

M
~^Ta&1^T1&!. ~23!

FIG. 1. Variational and diffusion Monte Carlo binding energy

TABLE III. DMC energy and binding energy~BE!. Standard
deviations of the mean values are given in parentheses.

s Energy~hartree! BE ~hartree!

1.0 20.516 06~7! 0.016 06~7!

1.1 20.541 56~5! 0.016 56~5!

1.2 20.566 43~5! 0.016 43~5!

1.3 20.590 38~5! 0.015 38~5!

1.4 20.613 40~4! 0.013 40~4!

1.6 20.659 44~5! 0.009 44~5!

1.7 20.682 04~4! 0.007 04~4!

1.8 20.704 87~4! 0.004 87~4!

1.9 20.728 30~4! 0.003 30~4!

2.0 20.751 40~4! 0.001 40~4!

2.1 20.775 69~4! 0.000 69~4!

2.2 20.799 99~5! -0.000 01~5!
ike
r

h
i-
d
-

lia

f
ed
a

For the dipositronium system (M51) Ta1T15(T/2),
but for the virial theoremT52E and

S ]E~M !

]M D
M51

5
E~1!

2
, ~24!

whereE(1) is the energy for the ground state of the D
positronium system. Using the best variational estimate
this quantity the derivative of the energy is20.258 001 har-
tree amu21, larger in modulus than the derivative of th
threshold energy Eq.~3! for the same mass value (20.25
hartree amu21). This means that the slope of the bindin
energy for the dipositronium system is positive, explaini
its increase fors>1.

The monotonous decrease of the binding energy
s>1.3 can be explained by the reduction of the instan
neous dipole moment of the fragment (M1M2) on increas-
ing the mass. As a consequence its ability to polarize
lighter (m1m2) system decreases.

Using simple symmetry arguments related to the va
tional approach, Richard@4# proved that the system
(M1m1M2m2) are stable in the range 0.7<s<1.4. Our
VMC results show that using a simple ansatz for the appro
mated wave function it is possible to extend this range to

0.625<sVMC<1.6. ~25!

Using the DMC results of Table III this range can b
further extended to

0.476<sDMC<2.1. ~26!

Our numerical results for the total energy of this symm
ric family of four-body Coulombic clusters can be exploite
to obtain information about the stability of less symmet
systems. For the more general family (ma

1mb
1m1

2m2
2) it is

possible to define two new quantities@4#

2

D
5

1

ma
1

1

m1
,

2

d
5

1

mb
1

1

m2
, ~27!

where, without loss of generality, we imposema>mb and
m1>m2. In his work Richard@4# proved that if the ratio
D/d is within the range of stability of the system
(M1m1M2m2), the variational principle implies the stabi
ity for the general four-body Coulombic cluster. If w
choose mb5m15m25m and ma5M , i.e.,
(M1m1m2m2), then one can write the ratio betweenD and
d as

D

d
5

2M

m1M
. ~28!

Since this is always less than 2, the stability for this s
tem is assured for any value of the masses. A well stud
example of this family of systems is the positronium hydri
which is known to be weakly bound. Another example of t
applicability of our results is the possibility to show that th
class of systems having the form (ma

1mb
1m1

2m1
2) where
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ma
1@m1

2 andmb
1>m1

2 is stable against the dissociation
two neutral subsystems for all the values of the massmb .
This proves the correctness of Richard’s guess about the
bility of this particular class of clusters@4#, connecting the
hydrogen molecule to the positronium hydride ifm151.

The values.1836 corresponds to the hypothetical mo
ecule composed of an hydrogen atom and an antihydro
atom. Few papers have been devoted to studying this in
esting system using both numerical methods@23–25#,
within the Born-Oppenheimer approximation, and analyti
techniques@7# without resolving the issue of whether th
system is bound or not. Our numerical values show a red
tion of the binding energy with increasing mass ratio
(M1m1M2m2), and our extrapolated DMC simulations fo
mass ratio equal to 2.2 give results in agreement with
energy value for the dissociation threshold. An analysis
the distribution of the configurations representing this sys
during the simulation shows the tendency toward the dis
ciation of the cluster. Although not definitive, both the
evidences strongly support the idea that the hydrog
antihydrogen system is not bound, i.e., it does not exist a
bound stationary state, as suggested by Richard@4#. This
conclusion has some analogies with the results obtained
the model system composed of a dipole and an elec
@26,27#. This system has a stable ground state only if
modulus of the dipole moment is larger than a thresh
value. As already stressed, by increasingM , the instanta-
A

d

v.
ta-

en
r-

l
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r

e
f
m
o-

n-
a

or
n
e
d

neous dipole moment of (M1M2) decreases and this migh
lead to the dissociation of the composed three- and fo
particle systems. These results are not in agreement with
assertion made by Abdel-Raouf and Ladik@7# in the
hydrogen-antihydrogen system, but it is worth noting th
they failed to recognize the correct dissociation thresho
assuming a dissociation into two subsystems (M1m2) and
(M2m1) instead of (M1M2) and (m1m2).

VI. CONCLUSIONS

We have performed very accurate numerical calculati
on the family of systems (M1m1M2m2). Using VMC and
DMC methods we extend the stability range of these s
tems, showing also that Monte Carlo techniques are w
suited for the investigation of these exotic systems, as t
do not pose restrictions on the mass values, potential f
and trial wave function. Our study strongly suggests that
hydrogen-antihydrogen system is not bound.
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