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Line-integral formulas for exchange and correlation potentials separately
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Formalseparateexpressions for the exact exchange and correlation potenfi@adv . are extracted from
the formal line-integral expression of Holas and March for the whole exact exchange-correlation potential.
Relations for the components of are extracted for each order in the electron-electron repulsion coupling
constant, through use of the coupling-constant expansion dfngand Levy for the external potential. The
resultant expressions far, and v, are separately path independent. The difference betwgeand the
Harbola-Sahni approximation to 'm'js, is identified as arising from a first-order contribution to the kinetic-
energy density tensor. It is shown that this small correctiomXHl%, which we express in terms of perturbation
theory, would be preciselgeroif the Kohn-Sham determinant were identical to the Hartree-Fock determinant
for the same density. In other Word,ég'S would equab , if the optimized effective potential determinant were
the same as the Hartree-Fock determinant. This same property is shared by the Slater potential.
[S1050-294@7)06503-7

PACS numbds): 31.15.Ew, 71.10-w, 31.25-v

I. INTRODUCTION and
N-1 N
Recently, Holas and Marchl] have derived a formal Ver S S -1t
line-integral expression for the exact density-functional e S

exchange-correlation potentiaL(C([n];F). For the purpose . :
of its separation into the exchange and correlation contribul N€ €xchange energy associated ‘M{Eh] IS
n(ryn(ry) P

tions, we shall here formulate the Holas-Maidj expres- N 0

sion as a function of the electron-electron repulsion coupling EX[n]=(Wm[A\Ved Win) —A IF1— 1|
constant\, in order to develop relations which are associated
with each order in\. The first-order one yields a formal =AE,[n], (0]

expression for the exact exchange potentiaJ([n];F)=

5Ex[n]/5n(F). This exchange expression identifies the cor- R R ~ R
rection to the Harbola-Sahfi2] approximation tov,. We — ES[n]=(W | T+AVed Wi = (W THAV ¥, (2)
shall show that this correction, which is small in atoms, is
zero if the Hartree-Fock single determinant, for the given

r,d,

while the corresponding correlation energy is

Next, definev’, through

density, were exactly the same as the Kohn-Sham single de- A A D)) o 3
terminant for the same density. These determinants are Oxe( L) =vi([nkn) +ue(Inkin), @
known to be generally quite close in atofi®. where v}([n];r)=6EX[n]/sn(r) and vX([n];r)=S6EA[N]

Higher-order terms in\ yield formal expressions for the /8n(F). From Eq.(1), observe that
corresponding parts of the exact correlation potential, ’
ve([n];r) = SE[n]/on(r). It is especially important to have vﬁ([n];F)z)\vx([n];F) 4
knowledge of a separate exact expressionvfpwhen one
employs an approximation @, which does not include line
integrals or if one attaches an approximation fQrto an A Y= 2 e 3 -
exact optimized effective potentiédDEP calculatio&r% ortoa vellnEn=AvcAlnEnN+A velnlin+---. ()
Hartree-Fock calculation. Consequently, an explicit formalThe essence of the development which follows depends on

and from Galing and Levy[4,5], note that

expression fow is presented here. the fact that) commences isecond orderwhile v} com-
mences irfirst order.

Il. DERIVATION OF SEPARATE EXPRESSIONS We now observe that Eq2.29 of Holas and MarcH1]

FOR v, AND v can be viewed as an expression &gy, with A\=1. In other

words, we view\ as simply determining the square of the
%harge on the electron. It follows that E(R.29, for all
A=0, becomes

In accordance with the constrained-search approach, d
fine \pf\n] as that antisymmetric wave function which yields

the densityn and minimizeg T+ AV,g).

- o - » -
Here, for anN-electron system in atomic units, vy([N]ro)= —f °dr-fr([uh,n,p%p" T ir),  (6)
N
=3 - EV-Z where, using a slightly different notation than in Rfgff] for
= 2! simplicity of exposition,
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Fxc([uA,n,pO,p“,F*];F)=[f([po]:F)—f([p”];F)
+f d3r/[Vur(r,r)][n(r)n(r’)

—2rNr,r )]} ~1(r). (7)

p?n](F,F')sz --.fwfn](r*a,iz,

and

Thy(rr)= N 1)f f\P[n(roro-xg,,..

Hencep ](r r ") is the first-order density matrix of the non-

mteractlng(Kohn -Sham [6] single determman‘s[f[n Fur-

ther, the vector field is now given in terms op*. In other
words,

- J -
za<[p*];r>=2§ Etw([p*];r), (9)

with
92 9

tap([0MTi1) = 2| oy + o | ONE )
A\ r,arg  argar,, frefr=f

(10

To arrive at our first desired result, in Eq®) and (7)
employ relationg3)—(5) and(8), together with

Doy =T+ MG o + NPT g+ (11
and
Pf\n] :P?n] +Npim +7\2P5,[n] +- (12
Couple the linear terms ik to obtain
vx<[n];r*o)=—fr°dr*-f*x, (13)

where

=Ud3r'[V*(lr*—F'l‘1>][n<F>n<F')—2r°<F,F'>]

—2([p§];F)]n1(F) (149

or

[:o) =0 EnTiTo) + [ “aF- 2o )
(14b

XV T Xy, ...

- * - - -
XNy (Tor o' Xs, ...
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In expressiong6) and (7),
uMNr,r ) =Nr=r’| 2, ®
F?n](F,F’) is the diagonal part of the second-order density

matrix of W}, andpfy(r,r') is its first-order density ma-
trix. Here,

,;N)d(fdgzz' . d;(N

Xn)daodo' dX,- - - dxy

The existence of([pi];F) is responsible for the difference
between the exact, andv 'S the Harbola-Sahni approxima-
tion tov,. Hence

oo = [“dF 2 as

is the correction to the Harbola-Sahni expression. Since Eg.
(14) represents an exact expressionifgr its value does not
vary with the particular path chosen for the integration, while

S and its correction in Eq(15), taken separately, may,
depending upon the situation, vary with the integration path.

To determinev!’® one requires knowledge of the off-
dlagonal elements, as a functional of its diagonal density
n(r) of the nonmteractmg first-order density matp&] in
order to construcf . While this information is available
[7,8] to all orders |n a perturbation theory based on a one-
body potentiabS(F), we have not, to date, been able to sum
up the resultant infinite series except in the limit when
v(r) varies slowly in spac§7,8]. In Eq. (12), the term in
pM(r,r"), which is of order 1 i\, is required to calculate the
kinetic tensor correction to}'S. This term, as already noted,
suffices, at least in principle, to eliminate any path depen-
dence from the resultant exchange-only potential in density-
functional theory.

For the purpose of helping to approximate them, terms in
higher orders oh can be coupled. For instance, for the cor-
relation potential, the coupling of second-order terms gives

vc,2<[n];Fo>=—f"’dFFc,Z, (16)

where
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fcz:_z[ J &3 [VIF =1 | TS(F, ) g([n,liro)=»g([n];yro),
A ) ) and[9-12] g also satisfiegd3 n(r)r-Vg([n];r)=0.
+Z([P§];r)]nl(f)- (17 It should prove useful to studyf,,(r,r’) in terms of its

natural orbital expansiofiL3], which is
[Note that v., is [4,5] the functlonal derivative of
lim,_.Ec[n,], where n(Xy,z)=y *n(yx,vy,vz).] For
this reason,fn(r)r chyz([n],r)d3r— . N dM M (P M 20
Thewholecorrelation component} of v}, is obtained by prrr)= Z o (X, 0
subtracting expressioflL3) from expression6). At A\=1,
this gives where thed} are the occupation numbers and fjeare the
natural orbitals. In Eq(20),

vc([n];r*o>=—f;°d?-tc, (18 di=1+Ndig+-o, i<N,
where d*=Ndj s+, i>N,
f’c:i’([po_l_p(i_pl];l?)n—l(r") and fori<N, Xi(I?)=(pi(I?)+)\Li’1(I?)+-~-, where theg;

are the occupied Kohn-Sham orbitalsrof
- We now find an explicit expression fgrS in Egs. (15)
(r) and (19), in terms of Kohn-Sham orbitals. For simplicity of
19 notation, let us assume that everything is real and now ex-
(19 pand‘lf (n] as\If \P[n]+)\‘1f1[n]+)\ Wyt -, where
and where Z[poeri_pl]:Z*[po]Jrg[ pcl:]_Z[pl]. In ex- P n in Eq.(12) |s the transition first-order densny matrix of

pression(19), p andT'! refer to the density matrices at full ¥in] Wy + Wy ¥y etc. From previous studies], we
charge\ =1.[Observe that since both, andv . are exact, it know that¥, ,;, the first-order wave function, is given by
follows that the right-hand sides are path independent in both
expressiong13) and(18).]

fde’r [VIr=r'|~[rr.r)—Tr,r]|n

2 <¢)k|\7ee_ qulq)0>

Vam=" Ex—Ep

ll. REQUIREMENTS FOR p™ AND I'* k=0

Dy, (21

We here list several requirements for approximatilg  where
andI'*. First, path independence is certainly a requisite with
either expressiofil3) or (18). Next, constraints i{nmediately N
follow from the fact that the density gf* andI™ is n and Y
therefore independent ok. Consequently, in expression Vxu E ox([nLiri )+2 f
(19), fd3'[To(r,r")—T(r,r')]=0, and, in expressions
(1) and (12, we note that p%(r,r)=0 and Also, the @, are the single-determinant eigenstates of that
fF-C(F F’)d3 -0, non|nte0raet|ng Kohn-Sham . Hamlltonlatn for  which

' &=V, is the ground-state single determinant. His are

sums of Kohn-Sham orbital energies. It follows that

Ir i_r|

We now observe that previous wof&] on the behavior
of the kinetic energy at very small, which utilizes the fact
that p°(r,r’) is that first-order density matrix which mini-
mizes the kinetic energy at fixedh, dictates that

31928y (FF)Er =0 (or [0S gtgu((pS, i1 =O) i = 3, e 00

Further, the fact[5] that lim, .E[n,]>—= implies, k=0 k=0

by the Ghosh-Parr relatio9], that sz (r r')= X Yo+ Yo, 01, (22)
JITS (rr)|r=r'|"*dr d® . Moreover, the required ' '

uniform scaling property fog in Eqg. (15) is [9,10] where

7k,0(F|F’):NJ’ e f q)k(FO',Xz, e ,XN)CI)O(F’(T,Xz, e ,XN)dO'dXZ' . 'dXN.
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Now, let®, be the energy minimizing OEP single deter-  Finally, in calculations, perhaps one can approximage
minant[14,15 for some Hamiltonian in Eq. (25) for use in thez in Eq. (14). Approximations for
the v, in Eq. (25) might includev® itself, the potentials of
Krieger, Li, and lafratd 18,19 or, even, the Slater potential
o N [20].
H:T+vee+21 v(ry) (23
<
IV. CLOSING REMARKS CONCERNING
and, in expressiofi22), add T+ Ei'“zlu(ﬂ) to Ve and sub- THE CORRELATION POTENTIAL

tract T+Zju(r;) from —V,,. We obtain As implied in the Introduction, knowledge of separate

formal exact expression far, is important when one wishes
to focus upon an approximation far. independently, and
¢ o <q>k||3||c1>0> . ., - one employs the exact OEP foy, or if one wishes to em-
P1m(r.r')= & m[?’k,o(” )+ Yo', n1, ploy one of the highly encouraging approximations dgras
(24) presented, or discussed, for instance, in the works in Refs.
[2] and[17-22.

) i i ) In expression$18) and(19), one would model the corre-
where, in Eq.(24), each®, pertains to a singly excited de- |4(ing second-order density matrinondiagonal as well as
terminant with respect teo, because otherwisgyo van-  giagonal elemenisas a functional of the density to deter-
ishes. Nextjf <Iio is simultaneously the Hartree-FocE jjeter- mine an approximate, as a functional of the densitithe
minant of theH in Egs. (23) and (24), then pi(r.,r’)  componentp$ can be extracted through coordinate scaling
would vanish, because, by Brillouin’s theorem, [5]). The accuracy of this modeled correlating second-order
(®|H|Dy)=0, for allk>0. Consequently;?S would equal  density matrix would be tested by first forming the corre-
vy if ®, were a Hartree-Fock determinafOf course, it  sponding correlation energy functional with it through that
should be noted that we observe that the Slater exchangmupling-constant formula obtaing,23] by combining the
potential[16] would also equab, if ®, were a Hartree-Fock adiabatic connection formu(24,25 with coordinate scaling
determinant, because the Slater poterftial[17] averaged [5] and then by taking the functional derivative of this cor-
Fock approximationAFA)] is invariant to a unitary trans- relation functional. For the modeled correlating second-order
formation among the orbitals of which it is composed. How-density matrix to be accurate, the resultant functional deriva-
ever, the Slater potential does not satisfy the Levy-Perdevive would have to agree closely with the approximation for
viral relation [12] while uXHS does[2]. Incidentally, it has v which is obtained through expressiofis) and(19).
recently been shown by Kleinmah7] that the Slater poten- Finally, the constraints in Secs. Ill and IV of van Leeu-
tial may be obtained as a partial functional derivative of thewen and Baerend26] should be tested on an approximation
Hartree-Fock exchange expressjon. tov([n];r), which is obtained through expressidi$) and

Since the®, in Eq. (22) are singly excited determinants, (19). Also, one could generate an approximationg&p by
it can be shown that it follows that performing a functional integration with the approximate

vc([n];F) by utilizing one of the paths of van Leeuwen and
Baerends[26]. As a necessary requisite for accuracy, the
<¢/|5XHF—U><|QDi> resultant approximation t&. would have to agree closely
—_— with that approximation td&. which is obtained through the
coupling-constant formula described in the previous para-
(25) graph. The present work concerns line integrals for obtaining
an approximation t@., while Ref.(26) concerns line inte-
) grals for obtaining an approximation . from an approxi-
where theg’s are Kohn-Sham orbitals, the's are the cor-  mation tov,.
responding orbital energies, an8i” is the familiar nonlocal
Fock potential, except that it is composed of Kohn-Sham
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