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Line-integral formulas for exchange and correlation potentials separately
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Formalseparateexpressions for the exact exchange and correlation potentialsvx andvc are extracted from
the formal line-integral expression of Holas and March for the whole exact exchange-correlation potential.
Relations for the components ofvc are extracted for each order in the electron-electron repulsion coupling
constant, through use of the coupling-constant expansion of Go¨rling and Levy for the external potential. The
resultant expressions forvc and vx are separately path independent. The difference betweenvx and the
Harbola-Sahni approximation to it,vx

HS, is identified as arising from a first-order contribution to the kinetic-
energy density tensor. It is shown that this small correction tovx

HS, which we express in terms of perturbation
theory, would be preciselyzero if the Kohn-Sham determinant were identical to the Hartree-Fock determinant
for the same density. In other words,vx

HS would equalvx if the optimized effective potential determinant were
the same as the Hartree-Fock determinant. This same property is shared by the Slater potential.
@S1050-2947~97!06503-7#

PACS number~s!: 31.15.Ew, 71.10.2w, 31.25.2v
l
a

ib

lin
te
l

or

is
e
d
a

ia

a

d
s

on

e

I. INTRODUCTION

Recently, Holas and March@1# have derived a forma
line-integral expression for the exact density-function
exchange-correlation potentialvxc(@n#;rW). For the purpose
of its separation into the exchange and correlation contr
tions, we shall here formulate the Holas-March@1# expres-
sion as a function of the electron-electron repulsion coup
constantl, in order to develop relations which are associa
with each order inl. The first-order one yields a forma
expression for the exact exchange potential,vx(@n#;rW)5
dEx@n#/dn(rW). This exchange expression identifies the c
rection to the Harbola-Sahni@2# approximation tovx . We
shall show that this correction, which is small in atoms,
zero if the Hartree-Fock single determinant, for the giv
density, were exactly the same as the Kohn-Sham single
terminant for the same density. These determinants
known to be generally quite close in atoms@3#.

Higher-order terms inl yield formal expressions for the
corresponding parts of the exact correlation potent

vc(@n#;rW)5dEc@n#/dn(rW). It is especially important to have
knowledge of a separate exact expression forvc when one
employs an approximation tovx which does not include line
integrals or if one attaches an approximation forvc to an
exact optimized effective potential~OEP! calculation or to a
Hartree-Fock calculation. Consequently, an explicit form
expression forvc is presented here.

II. DERIVATION OF SEPARATE EXPRESSIONS
FOR vx AND vc

In accordance with the constrained-search approach,
fine C [n]

l as that antisymmetric wave function which yield

the densityn and minimizeŝ T1lV̂ee&.
Here, for anN-electron system in atomic units,
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The exchange energy associated withC [n]
l is

Ex
l@n#[^C [n]

0 ulV̂eeuC [n]
0 &2lE E n~rW1!n~rW2!

urW12rW2u
d3r 1d

3r 2

5lEx@n#, ~1!

while the corresponding correlation energy is

Ec
l@n#5^C [n]

l uT̂1lV̂eeuC [n]
l &2^C [n]

0 uT̂1lV̂eeuC [n]
0 &. ~2!

Next, definevxc
l through

vxc
l ~@n#;rW !5vx

l~@n#;rW !1vc
l~@n#;rW !, ~3!

where vx
l(@n#;rW)5dEx

l@n#/dn(rW) and vc
l(@n#;rW)5dEc

l@n#

/dn(rW). From Eq.~1!, observe that

vx
l~@n#;rW !5lvx~@n#;rW ! ~4!

and from Go¨rling and Levy@4,5#, note that

vc
l~@n#;rW !5l2vc,2~@n#;rW !1l3vc,3~@n#;rW !1•••. ~5!

The essence of the development which follows depends
the fact thatvc

l commences insecond order, while vx
l com-

mences infirst order.
We now observe that Eq.~2.29! of Holas and March@1#

can be viewed as an expression forvxc
l with l51. In other

words, we viewl as simply determining the square of th
charge on the electron. It follows that Eq.~2.29!, for all
l>0, becomes

vxc
l ~@n#;rW0!52 È rW0

drW• fWxc~@ul,n,r0,rl,Gl#;rW !, ~6!

where, using a slightly different notation than in Ref.@1# for
simplicity of exposition,
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fWxc~@ul,n,r0,rl,Gl#;rW !5 H zW~@r0#;rW !2zW~@rl#;rW !

1E d3r 8@¹W ul~rW,rW8!#@n~rW !n~rW8!

22Gl~rW,rW8!#J n21~rW !. ~7!
-

In expressions~6! and ~7!,

ul~rW,rW8!5lurW2rW8u21, ~8!

G [n]
l (rW,rW8) is the diagonal part of the second-order dens

matrix of C [n]
l , andr [n]

l (rW,rW8) is its first-order density ma-
trix. Here,
r [n]
l ~rW,rW8!5NE •••E C [n]

l ~rWs,xW2 , . . . ,xWN!C@n#
l* ~rW8s,xW2 , . . . ,xWN!dsdxW2•••dxWN

and

G [n]
l ~rW,rW8!5

N~N21!

2 E •••E C [n]
l ~rWs,rW8s8,xW3 , . . .xWN!C [n]

l* ~rWs,rW8s8,xW3 , . . . ,xWN!dsds8dxW2•••dxWN .
e
-
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Hencer [n]
0 (rW,rW8) is the first-order density matrix of the non

interacting~Kohn-Sham! @6# single determinantC [n]
0 . Fur-

ther, the vector fieldzW is now given in terms ofrl. In other
words,

za~@rl#;rW !52(
b

]

]r b
tab~@rl#;rW !, ~9!

with

tab~@rl#;rW !5
1

4S ]2

]r a8]r b9
1

]2

]r b8]r a9
D rl~rW8,rW9!U

rW85rW95rW
.

~10!

To arrive at our first desired result, in Eqs.~6! and ~7!
employ relations~3!–~5! and ~8!, together with

G [n]
l 5G [n]

0 1lG1,[n]
c 1l2G2,[n]

c 1••• ~11!

and

r [n]
l 5r [n]

0 1lr1,[n]
c 1l2r2,[n]

c 1•••. ~12!

Couple the linear terms inl to obtain

vx~@n#;rW0!52 È rW0
drW• fWx , ~13!

where

fWx5 H E d3r 8@¹W ~ urW2rW8u21!#@n~rW !n~rW8!22G0~rW,rW8!#

2zW~@r1
c#;rW !J n21~rW ! ~14a!

or

vx~@n#;rW0!5vx
HS~@n#;rW0!1 È rW0

drW•zW~@r1
c#;rW !n21~rW !.

~14b!
The existence ofzW(@r1
c#;rW) is responsible for the differenc

between the exactvx andvx
HS the Harbola-Sahni approxima

tion to vx . Hence

g~@n#;rW0!5 È rW0
drW•zW~@r1

c#;rW !n21~rW ! ~15!

is the correction to the Harbola-Sahni expression. Since
~14! represents an exact expression forvx , its value does not
vary with the particular path chosen for the integration, wh
vx
HS and its correction in Eq.~15!, taken separately, may

depending upon the situation, vary with the integration pa
To determinevx

HS one requires knowledge of the off
diagonal elements, as a functional of its diagonal den
n(rW), of the noninteracting first-order density matrixr [n]

0 in
order to constructG [n]

0 . While this information is available
@7,8# to all orders in a perturbation theory based on a o
body potentialvs(rW), we have not, to date, been able to su
up the resultant infinite series except in the limit wh

vs(rW) varies slowly in space@7,8#. In Eq. ~12!, the term in
rl(rW,rW8), which is of order 1 inl, is required to calculate the
kinetic tensor correction tovx

HS. This term, as already noted
suffices, at least in principle, to eliminate any path dep
dence from the resultant exchange-only potential in dens
functional theory.

For the purpose of helping to approximate them, terms
higher orders ofl can be coupled. For instance, for the co
relation potential, the coupling of second-order terms giv

vc,2~@n#;rW0!52 È rW0
drW• fWc,2 , ~16!

where
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fWc,2522H E d3r 8@¹W urW2rW8u21#G1
c~rW,rW8!

1zW~@r2
c#;rW !J n21~rW !. ~17!

@Note that vc,2 is @4,5# the functional derivative of
limg→`Ec@ng#, where ng(x,y,z)5g3n(gx,gy,gz).] For
this reason,*n(rW)rW•¹W vc,2(@n#;rW)d3r50.

Thewholecorrelation componentvc
l of vxc

l is obtained by
subtracting expression~13! from expression~6!. At l51,
this gives

vc~@n#;rW0!52 È rW0
drW• fWc , ~18!

where

fWc5zW~@r01r1
c2r1#;rW !n21~rW !

12F E d3rW8@¹W urW2rW8u21#@G0~rW,rW8!2G1~rW,rW !#Gn21~rW !

~19!

and where zW@r01r1
c2r1#5zW@r0#1zW@p1

c#2zW@r1#. In ex-
pression~19!, r1 andG1 refer to the density matrices at fu
charge,l51. @Observe that since bothvx andvc are exact, it
follows that the right-hand sides are path independent in b
expressions~13! and ~18!.#

III. REQUIREMENTS FOR rl AND Gl

We here list several requirements for approximatingrl

andGl. First, path independence is certainly a requisite w
either expression~13! or ~18!. Next, constraints immediatel
follow from the fact that the density ofrl andGl is n and
therefore independent ofl. Consequently, in expressio
~19!, *d3r 8@G0(rW,rW8)2G1(rW,rW8)#50, and, in expression
~11! and ~12!, we note that r i

c(rW,rW)50 and

*G i
c(rW,rW8)d3r 850.
We now observe that previous work@5# on the behavior

of the kinetic energy at very smalll, which utilizes the fact
that r0(rW,rW8) is that first-order density matrix which mini
mizes the kinetic energy at fixedn, dictates that

2 1
2 *¹2r1, [n]

c (rW,rW8)d3r50 „or *d3r(btbb(@r1, [n]
c #;rW)50….

Further, the fact @5# that limg→`Ec@ng#.2` implies,
by the Ghosh-Parr relation@9#, that *¹2r2,[n]

c (rW,rW8)5

**G1,[n]
c (rW,rW8)urW2rW8u21d3r d3r 8. Moreover, the required

uniform scaling property forg in Eq. ~15! is @9,10#
th

h

g~@ng#;rW0!5gg~@n#;grW0!,

and @9–12# g also satisfies*d3r n(rW)rW•¹W g(@n#;rW)50.
It should prove useful to studyr [n]

l (rW,rW8) in terms of its
natural orbital expansion@13#, which is

rl~rW,rW8!5(
i
di

lx i
l* ~rW8!x i

l~rW !, ~20!

where thedi
l are the occupation numbers and thex i

l are the
natural orbitals. In Eq.~20!,

di
l511ldi ,11•••, i<N,

di
l5ldi ,11•••, i.N,

and for i<N, x i(rW)5w i(rW)1lLi ,1(rW)1•••, where thew i
are the occupied Kohn-Sham orbitals ofn.

We now find an explicit expression forr i
c in Eqs. ~15!

and ~19!, in terms of Kohn-Sham orbitals. For simplicity o
notation, let us assume that everything is real and now
pandC [n]

l as C [n]
l 5C [n]

0 1lC1,[n]1l2C2,[n]1•••, where
r1,[n]
c in Eq. ~12! is the transition first-order density matrix o

C [n]
0 C1,[n]1C1,[n]C [n]

0 etc. From previous studies@4#, we
know thatC1,[n] , the first-order wave function, is given by

C1,[n]52 (
k.0

^FkuV̂ee2V̂xuuF0&
Ek2E0

Fk , ~21!

where

V̂XU5(
i51

N

vx~@n#;rW i !1(
i51

N E n~rW !

urW i2rWu
d3r .

Also, theFk are the single-determinant eigenstates of t
noninteracting Kohn-Sham Hamiltonian for whic
F05C [n]

0 is the ground-state single determinant. TheE’s are
sums of Kohn-Sham orbital energies. It follows that

r1,[n]
c ~rW,rW8!52 (

k.0

^FkuV̂ee2V̂xuuF0&
~Ek2E0!

3@gk,0~rW,rW8!1gk,0~rW8,rW !#, ~22!

where
gk,0~rWurW8!5NE •••E Fk~rWs,x2 , . . . ,xN!F0~rW8s,x2 , . . . ,xN!dsdx2•••dxN .
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Now, letF0 be the energy minimizing OEP single dete
minant @14,15# for some Hamiltonian

Ĥ5T̂1V̂ee1(
i51

N

v~rW i ! ~23!

and, in expression~22!, add T̂1( i51
N v(rW i) to V̂ee and sub-

tract T̂1( iv(rW i) from 2V̂xu . We obtain

r1,[n]
c ~rW,rW8!52 (

k.0

^FkuĤuF0&
~Ek2E0!

@gk,0~rW,rW8!1gk,0~rW8,rW !#,

~24!

where, in Eq.~24!, eachFk pertains to a singly excited de
terminant with respect toF0, because otherwisegk,0 van-
ishes. Next,if F0 is simultaneously the Hartree-Fock dete
minant of the Ĥ in Eqs. ~23! and ~24!, then r1,[n]

c (rW,rW8)
would vanish, because, by Brillouin’s theorem
^FkuĤuF0&50, for all k.0. Consequently,vx

HSwould equal
vx if F0 were a Hartree-Fock determinant.„Of course, it
should be noted that we observe that the Slater excha
potential@16# would also equalvx if F0 were a Hartree-Fock
determinant, because the Slater potential@or @17# averaged
Fock approximation~AFA!# is invariant to a unitary trans
formation among the orbitals of which it is composed. Ho
ever, the Slater potential does not satisfy the Levy-Perd
viral relation @12# while vx

HS does @2#. Incidentally, it has
recently been shown by Kleinman@17# that the Slater poten
tial may be obtained as a partial functional derivative of
Hartree-Fock exchange expression.…

Since theFk in Eq. ~22! are singly excited determinants
it can be shown that it follows that

r1,[n]
c ~rW,rW8!52 (

l .N
(
i51

N
^w l uv̂x

HF2vxuw i&

~« l 2« i !

3@w l ~rW8!w i~rW !1w l ~rW !w i~rW8!#, ~25!

where thew ’s are Kohn-Sham orbitals, the« ’s are the cor-
responding orbital energies, andv̂HF is the familiar nonlocal
Fock potential, except that it is composed of Kohn-Sh
orbitals.

Consider Ĥl5T̂1lV̂ee1S i51
N vl(@n#;rW i), where vl is

such thatn, the Hartree-Fock density ofĤl , is constrained
to be independent ofl. Then it can be shown through
perturbation analysis of Eq.~22! in Ref. @27# that ther1,@n#

c in
Eqs.~22! and~25!, of the present paper, is the difference,
first order inl, between the Hartree-Fockrl(rW,rW8) of Ĥl

and the Hartree-Fock~or Kohn-Sham! r0(rW,rW8) of Ĥ0 . Note
that r0(rW,rW8) consists of Kohn-Sham orbitals. Hence, t
Harbola-Sahni exchange potentialvx

HS would equal the exac
exchange potentialvx if ]rl/]lul5050, whererl is the
Hartree-Fockrl(rW,rW8).
ge

-
w

e

Finally, in calculations, perhaps one can approximatevx
in Eq. ~25! for use in thez in Eq. ~14!. Approximations for
the vx in Eq. ~25! might includevx

HS itself, the potentials of
Krieger, Li, and Iafrate@18,19# or, even, the Slater potentia
@20#.

IV. CLOSING REMARKS CONCERNING
THE CORRELATION POTENTIAL

As implied in the Introduction, knowledge of aseparate
formal exact expression forvc is important when one wishe
to focus upon an approximation forvc independently, and
one employs the exact OEP forvx , or if one wishes to em-
ploy one of the highly encouraging approximations forvx as
presented, or discussed, for instance, in the works in R
@2# and @17–22#.

In expressions~18! and~19!, one would model the corre
lating second-order density matrix~nondiagonal as well as
diagonal elements! as a functional of the density to dete
mine an approximatevc as a functional of the density~the
componentr1

c can be extracted through coordinate scali
@5#!. The accuracy of this modeled correlating second-or
density matrix would be tested by first forming the corr
sponding correlation energy functional with it through th
coupling-constant formula obtained@5,23# by combining the
adiabatic connection formula@24,25# with coordinate scaling
@5# and then by taking the functional derivative of this co
relation functional. For the modeled correlating second-or
density matrix to be accurate, the resultant functional deri
tive would have to agree closely with the approximation
vc which is obtained through expressions~18! and ~19!.

Finally, the constraints in Secs. III and IV of van Lee
wen and Baerends@26# should be tested on an approximatio
to vc(@n#;rW), which is obtained through expressions~18! and
~19!. Also, one could generate an approximation toEc by
performing a functional integration with the approxima

vc(@n#;rW) by utilizing one of the paths of van Leeuwen an
Baerends@26#. As a necessary requisite for accuracy, t
resultant approximation toEc would have to agree closel
with that approximation toEc which is obtained through the
coupling-constant formula described in the previous pa
graph. The present work concerns line integrals for obtain
an approximation tovc , while Ref. ~26! concerns line inte-
grals for obtaining an approximation toEc from an approxi-
mation tovc .
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