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Local-density-functional calculations of the energy of atoms
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The total energies of atoms and with atomic numbdrom 1 to 92 and singly charged cations wighfrom
2 to 92 have been calculated to an accuracy phéartree within four variants of the Kohn-Sham local-density
approximation(LDA). The approximations considered are the local-density approximation, the local-spin-
density approximation, the relativistic local-density approximation, and the scalar-relativistic local-density
approximation. The total energies for the LDA are found to be in 0.1% agreement with a large atomic number
expansion from many-body theory fde=40. A comparison to experiment is made for the ionization energies
and spin-orbit splittings; also the total energies and eigenvalues of the various theories are compared among
themselves[S1050-294{®7)02901-9

PACS numbdps): 31.10+z

[. INTRODUCTION range validity of pseudopotentials in quantum Monte Carlo
calculations, atoms with a single valence electronferl —

The Kohn-Sham local-density approximatidrDA) and 94 were considered within the nonrelativistic local-density
its variants are widely used b initio computations of ma- approximation[13]. Binding energies of atoms witA=1-
terials propertie§l]. This approximation has a demonstrated40 for the generalizetGW) approximation have been com-
ability to produce results that, as regards predictive value fopared with those of the LDA and Hartree-Fddd]. A com-
ground-state electronic structure, are frequently competitivparison of some 12 different density-functional
with the best methods of quantum chemistry. In addition,approximations, including gradient-corrected functionals,
they have superior scaling propertied, and so can be ap- self-interaction corrections, and nonlocal density functionals
plied to much larger systems. were presented for light elements=1—18[15]. While most

As density-functional approaches become more wideof the interest of researchers has centered on advances in
spread, there will be a need for benchmark data comparabléensity-functional theory, there does not seem to have been a
to those that are available for traditional quantum chemistryrecent effort to present a complete and comprehensive survey
Those who are attempting to solve very large problems, utiof the electronic structure of atoms within the local-density
lizing a range of approximations, will want to distinguish the approximation in over three decadex.
uncertainties that are derived from numerical implementation In this paper, we present a sample of our results and fig-
from those that are inherent in the basic formalism. We haveirres summarizing the results far=1—-92. Extensive tables
therefore initiated a project to generate reference data thaff total energies and eigenvalues in four approximations are
describes results obtained in well-defined, standard approxirow available on the World Wide Wdl.6]. Numerical data
mations with certified numerical accuracy. presented in this paper is in the usual system of atomic units,

There does not appear to have been a comparable effart which the massn and chargees of the electron, and the
for LDA in the past. In 1963, Herman and Skillman pub- reduced Planck’s constafit take the numerical value of 1.
lished self-consistent-field solutions across the period tabl@he unit of energy in this system is the Hartree. We calculate
[3], using recognizably modern techniqu@é®., computers the total energies and orbital energy eigenvalues for the
programmed witlFORTRAN), capping an effort that had been ground-state configurations of all atoms and singly charged
pursued since the early days of quantum mechanics, particeations with atomic numbe£<92 in four standard approxi-
larly by Hartree[4]. Herman and Skillman used an early mations:(1) The local-density approximatiofi.DA), (2) the
local-density theory due to Slatgs], which was introduced local-spin-density(LSD) approximation,(3) the relativistic
as an approximate Hartree-Fock theory. In the spirit of thdocal-density approximatiofRLDA), and (4) the scalar-
Hartree-Fock, an attractive rlfail was introduced at large relativistic local-density approximationScRLDA). The
radius to account for the exchange in the low-density limitexchange-correlation energy functional of Vosko, Wilk, and
[6]. Shortly thereafter, these results were extended to relatiiNusair (VWN) [17] is used, with relativistic corrections due
istic systems using the same nonrelativistic exchangeto MacDonald and Vosk§8]. There are, of course, a great
correlation functiona[7]. Relativistic functionals were only number of available local-density functionals, including
to become available in the next decd@e-10]. Also in the those of Perdew and Warid8], Perdew and Zungdr9],
1970s, spin polarization was introduced to local-density-Gunnarsson and Lundgvig20], Kohn and Shanh21], Slater
functional theory[11]. [5] and Wigner[22]. Our purpose here is to create highly

Various surveys of LDA results for large parts of the pe-precise benchmark results for one commonly used functional
riodic table have appeared to test various approximationgather than to compare results among the available local-
For example, pseudopotentials for the LDA were presentedensity functionals. In this study, we obtained previously
for atomic number@=1-94, which required the calculation existing codes, and modified them to implement the same
of the corresponding all-electron atofi€2]. To examine the density functional, improve numerical accuracy, and regular-

55 191



192 KOTOCHIGOVA, LEVINE, SHIRLEY, STILES, AND CLARK 55

ize input and output. One code was originally written as a p(MNp(F")
Hartree-Fock atomic structure program, and so required EcouI:%f dr dr’ W
more substantial modifications.

The results presented here were derived from four code
written independently and extensively, compared and tested.
These were found to give results of good mutual consistency,
provided that the numerical approximations within each code Ey= f dr p(MNey(p),
were varied until a very high degree of convergence was

obtained within each code. One of the authors ran three of

the codes, and another ran the fourth to minimize the chanc¥N€réexc(p) is the exchange-correlation energy per particle
of an input error automatically propagating to all the codes.for the unlfo_rm electron gas of densipy T is t.he Kinetic
nergy,E...cis the electron-nucleus energy,,, is the self-

The authors of the four codes are Froyen, Hamann, Shirlef ; AR ;
and Tupitsyn and Kotochigova. Our target for the precision'meracuon of the charge density viewed as a classical con-

of the calculation was Jhartree in the total energy. We tnuum, ande,is the exchange-correlation energy. This ap-
have managed to attain consistency between the independdiffXimation for E,. is the principal approximation of the

results at a level that allows us to quote the absolute accura A. In.the LSD, these form_ulas apply with a separate ac-
for the total energies presented here gshhrtree. umulation ,Of, the charges W,'th up anq doyvn SpIns.
The relativistic local-density approximatigRLDA) [10]

may be obtained from théonrelativistig local-density ap-
proximation(LDA) by substituting the relativistic kinetic en-

All calculations are carried out in the framework of the ergy operator—ihc&-ﬁ for its nonrelativistic counterpart

generalized Kohn-Shaf21] theory. We use the central-field — 1y2 and using relativistic corrections to the local-density
approximation. We limit our calculations to the ground elec-fynctional. In practice, for the RLDA(and the scalar-

tronic configurations of the first 92 neutral atoms and singlyrelativistic local-density approximation or ScRLDAhe ki-
charged cations of the Periodic Table. In cases of partiallyetic energy is obtained from

filled electronic subshells, fractional occupancies are as-
signed to orbitals with different azimuthal quantum number
m to accomplish a spherical averaging of the charge distri- T=> ei—J dr p(Mv(r).
bution. In the case of RLDA, this extends to population- '
weighted averaging over subshells with the same orbital a
gular momentum| but different values of total angular
momentumj. This choice maximizes the agreement with the
ScRLDA calculation that makes the same assumption.

In the LDA, one solves the Kohn-Sham equations

IIl. PROCEDURE

n1_'he relativistic wave functions are given by a four-
component Dirac spinor at each point in space. The radial
equations that are solved by our codes are

dF « B
[— 224 0 () 4 (F) = (), ar ¢ T maervlG

with dG « ,
—+—=G=ale—v(r)+2a “]F,
p(F) r 1

U(l?):l)ext(l?)‘i‘ J dF, m‘l‘l)xc(r).

where € is the eigenvalue in Hartrees, andis the fine-
structure constant=0 describes a free electron with zero
kinetic energy. The function&(r) and F(r) are related to

the Dirac spinor by

The charge density is given by

p(N=2 |%i(N?, .
| [ GO ()

I -1 - 1]
where the sum is over the occupied orbitals indexed .by IFOr Y am(T)

The external potentiaky () is due to the nucleus in the
atomic case, i.e., it is,,=—Z/r. The exchange-correlation
potentialv,.(F) is a function only of the charge density, i.e.,
vye(F)=vyd p(F)]. For the LSD, a spin degree of freedom is
included[11]; we consider only collinear spin polarization
(i.e., the spin is polarized only on ttzeaxis).

The various parts of the total energy are given by

whereY, (1) is a (two-componentPauli spinor{23].

Dirac’s « quantum number, along with the azimuthal
quantum numbem, determines the angular dependence of a
state. Of the values used in this works—1, —2, —3, and
—4 correspond t&y5, P32 ds, @andf,, states; andk=1, 2,
and 3 correspond tp.,,, ds5, andfg, states, respectively.
The charge density is obtained frop(7) == ,|¢,(F)|?,
where i runs over the four components of the Dirac spinor.
T=-3 fdfl//T(F)Vzwi(F), The scalar relativistic approximation is often used for

i moderately heavy atoms to describe some of the effects of
relativity without increasing the number of degrees of free-

E..= | dfp(r) A dom. Specifically, it is possible to neglect the spin-orbit split-

enuc P(NVnud ), ting while including other relativistic effects, such as the
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TABLE I. The parameters for the Vosko-Wilk-Nusair correlation functional.

A Xo b c
Paramagnetic el 0.031 0907 —0.104 98 3.727 44 12.9352
Ferromagnetic ek 0.015545 35 —0.32500 7.060 42 18.0578
Spin stiffness ac —1/(677) —0.004 758 40 1.131 07 13.0045

mass-velocity term, the Darwin shift, arldpproximately = The electron-gas parametey, the spin polarizatiory, and
the contribution of the minor component to the charge denthe ferromagnetic and paramagnetic exchange energies,
sity. eh(ry ande f(ry), are defined as

Koelling and Harmon[24] have proposed a method to

achieve this end, which we call the scalar relativistic local- = 3 1
density approximatiofScRLDA). This is a simplified ver- S \4an)
sion of the RLDA. The equations to solve are
{=(n;—n))/n,
d’G 1(1+1) 1dM (dG (k)
W_r—ZGZZM[U(r)—é]G‘FMW W_FT s o CaE 9 \18 .
gx(rg)=2""g,(rg)=—3 3952 s
where(x)=—1 is the degeneracy-weighted average value of
the Dirac’s« for the two spin-orbit split levels, aneis the  andf(?) is given by
eigenvalue in Hartrees, with the same meaning as in the
RLDA. (1+ )"+ (1-*-2
The parameteM is given by (5= 2(2™R3-1) '

2

o . L :
M=1+ = [e—v(n)], wheren is the electron number densifynplicitly a function

of the spatial coordinatgsandn, andn, its corresponding
) ] _.spin-up and spin-down components<n,+n ). Note that
wherea is the fine-structure constant. The charge density i(0)=0 andf(1)=1.

related toG by the formula, The correlation energy is given by
1 , I(1+1) ad(ry)
Pp(N=G(1)*+ g7 |G/ (N*+ —z— G|, eclre,0)=[1= (016l (ra = F(O(1= )
where the contribution due to the minor component is given +f(§)§4sg(rs).

by the second and third terms.
The polarization interpolation, which is more complicated
A. The local-density functional than the interpolation used for the exchange in &g, ob-
) L ) tains the RPA results for the spin stiffness in the paramag-
The local-density approximatiofLDA) requires that the  pegic |imit. & P(r ) =F(r ;A x,,b,c) with the four param-
exchange-correlation potential be given as a function of the,.oc taken from the “Paramagnetic” line in Table I.

electron density at a given point in space. The Iocal'S‘pm'(SimiIar definitions hold fore £ and «..) The functionF is
density (LSD) approximation is similar, with the exchange- given by ¢ ¢

correlation potential being given as a function of two vari-
ables, the density of up- and down-spin electrons at a giveg(r:A x,,b,c)
point in space. For atoms, the spin-polarization direction is a

constant throughout the atom, which simplifies the formal- X2 2b . Q bx,
ism. For our study, we use the form of the exchange- =Alln + = tan -

. LT . X(x) Q 2x+b  X(Xg)
correlation potential given by Vosko, Wilk, and Nusgilf7].
The form is a fit to the Ceperley-Alder electron-gas study (X—X%g)?  2(b+2xg) ., Q
[25]. The VWN functional reproduces the random-phase ap- | X(X) + Q tan o%+bl |’

proximation(RPA) results for a uniform electron gas in the
high-density limit, it reproduces the spin-stiffness constantyhere we have X:r%/zi X(x)=x?+bx+c, and
calculated in the RPA in the paramagnetic limit of a uniformQ = (4c—b?)*2 The parameters,, b, andc given in Table
electron gas, and it is uniformly differentiable as a function|, are used to create three instancesof
of the electron density. It is also in standard use, or available The exchange-correlation potential is given by
as an option, in many electronic structure codes, and thereby
provides a convenient reference potential for checking the din(extec)]
accuracy of numerical calculations. Vie(N) = " dn

The exchange term, as calculated in the RPA, is given by

b F b We use this form in all of the codes in this study. To avoid
ex('s, ) =&, (rg) +[e,(rs) =&, (rs) 1f({). (1) errors in the codes, the associated subroutine was recoded
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independently for one of the codes, although the other three Another code involved a grid that was nearly linear near

codes shared a common subroutine.

For the RLDA and ScRLDA, we use the correction to the

exchange proposed by MacDonald and VoE&p (An alter-
native functional would give similar resultgl0].) They

sought to include, in an approximate way, corrections to th
static Coulomb interaction such as the retardation of thé
Coulomb interaction and the magnetic interaction betwee

moving electrons. In their scheme, the exchange energy irs

partitioned as

E.dn]=E;Tn]+Ex[n]+En],

the origin, and exponentially increasing at large

rp=a(e’"v-1),

é/vhich is determined by three parametaasp, andN. This

rid includes the origin explicitly as, . In this case, we took
=4.34x10 %z, b=0.002 304, and ,,,=50, leading to
=7058 for H, increasing toN=9021 for U, and to
1=10"7 for H, decreasing to 1:210°° for U.

A fourth code involved the change of variable

p=Inr.

wheren is the number density of electrons. Here, DF refersa uniform grid is taken in the transformed variable from
to the Dirac-Fock modelT is for transverse and represents ,(r .y to p(r..,) where the parameters are taken to be
the terms which are first order in the fine-structure constan{ . =0.01e~%/Z, for atomic numberZ, andr,,,=50. The

a. We did not consider relativistic corrections to the corre-number of points increased fron= 2113 for H toN= 2837

lation [26].
Their corrections are multiplicative, i.e.,

eXr(n)=e(n) pc(n)
and

ex(n)=e(n)$(n),

for U. The density of points chosen in the latter two codes—
linear near the origin and exponentially increasing at large
r—is similar to that suggested from theoretical considerations
[28].

IIl. RESULTS

The codes had different functionality, and so different
subsets were used to treat each case. Ultimately, we used

where (p) is the nonrelativistic exchange energy density.four codes for the LDA results, three for LSD, three for

Only the sum,

2

3 —In(B+
be(n)+dr(m) =1 (5’7/3—(2377)

with B=v/c=[#/(mA)](37*n)" and 7»=(1+p)? en-
ters into the final formula

exdn]=e(N[¢c(n)+ ¢r(n)]+ec[n].

(The Fermi velocity is denotedy.) At large density, the

RLDA, and two for ScCRLDA.

One goal of this study was to obtain total energies accu-
rate to 1uhartree across the Periodic Talfie., better than
a part in 18° for U whose RLDA total energy is
—28001.132 325 hartrggethis goal was met. The only exact
analytical results available to us are the total energies of
one-electron atoms as given by solution of the Sdimger
equation(which are identical to orbital energy eigenvalues
We found that, in all cases, these energies were reproduced
to the numerical accuracy of the computer for radial grid
parameters similar to those used in our production runs.

sign of the correction is negative, i.e., the exchange potentialhus, our basis for quoting the absolute numerical accuracies

becomes repulsive.

B. Radial grids

given here derives, first, from establishing the accuracy of
one-electron calculations, and second, from observing con-
sistency of the results of independent calculations that was
seen to improve systematically as the numerical grids were

tSunabIe.chlomel ct)_f a rat?gll g_nci IS keé/_fgo °b§?"|”'”9 af[:.cu'refined. The standard deviatienof the total energies for the
re; ednurr'lerlfca solu I?nio e_llphegro—dl eren 'E eg't;fa I0NScalculations among the various codes increase somewhat
of density-functional theory. e codes make different, ., ihe aromic numbeZ, but in no case does it exceed 0.5
choices for the radial grid. Two codes make perhaps the

simplest choice, an exponentially increasing grid

( rmax) nN
I'n="Tmin T
min

with three parameters: the minimum radiyg,, the maxi-
mum radiusr ., and the number of intervald. The appli-
cation of the exponential grid to the atomic Safirger
equation has been discussed by Descl@T}. For one code
we used\N =157 88,r ,,=1/(16@), andr ,,,=50. (All dis-
tances are in units of the Bohr radiugnother code used
N=<8000, r ,,=10"5/Z, and r,,,=80 Y2 in this case,
the energies were extrapolated ie-o using anN~2 or
N~* dependence of the error resulting from firlitedepend-
ing on the quantity in question.

ichartree; no two codes’ results for total energy differ by
more than Juhartree in any case. The maximum eigenvalue
deviations are Zuhartree, and the maximum deviations for
parts of the total energfe.qg., kinetic energyare 8uhartree.

A. Total energies and energy differences

As an example, we present the total energy and its decom-
position as well as the eigenvalues for neutral(Fel) in
Table Il. Similar data is available for elements with=1—

92 and their singly charged cations via the World Wide Web
[16].

Various quantities may be considered across the Periodic
Table. Such plots have been made before, e.g., by Herman
and Skillman[3] or Cowan[29] for empirically corrected
Hartree-Fock results.
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TABLE IlI. Total energy and eigenvalues in hartree fori Bzi®4s? in four approximations; all digits
shown are significant. For the LSD, two eigenvalues are given for each level; the lower energy corresponds
to spin polarized in the majority-spin direction. For the RLDA, the two eigenvalues correspond to spin-orbit
split orbitals; the order ip,/, thenpsj,, andds), thends),.

LDA LSD RLDA ScRLDA
Eot —1261.093 056 —1261.223 291 —1269.229 080 —1269.203 563
T 1259.553 429 1259.697 871 1284.299 765 1281.820 878
Ecoul 535.295 832 535.733 366 537.849 537 537.639 306
Eenuc —3003.082 484 —3003.635 009 —3039.130 268 —3036.447 136
Eyc —52.859 833 —53.019 519 —52.248 113 —52.216 611
1s —254.225 505 —254.203 661 —255.897 914 —255.954 644
—254.202 872
2s —29.564 860 —29.577 122 —29.990 901 —29.999 533
—29.501 754
2p —25.551 766 —25.555 535 —25.920510 —25.623 699
—25.498 083 —25.464 756
3s —3.360 621 —3.415 446 —3.428 882 —3.429 663
—3.263 810
3p —2.187 523 —2.241 326 —2.238 116 —2.200 495
—2.093 198 —2.181 222
3d —0.295 049 —0.343 804 —0.289 195 —0.285 808
—0.213912 —0.283 569
4s —0.197 978 —0.209 988 —0.201 119 —0.201 138
—0.182 613

The total energy calculated within the LDA and RLDA total energy for the interacting many-electron laigetom
vary strongly withZ. To gain insight, we note that the lead- are known:
ing behavior of the nonrelativistic total energy is given by
the Thomas-Fermi theory in the largdimit [30]. The quan-
tity Z~*E has much less variation th&hitself, as shown in
Fig. 1. The ScRLDA is seen to capture the majority of the
energy difference between the LDA and the RLDA, indicat-

E(Z)=—(c7Z"P+ 2%+ cs2P+ ),

with ¢;,=0.768 745,cq= — 3, and c;=0.2699 hartre¢31].

These three terms are compared to our LDA results in Fig. 2.
. ; . The agreement is remarkable given the simplicity of the
ing that the neglect of thé&raceless spin-orbit energy has LDA: indeed, the LDA apparently recovers these three

been performed in a sensible way. . .
The Thomas-Fermi theory is shown as constant in Fig. l'Ferms. In order to obtain this agreement, the exchange

The first three leading terms in a seriesZin®® of the exact

0.008
3 ['3
08 1¢—1rF (10 2 0.006 -
F10° Ny 5
_ <—RLDA . £
M | r10° o T 0.004 |
2 0.7 =1 =
T t10° & 2
T g e
= LDA-RLDA—> |10 o 5 0.002 -
5 061 7 ee=mT 10 2
g =~ ScRLDA-RLDA—> 8 s
s e o0 § 3 0000-
g o5,/ e e s
e || T - % -0.002 T T T T T ]
"N H e r10° % 20 40 60 80 100
K.
0.4 < . . , 10° =~ z
0 20 40 60 80 100
z FIG. 2. Differences in total energy: the Thomas-Fermi with cor-

rections inZ®® and 2% (Refs.[31], [32]) minus the LDA energy.
FIG. 1. Total energies of neutral atoms within the LDA, RLDA, The solid line gives the energy difference of the total LDA energy
and Thomas-Fermi theof5], scaled by a prefactor &~ ”° (solid from the corrected Thomas-Fertf@TF) theory, and the difference
lines), are referred to on the left axis. The Thomas-Fermi energypf the Hartree-FockHF) total energy from CTF is the dashed line,
0.768 74527"% hartree, is a constant on this graph. The differencesrom Ref.[32]. The omitted values of the relative energy difference
in total energy LDA-RLDA (dashed ling and ScRLDA-RLDA for the solid curve are H 20.8%, He 3.7%, Li 2.4%, Be 1.4%, B—F
(dotted ling are referred to on the right axis. <1%.
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" 25
310"
B 1 2 p 4d s ] 18 RLDA
% ; 20 LDA °
T 1x10 _i 3p 4 L s 10 f
> 5p 6p
=) w®
e {1s § . 5
S 307+ 15 - . ,
$ 1 ¢ 60 80 100
‘E 2s ; 7
g 1110'2—: ¢ 3] lus 55 s 10 N
¢ : 5s s
£ s 7s =
31107 5
Q 5 °
0 20 40 60 80 S T T
c
z 2 N
5 LSD
FIG. 3. Spin-polarization energy for neutral atoms, i.e., the dif- g 20 1 v
ference ELRA—ELSP. The labels refer to the principal partially =
filled shell for a givenZ. The spin polarization is strictly zero for v s
the closed-shell atomse., He, Be, Ne, Mg, Ar, Ca, Cu, Kr, Sr, Pd, 15"4 i ’ sb Bi
Cd, Xe, Ba, Yb, Hg, Rn, and RaThe maximum spin-polarization 1 Y. N ’
energy occurs for Gd, which has a half-filled ghell. The 5 shell 10 Y oy
fills twice, first for Rb and Sr before theddseries and second for o)
Ag and Cd afterwards. 7
. . 5 °
correlation terms have to be approximately correct. For U, - — 7 , T T s
the exchange-correlation energy is some 425 hartree, but the 0 20 o , 6 80 100

Z~1” expansion and our results differ by about 12 hartree,
i.e., less than 3% of the exchange-cprrel_atlon energy. The FIG. 4. Experimental ionization potential83] (open circley
Hartree-Fock result§32], also shown in Fig. 2, are quite ,re compared to the total energy differences within the LB@lid
similar to the LDA results computed here. Referefi88]  |ine, upper pangland LSD(solid line, lower pangl The RLDA is
suggests that some of the oscillatory deviations shown iRhown in an inset; up to mediui the differences from the LDA
Fig. 2 may be due to the inadequacy of the three-term eXcannot be resolved on the plot. Elements of Yhe series(which
pression forE(Z) rather than the Hartree-Fock calculation. have a half-filled valence shel) are indicated on the lower panel.
The spin-polarization energy is shown in Fig. 3. From the

point of view of atomic energies, the energies within thegd in the middle of the # series is also captured by LSD.
LSD track those within the LDA rather Closely because theThe RLDA does not Systematica”y out perform the LDA at
bulk of the energy comes from inner electrons that havearge z presumably because spin-polarization effects are
nearly the same description in both theories. By constructiorpmitted. Significant discrepancies between experiment and
the theories give identical results for closed-shell atomstheory exist for the @, 4d, and 5 series in all approxima-
Nevertheless, the energy differences are large on the scale @hns considered in this study.
chemical energies, ranging up to several electron volts
(tenths of hartregs Aside from the very strong effects of
shell structure, the trends that may be seen are a peak in the
spin-polarization energy always occurs for half-filled shells; The eigenvalues for all orbitals calculated within the LDA
the spin-polarization energy is always largest for the firstare shown in Fig. 5. The zero eigenvalue is the threshold for
shell of a given orbital angular momentuire., 1s, 2p, 3d,  the continuum, i.e., zero-kinetic energy and zero-potential
and 4f); and the spin-polarization energy increases with in-energy. For largeZ, the core orbitals tend toward a hydro-
creasing angular momentum. However, the increase in spirgenic form, i.e., thes, p, d, andf levels are degenerate for
polarization energy with the orbital angular momentum isthe samen. The valence orbitals always have a richer struc-
substantially, but not exclusively, accounted for by the largeture; they do not necessarily have the same ordering for dif-
number of electrons participating. The peak spin-polarizatiorierentZ.
energies occur for the elements Hstl, N (2p°), Mn Because the four approximations give similar results, the
(3d®), and Gd (47), for which the spin-polarization ener- energy differences are discussed below. The spin-orbit split-
gies are 33.000, 111.783, 194.721, and 361.711 m hartreéng is shown in Fig. 6 fop, d, andf levels. The splittings
respectively, or 33.000, 37.261, 38.944, and 51.673 m hamre seen to grow with a power law that is faster thanZte
tree per electron in the half-filled shell. of a hydrogenic orbital, e.gZ° for the 2p level. When open

In Fig. 4, experimental ionization potentid33] are com-  shell effects are important, the comparison to experiment can
pared to the total neutral-cation energy differences within théve quite poor, as noted earlier by Herman and Skillirgh.
LDA and LSD. Both theories reproduce the important trendsMultiplet effects that are more complicated than the spin-
of shell structure out to largé. The LSD captures a drop or orbit splitting of a one-electron picture may dominate.
shoulder in the curves in the middle of th@,23p, and 4 In Fig. 7, the difference between the LDA eigenvalue and
series but not thefp, where relativistic effects move the drop the degeneracy-weighted average of the RLDA eigenvalues
to lower Z. The enhancement in the ionization potential atis shown. The trends are less regular than those in Fig. 6,

B. Eigenvalues
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10' -

| E(LDA) - £(RLDA) |

102+

Eigenvalue energy (Hartree)
Energy difference (Hartree)
3

10°

10

FIG. 5. Eigenvalues in the LDA; the negative sign has been FIG. 7. Differences of eigenvalues between the RLDA and the
omitted. The solid lines are levels, the short-dashed lines gge  LDA for selected levels. Here, the RLDA eigenvalues are given a
levels, the dotted lines aklevels, and the long-dashed lines ére  population-weighted average over the two spin-orbit split pairs. The
levels. effect of relativity increases witlz, but decreases with quantum

numbersn andl.
because there is some opportunity for cancellation of errors.
Specifically, the RLDA in a fixed potential leads to orbital ~ The effects of spin polarization on the eigenvalues do not
contraction. For the outer orbitals, this implies more screenseem to follow a simple rule. The magnitude of the eigen-
ing that will reduce or even outweigh the tendency to con-value shift varies strongly with the spin polarization, peaking
tract. Not surprisingly, the eigenvalue differences increaséor half-filled valence shells. The individual eigenvalues shift
rapidly with Z, and decrease rapidly with andl. Figure 8 by an amount comparable to the spin-polarization energy
offers a similar comparison between the ScRLDA and theshown in Fig. 2. The strongest polarization splitting does not
RLDA. The differences are usually at least half an order ofnecessarily belong to the valence eigenvalues. Tdhe4d,
magnitude smaller than the previous comparison, indicatingnd especially # orbitals are inside the atom; some of these
that the ScRLDA does indeed capture most of the relativisti®uter core orbitals are more strongly affected in absolute
effects. terms than the valence orbitals. There is no apparent system-

atic| dependence in the shifts.

For open-shell atoms throughout the periodic table, the

10° LSD eigenvalue associated with the majority spin lies below
the minority spin eigenvalue in almost all cases. Perhaps it is
10% surprising to note that the average eigenvalues for the core
orbitals are shifted upward in the LSD. This may be seen for
10" the case of Fe in Table Il. To understand the flavor of these
results, consider the case of Li. In the LDA, the 4nd X
. 10°] eigenvalues are-1.878 56 and—0.105 54 hartree, respec-
3 tively. In the LSD, the 2 eigenvalue is lowered to
£ 10, *®
i » £(ScRLDA) - £(RLDA)
® 10 T ' T T m
s [
s £ 0]
& 107 g
)8 <
.a g
® 40 g 1074
Q
=
5
10° 5 1024
:
107
10°
i 10
10 . . —
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FIG. 8. Differences of eigenvalues between the ScRLDA and
FIG. 6. Spin-orbit splittings, i.e., the eigenvalue difference of RLDA for selected levels. As in Fig. 7, the RLDA is the
P32— P12, dsio— dayp, OF f7o— f5, Within the RLDA and by experi-  population-weighted average of the two spin-orbit split pairs. The
ment(differences in x-ray absorption thresholdi86] for variousp ScRLDA is at least half an order of magnitude better than the LDA
levels (upper figur¢ andd andf levels (lower graph. for obtaining the averaged RLDA eigenvalues foe 30.
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—0.116 31 hartree, as one might expect from the enhancetee in the total energy; we also obtained similar agreement
exchange-correlation potential. The &igenvalues split, and with the analytic solutions for the hydrogen atom using these
become—1.874 93 for the majority orbital and-1.867 17 codes. In this way, we hoped to achieve high reliability and
for the minority orbital. The majority 4 eigenvalue is lower high precision for the fundamental issue of the total energies
than its minority counterpart as one might expect. Again, it isof atoms within the local-density approximation and its ma-
perhaps surprising that the eigenvalues themselves are bgthr variants. An overview has been presented in this work; all
higher than in the LDA. The 4 orbital is largely inside the total energies and eigenvalues are available on the World
2s orbital; for an estimate, it may be taken as completelyWide Web[16].
inside the 2 orbital. The & orbital radius(inverse of the Here, we have presented the total energy in the large
first inverse momentdrops from 2.828 to 2.754 bohr. The limit and have shown the LDA is in excellent agreement
shift in average radial position of thesarbital leads to a with an exact expansion in powers &f ¥>. The ScRLDA
constant shift in Coulomb potential in its interior by9.5  total energies are seen to give a very good account of the
mhartree. The averages kigenvalue shift ist7.5 mhartree, RLDA total energies despite having no spin-orbit term. Ex-
a comparable value. For the valence and outer core orbitalperimental ionization potentials are presented; the LSD gives
the exchange-correlation splitting induced by LSD tends tahe best agreement of the approximations presented across
outweigh this Coulomb effect. Deeper in the core, the Couthe periodic table; in particular, it accounts for the energetics
lomb effect tends to be larger than the splitting, and botmear half filling. Selected trends across the periodic table
eigenvalues are shifted upward. have been presented to summarize the importance of the
There are a few exceptions to the rule that the majorityvarious effects on both eigenvalues and total energies.
spin orbital eigenvalues are below the minority-spin counter- The tables on the Web page may be used in several ways:
parts. However, even when there is an anomalous sign, usas points of calibration for persons writing or using their own
ally the effect is less than 20@hartree and is limited to the atomic codes, to generate excellent starting guesses in itera-
1s (or occasionally the & orbital. Copper is an exception to tive atomic LDA programs, to estimate the magnitude of
this rule, with the 2, 2p, 3s, and 3 minority-spin orbitals various effectse.g., spin-orbit splitting for particular ele-
lower than their majority-spin counterparts by 1.0, 0.6, 1.0,ments that may aid researchers choosing an approximation in

and 0.4 mhartree, respectively. a molecular or solid-state calculation. Moreover, having a
large data set on-line may aid studies of statistical or asymp-
IV. CONCLUSIONS totic characteristics of total energies and eigenvalues in the

) atomic central-field problem of the local-density approxima-
We have calculated the total energy and eigenvalues gfgp,.

neutral atoms and their singly charged cations across the pe-

riodic table £=1-92) in four approximations: the local-

density approximatiofLDA), local-spin-densityLSD) ap- ACKNOWLEDGMENTS

proximation, the relativistic LDA(RLDA), and the scalar-

relativistic LDA (ScRLDA). We obtained agreement with The authors thank Sverre Froyen and llia Tupitsyn for
two to four codes in each of these approximations jehar-  their assistance.
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