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For N charged particles of equal masses moving in the field of a heavy residual charge, an approximate
analytical solution of the many-body time-independent Sdimger equation is derived at a total energy above
the complete fragmentation threshold. All continuum particles are treated on equal footing. The proposed
correlated wave function represents, to leading order, an exact solution of the many-bodjirgghrequation
in the asymptotic region defined by large interparticle separations. Thus, in this asymptotic region the
N-body Coulomb modifications to the plane-wave motion of free particles are rigorously estimated. It is shown
that the Kato cusp conditions are satisfied by the derived wave function at all two-body coalescence points. An
expression of the normalization of this wave function is also given. To render possible the calculations of
scattering amplitudes for transitions leading to a four-body scattering state, an effective-charge method is
suggested in which the correlations between the continuum particles are completely subsumed into effective
interactions with the residual charge. Analytical expressions for these effective interactions are derived and
discussed for physical situatior{$1050-2947®7)01103-7

PACS numbes): 34.80.Dp, 34.10tx, 25.10+s

[. INTRODUCTION been reported in Refl], however, without derivation.
In this work we derive an approximate analytical expres-

Many-body Coulomb scattering states arise in varioussion for the solution of the non-relativistic, time-independent
fundamental reactions in atomic and molecular physics. AlSchralinger equation o charged particles moving in the
though the Coulomb interactions governing the motion offield of a residual ion. The total energy of the system is
charged particles possess a simple analytical dependence, tigsumed to be above the complete breakup threshold. The
theoretical treatment of Coulomb scattering states is a chabtudy is restricted to continuum particles with comparable
lenging task even in the asymptotic region. The main diffi-masses and, with respect to these masses, a very heavy mass
culties in the theoretical description of such states arise fronof the residual charge so that mass-polarization terms can be
the infinite-range behavior of the Coulomb interaction. Thisneglected and the center-of-mass motion can be separated
is already revealed in the exactly solvable two-bdidgplery  out in a relative-coordinate frame of reference. The wave
problem in which case the asymptotic free motion in thefunction is determined by separately solving for the
relative coordinate is modified by the notorious CoulombN-independent Coulomb particle motion in the residual ion
phase. For the three-body system the theoretical treatmentfi€ld and the correlated motion between the continuum par-
much more involved due to the nonseparability of the many4icles with disregard of the residual-charge field. These two
body Schrdinger equation. Asymptotic states for the three-solutions are then subsequently coupled by an arbitrary func-
body problem have been reported at large interparticle sepdion that is determined from the Schiinger equation of the
rations [1-4]. Only recently[5,6] have asymptotic three- system. The derived correlatétbody wave function coin-
body scattering states been derived that are valid in the entirgides with known expression4,6—8§ in the case of three-
asymptotic region defined by large hyperradius. The introbody system and, for a two-body system, with the exact two-
duction of coupling between individual two-body sub- body Coulomb wave function. It is shown that the proposed
systems(in the form of local relative momenta in Rg5] wave function constitutes an exact solution of the many-
and local Sommerfeld parameters in the case of f&f.in  body problem in the asymptotic region of large interparticle
deriving these asymptotic states underlines the complexity idistances. In this region the asymptotic expression of the
the theoretical descriptions of Coulomb systems in the conderived wave function tends to the asymptotic form sug-
tinuum. For systems with more than three particles in thegested in Ref[1], hence providing the proof for this sugges-
continuum only little is known. Employing hyperspherical tion. In addition, the normalization of the proposed wave
coordinates in the ¥-configuration space, Peterkgp] has  function is derived by requiring that the total flux, generated
derived an estimate of the Coulomb phase modification to aby the wave function derived here, through a large multidi-
outgoing (N —1)-dimensional spherical free wave &f  mensional manifold defined by large, but constant, interpar-
electrons receding from a massive nucleus. The Coulombcle separations should be the same as the flux due to nor-
phase modifications to the asymptotic plane-wave motion ofmalizedN plane waves of the receding particles.
the individualN electrons as well as the propagation of such The inclusion of the correlations between the continuum
asymptotic scattering states to finite distances have not begrarticles presents an obstacle in actual calculations of scat-
given. Due to unpublished work by Redmond, an expressiotering amplitudes using the derived wave function since in
for the Coulomb distortions of the asymptotic plane-wavethis case a Bl-dimensional integral has to be evaluated. The
relative motions inN-body Coulomb scattering systems hasreactions for which such Coulomb scattering amplitudes are
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currently needed are the double ionization of atomic systemeherer; is the position of particlg with respect to the
upon charged particle impact and the electron-impact singleesidual charg& andr;; : =r;—r; denotes the relative coor-
ionization of atomic inner shells followed by an Auger decaydinate between particlésandj. The kinetic-energy operator
[9]. Both of these processes lead to a four-body Coulomid, has the form (in the limit m/M—0)
continuum states in the final channel. Measurements of sudH,=—3"_,A, /2m, whereA | is the Laplacian with respect
reactions have already been perforn{d®-14,16,1% In  to the coordinater, . We note here that for a system of
light of the absence of theoretical descriptions under situageneral masses the problem is complicated by an additional
tions where the four-body problem cannot be reduced tonass-polarization term that arises in Et). Upon introduc-
three-body one using the Born approximation, it appearsion of N-body Jacobi coordinatesi, becomes diagonal;
timely to investigate methods of simplifying the proposedhowever, the potential terms acquire a much more complex
wave function such that reaction cross sections can be calcprm. Assuming the continuum particles to escape with rela-
lated. In a method proposed in R¢f7] the correlations tive asymptotic momente; (with respect to the chargg), it
between the continuum particles are taken into account as afas been suggested in REE], due to unpublished work by

effective interaction between the continuum particles and th@edmond’ that for |arge interpartide distances the wave
nucleus. However, as shown below, the effective productunction ¥ (r,, ... ry) takes on the form

charges given by the method of RgL7] exhibit some un-

desirable features. Therefore, maintaining the philosophy of _ a2 N
effective charges, an alternative set of effective product  lim W(ry,....ry)—(2m) Hl Es(re) Ps(rs)
charges is derived by requiring that the many-body wave  'm—* S

r—®°

function constructed by this method should analytically
match the known solution of the many-body Salirmer N
equation in some limiting cases. The derived product charges % H i (rij)
are then well behaved. Properties of the proposed effective ij=1
product charges are discussed in the case of positron-impact
double ionization of HE(S®) . Using the method developed VI, mne[1,N]; m>l, (2)
in this work, pilot calculations for the multiple differential

cross sections of the electron- and positron-impact doublehere the functions;(r;),#;(r;),#i;(ri;) are defined as
ionization of HefS®) have already been reportgiis].

j>i

The plan of the paper is as follows. In Sec. Il, after for- &i(ry)=explikj-rj), 3
mulating the theoretical framework, the correlated many- _ . N
body wave function is derived and the asymptotic behavior gi(rp):=exp +iajin(kir;=k;-ry], (4)
of the Schrdinger equation is investigated. In Sec. Ill the o .
proposed wave function is shown to satisfy the Kato cups i (rij): = expl =i aggInChiri; £ Kij - 13p) ] - ®)

conditions[19] at all N(N—1)/2 two-body collision points. e+ and— signs refer to outgoing and incoming boundary

Section IV deals with the normalization of the derived Waveconditions, respectively, arid; is the momentum conjugate

function, whereas in Sec. V the method is applied to thg | o | -=(ki—k;)/2. The Sommerfeld parameters
four-body Coulomb continuum problem. To render possible, 1" ' ’gi\I/Jen byl !
the calculations of scattering amplitudes, the proposed wave' " "

functions is simplified using a method based on the effective- 2,z 2z,

product-charge method. Conclusions are drawn in Sec. VI. aij=——, aj=——. (6)

Atomic units are used throughout. Vil Ui
In Eq. (6) vj denotes the velocity of particlerelative to the
Il. FORMULATION OF THE PROBLEM residual charge, Wherea@j =V In this work we re-
AND ASYMPTOTIC SCATTERING STATES strict the considerations to outgoing-wave boundary condi-
tions. The treatment of incoming-wave boundary conditions
We considemN charged particles of equal massesand  runs along the same lines. The total energy of the sy&ésn
with chargesZ;, je[1,N] moving in the field of a residual given by
chargeZ. The massM of the chargeZ is assumed to be
much larger thaim (M>m). In this work only continuum N i
states are considered, i.e., the total en&gyf the system is E=|Zl B where E=5_. @)
larger than the complete fragmentation-threshold energy. Ne-
glecting terms of the orders/M, the center-of-mass system To derive asymptotic scattering states in the limit of large
and the laboratory frame of reference can be chosen to hterparticle separations and their propagations to finite dis-

2

identical. The nonrelativistic time-independent Safinger  tances we assume far(rq, ... ,ry) the ansatz
equation of theN-body system can then be formulated in the
relative-coordinate representation as W(ry, . TN =NO(ry, . i) ®y(ry, - Iy)
N N XX(rlv '--er)! (8)
2z, 2z, _ -
Ho+_z T + 2 ?—E W(ry, ... ry=0, where ®,,®,, are appropriately chosen functions/ is a
=L T normalization constant, ang(r,, . .. ry) is a function of an

(1) arbitrary form. The function®, is chosen to describe the
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motion of N-independent Coulomb particles moving in the . om-1 N N N
field of the chargeZ at the total energ¥, i.e., ®, is deter- Ap®y = > Amq;lm_]_[_ @ + > Am¢mnH @i
mined by the differential equation =1 I n=m+1 in:]
s 27, tAn, me[1N], (16)
Ho+lle—E ®,(ry, ... ry)=0. 9)
=17

where the differential operatd,, has the form

Since we are interested in scattering solutions with outgoing- _—
wave boundary conditions that descridgparticles escaping A2 E
with asymptotic moment&;,j e[1,N], it is appropriate to mTe &

N N
(Vm‘PIm)'( E Vm‘Pmn) H Pij
n=m+1 i>i

factor out the plane-wave part and write by j#ni#l
N m—1 m—1 N
I + \v/ . Vv -
Dy(ry, ----rN):q)l(rlu"'arN)Hl §j(rp). (10 IZl (Vi) (lgs:=1 mPsm El il
1= S#Fi#

N
(Vi®mn) ( E Vm®mt
t=m+1

t#n

N
Upon substitution of the ansatz0) into Eq. (9) it is readily n E
concluded that E(9) is completely separable and the regu- -
lar solution®, can be written in closed form

N
H_ Pij»
>i

j#t#n

N me[1N]. (17)
D(rq, ---JN):J_Hl §i(rpe;(ry), (11
To obtain the differential operator that couples the two-body
where ¢;(r;) is a confluent-hypergeometric function in the Subsystems in the absence of the chatgee neglect in Eq.

notation of Ref[20] (1) the interactions between the residual charge and the con-
tinuum particles Z=0) and substitute the functidid3) into
ei(rp)= 1Fi[a;,1,—i(kjrj+k;-rj]. (12 Eq. (1). Making use of the relatiofil6) it is straightforward,

however cumbersome, to show that the coupling term that
The function®, describes the motion of the continuum par- prevents separability has the form
ticles in the extreme case of very strong coupling to the
residual ion, i.e.|ZZj|>|Z;Z;|vi,j e[1N]. In order to in- N
corporate the other extreme case of strong correlations A= 2 A (18
among the continuum particle$Z(Z;|>|ZZ;|Vi,j e[1N]) m=1
we choosed,, to possess the form
Equations(17) and(18) warrant comment. The terd,, is a
— N mixing operator. It couples an individual two-body sub-
Dy(ry, .. =P (rq, ... ,rN)H &(rp, (13 system formed by two continuum particles to all other two-
=1 body subsystems formed by the continuum particles in the
absence of the residual ion. Hence it is clear that all the terms
in the sum(17) vanish for the case of the three-body system
N since in this case only one two-body system exists in the
., (r )= H oii(ri) (14) field of the residual charge. The second remark concerns the
WALy AN S TR structure ofA,, and henceA. From Eq.(16) it is evident that
the remainder ternfl7) is part of the kinetic-energy opera-
where ;i(rj):= 1Fq[a;;,1,—i(kyrij+k;-rij)]. It is  tor. Thus itis expected that, under certain circumstances, this
straightforward to show that the  expressionterm has a finite range, which indicates that asymptotic sepa-
goij(rij)l'[,'ila(n) solves for the Schdinger equatiorfl) in  rability, in the sense specified below, exists for many-body
the case of extreme correlations between partidad par-  continuum Coulomb systems. In fact, as the functional form
ticle j, i.e.,|Z2Z|<|ZZj|>|ZnZn|VI,m,n#i,j. In terms of  of ¢;;(r;;) is known, the ternA can be calculated explicitly,
differential equations this means which will be done below.
Now with &, and ®,, determined, the exact wave func-

with

2.z, N tion (8) is given by the expressiog(ry, . .. ry). Upon sub-
Ho+ ——— E) quj(fij)H §i(r))=0. (15  stitution of the expressiond.3) and(11) into the ansatz8)
4 =1 and inserting in the Schdinger equatior(1), a differential

It should be stressed, however, that the functi®8) does equation for the determination gi(ry, . .. ry) is derived

not solve for Eq.(1) in the case of weak coupling to the N

residual ion Z—0), but otherwise comparable strength of A

correlations between the continuum particles. This is due tg o~ ?_21 [(ViIn®, +ViIn®y)-V,

the fact that two-body subsystems formed by the continuu '

particles are coupled to each other. To derive an expression

for this coupling term we note first that +(ViIn®)) - (ViInd ) ]+E | x(ry, ... ry)=0 . (19
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From the derivation of the function®, and ®,, [Egs.(9) _ N m-1
and (13)] it is clear that all long-range two-body Coulomb V. In®;,= > V. Inem,+ 2 Vilnem
interactions have already been diagonalizeddhyand &, n=m+1 =1

because the total potential is exactly treated by these wave N m-1

fu_nctipns. Hence the functiog, to be dgtermineq here, con- = 2 rknnFrmn(Fmn) — E mKimFim(Tim),
tains information on many-body couplings, which are, under n=m+1 =1

certain conditiongsee below, of finite range. To explicitly (25)
show that, and due to flux arguments we write the function

x in the form where

1F1[1+Ia”,2,—I(k,]r”+k”I’,])] ~ ~

N
X(rl! "'1rN)=J1;[1 g*(rj)[l_f(rll ---er)]! (20) Fij(rij):: 1F1[iaij,1,—i(kijrij+kij~rij)] ( Ij+r”)(26)

wheref(ry, ... ry) is a function of an arbitrary structure. Thus the behavior of the coupling ter is controlled by
Inserting the form(20) into Eq. (19) we arrive, after much  the generalized functions;;(r;;),F(r,) since Eq.(22) can
differential analysis, at the inhomogeneous differential equape written in the form

tion

N N
N R:= Z ’amkmFm(rm)'|: 72 amnkmnan(rmn)
Ho— > [V.(In®, +Ind,)+ik]-V {f+R(1—f)=0, m=1 n=mtl
L=1 m-1
21
@D _s§=:l a’smksmFsm(rsm)}
where the inhomogeneous tefRis given by 1N
N . . _2 E almampklmkmpFIm'Fmp
I=1 p=m+1
Ri= 2 {(VIn®))-(VInd;)
m=1 lm—l m—1
m-1 N +§|Zl ;I almasmklmksmFlm'Fsm
+2 2 (Valneim) - (Velnemp)
I=1 p=m+1 1 N N
qm-1m-1 + En:%H ot (St 1 @mn@mKmnKmgFmn' Fmg -
52 2 (Ve (Vmingsn)
<1 &3 (27)

N N

=

The simplest approximation is to neglect the teRnalto-
+5 2 2 (len‘Pmn)'(len‘qu)]' gether. In this case the functioh=0 solves for Eq.(21).

2041 n#g=m+1 _ _
22 Then the solution of Eq(l) takes on the approximate form

N
It is the inhomogeneous terM that contains the coupling W(ry, ... rn~N H Erpei(r)em(rm). (28
between all individual two-particle subsystems. For example, m>1.j=1
the first term in Eq.(22) describes the coupling of a two-
body subsystems formed by particieandj to all two-body
subsystems formed by the individual continuum particles an
the residual ion. The second term originates from @®&)
and, as explained above, is a measure for the couplin
among two-body subsystems of the continuum parti¢ies

the absence of). To these couplings to be negligible the properties ofR, as readily concluded from Eq27). From

norm of the termR must be small. To get some insight into : : ¢ .
the functional form ofR, given by Eq.(22), we note that Egg] fg?}?gt{ﬁ a?xpansmn of the hypergeometric functions

Thus the justification of the approximatid28) reduces to

he validity of neglecting the inhomogeneous td@2i). One
egion in which this term can be disregarded is the asymp-
totic region of large interparticle separations. This is imme-
giately deduced from the asymptotic behavior of the gener-
alized functiongF;; (rj;),F(r,), which dictate the asymptotic

VLIanI: a k Fi(ry), (23

: kij+ 155
lim [Fj(rip)|—= | ——=——=—
where rij—o Kij - (Kij+ripri
+O([kijrij+kij-ri| %) (29

~ aFa[l+iag 22—k tkeer)] o
F(ry):= Foliag, 1—i(kor +k -r))] (ke+ry) An asymptotic relation similar to Eq29) holds forF(r,). It
(24 should be noted that the functiofsg(r;;),F(r;) have to be
considered in a distributivéoperatoy sense, which means
In addition, we remark that that, asymptotically, only terms d¥; ,F, that fall off faster
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than the Coulomb potentials can be disregarded. Sids - N

essentially a sum of products Bf; ,F|, the expressiorR is W(ry, ...;0=ND(r) IT &e;(r)@im(rim). €m0,
of finite range, in the sense that it diminishes faster than the L

Coulomb potential in the asymptotic regime, only in the case (32
where all particles are far apart from each other, i.e.,

i - - where
I|mR — O(|k|]r”+k”r|]| 2,|k|r|+k|'r|| 2)
Fij—o
I'|~>aa
1

2
(r)= —zf r2dcosd[ 1+ ik;cosf+ a;kir;(1+ cosd)]

Vj>i,le[1N]. (30) 4mr2) 4

Therefore, in the limit(30), the termR can be asymptoti- =1+aikir;. (33
cally neglected and the approximati@B8) is justified. In
fact, it is straightforwar_d to Show that the wave funct_(@ﬁ) To arrive at Eq.(33) one takes the axes ak; and defines
tends to the asymptotic forrt2) in the limit of large inter- A A . )

particle separations, which proves the assumption made if°¥=Ki-ri. From Egs(33) and(32) it is obvious that
Ref.[1]. However, if two particles are close together, regard-

less of whether all other particles are well separated, the PR N
coupling term is of infinite range, as seen from E@®) and (ra, ... ’rN)} = aki N H & (1) @m(Tim)
(27). In this case the relatiofi30) does not hold. Conse- ar; - izj=1

quently, the wave functioli28) is not an exact asymptotic i I=m

eigenfunction of the total Hamiltonian in this limit. It is im- =akiV(rq, ... ri=0,...rn),
portant to note that the limit Eq30) is energy dependent.

With increasing momenta of the escaping particles the as-

ymptotic region, i.e., the limit Eq30), is reached faster. In &em#0. (34
other words, at a certain interparticle separations, the remain-

der termR, which has been neglected to arrive at the ap-

proximate form(28), diminishes with increasing velocities of In deriving Eq.(34) we made use of the fact that in the limit
the emerging particles. In this sense the approximation lead!i/rij—0) the distance;; tends tor;. The proof that the

ing to the wave function(28) is a high-energy approxima- Wave function(28) fulfills the cusp conditions at the collision
tion. points of two continuum particlesr {—0) runs along the

same lines. Finally, we remark that the wave funcii@8) is
not compatible with the expansion of the exact solution of
the Schrdinger equation(1) at the three-body collision

In the preceding section it has been shown that the appoints (e.g.,r;—0 andr;—0,j#i) since in this case the
proximation (28) is, to leading order, exact for large par- exact wave function is known to satisfy a Fock expansion
ticles’ separation. In addition, it is concluded below that this[22] in the coordinate: = \/(rzi +rj2), which contains, in ad-
function exhibits a behavior compatible with E@.) at all  dition to powers inp, logarithmic terms inp, whereas the
two-body coalescence points;;—0,r;—0, with j>i,l wave function(28) possesses a regular power-series expan-
€[1,N]. To guarantee regular behavior of the wave functionsion around;—0 andr;—0.
at these collision points, at which the corresponding Cou-
lomb two-body potential is divergent, the solution
W(rq, ... ,ry) of Eq. (1) must satisfy the Kato cusp condi- IV. NORMALIZATION
tions[19,2]] (provided the solution does not vanish at these
points. At a collision pointr;—0 these conditions are

IIl. TWO-BODY CUSP CONDITIONS

The knowledge of the normalization fact&f of the wave
function (28) is imperative for the evaluation of scattering
amplitudes using the wave functid@8) as a representation
—Kiay W (ry, ... Fi=0,...rn) of scattering states. In principle) is derived from a
r =0 3N-dimensional integral over the norm of the functi8)
' which, for largeN, is an inaccessible task. Thus, for the
determination of\" we resort to the requirement that the flux
through an asymptotic manifold defined by a constant large
(31) interparticle separations should be the same in the case of the
wave function(28) and a normalized plane-wave representa-
tion of the scattering state, i.e.,

d \Tf(rl, coafN)
ar;

V(rilr))—=0,ri/rm)—0; m>I, i#je[1N] .

The quantity ¥(rq,,...,ryN) is the wave function
W(rq, ... ry) averaged over a sphere of small radius
r s<1 around the singularity;=0. A relation similar to Eq.
(31) holds in the case of the coalescence poimts-0. To Jow=Jv , (35)
prove that the wave functiof28) satisfies the condition81)

we linearize¥(rq, ... ,ry) aroundr;=0 and average over a

sphere of small radiuss<1 to arrive at where the plane-wave flux is given by
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N V. APPLICATION TO THE FOUR-BODY COULOMB

. N

Apart from the Rutherford scattering, the simplest appli-
N N . . . . .
. cation of the theory presented in the previous sections is the
- H §.(r.)VH & (r,)} description of three-body Coulomb continuum states that are,
for example, achieved as final states of electron-impact ion-
N ization and doublephoto ionization of atomic and molecular
=(2m)NY k. (36)  systems. In this case the wave functi@8) simplifies to the
=1 three-body wave function proposed in Rd#,7] and exten-
) N _ sively used by various authors. The second step in complex-
In Eq. (36) the total gradienV:=X_,V, has been intro- iy js'the description of the four-body scattering states. These
duced. To evaluate the flux generated by the wave functioisies arise in the final channel of various reactions such as
(28) we note that, by taking advantage of E(3) and(25),  the double ionization of atomic systems by electron and pos-
we can write for the total gradient of the wave functi@®) jtron impact as well as the triplephoto ionization. Experimen-
tally there has been an increased interest in such reactions
due to recent advances in coincidence-detection techniques
[10-13. The measurement of fully differential cross sec-
tions of reactions leading to four-body Coulomb continuum

N
V¥ :=PN D, [ iKW + a ke
m=1

N N states was reported in Refd.0,11. In this study argon and
+ 2 amnkmnan(fmn)H @i krypton targets have.b.een double |_on|zed by a fast prOJegtlle
n=m+1 By electron under conditions where litle momentum is being
I=n transferred to the target atoms. To describe the final state, the
m—1 N

- 2 almkImEIm(rlm)H Pij
=1 j>i

i1 #1

N standard theoretical treatmd28—3( has been to reduce the
IT &roesry |, four-body Coulomb continuum problem to a three-body
s=1 problem by employing a first-order Born-type approximation
37) (FBA) in the projectile-target potential, which is justified for

the conditions under which the experiment has been per-
formed. Recently, measurements for electron-impact double
ionization have been performed at intermediate incident en-
eergies using the cold-target recoil-ion momentum spectros-
. ) copy [12,14. In this case the FBA model is inappropriate.
readily deduqed from Eqs24) and(26) Wh.'Ch state that all The last statement was also inferred from recent measure-
other terms in Eq(37), except for t_he first term, can be. ments[15] of the cross section for the double ionization of
neglected asymptotlcally. Note, in this c_ontext, that terms Ir}nagnesium by electron impact at moderate incident energy.
the wave function that are asymptotlcally. of _the OFdefm view of these recent experiments and the absence of ad-
O(1/rj,1/r\m) correspond to parts of the Hamiltonian falling oqate theoretical models it appears timely to consider the

off faster t.han the C°”'°”?b potgntials and hence can be disa'pplicability of the theory developed in the previous sections
regarded in the asymptotic regime. Now making use of th%r the case of the four-body problem.

asymptotic expansion of the confluent hypergeometric func-
tion [20] and taking leading order in the interparticle dis-
tances, the fluXlg can be deduced

WhereEmn is given byF,n¢mn. The decisive point now is
that since we are considering the flux at large interparticl
distances only the first term of E(37) is relevant. This is

A. Product charges according to Jetzke and Faisal

For N continuum particles the wave functioi28) de-
N exp(7a;) scribesN(N—1)/2 two-body Coulomb subsystems. The cou-
Jw=N2H T(1—ia)*(1—ia) pling between these two-body subsystems through the rela-
=1 @)™ (11 tive coordinates presents a serious problem for the
N exp( ey N calculations of scattering amplitudes. To overcome these dif-
x [1 : > k,, (38 ficulties further simplifications are needed. In REE7] a
m>i=1 I(1=Tam) ™ (1=iam)i=1 procedure has been proposed in which the correlations be-
tween the continuum particles are completely subsumed in
whereI'(x) is the Gamma function. From Eqg35), (36),  an effective interactions of each continuum particle with the
and (38) it follows that nucleus. This is achieved by rewriting the total Coulomb
potential in the form

N

— (D) 3NR2 _ a2 N _ N SN
N=(2m) J:lml—[>I:1 X~ mamt a;)/2] > ZZ; S lelzz Z_, (40)
j=1 T T T
XT(1=ia)T(1-iay). (39) oot Y '

F .
For two charged particles moving in the field of a heavyWhere the local product chargé.é are given by

nucleus the wave functio{28) with the normalization, given N
by Eg. (39), simplifies to the three-body wave function pro- 2%y, . I=2Z+ D Z,Z; Fi-Fijfi _ (41)
posed in Refs[4,7]. e CE T
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2500 . i . of the way in which these product charges are constructed.
We remark in passing that the same behavior of these prod-
uct charges also arise for different charge states of the con-
. . tinuum particles as well as for a different number of these
L, s particles, in particular for a three-body system.
E 0 " % B. Product charges for the four-body Coulomb system
5" in the continuum
In order to construct product chargés,j €[1,3], for a
four-body system, that do not exhibit the unphysical behav-
ior shown in Fig. 1, we maintain the philosophy of com-
pletely subsuming the correlations between the continuum
-2500 L L L particles into an effective interaction of these particles with
0.0 0.5 1.0 L5 2.0 X :
v, [a.0] the nucleus. In other words, the wave functi@8) is written
in the form
FIG. 1. Case where one positron and two electrons are moving N
in a nuclear field of a chargg=2. The velocity vectors of all if Y —
particles lie in the same pla?ne. One electron,yparticle 2, and the Py, ) =P, ’rN)_A/jljl & ei(ry,
positron, particle 1, are assumed to escape in the same direction (43)
with the positron having a fixed velocity; =1 a.u. The remaining
(Aele(Etron, partlcle 3_, is ejecteq in a direction perpend.lculafrlto.e., where (),Tj(rj) = <Pj(rj)|a-=§ and N:M“':i'i' where
v1-v3=0, with a fixed velocityvs=1 a.u. The positron-nucleus — P ! !
product charg&", determined according to E¢42), is studied as aj(ry, - ) =Zj(re, i) The local prpduct
function ofv,. charge<Z(ry, . .. ry) are then determined by requiring that

the solution(43) should match the known solutions of the

The position dependence of the product cha@g¥sis then Schralinger equation(1) in some limiting cases. In what

converted into a velocity dependence by making use of th&P!lows we investigate these limiting cases of the four-body
asymptotic approximation;=v;t, wheret is the time. This Schralinger equation. However, for brevity, iny the struc-
approximation is valid at large interparticle separations infU"® of EQ.(1) is discussed. The corresponding wave func-
which case Eq(41) reduces to tions m_these cases are easily d_educed:_ _ _

(a) Since all particles appear in the Sctiliger equation
N Vi VD (1) in a symmetrical way all three continuum particles must
ZF(vy, . =22+ 2, Z;Z, % (42 be treated on equal footing, which results in the relations
J#i ij
Upon substitution of Eq(42) in Eq. (40), the differential Zi(Zi 132y 1) = Zi( 2,132 1) (44)
equation(1) becomes completely separable. The solution is
obtained from the function(28) in the special case
a;=Z}lv; and a;;=0. When two continuum particleis
approach each other in momentum spagg-0) the effec-
tive charges, given by Eq4l), diverge so as to simulate
attractive(if Z;Z;<<0) or repulsive(if Z;Z;>0) interaction
between these particles. However, since these product . o g ; :
charges contain scalar products between the velocity vecto hich partlc_le_l IS app_roached by_ partlcl_p The interaction
of the escaping particles they exhibit unphysical behavior i the_ remaining continuum particles with the nucleus must
the limit vi|v;, vi—v;*6,1>6>0. This is clearly illus- remain finite, i.e.,
trated in Fig. 1, where we envisage the case of two electrons

(b) When two particlesi,j approach each other
(rij—0yrj;/r,—0) their mutual interaction increases as
ZZjlr;; and dominates the other interactions appearing in
Eqg. (1). Hence the interactions of particleand particlej

with the nucleus must change in a way that simulates their
ggutual Coulomb interaction regardless of the direction in

and one positron moving in the triple continuum of a residual lim Z_Z_—>C£ Z_| finite, |d|<0,e#0
chargez=2. This is the final state achieved by positron- | Zo.q rij ' e
impact double ionization of He. We focus on the case in rij/r—0

which one electron and the positron emerge in the same di- (45

rection. When this electron approaches the positiormo-

mentum spade the positron-nucleus interactiofproduct ~ whereC is a positive real number. Conditi@#5) is violated
chargé becomes strongly attractive in order to simulate theby the product charges, given by Hel).

attractive electron-positron interaction. However, as the elec- (c) If one particle is moving in the vicinity of the nucleus
tron passes the positron the positron-nucleus interactioit experiences the full nuclear charge. Assuming the remain-
(product chargevaries rapidly from an attractive to a repul- ing two continuum particles to be far away from the nucleus,
sive interaction. In other words, at the removable singularitheir interaction with the nucleus must remain finite,

ties v;;=0 of the product chargeg42) the functions o L

z%v§ ,zjv} are discontinuous in the limit;;—0. This be- lim  z—Zzz4z, finite V i#je[1,3]. (46)
havior is quite unphysical and must be considered as a result  ri—0ri/rj—0
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(d) In order to treat the total potenti&l in an exact man- whereV;=ZZ;/r; andV;;=Z;Z;/r;; are the physical two-
ner,V, and hence the Schimger equatior(1), must be in-  body potentials. Equivalent transformations of the charges

variant under the local product chargés, Z;=V,r; immediately derive from Eq(52). To determine
3 5 the product chargeg; the 6x3-matrix A with elements
E v, (47) aj ha_s_ to be deri\_/ed. The conservation of the total potential
=11 [conditiond] requires

(e) From the Schidinger equation(1) it is readily con- 3
cluded that if one particle, say partidlgis far away from the Z a;=1 Vje[l,6]. (53
remaining three particles, this particle) (experiences a net =1
charge ofZ+Z+7;, i.e., Relation(46) implies
lim Z—Z(Z+Z,+Z;),€;#0. 48 .
Fj—o I I 20 € “9 a;=1 Vie[l3], ap=ajz=a,=axp=az=2az=0.
r|/ri,r|/rjﬂ:>c (54)

In addition, if in the three-body system, formed by the Imposing condition(45) leads to
nucleus, particleé, and particlej, particlei approaches the

nucleus, particlej experiences a net nuclear charge of a16=0, a5=0, az=0. (55)
Z+Z;, as immediately concluded from E@L). Mathemati- . .
cally this condition can be formulated as Thus the product charges are determined by the equations
im  Z—Z{(Z+Z). 49 — _ry ZyZory oty ZyZgr
r—o 2l ) 49 Z,=ZZi+ay——— — A — ——,
ri—0,(ri/r}.rj/r)—0 ERRFINEY: Fitrs s (56)
(f) It is established that for three electrons moving in the
field of a residual positive charge the gradient of the total Z 7747 2 2ol v o 23250

H H FeE 2= 2 24 26 ’
potential vanishes when the three electrons recede equidis- ri+ro, rio Fo+rz Tog
tant from the nucleus forming an equilateral triangle with the (57)
nucleus residing in the center of this triandg®l]. In this
case the force exerted on the three electrons by the nucleus — Iy ZyZ3r3 . 13 ZyZ3r;
vanishes and the interelectronic correlations are minimized. Z3—ZZ3+a35rl+r3 M3 +a36r2+ rg oy '
The Schrdinger equatioril) reduces in this configuration to (58)

1 where the coefficients;; have been transformed E, to
s 2+ ﬁ simplify subsequent calculations. The relations, given by Eq.
H0+2 —— —E |P(rqy,rp,rz)=0. (500 (48), yield, in the limits  {q/rp,ry/rg)—o,
=1 " (rofrq,ralrg)—oo, and (3/rp,rg/ry)—o0, respectively,
The eigenfunction of Eq(50) can be given in closed form. L7 =a i3
To account for this Wannier-type configuratif®2], which 2122 Z3) = 1a21 22 a1 2, (59)
is known to dominate the escape dynamics at lower excess — —

. . - . . Zy(Z1+2Z3)=a421Zy+ asel 273, 60
energiesE, we impose on the local charggs, je[1,3], in 2217 23) =824l125 BoeZoLs (60
the case of three continuum electrons, the relations — —

Z3(Z1+Zy)=agsl 1 Z3+ azelrZ3. (61)
lim Z—--Z+— Making use of Eq(59), relation(56) reduces to
ri—>rl~—>r| \/§
Fi,Fj=c0$r/3 [— _ ri
Z2y=72Z +[Zy(Z5+ 23)_3152123]m
Vi,jle[1,3], €;#0, Z,=2,=Z3=-1. (51 1ri2lie
. . . — 1 ZyZ3ry
We note that all the conditions listed above are directly de- +al5r IS (62
1 3 13

duced from the Schrdinger equation1) in the respective
(dipole) limits. To incorporate the above relations into local

Now we impose conditiori49) on Eq.(62) and arrive at
product charge<;, which are analytical functions in the P 149 a.(62

whole configuration space, except for the _@Ies_given by Eq. lim Z_1=Zl(Z+Zg) —77,+ 27,75 (63)
(45), we define effective two-body potenti&lj=Z;/r; and rp—®, 130
introduce the linear transformation rp>ry>rg

V_,: a1V1+aVo+aaVata Vit asVistaeVas, which leads toa;s=1. From Eq.(59) we deduce that

a_14_=1._ Similar considerations yield ay,=ay
jel[1,3], (52 =age=ass= 1. Thus the final form of the product charges is
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@ nucleus product charge in a typical scattering geometry
where all momenta of the outgoing particles lie in the same
plane. From Figs. @) and 2b) it is evident that when one of
the electrons approaches the positron in velocity space the
interaction of this electron with the nucleus and the positron-
nucleus interaction become strongly attractive, which simu-
"/,;'o;"“;'.“:-:-:\\\“‘-\‘m“““ late the capture of the respective electron to the continuum of
the positron. With diminishing interelectronic velocity the
electron-nucleus interactions become strongly repulsee
Fig. 2(b)] as to signify the repulsive electron-electron final-
state interaction.

Three final remarks concerning the use of effective
charges are due here. As our conditiqdd)—(51), which
have been used to determine the product cha#jesare
limits, there will naturally be other functional forms of local
product charges that smoothly connect between these limits.
®) The procedure used here is based on the transform@&n
which is motivated by physical arguments rather than by
strict mathematical reasoning. A different procedure might

///////"'//,
///////////"7,,;

y

o5
/'f

|

5

. ////”’/////77/’;;' - T well lead to different product charges . Thus the bench-
. //////////////////77777///////’/”’///7/ /\ \\\\\\\\\\\\\\\\\ mark for such approximate methodsﬁ that the derived effec-
//////////// tive product charges must be compatible with the physical
- picture of the dynamics of many-body continuum Coulomb
» states.
The second remark concerns the Kato cusp conditions at
= the collision point of two continuum particles. All effective-

a0

charge methods yield many-body wave functions of the form

given by Eq.(43). Since&\lferf/ar” =0 such wave functions
3s0™55g " 900 8, [deg] do not satisfy the Kato cups condition at the coalescence

point of two continuum particles, as immediately concluded
FIG. 2. For a four-body Coulomb system consisting of two elec-from Eg. (31).

trons and one positron in the field of a residual chafge2, the The final remark concerns the applicability of this method

effective charges, given by Eq&4) and(65), are depicted for the for calculating scattering amplitudes. The basic idea of this

case where all particles escape in the same plane with velocitiggork is to propagatéapproximatg asymptotic solutions of

v1=vp=1au. anz=1.2 a.u. The positron is taken to be particle the many-body Schringer equation to finite distances. The

1. All angles are measured with respect to the directign(a)  region around the origin where the reaction takes place, how-

shows the angular dependence of the positron-nucleus effectivever, is not covered by this procedure. Therefore, the success

product chargeZ,, whereas in(b) the product charge of electron or failure of employing this method to calculate reaction

1 with the nucleusZ,) is investigated. cross sections will decisively depend on how the process

under consideration is treated at shorter distances around the

150
200
0, [deg] * 250

— L z.Z, YAV ) origin. For example, in Ref§34,35 the one-photon double
Ly=20+ | m ri, (64  jonization of helium has been considered. In both cases the
[ (ra+ro)ryp  (ri+ra)rag) ) i .

wave function of the two electrons in the continuum of

- 1 He?* was taken, at large distances, in the form of ).
o Z1Z, 2’3 |, : \
2,=27Z,+ rs, (65)  However, due to different treatments of the reaction around

L(raFra)rp  (Fp+rs)rag the origin, the cross section presented in RRe4] is in very

i ; good agreement with experimental finding, whereas the
= _ 2123 ZyZ3 2 method used in Ref35] yielded quite disappointing results.
Z3=275+ rs. (66)

[(ritr3)ris (ra+ra)rog)

It is straightforward to verify that all the conditior{g4)— VI CONCLUSION

(51) are satisfied by the function®4)—(66). For practical In this work a many-body correlated scattering Coulomb
applications the position dependence of the effective chargagave function has been derived fbr charged particles of
(64)—(66) has to be converted into velocity dependence byequal masses moving in tHé continuum of a massive re-
applying the asymptotic approximatian=v;t. Using this  sidual charge. It has been shown that the derived wave func-
method, pilot calculations of the fully differential cross sec-tion solves, to leading order, for the many-body Sclimger
tions for the electron- and positron-impact double ionizationequation in the asymptotic regime defined by large interpar-
of He('S®) have been reportgfd8]. A more extensive study ticle distances, which provides an expression for the asymp-
of these reactions is in preparatig3s]. For the case of pos- totic many-body Coulomb scattering states. It has been veri-
itron impact the positron-nucleus product chaifieis de- fied that the Kato cusp conditions at all two-body collision
picted in Fig. Za), whereas Fig. @) shows the electron- points are fulfilled by the derived wave function. In addition,
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