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Local-density-functional calculations of the energy of atoms

Svetlana Kotochigova, Zachary H. Levine, Eric L. Shirley, M. D. Stiles, and Charles W. Clark
National Institute of Standards and Technology, Gaithersburg, Maryland 20899

~Received 3 June 1996!

The total energies of atoms and with atomic numberZ from 1 to 92 and singly charged cations withZ from
2 to 92 have been calculated to an accuracy of 1mhartree within four variants of the Kohn-Sham local-density
approximation~LDA !. The approximations considered are the local-density approximation, the local-spin-
density approximation, the relativistic local-density approximation, and the scalar-relativistic local-density
approximation. The total energies for the LDA are found to be in 0.1% agreement with a large atomic number
expansion from many-body theory forZ>40. A comparison to experiment is made for the ionization energies
and spin-orbit splittings; also the total energies and eigenvalues of the various theories are compared among
themselves.@S1050-2947~97!02901-6#

PACS number~s!: 31.10.1z
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I. INTRODUCTION

The Kohn-Sham local-density approximation~LDA ! and
its variants are widely used inab initio computations of ma-
terials properties@1#. This approximation has a demonstrat
ability to produce results that, as regards predictive value
ground-state electronic structure, are frequently competi
with the best methods of quantum chemistry. In additi
they have superior scaling properties@2#, and so can be ap
plied to much larger systems.

As density-functional approaches become more wi
spread, there will be a need for benchmark data compar
to those that are available for traditional quantum chemis
Those who are attempting to solve very large problems,
lizing a range of approximations, will want to distinguish th
uncertainties that are derived from numerical implementa
from those that are inherent in the basic formalism. We h
therefore initiated a project to generate reference data
describes results obtained in well-defined, standard appr
mations with certified numerical accuracy.

There does not appear to have been a comparable e
for LDA in the past. In 1963, Herman and Skillman pu
lished self-consistent-field solutions across the period ta
@3#, using recognizably modern techniques~i.e., computers
programmed withFORTRAN!, capping an effort that had bee
pursued since the early days of quantum mechanics, par
larly by Hartree@4#. Herman and Skillman used an ear
local-density theory due to Slater@5#, which was introduced
as an approximate Hartree-Fock theory. In the spirit of
Hartree-Fock, an attractive 1/r tail was introduced at large
radius to account for the exchange in the low-density lim
@6#. Shortly thereafter, these results were extended to rela
istic systems using the same nonrelativistic exchan
correlation functional@7#. Relativistic functionals were only
to become available in the next decade@8–10#. Also in the
1970s, spin polarization was introduced to local-dens
functional theory@11#.

Various surveys of LDA results for large parts of the p
riodic table have appeared to test various approximatio
For example, pseudopotentials for the LDA were presen
for atomic numbersZ51–94, which required the calculatio
of the corresponding all-electron atoms@12#. To examine the
55
r
e
,

-
le
y.
i-

n
e
at
xi-

ort

le

u-

e

t
v-
e-

-

-
s.
d

range validity of pseudopotentials in quantum Monte Ca
calculations, atoms with a single valence electron forZ51–
94 were considered within the nonrelativistic local-dens
approximation@13#. Binding energies of atoms withZ51–
40 for the generalized~GW! approximation have been com
pared with those of the LDA and Hartree-Fock@14#. A com-
parison of some 12 different density-function
approximations, including gradient-corrected functiona
self-interaction corrections, and nonlocal density function
were presented for light elementsZ51–18@15#. While most
of the interest of researchers has centered on advance
density-functional theory, there does not seem to have be
recent effort to present a complete and comprehensive su
of the electronic structure of atoms within the local-dens
approximation in over three decades@3#.

In this paper, we present a sample of our results and
ures summarizing the results forZ51–92. Extensive tables
of total energies and eigenvalues in four approximations
now available on the World Wide Web@16#. Numerical data
presented in this paper is in the usual system of atomic un
in which the massm and chargee of the electron, and the
reduced Planck’s constant\, take the numerical value of 1
The unit of energy in this system is the Hartree. We calcul
the total energies and orbital energy eigenvalues for
ground-state configurations of all atoms and singly char
cations with atomic numberZ<92 in four standard approxi
mations:~1! The local-density approximation~LDA !, ~2! the
local-spin-density~LSD! approximation,~3! the relativistic
local-density approximation~RLDA!, and ~4! the scalar-
relativistic local-density approximation~ScRLDA!. The
exchange-correlation energy functional of Vosko, Wilk, a
Nusair~VWN! @17# is used, with relativistic corrections du
to MacDonald and Vosko@8#. There are, of course, a grea
number of available local-density functionals, includin
those of Perdew and Wang@18#, Perdew and Zunger@19#,
Gunnarsson and Lundqvist@20#, Kohn and Sham@21#, Slater
@5# and Wigner@22#. Our purpose here is to create high
precise benchmark results for one commonly used functio
rather than to compare results among the available lo
density functionals. In this study, we obtained previou
existing codes, and modified them to implement the sa
density functional, improve numerical accuracy, and regu
191
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192 55KOTOCHIGOVA, LEVINE, SHIRLEY, STILES, AND CLARK
ize input and output. One code was originally written as
Hartree-Fock atomic structure program, and so requ
more substantial modifications.

The results presented here were derived from four co
written independently and extensively, compared and tes
These were found to give results of good mutual consisten
provided that the numerical approximations within each co
were varied until a very high degree of convergence w
obtained within each code. One of the authors ran thre
the codes, and another ran the fourth to minimize the cha
of an input error automatically propagating to all the cod
The authors of the four codes are Froyen, Hamann, Shir
and Tupitsyn and Kotochigova. Our target for the precis
of the calculation was 1mhartree in the total energy. W
have managed to attain consistency between the indepen
results at a level that allows us to quote the absolute accu
for the total energies presented here as 1mhartree.

II. PROCEDURE

All calculations are carried out in the framework of th
generalized Kohn-Sham@21# theory. We use the central-fiel
approximation. We limit our calculations to the ground ele
tronic configurations of the first 92 neutral atoms and sin
charged cations of the Periodic Table. In cases of parti
filled electronic subshells, fractional occupancies are
signed to orbitals with different azimuthal quantum numb
m to accomplish a spherical averaging of the charge dis
bution. In the case of RLDA, this extends to populatio
weighted averaging over subshells with the same orbital
gular momentuml but different values of total angula
momentumj . This choice maximizes the agreement with t
ScRLDA calculation that makes the same assumption.

In the LDA, one solves the Kohn-Sham equations

@2 1
2¹21v~rW !#c i~rW !5e ic i~rW !,

with

v~rW !5vext~rW !1E drW8
r~rW !

urW2rW8u
1vxc~rW !.

The charge densityr is given by

r~rW !5(
i

uc i~rW !u2,

where the sum is over the occupied orbitals indexed bi .
The external potential,vext(rW) is due to the nucleus in th
atomic case, i.e., it isvnuc52Z/r . The exchange-correlatio
potentialvxc(rW) is a function only of the charge density, i.e
vxc(rW)5vxc@r(rW)#. For the LSD, a spin degree of freedom
included @11#; we consider only collinear spin polarizatio
~i.e., the spin is polarized only on thez axis!.

The various parts of the total energy are given by

T52 1
2(

i
E drWc i* ~rW !¹2c i~rW !,

Eenuc5E drWr~rW !vnuc~rW !,
a
d
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Ecoul5
1
2 E drW drW8

r~rW !r~rW8!

urW2rW8u
,

and

Exc5E drW r~rW !«xc~r!,

where«xc~r! is the exchange-correlation energy per parti
for the uniform electron gas of densityr; T is the kinetic
energy,Eenuc is the electron-nucleus energy,Ecoul is the self-
interaction of the charge density viewed as a classical c
tinuum, andExc is the exchange-correlation energy. This a
proximation for Exc is the principal approximation of the
LDA. In the LSD, these formulas apply with a separate a
cumulation of the charges with up and down spins.

The relativistic local-density approximation~RLDA! @10#
may be obtained from the~nonrelativistic! local-density ap-
proximation~LDA ! by substituting the relativistic kinetic en
ergy operator2 i\caW •¹W for its nonrelativistic counterpar
2 1

2¹W 2 and using relativistic corrections to the local-dens
functional. In practice, for the RLDA~and the scalar-
relativistic local-density approximation or ScRLDA! the ki-
netic energy is obtained from

T5(
i

e i2E drW r~rW !v~rW !.

The relativistic wave functions are given by a fou
component Dirac spinor at each point in space. The ra
equations that are solved by our codes are

dF

dr
2

k

r
F52a@e2v~r !#G,

dG

dr
1

k

r
G5a@e2v~r !12a22#F,

where e is the eigenvalue in Hartrees, anda is the fine-
structure constant;e50 describes a free electron with ze
kinetic energy. The functionsG(r ) andF(r ) are related to
the Dirac spinor by

c5S G~r !r21Ykm~ r̂ !

iF ~r !r21Y2km~ r̂ ! D ,
whereYkm( r̂ ) is a ~two-component! Pauli spinor@23#.

Dirac’s k quantum number, along with the azimuth
quantum numberm, determines the angular dependence o
state. Of the values used in this work,k521, 22, 23, and
24 correspond tos1/2, p3/2, d5/2, and f 7/2 states; andk51, 2,
and 3 correspond top1/2, d3/2, and f 5/2 states, respectively
The charge density is obtained fromr(rW)5(mucm(rW)u2,
wherem runs over the four components of the Dirac spin

The scalar relativistic approximation is often used f
moderately heavy atoms to describe some of the effect
relativity without increasing the number of degrees of fre
dom. Specifically, it is possible to neglect the spin-orbit sp
ting while including other relativistic effects, such as th
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TABLE I. The parameters for the Vosko-Wilk-Nusair correlation functional.

A x0 b c

Paramagnetic « c
P 0.031 090 7 20.104 98 3.727 44 12.9352

Ferromagnetic « c
F 0.015 545 35 20.325 00 7.060 42 18.0578

Spin stiffness ac 21/~6p2! 20.004 758 40 1.131 07 13.0045
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mass-velocity term, the Darwin shift, and~approximately!
the contribution of the minor component to the charge d
sity.

Koelling and Harmon@24# have proposed a method t
achieve this end, which we call the scalar relativistic loc
density approximation~ScRLDA!. This is a simplified ver-
sion of the RLDA. The equations to solve are

d2G

dr2
2
l ~ l11!

r 2
G52M @v~r !2e#G1

1

M

dM

dr S dGdr 1
^k&
r D ,

where^k&521 is the degeneracy-weighted average value
the Dirac’sk for the two spin-orbit split levels, ande is the
eigenvalue in Hartrees, with the same meaning as in
RLDA.

The parameterM is given by

M511
a2

2
@e2v~r !#,

wherea is the fine-structure constant. The charge densit
related toG by the formula,

r 2r~r !5G~r !21
1

~2Mc!2 FG8~r !21
l ~ l11!

r 2
G~r !G ,

where the contribution due to the minor component is giv
by the second and third terms.

A. The local-density functional

The local-density approximation~LDA ! requires that the
exchange-correlation potential be given as a function of
electron density at a given point in space. The local-sp
density~LSD! approximation is similar, with the exchange
correlation potential being given as a function of two va
ables, the density of up- and down-spin electrons at a gi
point in space. For atoms, the spin-polarization direction
constant throughout the atom, which simplifies the form
ism. For our study, we use the form of the exchan
correlation potential given by Vosko, Wilk, and Nusair@17#.
The form is a fit to the Ceperley-Alder electron-gas stu
@25#. The VWN functional reproduces the random-phase
proximation~RPA! results for a uniform electron gas in th
high-density limit, it reproduces the spin-stiffness const
calculated in the RPA in the paramagnetic limit of a unifo
electron gas, and it is uniformly differentiable as a functi
of the electron density. It is also in standard use, or availa
as an option, in many electronic structure codes, and the
provides a convenient reference potential for checking
accuracy of numerical calculations.

The exchange term, as calculated in the RPA, is given

«x~r s ,z!5«x
P~r s!1@«x

F~r s!2«x
P~r s!# f ~z!. ~1!
-

-
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The electron-gas parameterr s , the spin polarizationz, and
the ferromagnetic and paramagnetic exchange energ
« x
F(r s) and« x

P(r s), are defined as

r s5S 3

4pnD
1/3

,

z5~n↑2n↓!/n,

«x
P~r s!5221/3«x

F~r s!523S 9

32p2D 1/3r s21,

and f (z) is given by

f ~z!5
~11z!4/31~12z!4/322

2~21/321!
,

wheren is the electron number density~implicitly a function
of the spatial coordinates!, andn↑ andn↓ its corresponding
spin-up and spin-down components (n5n↑1n↓). Note that
f (0)50 and f (1)51.
The correlation energy is given by

«c~r s ,z!5@12 f ~z!z4#«c
P~r s!2 f ~z!~12z4!

ac~r s!

f 9~0!

1 f ~z!z4«c
F~r s!.

The polarization interpolation, which is more complicat
than the interpolation used for the exchange in Eq.~1!, ob-
tains the RPA results for the spin stiffness in the param
netic limit. « c

P(r s)5F(r s ;A,x0 ,b,c) with the four param-
eters taken from the ‘‘Paramagnetic’’ line in Table
~Similar definitions hold for« c

F andac .! The functionF is
given by

F~r s ;A,x0 ,b,c!

5AF ln x2

X~x!
1
2b

Q
tan21

Q

2x1b
2

bx0
X~x0!

3S ln ~x2x0!
2

X~x!
1
2~b12x0!

Q
tan21

Q

2x1bD G ,
where we have x5r s

1/2, X(x)5x21bx1c, and
Q5(4c2b2)1/2. The parametersx0 , b, andc given in Table
I, are used to create three instances ofF.

The exchange-correlation potential is given by

Vxc~n!5
d@n~«x1«c!#

dn
.

We use this form in all of the codes in this study. To avo
errors in the codes, the associated subroutine was rec
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194 55KOTOCHIGOVA, LEVINE, SHIRLEY, STILES, AND CLARK
independently for one of the codes, although the other th
codes shared a common subroutine.

For the RLDA and ScRLDA, we use the correction to t
exchange proposed by MacDonald and Vosko@8#. ~An alter-
native functional would give similar results@10#.! They
sought to include, in an approximate way, corrections to
static Coulomb interaction such as the retardation of
Coulomb interaction and the magnetic interaction betw
moving electrons. In their scheme, the exchange energ
partitioned as

Exc@n#5Ex
DF@n#1Ex

T@n#1Ec@n#,

wheren is the number density of electrons. Here, DF ref
to the Dirac-Fock model;T is for transverse and represen
the terms which are first order in the fine-structure cons
a. We did not consider relativistic corrections to the cor
lation @26#.

Their corrections are multiplicative, i.e.,

«x
DF~n!5«~n!fC~n!

and

«x
T~n!5«~n!fT~n!,

where «~r! is the nonrelativistic exchange energy densi
Only the sum,

fC~n!1fT~n!512
3

2 S bh2 ln~b1h!

b2 D 2,
with b5vF/c5[\/(mc)](3p2n)1/3 and h5~11b2!1/2, en-
ters into the final formula

«xc@n#5«~n!@fC~n!1fT~n!#1«c@n#.

~The Fermi velocity is denotedvF .! At large density, the
sign of the correction is negative, i.e., the exchange poten
becomes repulsive.

B. Radial grids

Suitable choice of a radial grid is key to obtaining acc
rate numerical solutions of the integro-differential equatio
of density-functional theory. The codes make differe
choices for the radial grid. Two codes make perhaps
simplest choice, an exponentially increasing grid

r n5rminS rmaxrmin
D n/N

with three parameters: the minimum radiusrmin , the maxi-
mum radiusrmax, and the number of intervalsN. The appli-
cation of the exponential grid to the atomic Schro¨dinger
equation has been discussed by Desclaux@27#. For one code
we usedN5157 88,rmin51/(160Z), andrmax550. ~All dis-
tances are in units of the Bohr radius.! Another code used
N<8000, rmin51026/Z, and rmax5800Z21/2; in this case,
the energies were extrapolated ton→` using anN22 or
N24 dependence of the error resulting from finiteN, depend-
ing on the quantity in question.
e
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Another code involved a grid that was nearly linear ne
the origin, and exponentially increasing at larger ,

r n5a~eb~n21!21!,

which is determined by three parameters,a, b, andN. This
grid includes the origin explicitly asr 1 . In this case, we took
a54.3431026/Z, b50.002 304, andrmax550, leading to
N57058 for H, increasing toN59021 for U, and to
r 151027 for H, decreasing to 1.131029 for U.

A fourth code involved the change of variable

r5 lnr .

A uniform grid is taken in the transformed variable fro
r~rmin! to r~rmax! where the parameters are taken to
rmin50.01e24/Z, for atomic numberZ, and rmax550. The
number of points increased fromN52113 for H toN52837
for U. The density of points chosen in the latter two code
linear near the origin and exponentially increasing at la
r –is similar to that suggested from theoretical considerati
@28#.

III. RESULTS

The codes had different functionality, and so differe
subsets were used to treat each case. Ultimately, we
four codes for the LDA results, three for LSD, three f
RLDA, and two for ScRLDA.

One goal of this study was to obtain total energies ac
rate to 1mhartree across the Periodic Table~i.e., better than
a part in 1010 for U whose RLDA total energy is
228 001.132 325 hartree!; this goal was met. The only exac
analytical results available to us are the total energies
one-electron atoms as given by solution of the Schro¨dinger
equation~which are identical to orbital energy eigenvalue!.
We found that, in all cases, these energies were reprodu
to the numerical accuracy of the computer for radial g
parameters similar to those used in our production ru
Thus, our basis for quoting the absolute numerical accura
given here derives, first, from establishing the accuracy
one-electron calculations, and second, from observing c
sistency of the results of independent calculations that
seen to improve systematically as the numerical grids w
refined. The standard deviations of the total energies for the
calculations among the various codes increase somew
with the atomic numberZ, but in no case does it exceed 0
mhartree; no two codes’ results for total energy differ
more than 1mhartree in any case. The maximum eigenva
deviations are 2mhartree, and the maximum deviations f
parts of the total energy~e.g., kinetic energy! are 8mhartree.

A. Total energies and energy differences

As an example, we present the total energy and its dec
position as well as the eigenvalues for neutral Fe~FeI! in
Table II. Similar data is available for elements withZ51–
92 and their singly charged cations via the World Wide W
@16#.

Various quantities may be considered across the Peri
Table. Such plots have been made before, e.g., by Her
and Skillman@3# or Cowan @29# for empirically corrected
Hartree-Fock results.
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TABLE II. Total energy and eigenvalues in hartree for FeI 3d64s2 in four approximations; all digits
shown are significant. For the LSD, two eigenvalues are given for each level; the lower energy corre
to spin polarized in the majority-spin direction. For the RLDA, the two eigenvalues correspond to spin
split orbitals; the order isp1/2 thenp3/2, andd3/2 thend5/2.

LDA LSD RLDA ScRLDA

Etot 21261.093 056 21261.223 291 21269.229 080 21269.203 563
T 1259.553 429 1259.697 871 1284.299 765 1281.820 878
Ecoul 535.295 832 535.733 366 537.849 537 537.639 306
Eenuc 23003.082 484 23003.635 009 23039.130 268 23036.447 136
Exc 252.859 833 253.019 519 252.248 113 252.216 611
1s 2254.225 505 2254.203 661 2255.897 914 2255.954 644

2254.202 872
2s 229.564 860 229.577 122 229.990 901 229.999 533

229.501 754
2p 225.551 766 225.555 535 225.920 510 225.623 699

225.498 083 225.464 756
3s 23.360 621 23.415 446 23.428 882 23.429 663

23.263 810
3p 22.187 523 22.241 326 22.238 116 22.200 495

22.093 198 22.181 222
3d 20.295 049 20.343 804 20.289 195 20.285 808

20.213 912 20.283 569
4s 20.197 978 20.209 988 20.201 119 20.201 138

20.182 613
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The total energy calculated within the LDA and RLD
vary strongly withZ. To gain insight, we note that the lead
ing behavior of the nonrelativistic total energy is given
the Thomas-Fermi theory in the largeZ limit @30#. The quan-
tity Z27/3E has much less variation thanE itself, as shown in
Fig. 1. The ScRLDA is seen to capture the majority of t
energy difference between the LDA and the RLDA, indic
ing that the neglect of the~traceless! spin-orbit energy has
been performed in a sensible way.

The Thomas-Fermi theory is shown as constant in Fig
The first three leading terms in a series inZ21/3 of the exact

FIG. 1. Total energies of neutral atoms within the LDA, RLDA
and Thomas-Fermi theory@35#, scaled by a prefactor ofZ27/3 ~solid
lines!, are referred to on the left axis. The Thomas-Fermi ener
0.768 745Z7/3 hartree, is a constant on this graph. The differen
in total energy LDA-RLDA ~dashed line! and ScRLDA-RLDA
~dotted line! are referred to on the right axis.
-

.

total energy for the interacting many-electron largeZ atom
are known:

E~Z!52~c7Z
7/31c6Z

6/31c5Z
5/31••• !,

with c750.768 745,c652 1
2 , andc550.2699 hartree@31#.

These three terms are compared to our LDA results in Fig
The agreement is remarkable given the simplicity of t
LDA; indeed, the LDA apparently recovers these thr
terms. In order to obtain this agreement, the exchan

,
s

FIG. 2. Differences in total energy: the Thomas-Fermi with c
rections inZ6/3 andZ5/3 ~Refs.@31#, @32#! minus the LDA energy.
The solid line gives the energy difference of the total LDA ener
from the corrected Thomas-Fermi~CTF! theory, and the difference
of the Hartree-Fock~HF! total energy from CTF is the dashed line
from Ref.@32#. The omitted values of the relative energy differen
for the solid curve are H 20.8%, He 3.7%, Li 2.4%, Be 1.4%, B
,1%.



U
t t
ee
Th
e

e
.
he
he
th
v
io

le
ol
f
n
lls
rs

in
pi
is
ge
io

-
tre
ha

th
d
r

p
a

.
at
are
and

A
for
tial
-
r
c-
dif-

the
plit-

can

in-

nd
lues
. 6,

if
y
r
,

r

l.

196 55KOTOCHIGOVA, LEVINE, SHIRLEY, STILES, AND CLARK
correlation terms have to be approximately correct. For
the exchange-correlation energy is some 425 hartree, bu
Z21/3 expansion and our results differ by about 12 hartr
i.e., less than 3% of the exchange-correlation energy.
Hartree-Fock results@32#, also shown in Fig. 2, are quit
similar to the LDA results computed here. Reference@32#
suggests that some of the oscillatory deviations shown
Fig. 2 may be due to the inadequacy of the three-term
pression forE(Z) rather than the Hartree-Fock calculation

The spin-polarization energy is shown in Fig. 3. From t
point of view of atomic energies, the energies within t
LSD track those within the LDA rather closely because
bulk of the energy comes from inner electrons that ha
nearly the same description in both theories. By construct
the theories give identical results for closed-shell atom
Nevertheless, the energy differences are large on the sca
chemical energies, ranging up to several electron v
~tenths of hartrees!. Aside from the very strong effects o
shell structure, the trends that may be seen are a peak i
spin-polarization energy always occurs for half-filled she
the spin-polarization energy is always largest for the fi
shell of a given orbital angular momentum~i.e., 1s, 2p, 3d,
and 4f !; and the spin-polarization energy increases with
creasing angular momentum. However, the increase in s
polarization energy with the orbital angular momentum
substantially, but not exclusively, accounted for by the lar
number of electrons participating. The peak spin-polarizat
energies occur for the elements H (1s1), N (2p3), Mn
(3d5), and Gd (4f 7), for which the spin-polarization ener
gies are 33.000, 111.783, 194.721, and 361.711 m har
respectively, or 33.000, 37.261, 38.944, and 51.673 m
tree per electron in the half-filled shell.

In Fig. 4, experimental ionization potentials@33# are com-
pared to the total neutral-cation energy differences within
LDA and LSD. Both theories reproduce the important tren
of shell structure out to largeZ. The LSD captures a drop o
shoulder in the curves in the middle of the 2p, 3p, and 4p
series but not the 5p, where relativistic effects move the dro
to lower Z. The enhancement in the ionization potential

FIG. 3. Spin-polarization energy for neutral atoms, i.e., the d
ferenceEtot

LDA2Etot
LSD . The labels refer to the principal partiall

filled shell for a givenZ. The spin polarization is strictly zero fo
the closed-shell atoms~i.e., He, Be, Ne, Mg, Ar, Ca, Cu, Kr, Sr, Pd
Cd, Xe, Ba, Yb, Hg, Rn, and Ra!. The maximum spin-polarization
energy occurs for Gd, which has a half-filled 4f shell. The 5s shell
fills twice, first for Rb and Sr before the 4d series and second fo
Ag and Cd afterwards.
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Gd in the middle of the 4f series is also captured by LSD
The RLDA does not systematically out perform the LDA
large Z presumably because spin-polarization effects
omitted. Significant discrepancies between experiment
theory exist for the 3d, 4d, and 5d series in all approxima-
tions considered in this study.

B. Eigenvalues

The eigenvalues for all orbitals calculated within the LD
are shown in Fig. 5. The zero eigenvalue is the threshold
the continuum, i.e., zero-kinetic energy and zero-poten
energy. For largeZ, the core orbitals tend toward a hydro
genic form, i.e., thes, p, d, and f levels are degenerate fo
the samen. The valence orbitals always have a richer stru
ture; they do not necessarily have the same ordering for
ferentZ.

Because the four approximations give similar results,
energy differences are discussed below. The spin-orbit s
ting is shown in Fig. 6 forp, d, and f levels. The splittings
are seen to grow with a power law that is faster than theZ4

of a hydrogenic orbital, e.g.,Z5 for the 2p level. When open
shell effects are important, the comparison to experiment
be quite poor, as noted earlier by Herman and Skillman@34#.
Multiplet effects that are more complicated than the sp
orbit splitting of a one-electron picture may dominate.

In Fig. 7, the difference between the LDA eigenvalue a
the degeneracy-weighted average of the RLDA eigenva
is shown. The trends are less regular than those in Fig

-

FIG. 4. Experimental ionization potentials@33# ~open circles!
are compared to the total energy differences within the LDA~solid
line, upper panel! and LSD~solid line, lower panel!. The RLDA is
shown in an inset; up to mediumZ the differences from the LDA
cannot be resolved on the plot. Elements of theVB series~which
have a half-filled valencep shell! are indicated on the lower pane



r
l
n
n
s

h
o
n
t

ot
n-
g
ift
rgy
ot

e
te
em-

he
w
it is
ore
for
se

-

e he
a
he

nd

he
A

55 197LOCAL-DENSITY-FUNCTIONAL CALCULATIONS OF . . .
because there is some opportunity for cancellation of erro
Specifically, the RLDA in a fixed potential leads to orbita
contraction. For the outer orbitals, this implies more scree
ing that will reduce or even outweigh the tendency to co
tract. Not surprisingly, the eigenvalue differences increa
rapidly with Z, and decrease rapidly withn and l . Figure 8
offers a similar comparison between the ScRLDA and t
RLDA. The differences are usually at least half an order
magnitude smaller than the previous comparison, indicati
that the ScRLDA does indeed capture most of the relativis
effects.

FIG. 5. Eigenvalues in the LDA; the negative sign has be
omitted. The solid lines ares levels, the short-dashed lines arep
levels, the dotted lines ared levels, and the long-dashed lines aref
levels.

FIG. 6. Spin-orbit splittings, i.e., the eigenvalue difference o
p3/22p1/2, d5/22d3/2, or f 7/22 f 5/2 within the RLDA and by experi-
ment~differences in x-ray absorption thresholds! @36# for variousp
levels ~upper figure! andd and f levels ~lower graph!.
s.
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-
e

e
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The effects of spin polarization on the eigenvalues do n
seem to follow a simple rule. The magnitude of the eige
value shift varies strongly with the spin polarization, peakin
for half-filled valence shells. The individual eigenvalues sh
by an amount comparable to the spin-polarization ene
shown in Fig. 2. The strongest polarization splitting does n
necessarily belong to the valence eigenvalues. The 3d, 4d,
and especially 4f orbitals are inside the atom; some of thes
outer core orbitals are more strongly affected in absolu
terms than the valence orbitals. There is no apparent syst
atic l dependence in the shifts.

For open-shell atoms throughout the periodic table, t
LSD eigenvalue associated with the majority spin lies belo
the minority spin eigenvalue in almost all cases. Perhaps
surprising to note that the average eigenvalues for the c
orbitals are shifted upward in the LSD. This may be seen
the case of Fe in Table II. To understand the flavor of the
results, consider the case of Li. In the LDA, the 1s and 2s
eigenvalues are21.878 56 and20.105 54 hartree, respec
tively. In the LSD, the 2s eigenvalue is lowered to

n

f

FIG. 7. Differences of eigenvalues between the RLDA and t
LDA for selected levels. Here, the RLDA eigenvalues are given
population-weighted average over the two spin-orbit split pairs. T
effect of relativity increases withZ, but decreases with quantum
numbersn and l .

FIG. 8. Differences of eigenvalues between the ScRLDA a
RLDA for selected levels. As in Fig. 7, the RLDA is the
population-weighted average of the two spin-orbit split pairs. T
ScRLDA is at least half an order of magnitude better than the LD
for obtaining the averaged RLDA eigenvalues forZ>30.
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20.116 31 hartree, as one might expect from the enhan
exchange-correlation potential. The 1s eigenvalues split, and
become21.874 93 for the majority orbital and21.867 17
for the minority orbital. The majority 1s eigenvalue is lower
than its minority counterpart as one might expect. Again, i
perhaps surprising that the eigenvalues themselves are
higher than in the LDA. The 1s orbital is largely inside the
2s orbital; for an estimate, it may be taken as complet
inside the 2s orbital. The 2s orbital radius~inverse of the
first inverse moment! drops from 2.828 to 2.754 bohr. Th
shift in average radial position of the 2s orbital leads to a
constant shift in Coulomb potential in its interior by19.5
mhartree. The average 1s eigenvalue shift is17.5 mhartree,
a comparable value. For the valence and outer core orbi
the exchange-correlation splitting induced by LSD tends
outweigh this Coulomb effect. Deeper in the core, the C
lomb effect tends to be larger than the splitting, and b
eigenvalues are shifted upward.

There are a few exceptions to the rule that the major
spin orbital eigenvalues are below the minority-spin coun
parts. However, even when there is an anomalous sign,
ally the effect is less than 200mhartree and is limited to the
1s ~or occasionally the 2s! orbital. Copper is an exception t
this rule, with the 2s, 2p, 3s, and 3p minority-spin orbitals
lower than their majority-spin counterparts by 1.0, 0.6, 1
and 0.4 mhartree, respectively.

IV. CONCLUSIONS

We have calculated the total energy and eigenvalue
neutral atoms and their singly charged cations across the
riodic table (Z51–92) in four approximations: the loca
density approximation~LDA !, local-spin-density~LSD! ap-
proximation, the relativistic LDA~RLDA!, and the scalar-
relativistic LDA ~ScRLDA!. We obtained agreement wit
two to four codes in each of these approximations to 1mhar-
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ls,
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tree in the total energy; we also obtained similar agreem
with the analytic solutions for the hydrogen atom using the
codes. In this way, we hoped to achieve high reliability a
high precision for the fundamental issue of the total energ
of atoms within the local-density approximation and its m
jor variants. An overview has been presented in this work;
total energies and eigenvalues are available on the W
Wide Web@16#.

Here, we have presented the total energy in the largZ
limit and have shown the LDA is in excellent agreeme
with an exact expansion in powers ofZ21/3. The ScRLDA
total energies are seen to give a very good account of
RLDA total energies despite having no spin-orbit term. E
perimental ionization potentials are presented; the LSD gi
the best agreement of the approximations presented ac
the periodic table; in particular, it accounts for the energe
near half filling. Selected trends across the periodic ta
have been presented to summarize the importance of
various effects on both eigenvalues and total energies.

The tables on the Web page may be used in several w
as points of calibration for persons writing or using their ow
atomic codes, to generate excellent starting guesses in i
tive atomic LDA programs, to estimate the magnitude
various effects~e.g., spin-orbit splitting! for particular ele-
ments that may aid researchers choosing an approximatio
a molecular or solid-state calculation. Moreover, having
large data set on-line may aid studies of statistical or asy
totic characteristics of total energies and eigenvalues in
atomic central-field problem of the local-density approxim
tion.
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