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Triple differential cross sections for electron-impact ionization of He1
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Triple differential cross sections~TDCS’s! have been calculated for ionization of He1 by electron impact in
the coplanar asymmetric geometry for three different incident energies 250, 500, and 1000 eV, and fixed value
of the ejected energy 5 eV and scattering angles (4° and 10°), and in the coplanar symmetric geometry for
incident energies of 250–2000 eV as well. The final-state wave function used here considers all three two-body
interactions and satisfies the proper asymptotic Coulomb boundary condition. The initial channel wave func-
tion involves a Coulomb wave due to the long-range Coulomb attraction between the incident electron and the
screened ionic nucleus. Parts of the calculated TDCS’s are compared with the existing theoretical results.
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I. INTRODUCTION

Electron-impact ionization of ions has attracted consid
able attention in recent years from both experimental
theoretical physicists because of the increasing need for
data, particularly in the fields of astrophysics, controll
nuclear fusion, short wavelength laser development,
plasma physics. It is known that triple differential cross s
tions ~TDCS’s! give the most detailed information about th
kinematics of such ionization processes. Unfortunately,
such experimental data have yet been obtained. The abs
of any experimental data adds further importance to the th
retical study of such reaction. To our knowlege, the theor
cal TDCS calculations for an electron-hydrogenic-ion ioniz
tion process were done by Roy, Roy, and Sil@1# and Biswas
and Sinha@2#. The electron-electron correlation effect in th
final channel was not considered in the calculations of R
Roy, and Sil. Consequently, the final-state wave function
their approach did not satisfy the proper asymptotic thr
body boundary condition. In Ref.@2# Biswas and Sinha sug
gested a theoretical model for the calculation of the TDCS
which the faster outgoing~scattered! is treated in the frame
work of the eikonal approximation, while for slower electro
~ejected! a Coulomb wave is considered. The correlation b
tween the two outgoing electrons is taken into account
the eikonal phase term as well as through the Coulomb
rameter occurring in the Coulomb wave. Therefore, fin
state electronic interactions are presented in this model
for the collision geometries considered in this work~high
and intermediate incident energies with small moment
transfer!, the work of Ref.@2# is a justfied approximation.

In the work of Brauner, Briggs, and Klar@3#, hereafter
referred to as BBK, a symmetric form of wave function w
used to describe the three-body Coulomb continuum s
resulting from electron-impact ionization of the hydrog
atom. A similar form of the correlated three-body wave fun
tion was first suggested by Garibotti and Miraglia@4# for
proton-hydrogen impact, which consisted of a product of t
plane waves describing the free internal motion of the thr
body system, and was modified by a product of three C
lomb distortion factors describing the separate action of e
551050-2947/97/55~3!/1971~5!/$10.00
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of the three two-body potentials.
The BBK wave function is asymptotically correct whe

all interparticle separations are large, and the results are
good compared to experimental TDCS’s of the hydrog
atom @5# at energies about ten times threshold or more. I
noted that in the BBK model all three particles in the fin
state are treated on an equal footing, the projectile-ejec
electron correlation is in detail considered and the pro
three-body asymptotic boundary condition is satisfied.

In the present work, an extension of the BBK model
electron-impact ionization of ions is made. The TDCS’s
ionization for hydrogenic ions are calculated in th
intermediate- and high-energy regimes, with small mom
tum transfer for coplanar asymmetric and coplanar symm
ric geometry. The incident electron is described by the C
lomb wave due to the long-range Coulomb attracti
between the incident electron and the screened ionic nucl
while the final channel is depicted by the BBK wave fun
tion. The final-state wave function considered here descr
the large interparticle separations satisfactorily, and for s
a situation also fulfills the correct Coulomb boundary con
tion. Although the present pattern is mainly based on
BBK model, a further complication arises in the theoretic
calculation of the ionization of ions because of the lon
range Coulomb interaction in the initial channel. As a test
this extension, we reinvestigate the scattering between
electron and the hydrogenic ion which was considered ea
in Ref. @2#.

As far as we know, this is the first attempt to calculate t
electron-ion collision cross section by the BBK model.
Sec. II the formula for the electron-imapct ionization
given. After a simple description of numerical procedures
comparison with existing theoretical results is performed
Sec. IV. In this paper atomic units~a.u.! are used unless
otherwise specified.

II. THEORY

The TDCS is given by

d3s

dV1dV2dE2
5~2p!4

k1k2
ki

uTf i u2, ~1!
1971 © 1997 The American Physical Society
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wherek i , k1, andk2 are the momenta of the incident, th
scattered, and the ejected electrons, respectively.V1 and
V2 are the detective solid angles of the two outgoing el
trons with momentak1 andk2, respectively.E2 is the energy
of the ejected electron. TheT-matrix element is defined as

Tf i5^C f
2uVi uC i

1&, ~2!

where the projectile-target interactionVi reads

Vi5
1

r 12
2

1

r 1
~3!

where r 125r12r2, r1 and r2 are the projectile and the
ejected electron position vectors, respectively, with resp
to the target nucleus.

The initial channel wave functionC i
1 which consists of

the incident electron and the bound electron, will be d
scribed by the product of two wave function, one describ
the incident electron and the other describing the bound e
tron. The incident electron will be given by the Coulom
wave Fc(k i ,r1) due to the long range Coulomb attractio
between the incident particle and the screened target
Thus the initial state chosen as

C i
15Fc~k i ,r1!f i~r2!. ~4!

The Coulomb wave is given by

Fc~k i ,r1!5~2p!23/2epa i /2G~12 ia i !e
iki•r1

31F1„ia i ;1;i ~kir 12k i•r1!… ~5!

with a i5(z21)/ki , andz(52) is the charge of the targe
nucleus. The bound-state wave function of the ground s
of He1 is taken to be

f i~r2!5S z3p D 1/2e2l i r2, ~6!

wherel i (5z) is the bound state parameter of the grou
state of He1.

The final-state wave functionC f
2 is the solution of the

three-body problem which satisfies incoming-wave bound
condition and is considered here as given by the BBK@3#,

C f
25~2p!23eik1•r1eik2•r2C~a1 ,k1 ,r1!C~a2 ,k2 ,r2!

3C~a12,k12,r12!, ~7!

where the Coulomb part of the wave function is defined

C~a,k,r !5e~1/2!paG~11 ia!1F1„2 ia;1;2 i ~kr1k•r !…
~8!

and

k125
1
2 ~k12k2!, r125r12r2 ,

a15
z

k1
, a25

z

k2
, a1252

1

2k12
. ~9!

To determine TDCS’s we have to findTf i , which is trans-
formed as
-

ct

-
g
c-

n.

te

y

Tf i5 lim
h,b→01

NF ]2

]l i]h
2

]2

]l i]b G I , ~10!

whereI is given by

I5E dr1dr2
r 1r 2r 12

e1
iq•r12 ik2•r22hr12l i r22br12

3F1„ia i ;1;i ~kir 12k i•r1!…

31F1„ia1 ;1;i ~k1r 11k1•r1!…

31F1„ia2 ;1;i ~k2r 21k2•r2!…

31F1„ia12;1;i ~k12r 121k12•r12!…, ~11!

with q5k i2k1 ~momentum transfer!, and

N5
~2z3!1/2

~2p!5
G~12 ia i !G~12 ia1!G~12 ia2!G~12 ia12!

3e~p/2!~a i1a11a21a12!. ~12!

Here we have introduced the parametersh and b for the
convenience of our calculations.

Nordsieck@6# evaluated the integration of the product
two confluent hypergeometric function1F1 by the contour
integration method in terms of the appropriate Gauss hyp
geometric function2F1 with a real argument lying between
and 1. He evaluated the above integral in the matrix eleme
for the study of bremsstrahlung and pair production. T
closed contour integral used by Nordsieck is taken to be

1F1~ ia;1;z!5
1

2p i RG

~01,11 !

P~a,t !eztdt ~13!

where p(a,t)5t211 ia(t21)2 ia, p(a,t) is single valued
and analytic over the contourG enclosing 0 and 1 once an
ticlockwise, and there is a branch cut from 0 and 1. T
phase convention is as follows: the phase of a complex v
ablez is to be taken as zero on the positive real axis, fro
which it is counted as positive when anticlockwise and ne
tive when clockwise, there being a cut from 0 to2` on the
real axis. Applying this representation we may express
~11! as

I5S 1

2p i D
4 R

G i
R

G1
R

G2
R

G
dtidt1dt2dtP~a i ,t i !P~a1 ,t1!

3P~a2 ,t2!P~a12,t !J, ~14!

where

J5E dr1dr2
r 1r 2r 12

e2 ip1•r1eip2•r2e2h1r1e2h2r2e2h12r12, ~15!

with

h15h2 i ~ t iki1t1k1! , h25l2 i t 2k2 , h125b2 i tk12

p15t ik i2q2t1k12tk12, p25t2k22k22tk12.

After performing the integration,J becomes
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J5~4p!2E
0

`

@As212Bs1C#21ds, ~16!

whereA, B andC are linear functions oft1 and/or t2, and
have expressions similar to those given in Ref.@3#, but the
terms now involvet i . Thus we can write (As

212Bs1C) as
(s01s1t11s2t21s12t1t2), wheres0, s1, s2, or s12 are
functions ofs, t i , and t. Hence Eq.~16! can be recast into
the following form:

J5~4p!2E
0

`

@s01s1t11s2t21s12t1t2#
21ds. ~17!

From the two integral representations~14! and~17!, we have

I5
~4p!2

~2p i !2E0
1`

ds R
G i

dti R
G
dtP~a i ,t i !P~a12,t !I c~s,t i ,t !,

~18!

where

I c~s,t i ,t !5
1

~2p i !2 RG1
R

G2

dt1dt2P~a1 ,t1!P~a2 ,t2!

s01s1t11s2t21s12t1t2
.

~19!

I c can be integrated by the residue theorem, which has b
discussed in detail in Ref.@7#, and finally we obtain

I c~s,t i ,t !

5
1

s0
S s0

s01s1
D ia1S s0

s01s2
D ia2 2F1~ ia1 ; ia2 ;1;Z!,

~20!

where

Z5
s1s22s0s12

~s01s1!~s01s2!
. ~21!

Although the form ofI c in Eq. ~20! is similar to that given by
Ref. @3# in Eq. ~A30!, it has involved some different param
eters. The result which is obtained foruZu,1 can be ex-
tended for any arbitrary value ofZ by analytic continuation.

According to the analytic works of Mitra and Sil@8#, the
contour integrations int i and t occurring in Eq.~18! have
been transformed into the following two-dimensional re
integrals ranging from 0 to 1 or2` to `, respectively:

N~s,t i !5
1

2p i RG
P~a12,t !I c~s,t i ,t !dt ~22!

5I c~s,t i ,0!2
sinh~pa12!

ip E
0

1

dt
I c~s,t i ,t !2I c~s,t i ,0!

t

3S 12t

t D 2 ia12

~23!

5I c~s,t i ,0!2
sinh~pa12!

ip E
2`

`

dx
ex2 ia12x

11ex

3F I cS s,t i , 1

11exD2I c~s,t i ,0!G ~24!

and
en

l

U~s!5
1

2p i
rG i

P~a i ,t i !N~s,t i !dti ~25!

5N~s,0!1
isinh~pa i !

p E
0

1

dti
N~s,t i !2N~s,0!

t i

3S 12t i
t i

D 2 ia i

~26!

5N~s,0!1
isinh~pa i !

p

3E
2`

`

dy
ey2 ia i y

11ey FNS s, 1

11eyD2N~s,0!G . ~27!

Therefore, a three-dimensional integral is reached,
can be evaluated numerically to calculateTi f .

III. NUMERICAL INTEGRATION

For all the individual parts of integration the Gaus
Legendre quadrature method is applied. We first perform
s integration after an inverse transformation@i.e,. v51/
(11s)#. The integral~ranging from 0 to 1! is evaluated by
the Gauss quadrature method with different fixed values
t ~or x) andt i ~or y) which are the coordinates of the Gaus
Legendre quadrature points required for the subsequentt ~or
x) and thent i ~or y! integrations. In these integrations th
singularity at zero point are avoided by the method.

The Gauss hypergeometric function2F1 in Eq. ~18! con-
tains general complex argument. A technique to calculate
function over an entire complex plane has been develope
applying the linear transformations of the function@9# to
ensure the efficiency and accuracy of evaluation.

In addition, the variables ofh andb are introduced for
convenience in the present calculations, and attention sh
be paid to the derivation ofh and b. In the derivation of
each variable, a forward-difference formula is utilized
keep the variable positive when it approaches zero. The c
ergence of each integral has been tested properly and
final results are supposed to be accurate up to data prov
in the figures quoted in Sec. IV.

IV. RESULTS AND DISCUSSIONS

We have computed the TDCS’s for electron impact io
ization of He1(1s) for both symmetric and asymmetric ge
ometries. In Figs. 1–3 we present the TDCS results for so
selected set of dynamic parameters chosen in accord
with the existing theoretical work of Biswas and Sinha@2#,
i.e., at intermediate- and high-incident electron energ
~250, 500, and 1000 eV! in coplanar and asymmetric geom
etry for fixed ejected energy 5 eV and fixed scattering an
4° together with the corresponding ones of Biswas and Si
against the angleu2 of the slower electron. For the highl
asymmetric collisions the exchange effect between two c
tinuum electrons is verified to be too small, so that it can
neglected safely.

As can be seen from the Figs. 1–3, the present TD
results for He1 ~shown in full curves! are generally a bit
smaller than the previous work@2# ~dotted curves!, but they
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exhibit a similar angular distribution. The slight differenc
and similarity have also been encountered in the TDCS
culations of atomic hydrogen in Ref.@10#. Therefore, there
are some inner connections between the eikonal approxim
process for the scattered electron and the BBK model. A
ally, the main difference between the two models is in
final-state wave function. It can be easily found from t
models that the wave function used by Biswas and Sinha
be considered as an order approximate result of the B
wave function, in the condition of the asymptotic regio
(r 1 ,r 12→` and short wavelength conditionk1..k2). Ex-
cept for insignificant phase factors the BBK wave functi
reduces to Biswas and Sinha’s. Therefore, in this geome
the numerical results of the two models should not be dis
guishable.

Figures 1–3 also contain the corresponding TDCS res

FIG. 1. The TDCS’s~in a.u.! for the ionization of the He1 ion
form the ground state by electron impact, for the case when
incident energyEi5250 eV, the ejected energyE255 eV, and the
scattering angleu154°, as a function of ejected angleu2. The full
curve shows the present TDCS results, the dotted curve show
corresponding TDCS results of Biswas and Sinha@2#, the broken
curve the corresponding TDCS results for incident plane wave~i.e.,
for a i50!, and the chain curve the corresponding TDCS results
approximated BBK (t50, a iÞ0!.

FIG. 2. Same as Fig. 1, but withEi5500 eV.
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for which the incident Coulomb wave occuring due to t
fact that the long-range interaction between the projec
and the ionic target is replaced by a plane wave~broken
curves!, and the BBK wave function is replaced by an a
proximate BBK model~chain curves! in which the third hy-
pergeometric function in Eq.~11! is assumed to be equal to
and the repulsive factore(p/2)a12G(11 ia12) is kept. We have
computed these results by individually setting parame
a i andt in Eqs.~11!–~14! equal to zero in our general com
puter program.

The position of broken curves~plane-wave TDCS results!
in Figs. 1–3 is always shifted with respect to the pres
results. The binary peaks are shifted toward larger ang
while the recoil peaks are shifted toward smaller angl
Since even at an energy as high as 1000 eV there is con
erable difference between the present results and the TD
results for an incident plane wave, it may be inferred that
long-range Coulomb interaction in the initial channel shou
not be neglected for ionization of an ionic target.

It may also be noted from Figs. 1–3 that TDCS’s in t
recoil and binary peaks are different between the incid
plane-wave model and the present calculations. This disc
ancy increases for decreasing impact energy. It demonstr
that the influence of the long-range Coulomb interaction
the initial channel is most prominent at lower incident en
gies. However, for the incident energies below 250 eV
BBK wave function describing the final state and the Co
lomb wave used for the initial state should be modified
introducing the effective Sommerfeld parameters@11,12#.
This work will be continued further.

An intense recoil peak is noted in the present TDC
curves for the He1 ion as was found in the literature@2#. At
a lower incident energy of 250 eV, the recoil peak is found
be even larger than the binary one~see Fig. 1!. Since the
recoil peak is mainly governed by the electron-nucleus in
action, the large recoil peak at the low energy of 250 eV m
be qualitatively explained by strong elastic scattering fro
the nucleus~Avaldi, Camillon, and Stefani 1990@13#!. For
higher incident energies of 500 and 1000 eV~see Figs. 2 and
3! the binary peak becomes stronger than the recoil pea

In the approximate BBK results, the recoil and bina

e

the

r

FIG. 3. Same as Fig. 1, but withEi51000 eV.
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peaks are always lower than the present results, howev
more or less similar angular distribution exists. The rea
for this similarity is that in the approximate BBK model, w
have kept the repulsive factore(p/2)a12G(11 ia12) which is
sufficient to explain the strong angular correlation in the fi
state@14#, although we have lost a part of information abo
the amplitude of the TDCS. Therefore, this approxim
BBK model cannot only supply correct information abo
angular distributions, it also simplifies the compute poced
for the study of electron-impact ionization of ions. In fac
Hda, Dal Cappello, and Langlois@14# made a similar exten
sion to the case of (e,3e! on atomic systems of Kr, Kr21,
and Ar, which gives a good prediction for experiments.

While the TDCS for symmetric geometry cannot
yielded by the theoretical model of Biswas and Sinha@2#, we
also computed the TDCS for coplanar symmetric geome
with u15u2545° at incident energies from 250 to 2000 e
~shown in the full curve of Fig. 4!. Up to now, the only
results for He1 at incident energies of 200–2000 eV ha
been reported by Roy, Roy, and Sil~broken curve! @1#. In the
present work we have repeated their results~in Fig. 4!
through switching off the correlated part of the three-bo
Coulomb wave function.

In conclusion, we have performed a first Born calculati
using correlated double-continuum wave functions
electron-impact ionization of positive ions. The results o
tained show that the long-range Coulomb interaction in
initial channel should not be neglected for ionization of
ionic target. The present work can be applied for the TD
estimate of ions at intermediate and high energies in as
. D
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e
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y

y

r
-
e

S
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metric and symmetric geometry. This work opens the way
a determination of the TDCS for electron-impact ionizati
of positive ions, in which there is a great experimental int
est.
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FIG. 4. The TDCS’s~in a.u.! for the ionization of the He1 ion
by electron impact for coplanar symmetric geometry (E15 E2,
u15u2545°) plotted against incident energy.
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