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Evidence for a metastable state of the fundamental dianion B~
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A resonance state with three equivalent electrons and one proton has been identified. Large-scale calcula-
tions have been performed using the complex-rotation technique, and the results indicate that the investigated
4s° state of H~ is strongly correlated. The findings are rationalized by comparing with bound doubly charged
anions, isoelectronic states of the Li atom, and calculations in the infinite-dimension limit. In addition, the
emerging picture is sustained by an analysis of the complex-rotated wave fufi8i@s0-294®7)06803-0

PACS numbdps): 31.25-v, 32.70.Fw, 32.80.Dz

I. INTRODUCTION to be a shape or core excited shape resonance, which typi-
cally show lifetimes in the range of 13“-10" 6 s,

After an interval of 15 years, we have seen a revival of Recently, the latter perspective has attracted considerable
interest in the prototype dianion® . Results obtained in the attention in the context of free molecular dianions. Only re-
early 1970s have been questioned and demonstrated to Bent experimental and theoretical studies have definitely
flawed, and new questions have emerged from noval corshown that in spite of the large Coulomb repulsion small
texts. Let us briefly outline these two phases df Hnves- ~ dianions may exist as isolated entities. The fundamental

tigations and shed light on the different perspectives on thiguestion, “which is the smallest molecular or atomic system
fundamental system. that can bind two excess electrons?” and the properties that

On the one hand, the H system was studied from an allow small molecular species to form stable dianions have
electron scattering point of view. The collision processdr"’w\’n substantial intere¢tl6,17. From this more global

et H-—H+ et e was examined and the observation of two point of view a metastable state ofH is especially attrac-

ronounced structures in the cr tion was interoreted tive, since it may contribute to a principal understanding of
pronounced structures € Cross section was INterpreted §3,q6 gelicate systems. Previough8] we have presented
the formation of two metastable H states/1-3]. The ex-

. o o evidence that such a state does indeed exist and rationalized
perimental findings were supported by stabilization calculasg strycture by comparison with molecular dianions and cal-

tions, which determined twéP° resonance states at roughly ¢jations in the large dimension limit. In the present commu-
the energies observdd,5]. However, the resonances were pication we will describe the theoretical techniques em-
detected at energies slightly above the threshold for completgloyed in far more detail and discuss our numerical results
breakup of the system into a proton and three free electrongecs. Il and Il). In Sec. IV we will analyze the electronic
and therefore contradict Simon's theoreff,7]. Simon  structure of the metastable?H state and compare it with the
showed that in any many-particle system experiencing onlgorresponding bound state of HeSection V constitutes a
Coulombic forces, resonances cannot exist above the thresbammary.
old for complete disintegration of the system. The existence

of metastable’?P° H?~ states was first questioned in 1977

[8,9] and almost 20 years later, in 1994, the results of Refs.

[4] and[5] were shown to be most probably artifacts of atoo  In the first part of this section we would like to survey the
small basis sef7]. Furthermore, in a new, high-resolution complex-rotationCR) method[19-24, which has been em-
measurement of the electron-Hscattering cross section no ployed to calculate the energy and the lifetime of the inves-
structure related to the existence of short-lived Hstates  tigated resonance state. In the second part we will describe
was observed10,11. One may conclude that there are nothe specific numerical approach in more detail. In the CR
H2~ resonances above the triple-escape threshold and thatethod the set of electronic coordinatgg of the Hamil-
there are in fact no indications for metastable doublet state®nian is simultaneously rotated into the complex plane, that

of H2™. . . is, H({r})—H({€'’r})=H(6). Note that in contrast tbl the
On the other hand, A was investigated from a “bound- ptated HamiltonianA(#) is complex symmetric anahot

" . . . . . r
Sti“,e perspective, emphasizing the possible existence Qhoitian. Despite that, the bound states remain unchanged,
H<~ states stable or metastable with respect to autodetach-

ment. Contemporarily with the firg-H ~ scattering experi- l.e., the bound states &{(6) have the samérea) energies

ments it was proved that a proton cannot permanently bin@s those oH. However, the energies of the unbound states
three electron§12], a theorem that later was generalized byare rotated into the complex energy plane. The continuum
Lieb [13]. Furthermore, in 1978 two independent high- states oH () lie on rays, where each ray is associated with
quality ab inito investigations showed thatH possesses no a scattering threshold and makes an angle-@f with the
excited bound state, i.e., no state that is bound with respect t@al energy axis. If resonance states have been uncovered by
the correspondingly excited Hion and a free election the rotation of the continuum rays, they appear with discrete
[14,15. Thus, if there is any metastable state ct Hit has  complex eigenvalues

Il. TECHNICAL DETAILS
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Ee—=E—il/2, (2.9 built of uncontracted Cartesian Gauss-type orbit@&30).

In the following the values for the GTO exponents are given
whereE is the position and 17 is the lifetime of the reso- for Z=1; for other values oZ the exponents have been
nance. Furthermore, the wave functions corresponding to urscaled withZ?. The smallest basis set comprises 18 even
covered resonance states vanish as any of the electronic cecaledp-type functions, where the largest exponent is 1.0,
ordinates tends to infinity, such that the resonance state dke scaling factor is 1.6, and consequently the smallest expo-
well as the bound states can be represented by square inteent is 0.00034. Larger basis sets were constructed by adding
grable (?) functions. Thus, the complex rotation allows us sevens-type and up to five even scalatitype functions
to treat resonance states on the same footing as bound statbeginning with an exponent of 0.05 and a scaling factor of
both can be expanded in a standartl basis set, and the 2.0. The largest basis set includes two additidaipe func-
available vast quantum chemical technology may be appliedions with exponents of 0.03 and 0.01. The sewetype

The price one has to pay for the description of a reso- functions stem from the atomic natural orbital basis set in the
nance wave function lies primarily in the loss of hermiticity, MOLCAS program[36] (plus one diffuse functionand were
associated to the complex energies of resonance states. Itagdded to perform self-consistent fief8CH and complete
necessary to introduce a bilinear form, theroduct: active space self-consistent fielCASSCH calculations
prior to the MR-CI procedure. The corresponding orbitals
were used to build the three-particle basis functions and will
be discussed further below.

The energy of the highly correlatetP® state of H™ pro-
where in contrast to the Hermitian prodyel |®) the left-  vides a useful criterion to check the quality of our GTO basis
hand functiort? is nottaken to be complex conjugated in the sets, since the full configuration-interation result is readily
integral[25]. The eigenvectors ofi(6) are thenc normal- ~ obtained. Employing the s18p5d basis this energy is
izable, and in a practical calculation one has to work with—0.12525 a.u., only 5810™° Hartree above the result from
complex vectors. There are a number of further drawbacks ibl4] (6p4d Slater-type orbitals basis set with state-specific
the CR technique related to the oscillatory behavior of coreptimized exponenjsand 100k 10 ° Hartree above Drake’s
orbitals introduced by the rotation and the application to mofresumably exact resyl27]. Another check for the basis set
lecular systemgsee, e.g., the discussion [i26]), but these is provided by a second nonlinear scaling parameten-
do not apply to the B~ state investigated in the present stead of using'? one scales the electronic coordinates with
context. ae'? [25] and in a calculation employing a finite basis set

For an atomic system the CR technique may be applied iboth parameterg and « have to be optimizedsee discus-

a straightforward manner, sine '? simply factors out the sion in the next sectionThe parametew effectively scales
Coulomb potentials. I andV are the real-valued matrices the exponents of the basis set and the computdhjecto-
of the kinetic and potential energies, e.g., in an atomigies show that our results depend only very weakly ®n
configuration-interactioCl) calculation, the complex sym- (with aq,~1.0). Thus, our one-particle basis set performs
metric matrix of the rotated Hamiltoniaf(6) is given by ~ Satisfactorily.
The three-particle configuration space for thep{P#s?
H(9)=e 2T+e 10y, (2.3)  state was then generated by all single and double excitations

relative to a set of 18r(p°)-type reference configurations.

Instead of working directly wittH(6) it is advantageous to By this means a full-Cl (FCI) expansion within the

(W|®)Ef vodr, (2.2

diagonalize the matrix p-orbital space is obtained and all excitations of one or two
" , electrons into thes, d, or f orbitals are taken into account.
e’H(o)=H+(e " 1)T, (24  Since we are using FCI or nearly FCI expansions for the

18p or larger basis sets, respectively, in principle the under-

where H=T+V is the unrotated Hamilton matrix. In this |ying one-particle orbitals used to construct the configuration
way only the one-particle matri, which is extremely space should be irrelevant. However, the band Lanczos di-
sparse in comparison @ or H, has to be multiplied by a agonalization of the Hamilton matrix is an iterative proce-
complex factor depending on the rotation angle. Thus, thejure and the convergence of this iteration does depend on the
matrix times vector operation, which is the bottleneck in anyspace spanned by the start vectors. In our calculations the
iterative diagonalization procedure, can be separated intgtart vectors were the 18 Cartesian vectors representing the
two steps. The first, and time-consuming, step is the multi1g reference configurations, and thus, the choice of orbitals
plication with the real-valued matrid and only the second has a major influence on the iteration. Several sets of self-
step, the multiplication withg™'—1)T, involves complex  consistent field SCPH orbitals have been used and two sets
matrix elements. Finally, the obtained eigenvalues are mulyrned out to yield a far better convergence in the Lanczos
tiplied with e to obtain the eigenvalues f(6). procedure than any other we tried. These were, on the one

We now turn to the description of the specific one- andhand, the SCF orbitals of H &), and on the other hand,
many-particle basis sets we employed in our calculations. Iyrbitals originating from a CASSCF calculation for tH&°
the H*~ system electron correlation may be expected to b&tate of He (three electrons in nine active orbitals
extremely important. Thus, we used the multireference The moLcas package of progran*{QG] has been used for
configuration-interaction approa¢MR-Cl) to construct the the SCF and CASSCF calculations, and trpci program
three-particle basis functions for the complex rotated Hamilf Engels, Pless, and Sutg8] has been employed to com-
tonian H(6). The underlying one-particle basis sets werepute the matrixH. Subsequently, the matrie{ '~ 1)T has
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cussed in the text. Continuous line: one-electrop)2P° state;
dashed line: two-electron (#)3P® state; dotted line, three-electron
0.10 (2p%)*s° state. For the latter state the real part of the complex
r energy is shown.

continuum eigenvalues rotate with This behavior becomes
even more evident if the velocitigd E/d 6| of the different
trajectories are considered. Whereas typical continuum ei-
genvalues show a ‘“constant” velocity, the velocity of the
resonance eigenvalue decreases dramatically whgrs ap-
proachedFig. 1). The influence of the basis set on this sta-
bilization behavior of the resonance eigenvalue will be dis-
cussed later.

In the remainder of this section we will regard the ener-
Jies (and lifetimes of the three states )2P°, (2p?)3P®,

3\4 ; .
resonance and five typical other states in the complex energy plan nd'(2p ) So as functions of the nuclear chargeand, in
are shown for rotation angles 8%<42° in steps of 2°. In the particular, discuss the development of these states when the

lower panel the corresponding velocities of the trajectories of thenuek':'ar charge is decreased frafr-2 (He-He') to Z=1

- y2- — 2y3 -
first and third continuum and of the resonance state are displayedt! -H°"). ForZ=2 the (209)°P° He St"i‘rte is much lower
The 7s18p5d basis set has been used. in energy than the correspondingP® He™ cation. In con-

trast, forZ=1 it has been shown that th#® state of H™ is
just 0.00035 a.u[27] below the ?P° state of H. These
anges of energy involved in proceeding frafs=2 to
=1 have been displayed in Fig. 2. The continuous line
represents the energy of theg3?P° state, which simply
equals—Z?/8, and the dashed line shows the energy of the
. NUMERICAL RESULTS (2p?)3P® state obtained at the FCI level of theory using the

i 18p basis set. Clearly, the two energies approach each other,
Before we study the energy and lifetime of the nd forZ=1 they become virtually equal.

34 i i
(2p°)*S° state, let us briefly discuss the consequences 0? The energy of the three electrong*<® state is repre-

expandingﬂ(e) in a finite basis. Using a complete, infinite sented by the dotted curve. This state is bound with respect
basis set the complex resonances endrgyis independent g electron loss for He, but clearly unbound for B~ [15].
of the rotation angle once it has been uncovered. However, consequently, in going frord=2 to Z=1 its energy has to

this is not the case if finite basis sets are employed. In praceross the energies of the two former states and turn into a
tical CR calculations it has been observed that if the rotationegonance. For those values &f where the*S® state is
angled is increased the resonance eigenvalue rotates towardgstable to autodetachment, the real part of its energy is
the resonance position, slows down, and then moves rapidlyhown. As can be seen in Fig. 2, the crossing with the two-
away. In other words, the resonance endgyis a function  glectron 3p¢ state occurs very close to He. If the nuclear
of 6, but shows stationary behavior near a particular valugharge is decreased from its initial value of 2 th#® state
Oopt- Clearly, for this value off the given finite basis set pecomes rapidly unstable with respect to electron loss and
describes the resonance state in an optimal way and the g$ves into the (P2ep) continuum. AtZ~1.4 the channel
sociatedE,sis the best value for the resonance energy. Thusyg the (2lepe’p) continuum opens; i.e., the p3) 4s°

one has to compute the complex spectrunf-lto’ﬁ) for sev-  state becomes unstable with respect to the loss of two elec-
eral rotation angles and to investigate the trajectories of theons. Nevertheless, faf=1 the *S° resonance state still
eigenvalues. As an example in Fig. 1 thérajectories of the  shows a negative energy ef0.063 a.u(FCI-18p); i.e., the

4s° H?~ resonance state and five typical other states argystem is stable with respect to complete breakup into the
shown in the range G2 #=<42° with steps of 2°. The reso- nucleus and three free electrons. Simon’s theorem is there-
nance eigenvalue shows a pronounced stabilityé#er30°  fore not violated. Using larger basis sets that contain func-
(the corresponding sevelf, values can hardly be distin- tions of higher angular momentum the resonance position for
guished on the energy scales of Fig.vithereas the typical Z=1 is even decreased t60.071 a.u(MR-Cl-7s18p5d)

0.05 —

| dE/d |

0.00

FIG. 1. In the upper panel the eigenvalue trajectories of th

been constructed and the spectrune'6H(6) has been com-
puted with a band-Lanczos program adapted to the case
complex symmetric matricd29-31.
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0.00 eV above the'S® ground state of H) and a width of 1.7 eV
corresponding to a lifetime of 3:810 ¢ s. Note, however,
that the *S° state would not be seen in electron scattering

-0.01 -

E 002 from the 1S® ground state of H.
PR
[:‘ 0.04 ‘//
S IV. DISCUSSION
0,05 P B R T
1.0 15 2.0

Having established 4S° resonance state of the?H di-
Nuclear Charge anion, this section is concerned with the interpretation of our
findings. In a previous communication we have suggested

(2p%)*<° state is shown. The curves give the results for Olifferent_rationalizing the stability of the A~ system in terms of an

basis sets. Squares:fL®asis; diamonds: §18p5d basis; triangle: INcreased average angle between the elecfitBis This pic-
7s18p5d2f basis. ture is based on the analogy to molecular dianions of the

AX32~ type, whereA is an alkali metal ani is fluorine or

and —0.072 a.u.(MR-CI-7s18p5d2f), respectively, i.e., chlorine. Here we briefly repeat our argument. ;2™
larger basis sets stabilize the’H resonance state. dianions may be thought of as thré anions bound to a

We now turn to the associated lifetime of thepf} S°  A™ cation[32], i.e., to consist of one positively and three
state. Our results for the imaginary part of the resonanceegatively charged particles. In this way they resemble the
energy are shown in Fig. 3. At first glance, surprisingly, theH?~ system, but, in contrast toH, the short-range part of
resonance width, in contrast to the resonance position, is nahe potential is dominated by the Born repulsion of the
a smooth function oZ. However, “cusps” in the lifetime  atomic cores. Th&AX;2~ species themselves are stable with
are to be expected, whenever a new channel opens. We aespect to electron autodetachment and show a very broad
tribute the cusps in our curves betweenr 1.4 andZ=1.3to  barrier to loss of aiX™ ion. Thus, they represent a long-lived
the opening of the (B'epe’p) two-particle breakup chan- resonance state of the four-particle syst&i{X ), and the
nel. Furthermore, we observe again that in going from thdocal stability of the composite system can be rationalized in
18p to a larger basis set tHts® resonance state is stabilized. electrostatic terms: in the vicinity of thB, equilibrium
Firstly, for a particular value of the resonance width is geometry the Coulombic attraction between the cerral
reduced, if functions of higher angular momentum are addedation and theX™ ligands overcompensates the Coulomb
to the basis set. For example, 161 the width falls from  repulsion between the thre€™ ions and a stable dianion is
0.043 a.u. for the 18 basis to 0.034 a.u. for thesI8p5d formed. An analogous effect may be conceivable for the
and 0.032 a.u. for thesA18p5d2f basis set. Secondly, the 4S° H2™ state, if the electronic motion is correlated is such
cusp in the curve displaying the resonance width is shiftech way as to maintain an approximately triangular configura-
by about 0.1 a.u. to lowet, if the larger basis is used. This tion around the nucleus.
indicates a later crossing of the resonaéctrajectory with In [18] we presented further evidence for this interpreta-
that of the (22)3P® state. Thus, if the basis set is enlarged,tion. On the one hand, we analyzed the electron-nucleus-
the stabilization of thé'S° resonance state is reflected in two electron anglep of a three-electron atom in the large dimen-
respects. On the one hand, the resonance position is lowerezlpn limit, where the electrons occupy fixed positions in
i.e., H2~ is stabilized with respect to th&P® state of H™, space. For large nuclear chargethe anglep is found to be
and, on the other hand, the lifetime of tA8° H2~ state is  close to 90°, but, ifZ is decreased the system gets more
increased. We conclude that both a larger one-particle basififfuse ande grows to about 103° foZz=1. On the other
set including basis functions of even higher angular momenhand, a series ofn(p®) S° states of the Li atoms has been
tum and a larger MR-CI space will tend to stabilize furtherstudied in the literaturg33,34). For n=2 an interelectronic
the H?~ resonance state. angle of 90° was found, and this angle tends to 120° in the

Let us briefly comment on the dependency of our resultdimit of n—c. Thus, in both cases the same trend was ob-
on the number ofl-type polarization functions in the basis served. The compact system&gs{1, n=2) show electron-
set. Whereas the real part of the complex energy needs abomiicleus-electron angles close to 90°, and the more diffuse
four additionald-type functions to converge, the lifetime val- the system gets, ifi in increased o is decreased, respec-
ues depend only weakly on the particular numbedefor tively, the further this angle is enlarged. Thus, a situation in
f-type functions. One function seems to be sufficient pro-analogy to theAX;?~ dianions is approached, and the pic-
vided that the corresponding exponent has an appropriatere derived from this molecular system is indeed sustained.
value. However, if four or fivel-type functions are used, the In the remainder of this section we will examine the elec-
stationary behavior of thé trajectory of the resonance state trostatic interpretation more directly by investigating the
is far more pronounced. Clearly, the polarization basis setomplex wave function of the resonance state. When we be-
has to provide a certain flexibility to describe the resonancean this study, we have computed the Cl wave functions of
wave function over an appreciabferange. Consequently, it the *S° states of H~ and He , but it was by no means clear
yields a greater stability of the complex eigenvalue with re-how to extract the relevant information. This wave function
spect to the rotation angle. is a complicated, nine-dimensional function, and in order to

As our final result we predict the existence of adraw conclusions one has to reduce this complexity without
(2p®)*s° resonance state of H with a resonance position losing the important information to averaging. Usually, a Cl
of about 1.4 eV above the (#)3P® state of H (i.e., 12.4 vector can be analyzed by directly inspecting its dominant

FIG. 3. The imaginary part of the complex energy of the
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components. However, here the CI vector contains a veryi
large number of iip,n’ pyn”p,) configurations of approxi- I
mately equal weights. These configurations reveal nothing o|
about the angular correlation, since a basis set consisting of
p-type functions only yields an average interelectronic angle
of 90° (see below. Even a closer examination of tldecon- I
tributions does not provide any readily comprehensible infor- |
mation. Eventually, we decided to calculate overlaps with 301
model functions of three and two electrons, respectively. |
Loosely speaking, we were raising the questions “how large
is the contribution of a certain geometrical configuration of
the electrons to the wave function?” and “what is the third
electron doing if we fix the position of the other two?”” In the
following paragraphs we will describe these model functions %
used to interpret the Cl wave function and discuss the results. |
Let us begin with the former question. We intend to de- ! P
scribe a geometrical configuration of three equivalent elec- -
trons that have an equal distanRefrom the nucleus and a
fixed electron-nucleus-electron angtg, i.e., describing a

120

T

30— 30

. . . . H?- 7s18p5d Basis [ He™ 7s18p5d Basis
geometrical situation analogous to the ammonia molecule. A T e T
corresponding three-electron model functi®®) (R, ¢) was 5 10 Is 0 ro2 3 45
constructed as the antisymmetric product of three off-center R (a.u.) R (au.)

s-type GTO's,
FIG. 4. Schematic representation of the model function

- - - (3) . .
YR =NA ), (r=exd —a(R—r,)?], (4.0 P(R,¢) and the associated values of the weighted overlap
(Xaxzxs X 1 (R=ro7l W(R, ¢) (arbitrary unit3. The interelectronic angleé is given in
degrees, and the contour lines are evenly spaced, where the ratio
whereN is a normalization constant is the antisymmetriz- between the innermost and outermost line is 11. Upper left: H

ing operator, andﬁﬂz R. The sei{lii} was chosen in accord (18P basig, lower !eft: H2~ (7sl_8p5d basig, and Iower_ right:
with Cs, symmetry for¢<120°, and for the limiting angle He™ (7s18p5d basis. Note the different scales on thaxis.
¢=120° the system is planar and the symmetrRig . The

larger the exponent is chosen, the more strongly localized dure to the real and complex-rotated wave functions of the
are the three electrons describedb{?). However,« cannot  bound(2p?)3P® state of H . The absolute values of these
be chosen arbitrarily large, since the GTQYshave to be overlaps turned out to be virtually independent of the rota-
expressed in our finite nucleus-centered basis set. In our caion angleé.

culations a value ofr=10 a.u. turned out to yield reasonable  Let us return to the overlap of the CI vector with our
results and the data presented in the following have beemodel function®(®). In Fig. 4 the weighted squared absolute
obtained using this value. Far=10 our basis set is still value of the overlapV,

capable to represent the. The overlap of our model func-

tion ¥ with the CI vector shows appreciable values only

for R>1/\/a. This overlap(¥ ®)(R, #)|¥°'({r,})) then rep- W(R,¢)=R3|(¥®|w)?, (4.2
resents the weight of the specific geometrical structure de-

fined byR and ¢ and we can try to identify a “dominant” 4 _ )
configuration. is shown for the*S° states of H~ (18p and %18p5d basig

At this point let us emphasize that we consider a complex2nd He™ (7s18p5d basis. The weight factoR® appearing
rotated wave function. The overlap with the real test functionn the equation above takes into account the total rotation
¥® thus depends on the complex-rotation angleThe  (Weight R%) and internal rotation(weight R) of a given
complex-rotated wave function describes the resonant part 6R2’ ¢) configuration. The distributionsV of both systems
the wave function much clearer than the nonrotated one. T~ and He" look roughly the same. Both show a clear
latter is dominated by the exponentially increasing asympMaximum and asymptotically tend to zero in all directions,
totic part describing the here irrelevant aspect of plus a resempllng a .sl|ghtly d|stprted Gaussian func.t|on. We note
free electron. It is thus meaningful to investigate thethat this maximum ofW in the (R,¢) space is a global
complex-rotated wave function rather than the unrotated ongaximum with respect to all nine coordinatgR} in W),
(which is not available anyway The angular distribution, The angular distribution becomes more evidenifis inte-
which is our prime interest, depends very weakly on thegrated overR, providing a distribution function depending
complex-rotation anglé as soon as the resonance is uncov-on the electronic angle only (Fig. 5. These functions of
ered. The radial distribution may depend more strongly onp show again one well-defined maximum and exhibit widths
the rotation angled but we even expect the radial distribu- of several 10°. Despite the appreciable widths, one may
tions discussed below to be very meaningful, in particularclearly think in terms of a certain geometrical configuration
their change upon enlargement of the basis set. To back ugf the electrons, which depends on the nuclear charge and
our arguments we applied this test function overlap procethe flexibility of the basis set. In the following discussion we



1908 SOMMERFELD, RISS, MEYER, AND CEDERBAUM 55

U N
< Y A
B S \
hd—' / \\ R
< / |
= / Vi
S~ / A
y ¥
- S \
~ e \
s \
o A |
ki 0 L L L 1 L L
hd 0 30 60 90 120
¢ (deg)

B (deg)

FIG. 5. Angular distribution for the overlap of the model func- FIG. 6. Th lar distributiof defined in th .
tion W with ¥°. The weighted absolute value of the squared - 6. The angular distributioW(/3) defined in the text is

overlap W(R,¢) has been integrated oveé®. Continuous line: shown.g is the angle in the two-particle model function, which is

H2-, 7s18p5d basis; dotted line: He, 7s18p5d basis: dashed Schematically displayed in Fig. 7. Continuous line:*™H
Iine:'Hz‘ 18 basis.' ' ' 7s18p5d basis; dotted line: He, 7s18p5d basis, dashed line:

H2~, 18p basis.

will refer to the angle associated to the maximum of the \ve now turn to the latter question: “What is the third
integrated distributioW as the angleg,,, between two  electron doing if we fix the position of the other two?” If the

electrons. _ _ positions of two electronsR; ,R,) are fixed, the probability
" V\:ll_%)fILSt ?Xamr‘l;e thefbaSIdS feLdependePC¢ﬁ£60F°r ; amplitude to find the third electron is calculated by multiply-

e asis setpmay is found to have a value of 90° and . Clyz = 2\ 2 el - -
the angular distribution is quite broad. If polarization func- g W(ry.r2,rs) with 5(Ry rl) (Rp—r2) and .|ntegra't|r.19
tions are added to the basis sy is increased to about ©Ver r1 andrp. However, since we work with a finite,
104° for the B18p5d basis set and the associated width ighuclear-centered GTO basis set, which represents off-center

strongly decreased. This trend is in accord with our interpre functions very poorly, we represent the localized electrons
tation of the energy and lifetime changes, which occur in?9in by relatively tighs-type GTO's,

going from the 18 to the %18p5d basis sef18]. A basis . ..

set consisting op-type functions only forces an interelec- xi(r)=exg — a(R;—r;)?] 4.3
tronic angle of 90°, whereas polarization functions allow this

angle to increase. By this means a situation closer to thgt the positionsR; andR,. The qualitative conclusions are
D, symmetrical classical minimum of thaXs®~ system  again independent of as long as Y is smaller than all
may be achieved, and the dianion is thus stabilized in tWqglevant distances. If the resulting one-particle function

respects: its energy is decreased and its lifetime is increaseg, (1), = . . . _
Secondly, we consider the dependence of,,.,. Apart %Slé;%dlsbae;ganded in the given basis gk} (€.g., the

from the differentR scales in Fig. 4 the distribution functions
for H2~ and He (7s18p5d basig look very similar. These
similarities in the overall shape &V emphasize that both q;(l>(f):(NA(XiX2)|xpC')EE Civi, (4.9
systems are strongly related, regardless of the fact that one

system is bound and the other is unstable to electron loss. In

other words, the difference i essentially changes the the coefficients; are given as the overlap of the resonance
length scale, but the overall characteristics of the electroni®vave function ¥<' and the single Slater determinant
state are maintained. The differences that occur in proceed-A(xix2#i)

ing fromZ=2 toZ=1 are again more clearly seen in Fig. 5.

For He™ ¢may iS about 5° smaller than for H and the ci=(NA(xx24) [V ). (4.9
He™ angular distribution exhibits a larger width. Both trends

reflect the decreased ratio between Coulomb repulsion arithe absolute value of the norft¥ (V| ¥ ()| does then rep-
attraction forZz=2, and parallel the tendencies that haveresent a weight of the specific geometrical configuration
been_observe_d in the limit of infinite dimensith,_SFﬂ and  (R,,R,), which is fully characterized by two distances and
for highly exited “S° states of Li[33,34. As discussed one angle 8. We put the additional constraint
above, the more diffuse théS°-like systems become, the 4§1|:|ﬁ2|ER on ¥ and located again the dominant con-

further increased is the associated interelectronic angle; Lo : ;
. . iguration in the R,B) space. In analogy to the discussion
Note, however, that for the atomitS® species the limiting g B'B) P _ gfy
above, the associated angular distributitin

angle of ¢,,,=120° can only be approached but never be
reached, since the symmetry of tH&° state implies that
W($—120°)—0 (Figs. 4 and % The plane defined by the W(ﬂ):f dR R|(v V| wD)| (4.6)
nucleus and any two electrons is a nodal plane for the third

electron. We will shed light on this property in the context of ~

the analysis using the two-electron model functibff) de- is shown in Fig. 6. Using the 1Bbasis setW peaks at
scribed in the following paragraphs. B=90° as expected. For thes¥8p5d basis set the maxi-
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V. SUMMARY AND CONCLUSIONS

z
We have investigated the existence of a resonance state
/y with three electrons and one proton using the complex rota-
|

C R tion method in conjunction with the MR-CI approach. From
P x our experience with bound dianions, a state with three
R equivalent electrons was expected to be a promising candi-
6 date, and this criterion is fulfilled for the (2)*S° state. In
our study we have treated the nuclear chafgas a param-
s eter, since thé'S° state of He is known to be bound. Start-
r ing from this bound (p3) state, we have reduced and
0- followed the quartet state as it becomes rapidly unbound and
i Q moves into the (B%ep) continuum. AtZ~1.4 the*S° state
becomes even unbound with respect to the)2P° state,
r G i.e., the channel to the (Fepe’p) continuum opens, and
D the associated width function exhibits a cusp. Eer1l the
-10 |- (2p°®) resonance state shows still a negative energy and the
a system is thus stable with respect to complete breakup into
N ANy e e the nucleus and three free electrons. With our largest basis
20 -0 0 10 20 set the H~ resonance position is then 1.4 eV above the
X (aw) (2p?)3Pe state of H and the lifetimes is 3.810 ¢ s. We
note that the resonance state is stabilized, if the basis set is
FIG. 7. Schematic representation of the two-particle modelenlarged, i.e., the resonance position is decreased and the
function discussed in the text. In addition, the absolute squareﬂ'fetime is increased.

20

value|(W®|w®)] of ¥@ is shown for3=108° andR=8.0 a.u. From an experimental point of view there seems to be no
in the x-y plane. The contour lines are evenly spaced and the rati€asy way to observe the®H resonance state. Since its spin
between the innermost and outermost line is 5. symmetry is a quartet it cannot be seen in the electron scat-

tering cross section of théS® ground state of H, which
~ . _ o shows indeed no structuf&0,11]. Instead, one would have
mum of W occurs atp=108° for H.2 and {6297 fo_r to scatter from the H 3P® state, which is, however, meta-
He™. The slightly larger values obtained @ in compari-  gapie by itself and may radiatively decay via a dipole al-
Son to ¢may reflect that only the positions of two electrons |5\ved transition to the @%(2p)* 3P° state, which is un-
have been “fixed,” whereas the third one may adapt to theilsiaple with respect to electron emission. It may be easier to
positions. Thus, the optimal angléy.x between the two gpserve the analogous dianionic state of the boron atom.
GTOsx; andx; is somewhat larger thag ., in the analy-  Apart from the increased nuclear charge, which is counter-
sis employing¥(®) and the distribution ove is much balanced by the 4 and X electrons, the B~ 4S°
broader than that ovep. (1s)?(2s)?(2p)* state perfectly resembles the investigated
In order to plot the resulting one-particle functich(® H2~ resonance state. In this case the target in a potential
the position vectorR; and R, have been defined by the €lectron scattering experiment is the bound electronic ground
Cartesian coordinatesc0,+z) fixing two electrons in the State of the B anion. _
x-z plane above and below they plane accommodating the | N€ €xistence of a m_etas_:tablezH state has been ratio-
proton(Fig. 7). Given this geometrical arrangement the func-nalized by comparing it with molecular dianions of the

27 . 3 —
tion (), which describes the third electron, consists essenAx3 type and a series ofS° (np°) states of the He

tially of p, functions[recall that the CI vector is dominated anion. Furthermore, a system of three equivalent electrons

b A fi i F le. if th and a nucleus of chargéwas studied in the finite-dimension
y (_n P PyN P2) C(Olr; \gura iong or exampie, 11 the 18 Jimit. From the trends observed for these analogous systems
basis set is uset'’ is an exclusive combination ab,

i ' ) the picture of an increased electron-nucleus-electron angle
orbitals, whereas for thesi8p5d basis set there are in ad- emerged. For ag®) electronic configuration one would ex-
dition d,, contributions tow (™). Thus, in this specific one- pect an interelectronic angle of 90°. However, the more dif-
particle picture one may think of the third electron to occupyfuse the different species get, the further this angle is opened
a p orbital, which polarizes according to the positions of theand tends to a limit of 120°. This limiting value is associated
other two electrons. This situation is displayed in Fig. 7.to the classical minimal energy configuration of three
Here the absolute value &) is shown; however, both the equivalent negative charges fixed at a common radial dis-
real and imaginary parts give essentially the same picture. Itance from a positively charged center.

this representation the nature of the nodal plane mentioned We then have substantiated this picture by analyzing the
above is quite obvious. The plane defined by the nucleus ancbmplex wave function of the resonance state itself. Two
any two electrons corresponds to the nodal plane of the paverlap-with-a-model function analysis schemes were ap-
larizedp orbital representing the third electron. Thus, in caseplied. Loosely speaking, on the one hand, the contribution of
of the (2p%)#S° state the three electrons and the nucleus cam certain ammonialike geometrical configuration of the three
never adopt a truly planar configuration analogous to thoselectrons was considered, and, on the other hand, the prob-
of the AX3?~ molecular dianions. ability amplitude of one electron was calculated keeping the
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other two electrons at “fixed” positions. The first analysis nucleus represents a nodal plane for the third electron.
scheme revealed that one may in fact think of {88 states  Clearly, both of these ways to visualize the Hresonance

of H2~ and He in terms of an ammonialik€,, configu-  state are only caricatures of this highly correlated system.
ration of the electrons, and the associated electron-nucleustowever, they provide means to illuminate the essential
electron angle is indeed opened to 99° forHend 104° for  physical effects that make the existence of this short-lived
H?~. The second scheme exhibited another way to rationalstate possible.

ize these stabilizing correlation effects. The three electrons

may be thought of as occupyingorbitals that polarize ac- ACKNOWLEDGMENTS
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