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Radiative corrections in atomic physics in the presence of perturbing potentials
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Energy shifts of radiative corrections in atoms due to perturbing potentials are calculated. The potentials
considered are a constant magnetic field, the magnetic field of a nucleus, and the Coulomb interaction from
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The calculation of one-loop radiative corrections in |. FORMALISM
atomic physics has played a central role in quantum electro-
dynamics since the first evaluation of the Lamb shift through . . .
the present. In the case of highly charged ions, the Lamb We evaluate energy shifts using Such¢8ssymmetrized

A. Perturbation theory

shift is enhanced by a factor @&* and can affect energy form of the Gell-Mann and Low level-shift formul®]:
shifts at the 1% level. Its evaluation at highs complicated ic o

by the need for an exact treatment of the electron propagator. AE=lim IimE 5Iog<v|${e,)\)|v>, (1)
Nevertheless, for the point Coulomb problem extremely ac- e—~0n—1

curate calculations have been carried out by Mohr and col-

laborators[1]. These calculations have been confirmed bywhere

less precise methods that can, however, also be applied to the

non—CogIomb c_asE'Z]. In this paper we wish to ex_tend thesg S(eN)=T exp{ _i)‘f d4xe—e|x0H|(X)) . )
calculations to include the presence of a perturbing potential.

We are particularly interested in the case in which that po-

tential comes from the magnetic field of a nucleus: this bear¥Ve work in Furry representation QED with the external field
on recent experiments on the hyperfine splitting of hydrogen(.unIeSS otherwise statpthken to be a point Coulomb poten-
like bismuth[3] and holmiur4], and also has consequencest'al_ of chargeZ. The statev represents a single electron,
for hydrogen and muonium hyperfine splitting. This problem‘hich will usually be in the ground state. For the calcula-
has been treated in a recent publicaih and we find fair tions mvolymg magne_nc fields it will be understooq to be the
agreement with that work. We also treat the closely relatedS Staté With magnetic quantum numbe/2. The interac-
problem of the evaluation of factors in hydrogenic ions. tON Hamiltonian isH,=H{'+H", where

This has also been treated by the same gféiipand we find

fair agreement with their resu_lts at high In addition, the HIA:eJ d3xwx) Y AH(X) (X) 3)
formalism allows one to consider corrections to the nuclear

potential arising from other electrons. This approach was

used by Indelicato and MoHf7] to treat the self-energy of &0

n=2 states of lithiumlike uranium as perturbations from the

CouI(_)mb potential self-energy. Because of the .above- Hlef d3xﬁx)V(x) W(X). (4
mentioned work on the evaluation of the self-energy in non-

Coulomb potentials, the self-energy can also be directly

evaluated, which provides a useful check on the calculationtiere V(x) represents the external perturbing potential. We
The paper is organized as follows. In the next section thavork with three potentials in this work: the potentials of

S-matrix formalism for the calculation is presented. The fol-magnetic fields,

lowing section applies the formalism to the case when the

potential arises from other electrons. The case of potentials V(x)=—ey-A(X), 6)

coming from the nuclear magnetic dipole field and a constant

magnetic field are presented in the following two sectionswith A(x)=uxx/(4m|x|3) for the dipole field of the

and a summary of results and discussion of directions fonucleus andA(x)=1/2BXx for a constant magnetic field,

future research are given in the conclusion. and the potential
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V(x)=U(|x]) yo. (6)
The first potential is of relevance to hyperfine splitting, the

second to the Zeeman effect, and the last to the Lamb shift in
ions in which the deviation from the Coulomb potential can SL v SR
be treated as a perturbation.

In the present calculation we will need the first three FIG. 1. Side left(SL), vertex (), and side righ{SR) diagrams
terms in the expansion @&(e,\), calculated in this work. The double line indicates the electron
propagator in the external field, and the wavy line terminated by a
cross indicates the additional perturbing potential.

SY(eN)=(—i )\)J d4xe‘5|"0‘(v|T(:ﬁx)V(x) P(X))v),

(M The divergent third term cancels against othe¢ fgrms
5 coming fromS®) andS*). For the present calculation, only
SD(eN)= —|e)\) f d®x f ddye <ol *lvol). 3| the part that is linear i, proportional to the cross term
betweenE®(v) and3,,(e,), need be considered.
We now turn to the calculation of the energy shift in third
order. Applying Wick’s theorem tB5®)(e,\) gives three
(8) terms associated with the Feynman diagrams of Fig. 1, which
we refer to as theside-left(SL), vertex(V), andside-right
and (SR) diagrams. Because the side-left and side-right diagrams
302 give the same energy shifts, it will be understood from now
(3)(5,)\)— ')‘) J d%x J d4yJ d%z on that any expression labeled wighrepresents the sum of
SL and SR contributions. For the vertex diagram we have

XTC A P(X): YY) AY) b(y) )] v),

x g~ €(Ixol +lyol +1zoD) . <U|

XT(:%X)A(X)w(x)::ﬂy) 35/3)(6’)\): _3277a)\363f dsxf dsyf dszf
XAY) H(Y): WDV (2) )Y, (9)

(2m)*
exdik-(x—=2)] ( dE; [ dE,

where only terms linear iti? are considered i5®)(e,\). K2+io 2w ) 2w
The first two orders of th& matrix are readily computed to —
be Xy (X) Y Se(XY;EDV(Y) Se(Y, Z ER) v b, (2)
p_Z2 g X - .
SE,)\: € E (U) (10) €2+(E1_E2)2 62+(E1+k0_6v)2
1
and (15

% 2—i_(EZ_l—kO 0)2.

in?
2__ "5
Se,}\ € vv(ev)' (ll)
The denominators involving act to emphasize the region
HereED(p) =V, . where E;=Es,=¢,— kg, SO repla_lcmg the arguments of _the Dirac-
(©)=Ve, Coulomb propagators with that value and carrying out the

_ E, andE, integrations, we find a contribution to the energy

V= | X0V Y0 12 shif

and
— d3 d3 d3 d4k
o [ A% exdike(x—y)] =~4mia y ok
Emn(E)E_|e jd Xf d yf (27T)4 k2
e X )y, S x i, —ko)
— —— (X X,Y; €,
X Un(X) 7, Se(xYie— ko) Y Un(y). (13 575 TuIRLEY:

We exclude vacuum polarization effects from the present XV(Y)Se(Y,z €, ko) ¥ 4,(2). (16)
calculation. Putting these terms into Hd) leads to the en-
ergy shift

The side diagrams require a little more care because they
i contain the canceling %/ terms mentioned above. These
AE(SY,8?)=ED(v)+3,,(e,)+ ;[E(l)(v) +2%,,(6)]  terms are most clearly discussed when a spectral representa-
tion is used for the first Dirac-Coulomb propagator in the
X[2EV(0)+3,,(e)]+---. (14)  expression for the side-right diagram,
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3 3.3 3 3 3 d4k 3 3 3 d4k
S =—32ama\’e fd fdyfd @t ES=4imaEV(v) | d® | d fd PN
exdik-(y—2)] dEl dE2 exgik-(y—2)]—
B — XWI%(Y) YuSe(Y,W; €,—Ko)
X iy (X)V(X)SE(X,Y; E1)v.Se(Y,ZER) v i, (2) X v0Se(W,Z; €, —Ko) ¥*14,(2). (23
1 1 The three terms we have derived using Smatrix formal-
X €2+ (E;—€,)? €2+ (E1—Ey—kg)? ism can also be derived by directly modifying the self-energy
expression7]. The vertex term corresponds to modifying the
% 1 17 Dirac-Coulomb propagator to account for the external poten-
e+ (Extko—e€,)? tial, the derivative term to modifying the energy flowing
through that line, andEé to modifying the external wave
We write this spectral representation as functions.
‘/fv,mv(x)% m (Y) ¢n(x)In(y) B. Treatment of ultraviolet divergences
Se(x.yiEy) = % E,—e,+i0 +§v E,—e(1-i0) The expressionE, andEg are both ultraviolet divergent.

(18 However, their sum is ultraviolet finite, so that in principle
one might attempt to evaluate that sum directly in coordinate
pace. We choose instead to use coordinate space only for
ultraviolet finite quantities defined as the difference of these
expressions with terms in which the two Dirac-Coulomb
propagators are replaced by free propagators. Thus, consid-
Vs ering first E,, we rearrange its -calculation as
EA= > 2 (199 Ev=(Ev—Ey(0,0)),+E\(0,0),=Ey+E{, where E,(0,0)
n#v €~ €n is Ey with both propagators replaced by free propagators,
and the subscript (p) indicates that the calculation is to be
To analyze the effect of the first term in EQ.8), we carry  carried out in coordinatémomentum space. The ternty,
out a Taylor expansion of the second Dirac-Coulomb propadoes not require regularization, bt,(0, 0), does, and we
gator about,= €, —ko, make this expression finite by working im=4— e dimen-
sions. Then the explicit forms for the breakupEf are

where we have separated out the contribution from magnet|§
substates of the state The second term in E¢18) can be
handled in the same manner as the vertex, and yields

Se(X,Y;E2)=Sp(X,y; €, — ko) +(Ex— €, 1K)

d*k
9 =—4Trlaf d3x fdsyf d3z f(Z K
XﬁsF(Xay;EHE:eU—kO"_"'- (20

exdik-(x—2z)] —

X)y,Se(X,Y;€,—Kg)V
The leading term in this expansion gives k*+io [0 7uSe(x i€~ ko) V(Y)

X SF(yIZ; €~ kO)
Xy 4,(2) = 1, (X) ¥, So(X,Y: €, — Ko) V(Y)
X So(Y,Z €,— ko) YA 1, (2)], (24)

3,
Esr(1/e)=— ZE< S u(€), (21

which when combined with the identical SL term cancels the
1/e terms discussed above. The next term in the expansiognd
(20) gives the energy shift, which we will in the following
refer to as thelerivativeterm,

=—477|aJ d3p1J d3p2J 2" k2+|5wv(pzm

ES= 4'776’2 st styf o’z de J(S4K)4 X—V(Pz P1)

pz_kl_m P1— 1_m
exdik-(y—2)]— —
2715 LIV Pum, (X)) um () Xy, (Py), (25
X v,Se(Y,W; €, Ko) ¥0Se(W, Z; €, — Ko) ¥ 1h,(2). where
V(Q)Ef—g(zw); e v av(y). (26)

This can be rewritten if we recognize the integration oxer

as givingV,,m and use the fact that the remaining integral isThe integration ovek can be carried out after introducing
diagonal in magnetic quantum number, so Feynman parameters, and we have
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a [C — E™M(v)and the corresponding coefficient in the side-left and
EBZE(: - 1) f d3p1f dp214, (P2)V(P2—P1) ¥, (P1) side-right graphs is a normalization integral. Thus we are left
o with a completely ultraviolet-finite calculation. It would of
a . 5 ¥u(P2)Noth, (1) course be possible to make the graphs individually finite by
_EJ Pdpf dxf d Plf d sz including the usual renormalization counterterms associated
with vertex and wave function renormalization. However,
a 3 3 D\— these counterterms also cancel by Ward's ideffifj}, so as
_EJ Pdpf dxf d plf d°palog| — | ,(P2) long as we consider the graphs together the final answer does
not require their explicit introduction. While the remaining
XV(pa—p1) ¢, (P1)- (27 integrals are all ultraviolet finite, there is one more source of
possible singularities, to which we now turn.
In the above expressiof= (4)2TI" (1+ €/2),Q =p[Xp1
+(1=X)pal,  D=Q%+px(m?—pi)+p(1—x)(M?~pj),
and No=7v,(p2— Q@+m)V(p,—py)(p1—@+m)y*. We o
note that to derive the above expression we performed ma- Reference-stat€RS) contributions can occur when one of
nipulations on the Dirac gamma matrices that relied on théhe states in the spectral representation of an electron propa-
potentials considered in this paper being components of gator coincides with the external state We have already
four-vector. encountered one kind of reference-state contribution in the
The treatment oE2 follows along the lines of the vertex analysis of the side graphs, where the term involvirig the
calculation: the coordinate space part of the calculation i$Pectral decomposition of a certain electron propagator led to
carried out only after the free propagator term is subtractedzanceling the % term and the finite residugg [see Eq(18)
and the latter is evaluated in momentum space with dimenand the subsequent discusgiofihe contributions we now

C. Reference-state contributions

sional regularization. The former term is wish to discuss are contained withE itself andEy, and
. arise when both the electron propagators inside the photon
d*k loop involve the external state. These contributions are
A (1) 3 3 3
Es=4miaE (U)J d XJ d yJ d Zf 2m)" then obtained by replacing the electron propagators in Egs.
. (16) and(23) with the terms in their spectral decomposition
exdik-(x—2)] — involving v. For Ey, this gives
X zris LX) 7uSe(Xyie,—ko) gv v g
d*k
_ RS_ _ : 3 3 3
X Y0Se(Y.2: €, — Ko) ¥4 11,(2) — ,(X) B~ dmia 2, | d «J ] o 2m)?
X ,.So(X,Y; €,—Ko) Y0So(Y:Z; €, — Ko) v #,(2)] exdik-(x—2)] —
(28) X k2+i5 (_k0+i5)2wv(x)'y#¢vmu(x)
and the latter X Gy, OV o, N o (D V*9,(2), (3D
d"k 1 —
P— Aj (1) T I B
Es=4imaE (v)f d pf 2 k2+i5¢”(p)y“ and forEg
< 1 “ 29 RS © (1) 3 3 dk
p—k—m"p—k—m? /(P @9 EF=d4mieEV0) X | dy | &’z f
The divergent momentum space term can be treated in the exdik-(y—2)]
same way as the vertex, and there results KZ+io
e f &, (P) Yothu(p) K () Vo, (V) o (D 7V (2)
S 24\ € v 0% (_k0+i5)2 v yﬂ vm, vm, Y Y, .
a $u(PIN1,(p) (32)
— @D 3pLr v
+47TE depfdp D,

Now, if V(x)=U(|x|)yo, the y integration in EX® gives
R <1>f J 3 (Dl)— EM() 8 m,» andE}° andER® then cancel each other iden-
" 27TE pdp | d'plog m? Vu(P) Y0¥ (P), tically. Thus in this case there is no reference-state contribu-
(30) tion. However, the cancellation is incomplete when magnetic
fields are present, as will be shown in the next section. This
where now D;=p?p?+p(m?—p?), and N;= v B(1— lack of cancellation requires particular care, sir(ge the
H H RS RS
p) +m]yo[p(1—p) +m]y~. Feynman gauge used hetée kg integrals inEy~ and Eg
At this point we observe that the ultraviolet divergent are separately divergent &g— 0, while thek, integral of
terms cancel, since the coefficient of th@&/€é—1) term in  the sum of the integrands &> andES® is finite. Thus the
the vertex is the momentum space representation afumE}>+ES® is finite and well-defined, but its evaluation
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requires special treatment. Other combinations of states in J+1
the propagators df, andES give finitek, integrals and can Py ()= ‘\/m( gi(r)f;(r)—=fi(r)g;(r)
be handled straightforwardly.

As explained in the next section, we evaluate the integral K= K|
over the spatial components kfanalytically, and the inte- + 57 e +fi(ng(nl], (38
gral over the time componeiid, numerically after a Wick
rotation, ky—iw. For the reference-state terms, that proce-
dure would lead to a divergent integrdiw/ w?. To regulate

. Ki+Kj

J
this divergence, we replade—ko+A, whereA is a regu- Vij(n Na+1) LT (N +Ti(rg;(n], (39
lator to be taken to O at the end of the calculation. Thus, for
example, we would treat the integral
and
(= dk
—lf mf(ko), (33 ; [ 3

—=n0 Qjj(r)= 2341 g;(r)fi(r)—f;(r)gi(r)
by introducing the regulatofwhich then allows taking . — K

) . ; : i K|
t50—>O), and then carrying out the Wick rotation, which leads + . [gi(Nf(N+fi(ng(N1|, (40

* f(iw) whereg(r) andf(r) are the upper and lower radial compo-
2 Refo dw(i w+A)? (34) nents of the Dirac wave function,
where we have assumed tHgt w) =f(—iw). Note that for 1(ig(r)  xeu(Q)
constantf both integrals vanish, the first by reason of w(r)=r £(r) )] (41)
Cauchy’s theorem, and the second identically. It is notewor- X—ru
thy that although no linear reference state singularity is
present, logarithmically divergent terms proportional to!n the above
log(A) are present irE}> and ES® separately, but cancel .
when one forms the sum of these two terms. In practice we Ci(ij)=(=DI*¥2J(2j;+1)(2j; +1)
calculate the surE?>+ ERS for several values of, and take o
the limit A—0 by polynomial extrapolation. Ji Ji
x| 1 1 0 IL(L; 10D, (42
D. Angular reduction 2 2

The coordinate-space part of the calculation involves car- _ o _
rying out a partial-wave expansion of the photon propagatotvhereII(l; lj,1) is unity if the suml;+I;+1 is even, and
If a spectral decomposition of the electron propagators i®therwise vanishes. The side graphs can be treated similarly,
made, and we make the Wick rotatiég—iw, the angle @nd become
integrations can then be done for the vertex term. In the case

3 %0 t [
V(x)=U(|x) vo, (35 Es WEl(v)% (2|+1)2jv+1jo wdo

— )=l (o %
0

[(e,— €)*+ ®?]° )0

there results

E—_E'Eki 21+ 1) ! fw d
v oma G Yl o0 X [C2iy k)RR, (D) (0T k(7 -)

(e,—€)(e,— )0’
[(e,— &)+ 0’ ]l(e,— €)°+

+C2ky k) PLI(X) P! (2)i) 4 1o 2)ky 4 1(@F =)

ﬁjjdyawa<w
—CH(— Ky k) Vo, () VL ()i (0F 2k (or =)

xf dxf d7 C2( 1, ki) Ryi ()R}, ()i (@F 2)ki(wr -) +CP(kik,) Qui(X) Qi (2)i1—1(@r K _1(r )],
0 0

(43
+CP (K, ki) PLi(X) P, (211 1(@F DKy 4 1(or 2)
A2 | | . We note that the reference state singularitieg =v for

CH(= ki) Vi ()Vj (D) (r ki (r ) the vertex and=uv for the side graphs can be seen to cancel
+CIZ(KvKi)QLi(X)Q}U(Z)iIfl(wr<)klfl(wr>)]- (36)  identically once it is noted thaE M (v) = [dyR,,(Y)U(y).
In the calculation the sum ovérwas usually carried out up

We have introduced here the following functions: tol=12.
For the magnetic potentials a more complicated expres-

Rij(r)=g;(r)g;(r)+fi(r)f;(r), (37 sion for the vertex arises. For the nuclear dipole potential,
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\/§a i 0 1 TABLE I. Contributions to the & self-energy aZ =80 from the
Ey=— mEFZ (21+1)(—1)'Cy(— K; Ki){j j . I} perturbing potentiak/r: units are a.u.
(i v v
= 0.2769
” (&~ €)(e,~ €)— S
X | wdw EY+ES —0.1181
fo [(e,— e+ wl(e,— &) 2+ 7] e 0.0440
- o EE -0.0113
X fo dvaﬁ(y)fo oleO dZ C(x,i)Ci(kjk,) E (pole) 0.1685
XR,i(X)R, (2)i (@ 2)K(@r 2) +Ci(x, ) Ci(k,) Total 0-3600

X PP}, ()i 1(@F ki a(@F =) = Ci(— Ky k)
| | ) to the ground state, the other propagator can be shown to
XC(= kjky)Vyi(X)Vi, (2)ij(@r Oki(wr ) produce the same kind of perturbed state described in con-

+C|(kvki)C|(kjku)QLi(X)Q}U(Z)i|71(wf<)k|71(wf>)]- nection withEz, and one finds the expression

(44) 1
E(pole=Rea, | d3x | d3
In the above m, f f Ix—yl
wdr XL, (0 Y utom, (X) Yom, (V) V4, (Y)
IEL 729 (N, (). (45

+ () Vo, () Do, (N V4, (y)]. (48)

The reference state singularity cancellation is incomplete in_ i ) )
this case. It does cancel for the 0 partial wave, as can be TNiS termis related to the pole term parti}, in which the

seen upon noting that perturbation acts on the outer wave functions, and in this
case just doubles that term. The situation is somewhat more
|jv i, ] 1 complicated when excited states are considered, as will be
Ci(1,-2)y. . =——, (46) discussed below. The total result for the sum of the vertex
Jo Jo O V6 and side graphs is then written

but the cancellation does not occur wHenl. We treat this

i : : E(V+SL+SR=E&5+(ES+EY) +E)+E+E(pole).
situation as discussed above, by altering the valence energy ( R=Es+(EytEg+Ey+EstE(pole

. . 49
with a regulatorA that is extrapolated to zero. The treatment 49
of the Zeeman effect is similar to the above, basically con-
Sisting of rep|acing 1/2 with r. Il. CALCULATIONS FOR POTENTIALS ARISING
FROM OTHER ELECTRONS
E. Breakup of calculation As a first example we consider the self-energy of a

We divide the calculation of the vertex and side diagramgground-state electron in a point Coulomb potential of charge
into five parts. The most straightforward term to evaluate i as a perturbation of charg®. In this case
ES, because it is closely related to the evaluation of the
self-energy. Specifically, if we define a perturbed wave func-

(Zy=2)a
tion v by - '

U(x) X

(50

@)= E Vun(n| (47) If we carry out a Taylor expansion of the self-energy in the
nFv €, €’ form

then E’S‘R=2;U(ev). One needs only to form the perturbed AEH(Z)=AEggZ)+(Z—Zy)R(Zo)+0O(Z—Zp)?),
orbital v on the same grid as the original orbital, and modify (51
the self-energy code appropriately.

The second two parts of the calculation are thewe can use the very accurate elf-energies presented by
momentum-space subtraction terms for the vertex and sidelohr [1] to determineR(Z;). To test the method we work at
terms,Ef andE, with the understanding that the canceling Z,= 80, whereR(80)=0.3599 a.u. As discussed above, the
divergent terms are dropped. These terms are evaluated witlalculation breaks into five parts, which are shown in Table
the Monte-Carlo integration prograwecas [11]. The next |. We observe the dominance &f2, arguments for which
part of the calculation is carried out in coordinate space, andvere presented ifl2]. However, to get the four digit agree-
consists of the sum @&}, andEZ. Finally there is a pole term ment found, it is clear that the smaller terms coming from the
which arises from the Wick rotatioky—iw in the evalua- vertex and remaining parts of the side graphs are necessary.
tion of the vertex term. A pole on the imaginary axis must be We next turn to a discussion of the self-energynef 2
avoided with a semicircle, which gives rise to this term.states of lithiumlike uranium. In this case we include finite
While the spectral representation of one propagator collapsewuclear size, using a Fermi distribution with-7.137 35 fm
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TABLE II. Contributions to the 8, 2p4;,, and 23, self- TABLE lll. Contributions to hfs in units of &/m)Eg .
energy atZ=92 from the perturbing potentialY(1s,1s;r): units
are a.u. z = ER = ES+ES Total
State 2. 2p1n 2P 5 —0.1046 45904 —2.2957 —2.0154 0.1747
10 —0.2609 3.2482 —1.3657 —1.7812 —0.1596
ES —0.0777 —0.0243 —0.0137 15 —0.4340 2.4930 —0.9464 —1.6007 —0.4881
EV+ES 0.0530 0.0823 0.0972 20 -0.6150  1.9802 —0.7169 —1.4583 —0.8100
EY —0.0611 —0.0581 —0.0591 30 -0.9910 1.3056 —0.5008 —1.2525 —1.4387
Es 0.0811 0.0718 0.0708 40 —1.3857 0.8729 —0.4311 -1.1171 -2.0610
E (pole —0.0873 —0.0958 —0.0978 50 —1.8067 0.5703 —0.4300 —1.0281 —2.6945
E(P?) —0.0101 —0.0131 —0.0236 60 —2.2686 0.3479 —0.4693 —0.9712 -—3.3612
67 —2.6232 0.2254 —0.5124 —0.9460 —3.8562
Total —0.1021 —0.0372 —0.0262 70 —2.7873 0.1795 —0.5351 —0.9381 —4.0810
80 —3.3869 0.0498 —0.6225 —0.9227 —4.8823
CH —0.1009 —0.0358 —0.0260 83 —3.5866 0.0169 —0.6525 —0.9210 —5.1432

90 -—4.0910 -0.0505 -0.7275 -—0.9214 -5.7904
100 —4.9300 -—0.1267 -—-0.8487 —0.9305 -6.8359

andt=2.3 fm. Following Indelicato and MoHr7], we first
account for the presence of the cors dlectrons by intro-
ducing the potential

until the 1s orbital satisfies the Dirac equation with that po-
o 1 tential, we call a core-Hartree potential; it was used to cal-
U(r)=2Yo(1s,1s;r)52af dx[gi(x) + fa(x)]—, culate the Lamb shift in lithiumlike uraniurfil4]. At this
0 r> high Z, the effect of iteration is very small, and we can
(52 compare with the above calculation. This is done in the last
wherer —=max(r,x). In this case, however, because we areoW of Table Il, and it is seen that good agreement is_found.
dealing with excited states, a new contribution enters that wa € results for the  and 2p,, states are also consistent
call the double-pole term. This term was discussed in a papéith new calculations of Indelicato and Moftt5]
on helium decay ratelsl 3], where a more complete discus-
sion can be found. Here we simply note that when the state IIl. HYPERFINE SPLITTING CALCULATIONS
v is of higher energy than other bound states, there are terms ] ] )
in both the vertex and side graphs in which double poles are It is convenient to work with a stretched state
present in the complex plane that are encircled when théMe=+1/2,my=+1/2), which has an energy 1/4 of the full
Wick rotationky—iw is carried out. By Cauchy’s theorem hyperfine splitting(hfs),
these give rise to derivatives, and the following energy shift

results: a gy (=dr 1
D(py= =N = - —EW
E (U) 3 mNJ'O r2gv(r)fv(r) 4EF . (54)

J
E(P?)=Rex Y, [E<1>(v)—E<1>(a)]an d3xf d3y
a=v 0 There are numerical difficulties associated with the almost

exfdiko|x—2|]— singular smalk behavior that we avoid by using a finite

X—y| Py (X) Y iba(X) ha(y) nucleus in solving the Dirac equation. Note, however, that
we do not use a distribution for magnetism. While this dis-
X y“z,bv(y)|ko:6v_6a. (53  tribution is an important effect for the overall hfs, its contri-

bution to radiative corrections is of higher order, and we do

The imaginary part of this equation plays a role in shiftingnot include it in the present calculation. Note that our defi-
the energy difference entering into the equations for decaypition of Er includes both the effect of finite nuclear size and
rates from its lowest order value to the more accurate firstalso the Breit correction, since we use relativistic wave func-
order valug[13]. We include this term in Table Il. We note tions. Care should be taken in comparing with other calcula-
that the pole ternk(pole) is also modified to include a sum tions that may use different definitions.
over all states with energy less than or equal to the valence We present the results for hyperfine splitting as a multiple
state, with a factor of 2 if a complete pole is encircled. of (a/7)Eg in Table Ill. Note that the pole term is not

In this case, whiIeE’g is still an important contribution, presentin this case. This is because when the regulator that is
the other parts of the calculation play a significant role, inused to handle reference-state singularities is employed, the
particular for the D, state, where the double-pole term pole term is moved into th&y,+EZ term. This part of the
almost completely accounts for the effect. calculation required particular care, because as the regulator

Because it is possible to evaluate the self-energy directlys taken to zero, structure of the integrand at low values of
in non-Coulomb potentials, a check on the calculation is afw must be taken account of, which requires a very large
forded by working with the potential formed from the com- number of Gaussian points.
bination of the perturbing potential with the Coulomb poten- A particularly interesting aspect of this calculation is its
tial. This potential, when made self-consistent by iteratingconnection with the known lovd- behavior of the self-
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energy correction to hfs in hydrogenic systems, which has TABLE V. Contributions to the functiorC?(Z«).
been studied in terms of a power series. At present, the first
few terms of the power series are known to[t6,17] z ES E§ EV EV+ES Total
o 1 13 2 5 0.00541 4.58838 —4.09514 0.00148) 0.500131)
Er=—EW —+(IogZ— _) 7(Za)+| — =logX(Za) 2 10 0.01695  3.24241-2.76245 0.00362  0.50053
™ 2 4 3 15 0.03234 2.48297—2.01926 0.00545 0.50150

37 8 20 0.05064 1.96608—152015 0.00659  0.50316
- §I092) log(Za) 2+17.1(Za)? 25 007131 1.58291-1.15542 0.00699  0.50579
30 0.09415 1.28453-0.87567 0.00645  0.50946
5 191 40 0.14565 0.84754—0.47525 0.00286  0.52080
5l0g2— 5) m(Za)log(Za) %+ O((Za)3)] : 50 0.20493  0.54403—0.20623 —0.00371  0.53902
60 0.27347  0.32442-0.01826 —0.01253  0.56710
(55 70 035261 0.16256 0.11518-0.02260  0.60775

. 80 0.44614  0.04328 0.20952-0.03265 0.66629
Ithe that the constant term 17.1 supersedes an earlier calcug0 056008 —004258  0.27415 —0.04099  0.75066
ation [318], which included some, but not all, terms of order |\ "~ -0 Lo0e (31479 004528 087491
a(Za) Eg and higher. Unfortunately, our present accuracy.
is not sufficient to provide a check on the higher-order terms.

The present calculation is in fair agreement with an ear"e(/vhereyz [1—(Za)? and the function€?(Z«) are gener-
work [5]. For example, aZ=83 that work found the result gjizations of the loop expansion of the electrpr 2 to in-

—5.008, about 1% smaller than our result. While it is un-cyde the effects of atomic bindid.9]. The first two terms
likely that experiment could distinguish the two numbers atj, he expansion 0€®?)(Z«) are known to bd20]

high Z, discrepancies at loi will have consequences for
muonium and hydrogen hyperfine splitting, and will have to 1 (Za)?
be resolved. AZ=10, Ref.[5] finds —0.1627, and the dif- Co(Za)=5+—5+ . (59
ference with the present result is much greater than our esti-
mated error, which is 3 in the last digit. We tabulateC(®)(Za) in Table IV. We note that at low
Z the momentum space terni, and E2 account for the
IV. ZEEMAN EFFECT CALCULATIONS bulk of the Schwinger correction, unlike the case with hy-

i i perfine splitting. Again unlike that case, where there is very
The treatment of the last potential considered here, that Qgtrong dependence on the nuclear charge, in this €58

a constant magnetic field, is for the most part identical to thg, 5 iag smoothly aZ is increased, and has changed only by a
treatment of hyperfine splitting, amounting simply to the re-factor of less than 2 aZ=100. A feature of note is the

2 . .
placement of I with r. This replacement strongly sup- igficuity of controlling the partial-wave expansion at low

+

+

tions. The only part of the calculation that requires a differ

i X = “extrapolate the sum to infinity. The turnover occurs for lower
ent treatment is the evaluation & . Because the Fourier

| at higherZ, and better control was possible there. We per-

transform of the potential is formed a fit of the function to the form
ie 1
V(q)=— >V (BXVq) 8(q), (56) C(Za)= > +A(Za)*+B(Za)*, (60)

E{ is evaluated using integration by parts, which involvesand foundA to be consistent with 1/12 arfi~3.5.
several terms, as the derivative can act on either the numera-
tor, denominator, or wave function. The overalffunction, V. CONCLUSIONS
however, considerably simplifies the numerical evaluation of
the resulting integral.

The energy shift of a ground state electron with magneti
guantum numbem in a magnetic field is, with the neglect of
recoil corrections,

We have developed in this paper a calculational scheme
hat allows the calculation of potential corrections to one-
oop self-energy graphs valid to all orders4dma. An impor-
tant feature of the calculation is the isolation of ultraviolet
divergent terms via the subtraction of terms in which the

le|B ext_ernall-fieilq propagators are replaced \_/vith free propagators,
EZeemar1:2_gem- (57)  Which significantly improves the numerical evaluation. Per-
m haps the most important application is to hyperfine splitting
. at low Z, since there are indications that a perturbative ex-
We write theg factor as pansion is inadequate evenZt 1 unless carried out to very
high orders. Our present precision, however, is not great
enough to bear on muonium hyperfine splitting, and the im-
provement of this precision is the most important extension
(58 of the present work.

2y+1l «
= +—Cc® +
0e=2 3 WC (Za)

2
a
_) C(4)(Za)+ -
T
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