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Evidence for a metastable state of the fundamental dianion H22

T. Sommerfeld, U. V. Riss, H.-D. Meyer, and L. S. Cederbaum
Theoretische Chemie, Physikalisch-Chemisches Institut, Universita¨t Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germa

~Received 7 November 1996!

A resonance state with three equivalent electrons and one proton has been identified. Large-scale calcula-
tions have been performed using the complex-rotation technique, and the results indicate that the investigated
4So state of H22 is strongly correlated. The findings are rationalized by comparing with bound doubly charged
anions, isoelectronic states of the Li atom, and calculations in the infinite-dimension limit. In addition, the
emerging picture is sustained by an analysis of the complex-rotated wave function.@S1050-2947~97!06803-0#

PACS number~s!: 31.25.2v, 32.70.Fw, 32.80.Dz
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I. INTRODUCTION

After an interval of 15 years, we have seen a revival
interest in the prototype dianion H22. Results obtained in the
early 1970s have been questioned and demonstrated t
flawed, and new questions have emerged from noval c
texts. Let us briefly outline these two phases of H22 inves-
tigations and shed light on the different perspectives on
fundamental system.

On the one hand, the H22 system was studied from a
electron scattering point of view. The collision proce
e1H2→H1e1e was examined and the observation of tw
pronounced structures in the cross section was interprete
the formation of two metastable H22 states@1–3#. The ex-
perimental findings were supported by stabilization calcu
tions, which determined two2Po resonance states at rough
the energies observed@4,5#. However, the resonances we
detected at energies slightly above the threshold for comp
breakup of the system into a proton and three free elect
and therefore contradict Simon’s theorem@6,7#. Simon
showed that in any many-particle system experiencing o
Coulombic forces, resonances cannot exist above the thr
old for complete disintegration of the system. The existe
of metastable2Po H22 states was first questioned in 197
@8,9# and almost 20 years later, in 1994, the results of R
@4# and@5# were shown to be most probably artifacts of a t
small basis set@7#. Furthermore, in a new, high-resolutio
measurement of the electron-H2 scattering cross section n
structure related to the existence of short-lived H22 states
was observed@10,11#. One may conclude that there are n
H22 resonances above the triple-escape threshold and
there are in fact no indications for metastable doublet st
of H22.

On the other hand, H22 was investigated from a ‘‘bound
state’’ perspective, emphasizing the possible existence
H22 states stable or metastable with respect to autodet
ment. Contemporarily with the firste-H2 scattering experi-
ments it was proved that a proton cannot permanently b
three electrons@12#, a theorem that later was generalized
Lieb @13#. Furthermore, in 1978 two independent hig
qualityab inito investigations showed that H22 possesses no
excited bound state, i.e., no state that is bound with respe
the correspondingly excited H2 ion and a free election
@14,15#. Thus, if there is any metastable state of H22, it has
551050-2947/97/55~3!/1903~8!/$10.00
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to be a shape or core excited shape resonance, which
cally show lifetimes in the range of 10214–10216 s.

Recently, the latter perspective has attracted consider
attention in the context of free molecular dianions. Only
cent experimental and theoretical studies have defini
shown that in spite of the large Coulomb repulsion sm
dianions may exist as isolated entities. The fundame
question, ‘‘which is the smallest molecular or atomic syste
that can bind two excess electrons?’’ and the properties
allow small molecular species to form stable dianions ha
drawn substantial interest@16,17#. From this more global
point of view a metastable state of H22 is especially attrac-
tive, since it may contribute to a principal understanding
these delicate systems. Previously@18# we have presented
evidence that such a state does indeed exist and rationa
its structure by comparison with molecular dianions and c
culations in the large dimension limit. In the present comm
nication we will describe the theoretical techniques e
ployed in far more detail and discuss our numerical res
~Secs. II and III!. In Sec. IV we will analyze the electroni
structure of the metastable H22 state and compare it with th
corresponding bound state of He2. Section V constitutes a
summary.

II. TECHNICAL DETAILS

In the first part of this section we would like to survey th
complex-rotation~CR! method@19–24#, which has been em
ployed to calculate the energy and the lifetime of the inv
tigated resonance state. In the second part we will desc
the specific numerical approach in more detail. In the C
method the set of electronic coordinates$r % of the Hamil-
tonian is simultaneously rotated into the complex plane, t
is, Ĥ($r %)→Ĥ($eiur %)[Ĥ(u). Note that in contrast toĤ the
rotated HamiltonianĤ(u) is complex symmetric andnot
Hermitian. Despite that, the bound states remain unchan
i.e., the bound states ofĤ(u) have the same~real! energies
as those ofĤ. However, the energies of the unbound sta
are rotated into the complex energy plane. The continu
states ofĤ(u) lie on rays, where each ray is associated w
a scattering threshold and makes an angle of22u with the
real energy axis. If resonance states have been uncovere
the rotation of the continuum rays, they appear with discr
complex eigenvalues
1903 © 1997 The American Physical Society
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Eres5E2 iG/2, ~2.1!

whereE is the position and 1/G is the lifetime of the reso-
nance. Furthermore, the wave functions corresponding to
covered resonance states vanish as any of the electroni
ordinates tends to infinity, such that the resonance stat
well as the bound states can be represented by square
grable (L2) functions. Thus, the complex rotation allows
to treat resonance states on the same footing as bound s
both can be expanded in a standardL2 basis set, and the
available vast quantum chemical technology may be appl

The price one has to pay for theL2 description of a reso-
nance wave function lies primarily in the loss of hermiticit
associated to the complex energies of resonance states
necessary to introduce a bilinear form, thec product:

~CuF![E CFdt, ~2.2!

where in contrast to the Hermitian product^CuF& the left-
hand functionC is not taken to be complex conjugated in th
integral @25#. The eigenvectors ofĤ(u) are thenc normal-
izable, and in a practical calculation one has to work w
complex vectors. There are a number of further drawback
the CR technique related to the oscillatory behavior of c
orbitals introduced by the rotation and the application to m
lecular systems~see, e.g., the discussion in@26#!, but these
do not apply to the H22 state investigated in the prese
context.

For an atomic system the CR technique may be applie
a straightforward manner, sincee2 iu simply factors out the
Coulomb potentials. IfT andV are the real-valued matrice
of the kinetic and potential energies, e.g., in an atom
configuration-interaction~CI! calculation, the complex sym
metric matrix of the rotated HamiltonianĤ(u) is given by

H~u!5e22iuT1e2 iuV. ~2.3!

Instead of working directly withH(u) it is advantageous to
diagonalize the matrix

eiuH~u!5H1~e2 iu21!T, ~2.4!

whereH5T1V is the unrotated Hamilton matrix. In thi
way only the one-particle matrixT, which is extremely
sparse in comparison toV or H, has to be multiplied by a
complex factor depending on the rotation angle. Thus,
matrix times vector operation, which is the bottleneck in a
iterative diagonalization procedure, can be separated
two steps. The first, and time-consuming, step is the mu
plication with the real-valued matrixH and only the second
step, the multiplication with (e2 iu21)T, involves complex
matrix elements. Finally, the obtained eigenvalues are m
tiplied with e2 iu to obtain the eigenvalues ofH(u).

We now turn to the description of the specific one- a
many-particle basis sets we employed in our calculations
the H22 system electron correlation may be expected to
extremely important. Thus, we used the multireferen
configuration-interaction approach~MR-CI! to construct the
three-particle basis functions for the complex rotated Ham
tonian Ĥ(u). The underlying one-particle basis sets we
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built of uncontracted Cartesian Gauss-type orbitals~GTO!.
In the following the values for the GTO exponents are giv
for Z51; for other values ofZ the exponents have bee
scaled withZ2. The smallest basis set comprises 18 ev
scaledp-type functions, where the largest exponent is 1
the scaling factor is 1.6, and consequently the smallest ex
nent is 0.00034. Larger basis sets were constructed by ad
sevens-type and up to five even scaledd-type functions
beginning with an exponent of 0.05 and a scaling factor
2.0. The largest basis set includes two additionalf -type func-
tions with exponents of 0.03 and 0.01. The sevens-type
functions stem from the atomic natural orbital basis set in
MOLCAS program@36# ~plus one diffuse function! and were
added to perform self-consistent field~SCF! and complete
active space self-consistent field~CASSCF! calculations
prior to the MR-CI procedure. The corresponding orbita
were used to build the three-particle basis functions and
be discussed further below.

The energy of the highly correlated3Pe state of H2 pro-
vides a useful criterion to check the quality of our GTO ba
sets, since the full configuration-interation result is read
obtained. Employing the 7s18p5d basis this energy is
20.12525 a.u., only 5031026 Hartree above the result from
@14# (6p4d Slater-type orbitals basis set with state-spec
optimized exponents!, and 10031026 Hartree above Drake’s
presumably exact result@27#. Another check for the basis se
is provided by a second nonlinear scaling parametera. In-
stead of usingeiu one scales the electronic coordinates w
aeiu @25# and in a calculation employing a finite basis s
both parametersu anda have to be optimized~see discus-
sion in the next section!. The parametera effectively scales
the exponents of the basis set and the computeda trajecto-
ries show that our results depend only very weakly ona
~with aopt'1.0). Thus, our one-particle basis set perform
satisfactorily.

The three-particle configuration space for the (2p3)4So

state was then generated by all single and double excitat
relative to a set of 18 (np3)-type reference configurations
By this means a full-CI ~FCI! expansion within the
p-orbital space is obtained and all excitations of one or t
electrons into thes, d, or f orbitals are taken into accoun
Since we are using FCI or nearly FCI expansions for
18p or larger basis sets, respectively, in principle the und
lying one-particle orbitals used to construct the configurat
space should be irrelevant. However, the band Lanczos
agonalization of the Hamilton matrix is an iterative proc
dure and the convergence of this iteration does depend on
space spanned by the start vectors. In our calculations
start vectors were the 18 Cartesian vectors representing
18 reference configurations, and thus, the choice of orbi
has a major influence on the iteration. Several sets of s
consistent field~SCF! orbitals have been used and two se
turned out to yield a far better convergence in the Lanc
procedure than any other we tried. These were, on the
hand, the SCF orbitals of H (1s1), and on the other hand
orbitals originating from a CASSCF calculation for the4So

state of He2 ~three electrons in nine active orbitals!.
TheMOLCAS package of programs@36# has been used fo

the SCF and CASSCF calculations, and theMRDCI program
of Engels, Pless, and Suter@28# has been employed to com
pute the matrixH. Subsequently, the matrix (e2 iu21)T has
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55 1905EVIDENCE FOR A METASTABLE STATE OF THE . . .
been constructed and the spectrum ofeiuH(u) has been com-
puted with a band-Lanczos program adapted to the cas
complex symmetric matrices@29–31#.

III. NUMERICAL RESULTS

Before we study the energy and lifetime of th
(2p3)4So state, let us briefly discuss the consequences
expandingĤ(u) in a finite basis. Using a complete, infinit
basis set the complex resonances energyEres is independent
of the rotation angleu once it has been uncovered. Howev
this is not the case if finite basis sets are employed. In p
tical CR calculations it has been observed that if the rota
angleu is increased the resonance eigenvalue rotates tow
the resonance position, slows down, and then moves rap
away. In other words, the resonance energyEres is a function
of u, but shows stationary behavior near a particular va
uopt. Clearly, for this value ofu the given finite basis se
describes the resonance state in an optimal way and the
sociatedEres is the best value for the resonance energy. Th
one has to compute the complex spectrum ofĤ(u) for sev-
eral rotation angles and to investigate the trajectories of
eigenvalues. As an example in Fig. 1 theu trajectories of the
4So H22 resonance state and five typical other states
shown in the range 0°<u<42° with steps of 2°. The reso
nance eigenvalue shows a pronounced stability foru>30°
~the corresponding sevenEres values can hardly be distin
guished on the energy scales of Fig. 1! whereas the typica

FIG. 1. In the upper panel the eigenvalue trajectories of
resonance and five typical other states in the complex energy p
are shown for rotation angles 0°<u<42° in steps of 2°. In the
lower panel the corresponding velocities of the trajectories of
first and third continuum and of the resonance state are displa
The 7s18p5d basis set has been used.
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continuum eigenvalues rotate withu. This behavior becomes
even more evident if the velocitiesudE/duu of the different
trajectories are considered. Whereas typical continuum
genvalues show a ‘‘constant’’ velocity, the velocity of th
resonance eigenvalue decreases dramatically whenuopt is ap-
proached~Fig. 1!. The influence of the basis set on this st
bilization behavior of the resonance eigenvalue will be d
cussed later.

In the remainder of this section we will regard the en
gies ~and lifetimes! of the three states (2p1)2Po, (2p2)3Pe,
and (2p3)4So as functions of the nuclear chargeZ and, in
particular, discuss the development of these states when
nuclear charge is decreased fromZ52 ~He-He2) to Z51
~H2-H22). For Z52 the (2p2)3Pe He state is much lower
in energy than the corresponding2Pe He1 cation. In con-
trast, forZ51 it has been shown that the3Pe state of H2 is
just 0.00035 a.u.@27# below the 2Po state of H. These
changes of energy involved in proceeding fromZ52 to
Z51 have been displayed in Fig. 2. The continuous l
represents the energy of the (2p1)2Po state, which simply
equals2Z2/8, and the dashed line shows the energy of
(2p2)3Pe state obtained at the FCI level of theory using t
18p basis set. Clearly, the two energies approach each o
and forZ51 they become virtually equal.

The energy of the three electron (2p3)4So state is repre-
sented by the dotted curve. This state is bound with resp
to electron loss for He2, but clearly unbound for H22 @15#.
Consequently, in going fromZ52 to Z51 its energy has to
cross the energies of the two former states and turn in
resonance. For those values ofZ, where the 4So state is
unstable to autodetachment, the real part of its energ
shown. As can be seen in Fig. 2, the crossing with the tw
electron 3Pe state occurs very close to He. If the nucle
charge is decreased from its initial value of 2 the4So state
becomes rapidly unstable with respect to electron loss
moves into the (2p2ep) continuum. AtZ'1.4 the channel
to the (2p1epe8p) continuum opens; i.e., the (2p3) 4So

state becomes unstable with respect to the loss of two e
trons. Nevertheless, forZ51 the 4So resonance state stil
shows a negative energy of20.063 a.u.~FCI-18p); i.e., the
system is stable with respect to complete breakup into
nucleus and three free electrons. Simon’s theorem is th
fore not violated. Using larger basis sets that contain fu
tions of higher angular momentum the resonance position
Z51 is even decreased to20.071 a.u.~MR-CI–7s18p5d)

e
ne

e
d.

FIG. 2. Total energy of three different electronic states d
cussed in the text. Continuous line: one-electron (2p1)2Po state;
dashed line: two-electron (2p2)3Pe state; dotted line, three-electro
(2p3)4So state. For the latter state the real part of the comp
energy is shown.
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and 20.072 a.u.~MR-CI–7s18p5d2 f ), respectively, i.e.,
larger basis sets stabilize the H22 resonance state.

We now turn to the associated lifetime of the (2p3) 4So

state. Our results for the imaginary part of the resona
energy are shown in Fig. 3. At first glance, surprisingly, t
resonance width, in contrast to the resonance position, is
a smooth function ofZ. However, ‘‘cusps’’ in the lifetime
are to be expected, whenever a new channel opens. W
tribute the cusps in our curves betweenZ51.4 andZ51.3 to
the opening of the (2p1epe8p) two-particle breakup chan
nel. Furthermore, we observe again that in going from
18p to a larger basis set the4So resonance state is stabilize
Firstly, for a particular value ofZ the resonance width is
reduced, if functions of higher angular momentum are ad
to the basis set. For example, forZ51 the width falls from
0.043 a.u. for the 18p basis to 0.034 a.u. for the 7s18p5d
and 0.032 a.u. for the 7s18p5d2 f basis set. Secondly, th
cusp in the curve displaying the resonance width is shif
by about 0.1 a.u. to lowerZ, if the larger basis is used. Thi
indicates a later crossing of the resonanceZ trajectory with
that of the (2p2)3Pe state. Thus, if the basis set is enlarge
the stabilization of the4So resonance state is reflected in tw
respects. On the one hand, the resonance position is low
i.e., H22 is stabilized with respect to the3Pe state of H2,
and, on the other hand, the lifetime of the4So H22 state is
increased. We conclude that both a larger one-particle b
set including basis functions of even higher angular mom
tum and a larger MR-CI space will tend to stabilize furth
the H22 resonance state.

Let us briefly comment on the dependency of our res
on the number ofd-type polarization functions in the bas
set. Whereas the real part of the complex energy needs a
four additionald-type functions to converge, the lifetime va
ues depend only weakly on the particular number ofd- or
f -type functions. One function seems to be sufficient p
vided that the corresponding exponent has an approp
value. However, if four or fived-type functions are used, th
stationary behavior of theu trajectory of the resonance sta
is far more pronounced. Clearly, the polarization basis
has to provide a certain flexibility to describe the resona
wave function over an appreciableu range. Consequently, i
yields a greater stability of the complex eigenvalue with
spect to the rotation angle.

As our final result we predict the existence of
(2p3)4So resonance state of H22 with a resonance position
of about 1.4 eV above the (2p2)3Pe state of H2 ~i.e., 12.4

FIG. 3. The imaginary part of the complex energy of t
(2p3)4So state is shown. The curves give the results for differ
basis sets. Squares: 18p basis; diamonds: 7s18p5d basis; triangle:
7s18p5d2 f basis.
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eV above the1Se ground state of H2) and a width of 1.7 eV
corresponding to a lifetime of 3.8310216 s. Note, however,
that the 4So state would not be seen in electron scatter
from the 1Se ground state of H2.

IV. DISCUSSION

Having established a4So resonance state of the H22 di-
anion, this section is concerned with the interpretation of
findings. In a previous communication we have sugges
rationalizing the stability of the H22 system in terms of an
increased average angle between the electrons@18#. This pic-
ture is based on the analogy to molecular dianions of
AX3

22 type, whereA is an alkali metal andX is fluorine or
chlorine. Here we briefly repeat our argument. TheAX3

22

dianions may be thought of as threeX2 anions bound to a
A1 cation @32#, i.e., to consist of one positively and thre
negatively charged particles. In this way they resemble
H22 system, but, in contrast to H22, the short-range part o
the potential is dominated by the Born repulsion of t
atomic cores. TheAX3

22 species themselves are stable w
respect to electron autodetachment and show a very b
barrier to loss of anX2 ion. Thus, they represent a long-live
resonance state of the four-particle systemA1(X2)3 and the
local stability of the composite system can be rationalized
electrostatic terms: in the vicinity of theD3h equilibrium
geometry the Coulombic attraction between the centralA1

cation and theX2 ligands overcompensates the Coulom
repulsion between the threeX2 ions and a stable dianion i
formed. An analogous effect may be conceivable for
4So H22 state, if the electronic motion is correlated is su
a way as to maintain an approximately triangular configu
tion around the nucleus.

In @18# we presented further evidence for this interpre
tion. On the one hand, we analyzed the electron-nucle
electron anglew of a three-electron atom in the large dime
sion limit, where the electrons occupy fixed positions
space. For large nuclear chargesZ the anglew is found to be
close to 90°, but, ifZ is decreased the system gets mo
diffuse andw grows to about 103° forZ51. On the other
hand, a series of (np3) 4So states of the Li atoms has bee
studied in the literature@33,34#. For n52 an interelectronic
angle of 90° was found, and this angle tends to 120° in
limit of n→`. Thus, in both cases the same trend was
served. The compact systems (Z@1, n52) show electron-
nucleus-electron angles close to 90°, and the more diff
the system gets, ifn in increased orZ is decreased, respec
tively, the further this angle is enlarged. Thus, a situation
analogy to theAX3

22 dianions is approached, and the pi
ture derived from this molecular system is indeed sustain

In the remainder of this section we will examine the ele
trostatic interpretation more directly by investigating t
complex wave function of the resonance state. When we
gan this study, we have computed the CI wave functions
the 4So states of H22 and He2, but it was by no means clea
how to extract the relevant information. This wave functi
is a complicated, nine-dimensional function, and in order
draw conclusions one has to reduce this complexity with
losing the important information to averaging. Usually, a
vector can be analyzed by directly inspecting its domin

t
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components. However, here the CI vector contains a v
large number of (npxn8pyn9pz) configurations of approxi-
mately equal weights. These configurations reveal noth
about the angular correlation, since a basis set consistin
p-type functions only yields an average interelectronic an
of 90° ~see below!. Even a closer examination of thed con-
tributions does not provide any readily comprehensible inf
mation. Eventually, we decided to calculate overlaps w
model functions of three and two electrons, respective
Loosely speaking, we were raising the questions ‘‘how la
is the contribution of a certain geometrical configuration
the electrons to the wave function?’’ and ‘‘what is the thi
electron doing if we fix the position of the other two?’’ In th
following paragraphs we will describe these model functio
used to interpret the CI wave function and discuss the res

Let us begin with the former question. We intend to d
scribe a geometrical configuration of three equivalent e
trons that have an equal distanceR from the nucleus and a
fixed electron-nucleus-electron anglef, i.e., describing a
geometrical situation analogous to the ammonia molecule
corresponding three-electron model functionC (3)(R,f) was
constructed as the antisymmetric product of three off-ce
s-type GTO’s,

C~3!5NA~x1x2x3!, x i~rW i !5exp@2a~RW i2rW i !
2#, ~4.1!

whereN is a normalization constant,A is the antisymmetriz-
ing operator, anduRW i u5R. The set$RW i% was chosen in accord
with C3v symmetry forf,120°, and for the limiting angle
f5120° the system is planar and the symmetry isD3h . The
larger the exponenta is chosen, the more strongly localize
are the three electrons described byC (3). However,a cannot
be chosen arbitrarily large, since the GTO’sx i have to be
expressed in our finite nucleus-centered basis set. In our
culations a value ofa510 a.u. turned out to yield reasonab
results and the data presented in the following have b
obtained using this value. Fora510 our basis set is stil
capable to represent thex i . The overlap of our model func
tion C (3) with the CI vector shows appreciable values on
for R@1/Aa. This overlap„C (3)(R,f)uCCI($rW i%)… then rep-
resents the weight of the specific geometrical structure
fined byR andf and we can try to identify a ‘‘dominant’’
configuration.

At this point let us emphasize that we consider a compl
rotated wave function. The overlap with the real test funct
C (3) thus depends on the complex-rotation angleu. The
complex-rotated wave function describes the resonant pa
the wave function much clearer than the nonrotated one.
latter is dominated by the exponentially increasing asym
totic part describing the here irrelevant aspect of H2 plus a
free electron. It is thus meaningful to investigate t
complex-rotated wave function rather than the unrotated
~which is not available anyway!. The angular distribution
which is our prime interest, depends very weakly on
complex-rotation angleu as soon as the resonance is unco
ered. The radial distribution may depend more strongly
the rotation angleu but we even expect the radial distribu
tions discussed below to be very meaningful, in particu
their change upon enlargement of the basis set. To bac
our arguments we applied this test function overlap pro
ry
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dure to the real and complex-rotated wave functions of
bound (2p2)3Pe state of H2. The absolute values of thes
overlaps turned out to be virtually independent of the ro
tion angleu.

Let us return to the overlap of the CI vector with o
model functionC (3). In Fig. 4 the weighted squared absolu
value of the overlapW,

W~R,f!5R3z~C~3!uCCI!2z, ~4.2!

is shown for the4So states of H22 (18p and 7s18p5d basis!
and He2 (7s18p5d basis!. The weight factorR3 appearing
in the equation above takes into account the total rota
~weight R2) and internal rotation~weight R) of a given
(R,f) configuration. The distributionsW of both systems
H22 and He2 look roughly the same. Both show a cle
maximum and asymptotically tend to zero in all direction
resembling a slightly distorted Gaussian function. We n
that this maximum ofW in the (R,f) space is a globa
maximum with respect to all nine coordinates$RW i% in C (3).
The angular distribution becomes more evident ifW is inte-
grated overR, providing a distribution function dependin
on the electronic anglef only ~Fig. 5!. These functions of
f show again one well-defined maximum and exhibit widt
of several 10°. Despite the appreciable widths, one m
clearly think in terms of a certain geometrical configurati
of the electrons, which depends on the nuclear charge
the flexibility of the basis set. In the following discussion w

FIG. 4. Schematic representation of the model funct
C (3)(R,f) and the associated values of the weighted over
W(R,f) ~arbitrary units!. The interelectronic anglef is given in
degrees, and the contour lines are evenly spaced, where the
between the innermost and outermost line is 11. Upper left: H22

(18p basis!, lower left: H22 (7s18p5d basis!, and lower right:
He2 (7s18p5d basis!. Note the different scales on theR axis.
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will refer to the angle associated to the maximum of t
integrated distributionW as the anglefmax between two
electrons.

We first examine the basis set dependence offmax. For
the 18p basis setfmax is found to have a value of 90° an
the angular distribution is quite broad. If polarization fun
tions are added to the basis setfmax is increased to abou
104° for the 7s18p5d basis set and the associated width
strongly decreased. This trend is in accord with our interp
tation of the energy and lifetime changes, which occur
going from the 18p to the 7s18p5d basis set@18#. A basis
set consisting ofp-type functions only forces an interelec
tronic angle of 90°, whereas polarization functions allow t
angle to increase. By this means a situation closer to
D3h symmetrical classical minimum of theAX3

22 system
may be achieved, and the dianion is thus stabilized in
respects: its energy is decreased and its lifetime is increa

Secondly, we consider theZ dependence offmax. Apart
from the differentR scales in Fig. 4 the distribution function
for H22 and He2 (7s18p5d basis! look very similar. These
similarities in the overall shape ofW emphasize that both
systems are strongly related, regardless of the fact that
system is bound and the other is unstable to electron los
other words, the difference inZ essentially changes th
length scale, but the overall characteristics of the electro
state are maintained. The differences that occur in proce
ing fromZ52 toZ51 are again more clearly seen in Fig.
For He2 fmax is about 5° smaller than for H22 and the
He2 angular distribution exhibits a larger width. Both tren
reflect the decreased ratio between Coulomb repulsion
attraction forZ52, and parallel the tendencies that ha
been observed in the limit of infinite dimension@18,35# and
for highly exited 4So states of Li @33,34#. As discussed
above, the more diffuse the4So-like systems become, th
further increased is the associated interelectronic an
Note, however, that for the atomic4So species the limiting
angle offmax5120° can only be approached but never
reached, since the symmetry of the4So state implies that
W(f→120°)→0 ~Figs. 4 and 5!. The plane defined by the
nucleus and any two electrons is a nodal plane for the t
electron. We will shed light on this property in the context
the analysis using the two-electron model functionC (2) de-
scribed in the following paragraphs.

FIG. 5. Angular distribution for the overlap of the model fun
tion C (3) with CCI. The weighted absolute value of the squar
overlapW(R,f) has been integrated overR. Continuous line:
H22, 7s18p5d basis; dotted line: He2, 7s18p5d basis; dashed
line: H22, 18p basis.
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We now turn to the latter question: ‘‘What is the thir
electron doing if we fix the position of the other two?’’ If th
positions of two electrons (RW 1 ,RW 2) are fixed, the probability
amplitude to find the third electron is calculated by multipl
ingCCI(rW1 ,rW2 ,rW3) with d(RW 12rW1)d(RW 22rW2) and integrating
over rW1 and rW2. However, since we work with a finite
nuclear-centered GTO basis set, which represents off-ce
d functions very poorly, we represent the localized electro
again by relatively tights-type GTO’s,

x i~rW i !5exp@2a~RW i2rW i !
2# ~4.3!

at the positionsRW 1 andRW 2. The qualitative conclusions ar
again independent ofa as long as 1/Aa is smaller than all
relevant distances. If the resulting one-particle functi
C (1)(rW) is expanded in the given basis set$c i% ~e.g., the
7s18p5d basis!

C~1!~rW !5„NA~x ix2!uCCI
…[( cic i , ~4.4!

the coefficientsci are given as the overlap of the resonan
wave function CCI and the single Slater determina
NA(x ix2c i)

ci5„NA~x1x2c i !uCCI
…. ~4.5!

The absolute value of the normu(C (1)uC (1))u does then rep-
resent a weight of the specific geometrical configurat
(RW 1 ,RW 2), which is fully characterized by two distances an
one angle b. We put the additional constrain
uRW 1u5uRW 2u[R onC (1) and located again the dominant co
figuration in the (R,b) space. In analogy to the discussio
above, the associated angular distributionW̃,

W̃~b!5E dR R3z~C~1!uC~1!!z ~4.6!

is shown in Fig. 6. Using the 18p basis setW̃ peaks at
b590° as expected. For the 7s18p5d basis set the maxi-

FIG. 6. The angular distributionW̃(b) defined in the text is
shown.b is the angle in the two-particle model function, which
schematically displayed in Fig. 7. Continuous line: H22,
7s18p5d basis; dotted line: He2, 7s18p5d basis, dashed line
H22, 18p basis.



s
e

e

e
c
e
d

-
-
py
he
7

.
n
a
p
s
ca
os

tate
ta-
m
ree
ndi-

-

and

the
into
asis
he

et is
the

no
in
cat-

-
al-

r to
om.
ter-

ed
tial
und

-
e

ons
n
ems
ngle
-
if-
ned
ed
ee
dis-

the
wo
ap-
of

ree
rob-
the

de
re

at

55 1909EVIDENCE FOR A METASTABLE STATE OF THE . . .
mum of W̃ occurs atb5108° for H22 and b597° for
He2. The slightly larger values obtained forb in compari-
son tofmax reflect that only the positions of two electron
have been ‘‘fixed,’’ whereas the third one may adapt to th
positions. Thus, the optimal anglebmax between the two
GTOsx1 andx2 is somewhat larger thanfmax in the analy-
sis employingC (3) and the distribution overb is much
broader than that overf.

In order to plot the resulting one-particle functionC (1)

the position vectorsRW 1 and RW 2 have been defined by th
Cartesian coordinates (x,0,6z) fixing two electrons in the
x-z plane above and below thex-y plane accommodating th
proton~Fig. 7!. Given this geometrical arrangement the fun
tion C (1), which describes the third electron, consists ess
tially of py functions@recall that the CI vector is dominate
by (npxn9pyn9pz) configurations#. For example, if the 18p
basis set is usedC (1) is an exclusive combination ofpy
orbitals, whereas for the 7s18p5d basis set there are in ad
dition dxy contributions toC (1). Thus, in this specific one
particle picture one may think of the third electron to occu
a p orbital, which polarizes according to the positions of t
other two electrons. This situation is displayed in Fig.
Here the absolute value ofC (1) is shown; however, both the
real and imaginary parts give essentially the same picture
this representation the nature of the nodal plane mentio
above is quite obvious. The plane defined by the nucleus
any two electrons corresponds to the nodal plane of the
larizedp orbital representing the third electron. Thus, in ca
of the (2p3)4So state the three electrons and the nucleus
never adopt a truly planar configuration analogous to th
of theAX3

22 molecular dianions.

FIG. 7. Schematic representation of the two-particle mo
function discussed in the text. In addition, the absolute squa
value z(C (1)uC (1)) z of C (1) is shown forb5108° andR58.0 a.u.
in the x-y plane. The contour lines are evenly spaced and the r
between the innermost and outermost line is 5.
ir
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V. SUMMARY AND CONCLUSIONS

We have investigated the existence of a resonance s
with three electrons and one proton using the complex ro
tion method in conjunction with the MR-CI approach. Fro
our experience with bound dianions, a state with th
equivalent electrons was expected to be a promising ca
date, and this criterion is fulfilled for the (2p3)4So state. In
our study we have treated the nuclear chargeZ as a param-
eter, since the4So state of He2 is known to be bound. Start
ing from this bound (2p3) state, we have reducedZ and
followed the quartet state as it becomes rapidly unbound
moves into the (2p2ep) continuum. AtZ'1.4 the4So state
becomes even unbound with respect to the (2p1)2Po state,
i.e., the channel to the (2p1epe8p) continuum opens, and
the associated width function exhibits a cusp. ForZ51 the
(2p3) resonance state shows still a negative energy and
system is thus stable with respect to complete breakup
the nucleus and three free electrons. With our largest b
set the H22 resonance position is then 1.4 eV above t
(2p2)3Pe state of H2 and the lifetimes is 3.8310216 s. We
note that the resonance state is stabilized, if the basis s
enlarged, i.e., the resonance position is decreased and
lifetime is increased.

From an experimental point of view there seems to be
easy way to observe the H22 resonance state. Since its sp
symmetry is a quartet it cannot be seen in the electron s
tering cross section of the1Se ground state of H2, which
shows indeed no structure@10,11#. Instead, one would have
to scatter from the H2 3Pe state, which is, however, meta
stable by itself and may radiatively decay via a dipole
lowed transition to the (1s)1(2p)1 3Po state, which is un-
stable with respect to electron emission. It may be easie
observe the analogous dianionic state of the boron at
Apart from the increased nuclear charge, which is coun
balanced by the 1s and 2s electrons, the B22 4So

(1s)2(2s)2(2p)3 state perfectly resembles the investigat
H22 resonance state. In this case the target in a poten
electron scattering experiment is the bound electronic gro
state of the B2 anion.

The existence of a metastable H22 state has been ratio
nalized by comparing it with molecular dianions of th
AX3

22 type and a series of4So (np3) states of the He2

anion. Furthermore, a system of three equivalent electr
and a nucleus of chargeZ was studied in the finite-dimensio
limit. From the trends observed for these analogous syst
the picture of an increased electron-nucleus-electron a
emerged. For a (p3) electronic configuration one would ex
pect an interelectronic angle of 90°. However, the more d
fuse the different species get, the further this angle is ope
and tends to a limit of 120°. This limiting value is associat
to the classical minimal energy configuration of thr
equivalent negative charges fixed at a common radial
tance from a positively charged center.

We then have substantiated this picture by analyzing
complex wave function of the resonance state itself. T
overlap-with-a-model function analysis schemes were
plied. Loosely speaking, on the one hand, the contribution
a certain ammonialike geometrical configuration of the th
electrons was considered, and, on the other hand, the p
ability amplitude of one electron was calculated keeping
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1910 55SOMMERFELD, RISS, MEYER, AND CEDERBAUM
other two electrons at ‘‘fixed’’ positions. The first analys
scheme revealed that one may in fact think of the4So states
of H22 and He2 in terms of an ammonialikeC3v configu-
ration of the electrons, and the associated electron-nucl
electron angle is indeed opened to 99° for He2 and 104° for
H22. The second scheme exhibited another way to ratio
ize these stabilizing correlation effects. The three electr
may be thought of as occupyingp orbitals that polarize ac
cordingly to the positions of the other electrons. In bo
cases the same tendencies, which were derived from
comparison with the analog systems mentioned above, h
been observed. In going to smallerZ values the4So state
gets more diffuse and the configuration gets closer to
120° limit of theAX3

22 cluster dianions. However, from
symmetry analysis it became clear that this limit cannot
reached, since the plane defined by any two electrons an
. A
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l-
s
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e

e
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nucleus represents a nodal plane for the third electr
Clearly, both of these ways to visualize the H22 resonance
state are only caricatures of this highly correlated syste
However, they provide means to illuminate the essen
physical effects that make the existence of this short-liv
state possible.
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