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Radiative corrections in atomic physics in the presence of perturbing potentials
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Energy shifts of radiative corrections in atoms due to perturbing potentials are calculated. The potentials
considered are a constant magnetic field, the magnetic field of a nucleus, and the Coulomb interaction from
other electrons in many-electron atoms.@S1050-2947~97!05303-1#
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The calculation of one-loop radiative corrections
atomic physics has played a central role in quantum elec
dynamics since the first evaluation of the Lamb shift throu
the present. In the case of highly charged ions, the La
shift is enhanced by a factor ofZ4 and can affect energy
shifts at the 1% level. Its evaluation at highZ is complicated
by the need for an exact treatment of the electron propaga
Nevertheless, for the point Coulomb problem extremely
curate calculations have been carried out by Mohr and
laborators@1#. These calculations have been confirmed
less precise methods that can, however, also be applied t
non-Coulomb case@2#. In this paper we wish to extend thes
calculations to include the presence of a perturbing poten
We are particularly interested in the case in which that
tential comes from the magnetic field of a nucleus: this be
on recent experiments on the hyperfine splitting of hydrog
like bismuth@3# and holmium@4#, and also has consequenc
for hydrogen and muonium hyperfine splitting. This proble
has been treated in a recent publication@5#, and we find fair
agreement with that work. We also treat the closely rela
problem of the evaluation ofg factors in hydrogenic ions
This has also been treated by the same group@6#, and we find
fair agreement with their results at highZ. In addition, the
formalism allows one to consider corrections to the nucl
potential arising from other electrons. This approach w
used by Indelicato and Mohr@7# to treat the self-energy o
n52 states of lithiumlike uranium as perturbations from t
Coulomb potential self-energy. Because of the abo
mentioned work on the evaluation of the self-energy in n
Coulomb potentials, the self-energy can also be dire
evaluated, which provides a useful check on the calculat

The paper is organized as follows. In the next section
S-matrix formalism for the calculation is presented. The f
lowing section applies the formalism to the case when
potential arises from other electrons. The case of poten
coming from the nuclear magnetic dipole field and a cons
magnetic field are presented in the following two sectio
and a summary of results and discussion of directions
future research are given in the conclusion.
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I. FORMALISM

A. Perturbation theory

We evaluate energy shifts using Sucher’s@8# symmetrized
form of the Gell-Mann and Low level-shift formula@9#:

DE5 lim
e→0

lim
l→1

i e

2

]

]l
log^vuS~e,l!uv&, ~1!

where

S~e,l!5TFexpS 2 ilE d4xe2eux0uHI~x! D G . ~2!

We work in Furry representation QED with the external fie
~unless otherwise stated! taken to be a point Coulomb poten
tial of chargeZ. The statev represents a single electron
which will usually be in the ground state. For the calcu
tions involving magnetic fields it will be understood to be t
1s state with magnetic quantum number11/2. The interac-
tion Hamiltonian isHI5HI

A1HI
B , where

HI
A5eE d3xc̄~x!gmA

m~x!c~x! ~3!

and

HI
B5E d3xc̄~x!V~x!c~x!. ~4!

HereV(x) represents the external perturbing potential. W
work with three potentials in this work: the potentials
magnetic fields,

V~x!52eg•A~x!, ~5!

with A(x)5m3x/(4puxu3) for the dipole field of the
nucleus andA(x)51/2B3x for a constant magnetic field
and the potential
1857 © 1997 The American Physical Society
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V~x!5U~ uxu!g0 . ~6!

The first potential is of relevance to hyperfine splitting, t
second to the Zeeman effect, and the last to the Lamb sh
ions in which the deviation from the Coulomb potential c
be treated as a perturbation.

In the present calculation we will need the first thr
terms in the expansion ofS(e,l),

S~1!~e,l!5~2 il!E d4xe2eux0u^vuT„:c̄~x!V~x!c~x!:…uv&,

~7!

S~2!~e,l!5
~2 iel!2

2! E d4xE d4ye2e~ ux0u1uy0u!
•^vu

3T„:c̄~x!A” ~x!c~x!::c̄~y!A” ~y!c~y!:…uv&,

~8!

and

S~3!~e,l!5
~2 il!3e2

2! E d4xE d4yE d4z

3e2e~ ux0u1uy0u1uz0u!
•^vu

3T„:c̄~x!A” ~x!c~x!::c̄~y!

3A” ~y!c~y!::c̄~z!V~z!c~z!:…uv&, ~9!

where only terms linear inHI
B are considered inS(3)(e,l).

The first two orders of theSmatrix are readily computed to
be

Se,l
~1!5

22il

e
E~1!~v ! ~10!

and

Se,l
~2!52

il2

e
Svv~ev!. ~11!

HereE(1)(v)5Vvv , where

Vmn[E d3xc̄m~x!V~x!cn~x! ~12!

and

Smn~e![2 ie2E d3xE d3yE d4k

~2p!4
exp@ ik•~x2y!#

k2

3c̄m~x!gmSF~x,y;e2k0!g
mcn~y!. ~13!

We exclude vacuum polarization effects from the pres
calculation. Putting these terms into Eq.~1! leads to the en-
ergy shift

DE~S~1!,S~2!!5E~1!~v !1Svv~ev!1
i

e
@E~1!~v !1Svv~ev!#

3@2E~1!~v !1Svv~ev!#1•••. ~14!
in

t

The divergent third term cancels against other 1/e terms
coming fromS(3) andS(4). For the present calculation, onl
the part that is linear inHI

B , proportional to the cross term
betweenE(1)(v) andSvv(ev), need be considered.

We now turn to the calculation of the energy shift in thi
order. Applying Wick’s theorem toS(3)(e,l) gives three
terms associated with the Feynman diagrams of Fig. 1, wh
we refer to as theside-left ~SL!, vertex (V), andside-right
~SR! diagrams. Because the side-left and side-right diagra
give the same energy shifts, it will be understood from n
on that any expression labeled withS represents the sum o
SL and SR contributions. For the vertex diagram we hav

SV
~3!~e,l!5232pal3e3E d3xE d3yE d3zE d4k

~2p!4

3
exp@ ik•~x2z!#

k21 id E dE1
2p E dE2

2p

3c̄v~x!gmSF~x,y;E1!V~y!SF~y,z;E2!g
mcv~z!

3
1

e21~E12E2!
2

1

e21~E11k02ev!
2

3
1

e21~E21k02ev!
2. ~15!

The denominators involvinge act to emphasize the regio
E15E25ev2k0, so replacing the arguments of the Dira
Coulomb propagators with that value and carrying out
E1 andE2 integrations, we find a contribution to the energ
shift

EV524p iaE d3xE d3yE d3zE d4k

~2p!4

3
exp@ ik•~x2z!#

k21 id
c̄v~x!gmSF~x,y;ev2k0!

3V~y!SF~y,z;ev2k0!g
mcv~z!. ~16!

The side diagrams require a little more care because
contain the canceling 1/e terms mentioned above. Thes
terms are most clearly discussed when a spectral repres
tion is used for the first Dirac-Coulomb propagator in t
expression for the side-right diagram,

FIG. 1. Side left~SL!, vertex (V), and side right~SR! diagrams
calculated in this work. The double line indicates the electr
propagator in the external field, and the wavy line terminated b
cross indicates the additional perturbing potential.
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SSR
~3!5232apal3e3E d3xE d3yE d3zE d4k

~2p!4

3
exp@ ik•~y2z!#

k21 id E dE1
2p E dE2

2p

3c̄v~x!V~x!SF~x,y;E1!gmSF~y,z;E2!g
mcv~z!

3
1

e21~E12ev!
2

1

e21~E12E22k0!
2

3
1

e21~E21k02ev!
2 . ~17!

We write this spectral representation as

SF~x,y;E1!5(
mv

cv,mv
~x!c̄v,mv

~y!

E12ev1 id
1 (

nÞv

cn~x!c̄n~y!

E12en~12 id!
,

~18!

where we have separated out the contribution from magn
substates of the statev. The second term in Eq.~18! can be
handled in the same manner as the vertex, and yields

ESR
A 5 (

nÞv

VvnSnv

ev2en
. ~19!

To analyze the effect of the first term in Eq.~18!, we carry
out a Taylor expansion of the second Dirac-Coulomb pro
gator aboutE25ev2k0,

SF~x,y;E2!5SF~x,y;ev2k0!1~E22ev1k0!

3
]

]E
SF~x,y;E!uE5ev2k0

1•••. ~20!

The leading term in this expansion gives

ESR~1/e!52
3i

2e
E~1!Svv~ev!, ~21!

which when combined with the identical SL term cancels
1/e terms discussed above. The next term in the expan
~20! gives the energy shift, which we will in the following
refer to as thederivativeterm,

ES
B54ipa(

mv
E d3xE d3yE d3zE d3wE d4k

~2p!4

3
exp@ ik•~y2z!#

k21 id
c̄v~x!V~x!cvmv

~x!c̄)vmv
~y!

3gmSF~y,w;ev2k0!g0SF~w,z;ev2k0!g
mcv~z!.

~22!

This can be rewritten if we recognize the integration ovex
as givingVvvmv

and use the fact that the remaining integra
diagonal in magnetic quantum number, so
tic

-

e
on

ES
B54ipaE~1!~v !E d3yE d3zE d3wE d4k

~2p!4

3
exp@ ik•~y2z!#

k21 id
c̄v~y!gmSF~y,w;ev2k0!

3g0SF~w,z;ev2k0!g
mcv~z!. ~23!

The three terms we have derived using theS-matrix formal-
ism can also be derived by directly modifying the self-ener
expression@7#. The vertex term corresponds to modifying th
Dirac-Coulomb propagator to account for the external pot
tial, the derivative term to modifying the energy flowin
through that line, andES

A to modifying the external wave
functions.

B. Treatment of ultraviolet divergences

The expressionsEV andES are both ultraviolet divergent
However, their sum is ultraviolet finite, so that in princip
one might attempt to evaluate that sum directly in coordin
space. We choose instead to use coordinate space onl
ultraviolet finite quantities defined as the difference of the
expressions with terms in which the two Dirac-Coulom
propagators are replaced by free propagators. Thus, con
ering first EV , we rearrange its calculation a
EV5„EV2EV(0,0)…x1EV(0,0)p[EV

s1EV
p , where EV(0,0)

is EV with both propagators replaced by free propagato
and the subscriptx (p) indicates that the calculation is to b
carried out in coordinate~momentum! space. The termEV

s

does not require regularization, butEV(0,0)p does, and we
make this expression finite by working inn542e dimen-
sions. Then the explicit forms for the breakup ofEV are

EV
s524p iaE d3xE d3yE d3zE d4k

~2p!4

3
exp@ ik•~x2z!#

k21 id
@c̄v~x!gmSF~x,y;ev2k0!V~y!

3SF~y,z;ev2k0!

3gmcv~z!2c̄v~x!gmS0~x,y;ev2k0!V~y!

3S0~y,z;ev2k0!g
mcv~z!#, ~24!

and

EV
p524p iaE d3p1E d3p2E dnk

~2p!n
1

k21 id
c̄v~p2!gm

3
1

p22k12m
V~p22p1!

1

p12k12m

3gmcv~p1!, ~25!

where

V~q![E d3y

~2p!3
e2 iy•qV~y!. ~26!

The integration overk can be carried out after introducin
Feynman parameters, and we have
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EV
p5

a

2p SCe 21D E d3p1E d3p2c̄v~p2!V~p22p1!cv~p1!

2
a

4pE rdrE dxE d3p1E d3p2
c̄v~p2!N0cv~p1!

D

2
a

2pE rdrE dxE d3p1E d3p2logS Dm2D c̄v~p2!

3V~p22p1!cv~p1!. ~27!

In the above expressionC5(4p)e/2G(11e/2),Qm[r@xp1
1(12x)p2#m , D[Q21rx(m22p1

2)1r(12x)(m22p2
2),

and N0[gm(p” 22Q” 1m)V(p22p1)(p” 12Q” 1m)gm. We
note that to derive the above expression we performed
nipulations on the Dirac gamma matrices that relied on
potentials considered in this paper being components
four-vector.

The treatment ofES
B follows along the lines of the verte

calculation: the coordinate space part of the calculation
carried out only after the free propagator term is subtrac
and the latter is evaluated in momentum space with dim
sional regularization. The former term is

ES
s54p iaE~1!~v !E d3xE d3yE d3zE d4k

~2p!4

3
exp@ ik•~x2z!#

k21 id
@c̄v~x!gmSF~x,y;ev2k0!

3g0SF~y,z;ev2k0!g
mcv~z!2c̄v~x!

3gmS0~x,y;ev2k0!g0S0~y,z;ev2k0!g
mcv~z!#

~28!

and the latter

ES
p54ipaE~1!~v !E d3pE dnk

~2p!n
1

k21 id
c̄v~p!gm

3
1

p2k2m
g0

1

p2k2m
gmcv~p!. ~29!

The divergent momentum space term can be treated in
same way as the vertex, and there results

ES
p52E~1!~v !

a

2pSCe 21D E d3pc̄v~p!g0cv~p!

1
a

4p
E~1!E rdrE d3p

c̄v~p!N1cv~p!

D1

1
a

2p
E~1!E rdrE d3plogSD1

m2D c̄v~p!g0cv~p!,

~30!

where now D1[r2p21r(m22p2), and N1[gm@p” (12
r)1m#g0@p” (12r)1m#gm.

At this point we observe that the ultraviolet diverge
terms cancel, since the coefficient of the (C/e21) term in
the vertex is the momentum space representation
a-
e
a

is
d,
n-

he

of

E(1)(v)and the corresponding coefficient in the side-left a
side-right graphs is a normalization integral. Thus we are
with a completely ultraviolet-finite calculation. It would o
course be possible to make the graphs individually finite
including the usual renormalization counterterms associa
with vertex and wave function renormalization. Howeve
these counterterms also cancel by Ward’s identity@10#, so as
long as we consider the graphs together the final answer
not require their explicit introduction. While the remainin
integrals are all ultraviolet finite, there is one more source
possible singularities, to which we now turn.

C. Reference-state contributions

Reference-state~RS! contributions can occur when one o
the states in the spectral representation of an electron pr
gator coincides with the external statev. We have already
encountered one kind of reference-state contribution in
analysis of the side graphs, where the term involvingv in the
spectral decomposition of a certain electron propagator le
canceling the 1/e term and the finite residueES

B @see Eq.~18!
and the subsequent discussion#. The contributions we now
wish to discuss are contained withinES

B itself andEV , and
arise when both the electron propagators inside the pho
loop involve the external statev. These contributions are
then obtained by replacing the electron propagators in E
~16! and ~23! with the terms in their spectral decompositio
involving v. ForEV this gives

EV
RS524p ia (

mvmw

E d3xE d3yE d3zE d4k

~2p!4

3
exp@ ik•~x2z!#

k21 id

1

~2k01 id!2
c̄v~x!gmcvmv

~x!

3c̄vmv
~y!V~y!cvmw

~y!c̄vmw
~z!gmcv~z!, ~31!

and forES
B

ES
RS54p iaE~1!~v ! (

mv
E d3yE d3zE d4k

~2p!4

3
exp@ ik•~y2z!#

k21 id

3
1

~2k01 id!2
c̄v~y!gmcvmv

~y!c̄vmv
~z!gmcv~z!.

~32!

Now, if V(x)5U(uxu)g0, the y integration in EV
RS gives

E(1)(v)dmvmw
, andEV

RS andES
RS then cancel each other iden

tically. Thus in this case there is no reference-state contr
tion. However, the cancellation is incomplete when magne
fields are present, as will be shown in the next section. T
lack of cancellation requires particular care, since~in the
Feynman gauge used here! the k0 integrals inEV

RS andES
RS

are separately divergent ask0→0, while thek0 integral of
the sum of the integrands ofEV

RS andES
RS is finite. Thus the

sumEV
RS1ES

RS is finite and well-defined, but its evaluatio
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requires special treatment. Other combinations of state
the propagators ofEV andES

B give finitek0 integrals and can
be handled straightforwardly.

As explained in the next section, we evaluate the integ
over the spatial components ofk analytically, and the inte-
gral over the time componentk0 numerically after a Wick
rotation, k0→ iv. For the reference-state terms, that pro
dure would lead to a divergent integral*dv/v2. To regulate
this divergence, we replacek0→k01D, whereD is a regu-
lator to be taken to 0 at the end of the calculation. Thus,
example, we would treat the integral

2 i E
2`

` dk0
~k02 id!2

f ~k0!, ~33!

by introducing the regulator~which then allows taking
d→0), and then carrying out the Wick rotation, which lea
to

2 ReE
0

`

dv
f ~ iv!

~ iv1D!2
, ~34!

where we have assumed thatf ( iv)5 f (2 iv). Note that for
constant f both integrals vanish, the first by reason
Cauchy’s theorem, and the second identically. It is notew
thy that although no linear reference state singularity
present, logarithmically divergent terms proportional
log(D) are present inEV

RS and ES
RS separately, but cance

when one forms the sum of these two terms. In practice
calculate the sumEV

RS1ES
RS for several values ofD, and take

the limit D→0 by polynomial extrapolation.

D. Angular reduction

The coordinate-space part of the calculation involves c
rying out a partial-wave expansion of the photon propaga
If a spectral decomposition of the electron propagators
made, and we make the Wick rotationk0→ iv, the angle
integrations can then be done for the vertex term. In the c

V~x!5U~ uxu!g0 , ~35!

there results

EV52
a

p (
[ i j ] l

k j5k i

~2l11!
1

2 j v11E0
`

vdv

3
~ev2e i !~ev2e j !2v2

@~ev2e i !
21v2#@~ev2e j !

21v2#
E
0

`

dyRi j ~y!U~y!

3E
0

`

dxE
0

`

dz@Cl
2~kvk i !Rv i~x!Rjv~z!i l~vr,!kl~vr.!

1Cl
2~kvk i !Pv i

l ~x!Pjv
l ~z!i l11~vr,!kl11~vr.!

2Cl
2~2kvk i !Vv i

l ~x!Vjv
l ~z!i l~vr,!kl~vr.!

1Cl
2~kvk i !Qv i

l ~x!Qjv
l ~z!i l21~vr,!kl21~vr.!#. ~36!

We have introduced here the following functions:

Ri j ~r !5gi~r !gj~r !1 f i~r ! f j~r !, ~37!
in

al

-

r

r-
s

e

r-
r.
is

se

Pi j
J ~r !5A J11

2J11S gi~r ! f j~r !2 f i~r !gj~r !

1
k i2k j

J11
@gi~r ! f j~r !1 f i~r !gj~r !# D , ~38!

Vi j
J ~r !5

k i1k j

AJ~J11!
@gi~r ! f j~r !1 f i~r !gj~r !#, ~39!

and

Qi j
J ~r !5A J

2J11S gj~r ! f i~r !2 f j~r !gi~r !

1
k i2k j

J
@gi~r ! f j~r !1 f i~r !gj~r !# D , ~40!

whereg(r ) and f (r ) are the upper and lower radial comp
nents of the Dirac wave function,

c~r !5
1

r S ig~r ! xkm~V!

f ~r ! x2km~V!
D . ~41!

In the above

Cl~ i j ![~21! j i11/2A~2 j i11!~2 j j11!

3S j i j j l

1

2
2
1

2
0D P~ l i ,l j ,l !, ~42!

whereP( l i ,l j ,l ) is unity if the suml i1 l j1 l is even, and
otherwise vanishes. The side graphs can be treated simil
and become

ES5
a

p
E~1!~v !(

[ i ] l
~2l11!

1

2 j v11E0
`

vdv

3
~ev2e i !

22v2

@~ev2e i !
21v2#2

E
0

`

dxE
0

`

dz

3@Cl
2~kvk i !Rv i~x!Riv~z!i l~vr,!kl~vr.!

1Cl
2~kvk i !Pv i

l ~x!Piv
l ~z!i l11~vr,!kl11~vr.!

2Cl
2~2kvk i !Vv i

l ~x!Viv
l ~z!i l~vr,!kl~vr.!

1Cl
2~k ikv!Qv i

l ~x!Qiv
l ~z!i l21~vr,!kl21~vr.!#.

~43!

We note that the reference state singularitiesi5 j5v for
the vertex andi5v for the side graphs can be seen to can
identically once it is noted thatE(1)(v)5*dyRvv(y)U(y).
In the calculation the sum overl was usually carried out up
to l512.

For the magnetic potentials a more complicated expr
sion for the vertex arises. For the nuclear dipole potentia
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EV52
A3a

4pI
EF(

[ i j ] l
~2l11!~21! lC1~2k jk i !H j i j j 1

j v j v l J
3E

0

`

vdv
~ev2e i !~ev2e j !2v2

@~ev2e i !
21v2#@~ev2e j !

21v2#

3E
0

`

dy
1

y2
Vi j
1 ~y!E

0

`

dxE
0

`

dz@Cl~kvk i !Cl~k jkv!

3Rv i~x!Rjv~z!i l~vr,!kl~vr.!1Cl~kvk i !Cl~k jkv!

3Pv i
l ~x!Pjv

l ~z!i l11~vr,!kl11~vr.!2Cl~2kvk i !

3Cl~2k jkv!Vv i
l ~x!Vjv

l ~z!i l~vr,!kl~vr.!

1Cl~kvki !Cl~kjkv!Qv i
l ~x!Qjv

l ~z!i l21~vr,!kl21~vr.!#.

~44!

In the above

I[E
0

`dr

r 2
gv~r ! f v~r !. ~45!

The reference state singularity cancellation is incomplete
this case. It does cancel for thel50 partial wave, as can b
seen upon noting that

C1~1,21!H j v j v 1

j v j v 0J 52
1

A6
, ~46!

but the cancellation does not occur whenl51. We treat this
situation as discussed above, by altering the valence en
with a regulatorD that is extrapolated to zero. The treatme
of the Zeeman effect is similar to the above, basically c
sisting of replacing 1/r 2 with r .

E. Breakup of calculation

We divide the calculation of the vertex and side diagra
into five parts. The most straightforward term to evaluate
ES
A , because it is closely related to the evaluation of

self-energy. Specifically, if we define a perturbed wave fu
tion ṽ by

^ṽu5 (
nÞv

Vvn^nu
ev2en

, ~47!

thenESR
A 5S ṽ v(ev). One needs only to form the perturbe

orbital ṽ on the same grid as the original orbital, and mod
the self-energy code appropriately.

The second two parts of the calculation are t
momentum-space subtraction terms for the vertex and
terms,EV

p andES
p , with the understanding that the cancelin

divergent terms are dropped. These terms are evaluated
the Monte-Carlo integration programVEGAS @11#. The next
part of the calculation is carried out in coordinate space,
consists of the sum ofEV

s andES
s . Finally there is a pole term

which arises from the Wick rotationk0→ iv in the evalua-
tion of the vertex term. A pole on the imaginary axis must
avoided with a semicircle, which gives rise to this ter
While the spectral representation of one propagator collap
in

gy
t
-

s
s
e
-

de

ith

d

e
.
es

to the ground state, the other propagator can be show
produce the same kind of perturbed state described in c
nection withES

A , and one finds the expression

E~pole!5Rea(
mv

E d3xE d3y
1

ux2yu

3@c̄v~x!gmc̃vmv
~x!c̄vmv

~y!gmcv~y!

1c̄v~x!gmc̄vmv
~x!c̃̄vmv

~y!gmcv~y!#. ~48!

This term is related to the pole term part ofES
A , in which the

perturbation acts on the outer wave functions, and in t
case just doubles that term. The situation is somewhat m
complicated when excited states are considered, as wil
discussed below. The total result for the sum of the ver
and side graphs is then written

E~V1SL1SR!5ES
A1~EV

s1ES
s!1EV

p1ES
p1E~pole!.

~49!

II. CALCULATIONS FOR POTENTIALS ARISING
FROM OTHER ELECTRONS

As a first example we consider the self-energy of
ground-state electron in a point Coulomb potential of cha
Z as a perturbation of chargeZ0. In this case

U~x!5
~Z02Z!a

uxu
. ~50!

If we carry out a Taylor expansion of the self-energy in t
form

DESE~Z!5DESE~Z0!1~Z2Z0!R~Z0!1O„~Z2Z0!
2
…,
~51!

we can use the very accurate 1s self-energies presented b
Mohr @1# to determineR(Z0). To test the method we work a
Z0580, whereR(80)50.3599 a.u. As discussed above, t
calculation breaks into five parts, which are shown in Ta
I. We observe the dominance ofSS

A , arguments for which
were presented in@12#. However, to get the four digit agree
ment found, it is clear that the smaller terms coming from
vertex and remaining parts of the side graphs are neces

We next turn to a discussion of the self-energy ofn52
states of lithiumlike uranium. In this case we include fin
nuclear size, using a Fermi distribution withc57.137 35 fm

TABLE I. Contributions to the 1s self-energy atZ580 from the
perturbing potentiala/r : units are a.u.

ES
A 0.2769

EV
s1ES

s 20.1181
EV
P 0.0440

ES
P 20.0113

E ~pole! 0.1685

Total 0.3600
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and t52.3 fm. Following Indelicato and Mohr@7#, we first
account for the presence of the core 1s electrons by intro-
ducing the potential

U~r !52Y0~1s,1s;r ![2aE
0

`

dx@g1s
2 ~x!1 f 1s

2 ~x!#
1

r.
,

~52!

wherer.[max(r ,x). In this case, however, because we a
dealing with excited states, a new contribution enters that
call the double-pole term. This term was discussed in a pa
on helium decay rates@13#, where a more complete discu
sion can be found. Here we simply note that when the s
v is of higher energy than other bound states, there are te
in both the vertex and side graphs in which double poles
present in the complex plane that are encircled when
Wick rotation k0→ iv is carried out. By Cauchy’s theorem
these give rise to derivatives, and the following energy s
results:

E~P2!5Rea (
a,v

@E~1!~v !2E~1!~a!#
]

]k0
E d3xE d3y

3
exp@ ik0ux2zu#

ux2yu
c̄v~x!gmca~x!c̄a~y!

3gmcv~y!uk05ev2ea
. ~53!

The imaginary part of this equation plays a role in shifti
the energy difference entering into the equations for de
rates from its lowest order value to the more accurate fi
order value@13#. We include this term in Table II. We not
that the pole termE(pole) is also modified to include a sum
over all statesa with energy less than or equal to the valen
state, with a factor of 2 if a complete pole is encircled.

In this case, whileES
A is still an important contribution,

the other parts of the calculation play a significant role,
particular for the 2p3/2 state, where the double-pole ter
almost completely accounts for the effect.

Because it is possible to evaluate the self-energy dire
in non-Coulomb potentials, a check on the calculation is
forded by working with the potential formed from the com
bination of the perturbing potential with the Coulomb pote
tial. This potential, when made self-consistent by iterat

TABLE II. Contributions to the 2s1/2, 2p1/2, and 2p3/2 self-
energy atZ592 from the perturbing potential 2Y0(1s,1s;r ): units
are a.u.

State 2s1/2 2p1/2 2p3/2

ES
A 20.0777 20.0243 20.0137

EV
s1ES

s 0.0530 0.0823 0.0972
EV
P 20.0611 20.0581 20.0591

ES
P 0.0811 0.0718 0.0708

E ~pole! 20.0873 20.0958 20.0978
E(P2) 20.0101 20.0131 20.0236

Total 20.1021 20.0372 20.0262

CH 20.1009 20.0358 20.0260
e
e
er
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until the 1s orbital satisfies the Dirac equation with that p
tential, we call a core-Hartree potential; it was used to c
culate the Lamb shift in lithiumlike uranium@14#. At this
high Z, the effect of iteration is very small, and we ca
compare with the above calculation. This is done in the l
row of Table II, and it is seen that good agreement is fou
The results for the 2s and 2p1/2 states are also consiste
with new calculations of Indelicato and Mohr@15#.

III. HYPERFINE SPLITTING CALCULATIONS

It is convenient to work with a stretched sta
(me511/2,mN511/2), which has an energy 1/4 of the fu
hyperfine splitting~hfs!,

E~1!~v !5
a

3

gN
mN

E
0

`dr

r 2
gv~r ! f v~r !5

1

4
EF

~1! . ~54!

There are numerical difficulties associated with the alm
singular small-r behavior that we avoid by using a finit
nucleus in solving the Dirac equation. Note, however, t
we do not use a distribution for magnetism. While this d
tribution is an important effect for the overall hfs, its contr
bution to radiative corrections is of higher order, and we
not include it in the present calculation. Note that our de
nition ofEF includes both the effect of finite nuclear size a
also the Breit correction, since we use relativistic wave fu
tions. Care should be taken in comparing with other calcu
tions that may use different definitions.

We present the results for hyperfine splitting as a multi
of (a/p)EF in Table III. Note that the pole term is no
present in this case. This is because when the regulator th
used to handle reference-state singularities is employed
pole term is moved into theEV

s1ES
s term. This part of the

calculation required particular care, because as the regu
is taken to zero, structure of the integrand at low values
v must be taken account of, which requires a very la
number of Gaussian points.

A particularly interesting aspect of this calculation is
connection with the known low-Z behavior of the self-

TABLE III. Contributions to hfs in units of (a/p)EF .

Z ES
A ES

p EV
p EV

s1ES
s Total

5 20.1046 4.5904 22.2957 22.0154 0.1747
10 20.2609 3.2482 21.3657 21.7812 20.1596
15 20.4340 2.4930 20.9464 21.6007 20.4881
20 20.6150 1.9802 20.7169 21.4583 20.8100
30 20.9910 1.3056 20.5008 21.2525 21.4387
40 21.3857 0.8729 20.4311 21.1171 22.0610
50 21.8067 0.5703 20.4300 21.0281 22.6945
60 22.2686 0.3479 20.4693 20.9712 23.3612
67 22.6232 0.2254 20.5124 20.9460 23.8562
70 22.7873 0.1795 20.5351 20.9381 24.0810
80 23.3869 0.0498 20.6225 20.9227 24.8823
83 23.5866 0.0169 20.6525 20.9210 25.1432
90 24.0910 20.0505 20.7275 20.9214 25.7904
100 24.9300 20.1267 20.8487 20.9305 26.8359
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energy correction to hfs in hydrogenic systems, which
been studied in terms of a power series. At present, the
few terms of the power series are known to be@16,17#

EF5
a

p
EF

~1!H 121S log22
13

4 Dp~Za!1F2
2

3
log2~Za!22

1S 37722
8

3
log2D log~Za!22117.1G~Za!2

1S 52log22
191

32 Dp~Za!3log~Za!221O„~Za!3…J .
~55!

Note that the constant term 17.1 supersedes an earlier c
lation @18#, which included some, but not all, terms of ord
a(Za)3EF and higher. Unfortunately, our present accura
is not sufficient to provide a check on the higher-order term

The present calculation is in fair agreement with an ear
work @5#. For example, atZ583 that work found the resul
25.098, about 1% smaller than our result. While it is u
likely that experiment could distinguish the two numbers
high Z, discrepancies at lowZ will have consequences fo
muonium and hydrogen hyperfine splitting, and will have
be resolved. AtZ510, Ref.@5# finds20.1627, and the dif-
ference with the present result is much greater than our
mated error, which is 3 in the last digit.

IV. ZEEMAN EFFECT CALCULATIONS

The treatment of the last potential considered here, tha
a constant magnetic field, is for the most part identical to
treatment of hyperfine splitting, amounting simply to the
placement of 1/r 2 with r . This replacement strongly sup
presses the effect of the finite size of the nucleus, and
therefore deal with the point nucleus case for these calc
tions. The only part of the calculation that requires a diff
ent treatment is the evaluation ofEV

p . Because the Fourie
transform of the potential is

V~q!52
ie

2
g•~B3¹q!d

3~q!, ~56!

EV
p is evaluated using integration by parts, which involv

several terms, as the derivative can act on either the num
tor, denominator, or wave function. The overalld function,
however, considerably simplifies the numerical evaluation
the resulting integral.

The energy shift of a ground state electron with magne
quantum numberm in a magnetic field is, with the neglect o
recoil corrections,

EZeeman5
ueuB
2m

gem. ~57!

We write theg factor as

ge52F2g11

3
1

a

p
C~2!~Za!1S a

p D 2C~4!~Za!1••• G ,
~58!
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whereg5A12(Za)2 and the functionsC2i(Za) are gener-
alizations of the loop expansion of the electrong22 to in-
clude the effects of atomic binding@19#. The first two terms
in the expansion ofC(2)(Za) are known to be@20#

C~2!~Za!5
1

2
1

~Za!2

12
1•••. ~59!

We tabulateC(2)(Za) in Table IV. We note that at low
Z the momentum space termsEV

p and ES
p account for the

bulk of the Schwinger correction, unlike the case with h
perfine splitting. Again unlike that case, where there is v
strong dependence on the nuclear charge, in this caseC(2)

varies smoothly asZ is increased, and has changed only by
factor of less than 2 atZ5100. A feature of note is the
difficulty of controlling the partial-wave expansion at lo
Z. At the lowestZ treated here,Z55, the partial wave ex-
pansion changes sign atl531, and it was difficult to reliably
extrapolate the sum to infinity. The turnover occurs for low
l at higherZ, and better control was possible there. We p
formed a fit of the function to the form

C~2!~Za!5
1

2
1A~Za!21B~Za!4, ~60!

and foundA to be consistent with 1/12 andB'3.5.

V. CONCLUSIONS

We have developed in this paper a calculational sche
that allows the calculation of potential corrections to on
loop self-energy graphs valid to all orders inZa. An impor-
tant feature of the calculation is the isolation of ultravio
divergent terms via the subtraction of terms in which t
external-field propagators are replaced with free propagat
which significantly improves the numerical evaluation. P
haps the most important application is to hyperfine splitt
at low Z, since there are indications that a perturbative
pansion is inadequate even atZ51 unless carried out to very
high orders. Our present precision, however, is not gr
enough to bear on muonium hyperfine splitting, and the
provement of this precision is the most important extens
of the present work.

TABLE IV. Contributions to the functionC(2)(Za).

Z ES
A ES

p EV
p EV

s1ES
s Total

5 0.00541 4.5883824.09514 0.00148~1! 0.50013~1!

10 0.01695 3.2424122.76245 0.00362 0.50053
15 0.03234 2.4829722.01926 0.00545 0.50150
20 0.05064 1.9660821.52015 0.00659 0.50316
25 0.07131 1.5829121.15542 0.00699 0.50579
30 0.09415 1.2845320.87567 0.00645 0.50946
40 0.14565 0.8475420.47525 0.00286 0.52080
50 0.20493 0.5440320.20623 20.00371 0.53902
60 0.27347 0.3244220.01826 20.01253 0.56710
70 0.35261 0.16256 0.1151820.02260 0.60775
80 0.44614 0.04328 0.2095220.03265 0.66629
90 0.56008 20.04258 0.2741520.04099 0.75066
100 0.70590 20.10043 0.3147220.04528 0.87491
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