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Physical interpretation of density-functional theory and of its representation
of the Hartree-Fock and Hartree theories

Viraht Sahni
Department of Physics, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, New York 11

and The Graduate School and University Center of the City University of New York, 33 West 42nd Street, New York, New York
~Received 9 July 1996!

In this paper we provide a rigorous physical interpretation of the Kohn-Sham~KS! density-functional theory
electron-interaction energy functionalEee

KS@r# and its functional derivativevee
KS(r )5dEee

KS@r#/dr(r ) based on
the original ideas of Harbola and Sahni, and of their extension by Holas and March. The functional, and hence
the derivative, incorporate electron correlations due to the Pauli exclusion principle and Coulomb repulsion as
well as those of the correlation contribution to the kinetic energy. The interpretation is in terms of a fieldF~r !,
which is the sum of two fields whose source distributions are expectations of Hermitian operators. The first of
these fieldsEee~r ! accounts for Pauli and Coulomb correlations. Its source is the pair-correlation density and
it is determined by Coulomb’s law. The secondZtc

(r ) accounts for the correlation-kinetic contribution, and its
source is the difference between the kinetic-energy-density tensor for the noninteracting and interacting sys-
tems. The corresponding field is the derivative of this tensor. The functional derivativevee

KS(r ) is the work done
to move an electron in the fieldF~r !. Since the fieldF~r ! is conservative, this work done is path independent.
The quantum-mechanical electron-interaction energyEee@r# and correlation-kinetic energyTc@r# components
of Eee

KS@r# can also be expressed in virial form in terms of the respective fieldsEee~r ! andZtc
(r ), which give

rise to them. A similar rigorous physical interpretation of the Kohn-Sham theory representation of the Hartree-
Fock and Hartree approximations is also given. If in these representations, the correlation kinetic energy is
neglected the equations reduce to the corresponding approximations of the work formalism of electronic
structure. Finally, it is argued on physical grounds that the interpretation provided for the ground state is
equally valid for excited states.@S1050-2947~97!04703-3#

PACS number~s!: 31.15.Ew, 0.3.65.2w
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I. INTRODUCTION

Hohenberg-Kohn-Sham@1,2# density-functional theory
@3–5# is founded in Schro¨dinger@6# theory. Thus, according
to the first theorem of Hohenberg and Kohn, the ground-s
wave functionC is a functional of the exact ground-sta
electronic densityr~r ! so that the expectation value of an
observable is a unique functional of the density. The grou
state energyE@r# is, therefore, such a functional. The dens
itself in turn is the expectation of a Hermitian operator. Sin
the ground-state density does not discriminate between in
acting and noninteracting electronic systems, the basic
sumption in the Kohn-Sham version of the theory is th
there exists a model-system ofnoninteractingfermions pos-
sessing the true density. To account for the distinction
tween the interacting Schro¨dinger and noninteracting Kohn
Sham systems, one therefore defines within the latter
electron-interaction energy functional that represents corr
tions due to the Pauli exclusion principle and Coulomb
pulsion as well as those of the correlation contribution to
kinetic energy. Further, since the model fermions are non
teracting, the electron-interaction operator representativ
these correlations in the corresponding Schro¨dinger ~Kohn-
Sham! equation islocal or multiplicative. As a consequenc
of the second theorem of Hohenberg and Kohn, which es
lishes the variational character of the ground-state ene
functional, this local operator has arigorous mathematical
definition: it is thefunctional derivativewith respect to arbi-
trary norm-conserving variations of the density of t
551050-2947/97/55~3!/1846~11!/$10.00
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electron-interaction energy functional. From the wave fun
tion of the model system, which is asingleSlater determi-
nant of the solutions of the Kohn-Sham equation, t
ground-state densityr~r ! and therefore the energyE@r# are
then determined. It is in this mathematical framework th
Kohn-Sham density-functional theory is generally und
stood.

In this paper we provide arigorous physicalunderstand-
ing of Kohn-Sham theory via a quantum-mechanical int
pretation of the electron-interaction energy functional and
functional derivative ~potential!. The interpretation is in
terms of fields arising from source distributions that a
quantum-mechanical expectations of Hermitian operat
Thereby the relationship between Kohn-Sham theory
Schrödinger theory via the system wave functionC @rather
than through the densityr~r !# is also made explicit. The
interpretation further distinguishes between the Pa
Coulomb correlation and the correlation-kinetic-energy co
ponents of the energy functional and potential, each com
nent arising from a separate field and source distributi
The physical interpretation in terms of fields and th
sources is arrived at by combining the original ideas of H
bola and Sahni@7# with that of the recent work of Holas an
March @8#. In this manner we present a simple physical p
ture of that model system of noninteracting fermions that
the same electronic density and energy as that of Schro¨dinger
theory.

The constrained search formulation@9#, which generalizes
the proofs of the Hohenberg-Kohn theorems thereby eli
1846 © 1997 The American Physical Society
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55 1847PHYSICAL INTERPRETATION OF DENSITY- . . .
nating thev-representability constraint further shows th
there exists@9–11# a density-functional theory representatio
of the Hartree-Fock@12# and Hartree@13# theory approxima-
tions. The same conclusion is arrived@14# at via many-body
perturbation theory. This means that in each case there e
a Kohn-Sham theory electron-interaction energy functio
and derivative, which lead to the same ground-state den
and energy as those of these approximations. In a hiera
cal manner, a rigorous physical interpretation entirely sim
to that for the fully correlated case can be provided for th
energy functionals and local potentials. Once again, the
terpretation is in terms of fields and their source distrib
tions, which are expectations of thesameHermitian opera-
tors as for the fully correlated case, but taken with respec
the Hartree-Fock and Hartree theory wave functions inste
Again, the purely quantum-mechanical electron-interact
and correlation-kinetic-energy components can be dis
guished. If in the Kohn-Sham theory representation of
Hartree-Fock and Hartree approximations, the correlati
kinetic-energy component is neglected, the equations t
reduce to those of the work formalism@15,16# for these ap-
proximations.

For the quantum-mechanical description of dens
functional theory, we begin with the definitions of requis
properties within Schro¨dinger and Kohn-Sham theories. W
then provide a description and proof of the physical interp
tation of the electron-interaction energy functional and fu
tional derivative of Kohn-Sham theory. Following this w
describe the interpretation for the Kohn-Sham representa
of Hartree-Fock and Hartree theories, from which the eq
tions of the work formalism then emerge. Finally, based
the physical picture of Kohn-Sham theory~a ground-state
theory!, we present in the concluding section a plausible
gument that a similar description is equally valid for excit
states.

II. SCHRÖDINGER AND KOHN-SHAM THEORIES

We define in this section properties within the context
Schrödinger theory relevant to the physical interpretation
Kohn-Sham density-functional theory. We also give a br
description of Kohn-Sham theory in order to define the lo
potential representing electron correlations as well as o
properties derived within its context.

A. Definitions within Schrödinger theory

The Schro¨dinger equation for a system ofN electrons in
an external potential of local single particle formv~r ! is

ĤC~x1 , . . . ,xN!5EC~x1 , . . . ,xN!, ~1!

where the HamiltonianĤ in atomic units is

Ĥ5(
i

2
1

2
¹ i
21(

i
v~r i !1

1

2 (
i j

8
1

u~r i2r j !u
, ~2!

and whereC andE are the normalized system wave functio
and energy, respectively. The energy is the expecta
E5^CuĤ uC&. ~Herex5rs, wherer is the spatial ands the
spin coordinate of the electron. The integral*dx[(s*dr !.
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The first property of interest is the spinless single-parti
density matrixg~r ,r 8! defined as

g~r ,r 8!5N(
s

E C* ~rs,x2 , . . . ,xN!

3C~r 8s,x2 , . . . ,xN!dx2 , . . . ,dxN

5^CuX̂uC&, ~3!

where the Hermitian operator@17#

X̂5Â1 iB̂,

Â5~1/2!( j@d~r j2r !Tj~a!1d~r j2r 8!Tj~2a!#,

B̂52~ i /2!( j@d~r j2r !Tj~a!2d~r j2r 8!Tj~2a!#,

Tj ~a! is a translation operator such that

Tj~a!C~• • • r j • • • !5C~• • • r j1a • • • !,

anda5r 82r . The single-particle density matrix constructe
from the wave functionC is not idempotent. The diagona
matrix element of the density matrix is the densityr~r !.
Equivalently, it is the expectation value of the density ope
tor r̂~r !5(id~r i2r !, so that

r~r !5g~r ,r !5^Cur̂uC&. ~4!

The property associated@7# with the purely electron-
interaction component of the Kohn-Sham theory many-bo
potential as well as the electron-interaction energy is
pair-correlation densityg~r ,r 8!. It is defined in terms of the
Hermitian pair-correlation operator P̂(r ,r 8)5( i , j8 d(r i
2r )d(r j2r 8) as

g~r ,r 8!5^CuP̂~r ,r 8!uC&/r~r !. ~5!

Note that in the definition of the pair-correlation dens
there is no self-interaction. In physical terms, the pa
correlation density is thedensityat r 8 for an electron atr . Its
total charge for arbitrary electron position is thu
*g~r ,r 8!dr 85N21. The pair-correlation density is a proper
that arises due to the Pauli and Coulomb correlations
tween electrons. Thus, it can also be interpreted as the
sity r~r 8! at r 8 plus the reduction in this density atr 8 due to
the electron correlations. The reduction in density about
electron that occurs as a result of the Pauli exclusion p
ciple and Coulomb repulsion is the quantum-mechan
Fermi-Coulomb hole charge distributionrxc~r ,r 8!. Thus, we
may write the pair-correlation density as

g~r ,r 8!5r~r 8!1rxc~r ,r 8!, ~6!

and consequently the total charge of the Fermi-Coulo
hole for arbitrary electron position is*rxc~r ,r 8!dr 8521.
Note that the self-interaction contribution to the Ferm
Coulomb hole charge is canceled by the density, so that
pair-correlation density as defined by Eq.~6! is self-
interaction free.
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The electron-interaction energyEee can be afforded a
physical interpretation in terms of the pair-correlation de
sity as the energy of interaction between it and the electro
density:

Eee5^Cu
1

2 (
i j

8
1

ur i2r j u
uC&

5
1

2 E E r~r !g~r ,r 8!

ur2r 8u
dr dr 8. ~7!

Using the form ofg~r ,r 8! as given by Eq.~6!, the electron-
interaction energy can be split further as

Eee5EH1Exc , ~8!

whereEH is the Coulomb self-energy,

EH5
1

2 E E r~r !r~r 8!

ur2r 8u
dr dr 8, ~9!

andExc is the quantum-mechanical exchange-correlation
ergy,

Exc5
1

2 E E r~r !rxc~r ,r 8!

ur2r 8u
dr dr 8, ~10!

which is the energy of interaction between the density a
the Fermi-Coulomb hole charge distribution.

The property associated@8# with the correlation-kinetic-
energy component of the Kohn-Sham potential is the kine
energy-density tensortab~r !. This is a real, symmetric tenso
defined in terms of the single-particle density matrixg~r ,r 8!
as

tab~r ;@g#!5
1

4 S ]2

]r a8]r b
9

1
]2

]r b8]r a
9 D g~r 8,r 9!ur85r95r .

~11!

The trace of the kinetic-energy-density tensor is the sc
kinetic energy densityt~r !5(ataa~r !>0. The kinetic energy
T is then

T5^Cu2(
i

1

2
¹ i
2uC&5E dr t~r !. ~12!

Finally, the total energyE can thus be written as

E5T1E v~r !r~r !dr1Eee, ~13!

with T andEee as defined above.

B. Definitions within Kohn-Sham theory

The basic idea underlying Kohn-Sham theory@2# is the
construction of a model system of noninteracting fermio
for which the density is the same as that of the interact
system. As such the ground-state energy functionalE@r# is
partitioned as

E@r#5Ts@r#1E v~r !r~r !dr1Eee
KS@r#, ~14!
-
ic

-

d

-

ar

s
g

whereTs@r# is the corresponding kinetic energy of the no
interacting system. This equation defines the Kohn-Sh
theory electron-interaction energy functionalEee

KS@r#, which
can then be further partitioned as

Eee
KS@r#5EH@r#1Exc

KS@r#, ~15!

whereEH@r# is the Coulomb self-energy defined previous
Comparison with Eq.~13! for the energy expression in
Schrödinger theory then defines the Kohn-Sham theo
exchange-correlation energy functionalExc

KS@r# as the sum of
the quantum-mechanical exchange-correlation energyExc
and the correlation-kinetic energyTc@r#:

Exc
KS@r#5Exc@r#1Tc@r#, ~16!

where in turn

Tc@r#5T@r#2Ts@r#. ~17!

The application of the variational principle to the groun
state energy functional of Eq.~14! for arbitrary norm-
conserving variations of the density leads to the Kohn-Sh
equation

F2
1

2
¹21v~r !1vee

KS~r !Gf i~x!5e if i~x!, i51, . . . ,N,

~18!

wherevee
KS(r ) is the local potential in whichall the electron

correlations are incorporated. As a result of the variatio
principle, this potential is derived to be the functional deriv
tive of Eee

KS@r#:

vee
KS~r !5dEee

KS@r#/dr~r !. ~19!

With the partition ofEee
KS@r# according to Eq.~15!, the po-

tential can be written as the sum

vee
KS~r !5vH~r !1vxc

KS~r !, ~20!

which defines the density-functional theory Hartree poten
vH~r ! as the functional derivative

vH~r !5
dEH@r#

dr~r !
5E r~r 8!

ur2r 8u
dr 8, ~21!

and the Kohn-Sham theory ‘‘exchange-correlation’’ potent
v xc
KS~r ! as the functional derivative

vxc
KS~r !5dExc

KS@r#/dr~r !. ~22!

The ground-state ‘‘wave function’’ corresponding to th
noninteracting system is then asingle Slater determinant
Fs$fi~x!% of the lowest occupied orbitalsfi~x! of the Kohn-
Sham differential equation. The Dirac@18# single-particle
density matrixgs~r ,r 8! that results from this Slater determ
nant is

gs~r ,r 8!5^FsuX̂uFs&5(
i

(
s

f i* ~rs!f i~r 8s!, ~23!
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55 1849PHYSICAL INTERPRETATION OF DENSITY- . . .
and it is idempotent. The exact ground-state densityr~r ! and
the noninteracting kinetic energyTs@r# are also obtained
from this Slater determinant as

r~r !5^Fsur̂uFs&5(
i

(
s

uf i~rs!u2, ~24!

and

Ts@r#5(
i
E f i* ~x!F2

1

2
¹2Gf i~x!dr , ~25!

respectively. The ground-state energy is then determined
the energy functional of Eq.~14!. Finally, in addition to gen-
erating the orbitals from which the exact ground-state d
sity and energy of the interacting system are determined,
highest occupied eigenvalue of the Kohn-Sham differen
equation Eq.~18! has the physical interpretation@19# of be-
ing the removal energy. Thus, in principle, its solution c
lead to the determination of properties such as the ioniza
potential, electron affinity, and work function.

III. PHYSICAL INTERPRETATION
OF ELECTRON-INTERACTION POTENTIAL

OF KOHN-SHAM THEORY

Since the electron-interaction energy functionalEee
KS@r# of

Kohn-Sham theory is representative of Pauli and Coulo
correlations as well as the correlation contribution to the
netic energy, so is the corresponding local potentialvee

KS(r )
obtained from it through functional differentiation. In th
physical interpretation of the potentialvee

KS(r ), however, it is
possible to distinguish between thepurely quantum-
mechanical~Pauli and Coulomb! electron-correlation com
ponentWee~r !, and the correlation-kinetic-energy compone
Wtc

(r ). We begin this section with a description of th

physical interpretation ofvee
KS(r ), and then discuss its com

ponentsWee~r ! andWtc
(r ) more fully.

The electron-interaction potentialvee
KS(r ) of Kohn-Sham

theory is the work done to bring an electron from infinity
its position atr against a fieldF~r !:

vee
KS~r !5

dEee
KS@r#

dr~r !
52 È r

F~r 8!•dl8. ~26!

The fieldF~r ! is the sum of two fields:

F~r !5Eee~r !1Ztc~r !. ~27!

The fieldEee~r ! is strictly representative of Pauli and Co
lomb correlations since its quantum-mechanical sou
charge distribution is the pair-correlation densityg~r ,r 8!. On
the other hand, the fieldZtc

(r ) arises from the kinetic-
energy-density tensortab~r !. It is the difference of the fields
derived from the tensor for the interacting and Kohn-Sh
noninteracting systems, and is thereby representative o
correlation-kinetic contribution.

Thus, the potentialvee
KS(r ) may be expressed as the sum

vee
KS~r !5Wee~r !1Wtc

~r !, ~28!
by

-
he
l

n

b
-

t

e

he

where

Wee~r !52 È r
Eee~r 8!•dl8, ~29!

and

Wtc
~r !52 È r

Ztc
~r 8!•dl8. ~30!

The interpretation of the functional derivativevee
KS(r ) as the

work done is due to the fact that it can be written as

“vee
KS~r !52F~r !, ~31!

so that the sum of the workWee~r ! andWtc
(r ) is path inde-

pendent. The path independence of the work is, of cou
rigorously valid provided the fieldF~r ! is smooth, i.e., it is
continuous, differentiable, and has continuous first deri
tives. Equation~31! also implies that the curl of the field
F~r ! vanishes:

“3F~r !50. ~32!

For systems of a certain symmetry such as closed-shel
oms, jellium metal clusters, jellium metal surfaces, ope
shell atoms in the central-field approximation, etc., the wo
Wee~r ! andWtc

(r ) are, however, separately path independ
since“3Eee(r )5“3Ztc

(r )50.

A. The quantum-mechanical electron-interaction
componentWee„r …

The physical interpretation of the electron-interacti
componentWee~r ! was originally proposed by Harbola an
Sahni @7#, and derived by them via Coulomb’s law. It i
based on the observation that the pair-correlation den
g~r ,r 8! is not a static but rather adynamiccharge distribution
whose structure changes as a function of electron posit
The dynamic nature of this charge then must be accoun
for in the description of the potential. Thus, in order to obta
the local potential in which the electron moves, the for
field Eee~r ! due to this charge distribution must first be d
termined. According to Coulomb’s law this field is

Eee~r !5E g~r ,r 8!~r2r 8!

ur2r 8u3
dr 8. ~33!

The componentWee~r ! is then the work done to bring a
electron from infinity to its position atr in this force field as
defined by Eq.~29!.

The componentWee~r ! can be further simplified by em
ploying the expression forg~r , r 8! @see Eq.~6!# in terms of
the densityr~r 8! and the Fermi-Coulomb hole charge dens
rxc~r ,r 8!. The field Eee~r ! is then the sum of the Hartre
EH~r ! and exchange-correlationExc~r ! fields:

Eee~r !5EH~r !1Exc~r !, ~34!

where
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1850 55VIRAHT SAHNI
EH~r !5E r~r 8!~r2r 8!

ur2r 8u3
dr 8,

Exc~r !5E rxc~r ,r 8!~r2r 8!

ur2r 8u3
dr 8. ~35!

The componentWee~r ! is in turn the sum of the work don
WH~r ! andWxc~r ! to move an electron in the Hartree an
exchange-correlation fields, respectively,

Wee~r !5WH~r !1Wxc~r !, ~36!

where

WH~r !52 È r
EH~r 8!•dl8, Wxc~r !52 È r

Exc~r 8!•dl8.

~37!

Now, the electronic densityr~r ! is a static charge distribu-
tion whose structure does not change as a function of e
tron position. Thus, the Hartree field can be written
EH~r !52¹WH~r !, where

WH~r !5E r~r 8!

ur2r 8u
dr 8. ~38!

The workWH~r ! is path independent and“3EH~r !50. Fur-
thermore, the scalar potentialWH~r ! is recognized to be the
density-functional theory Hartree potentialvH~r ! of Eq. ~21!.
Thus, the functional derivative of the Coulomb self-ener
functionalEH@r# has the physical interpretation of being th
work done in the field of the electronic density. The comp
nentWee~r ! is then the sum of the Hartree potential and t
work done to move an electron in the field of the quantu
mechanical Fermi-Coulomb hole charge distributio
Wee~r !5vH~r !1Wxc~r !. The workWxc~r ! is path indepen-
dent for the symmetrical density systems noted previou
since the“3Exc~r !50 for these cases. It is important t
note, however, that the corresponding Fermi-Coulomb h
charge distributionrxc~r ,r 8!, which gives rise to the field
Exc~r ! need not possess the same symmetry for arbit
electron position. For example, in either closed-shell ato
or open-shell atoms in the central-field approximation
which the density is spherically symmetric, the Ferm
Coulomb hole is not, the only exception being when t
electron is at the nucleus.

B. The correlation-kinetic energy componentWtc
„r …

The correlation-kinetic energy componentWtc
(r ) is the

work done to move an electron in the fieldZtc
(r ) as ex-

pressed by Eq.~30!. The fieldZtc
(r ) is given in terms of a

field z~r ;@g#! whose componentza~r ! is derived from the
kinetic-energy-density tensortab~r ;@g#! as @8#

za~r ;@g#!52(
b51

3
]

]r b
tab~r ;@g#!. ~39!

The field z~r ;@g#! thus defined is for the interacting syste
since the tensor involves the density matrixg~r , r 8! of Eq.
~3!. With the fieldz~r ;@gs#! derived similarly from the tenso
c-
s

y

-

-
:

ly

le

ry
s
r
-
e

tab~r ;@gs#! written in terms of the idempotent Dirac densi
matrix gs~r ,r 8! of Kohn-Sham theory, the fieldZtc

(r ) is then
defined as

Ztc
~r !5

1

r~r !
$z~r ;@gs# !2z~r ;@g#!%. ~40!

Note that the determination of this field thus requires kno
edge of the Kohn-Sham orbitals and system wave functi

C. Proof via the differential virial theorem

The electron-interaction componentWee~r ! was originally
derived, as noted previously, by Harbola and Sahni@7# via
Coulomb’s law. Since this component does not contain a
correlation-kinetic-energy contributions, it does not@7,20,21#
satisfy the Kohn-Sham theory sum rule relating the cor
sponding electron-interaction energyEee

KS@r# to its functional
derivative~potential! vee

KS(r ). The sum rule, which is derived
@22,23# from the virial theorem, and in which the correlation
kinetic energyTc@r# contribution is made explicit, is

Eee
KS@r#1E dr r~r !r•“vee

KS~r !52Tc<0. ~41!

Consequently, Harbola and Sahni@7,21# proposed that a term
that accounts for the correlation-kinetic energy contribut
be added toWee~r ! in order to obtain the Kohn-Sham poten
tial vee

KS(r ). As such they suggested adding a term prop
tional todTc@r#/dr~r !. The term to add toWee~r ! is the work
Wtc

(r ). Both the componentsWee~r ! andWtc
(r ) can, how-

ever, be derived from the virial theorem and we give here
completeness the proof according to Holas and March@8#.

The integral form of the quantum-mechanical virial the
rem, which is

2T1Eee5E dr r~r !r•“v~r !, ~42!

can be written in differential form@8# as

“v~r !52F~r !, ~43!

where

F~r !52Eee1
1

r~r ! F2
1

4
“¹2r~r !1z~r ;@g#!G . ~44!

Note that the fieldF~r ! depends upon the densityr~r !, as
well as the single-particle density matrixg~r ,r 8! and the pair-
correlation densityg~r ,r 8! through the fieldsz~r ! andEee~r !,
respectively. The corresponding differential form of th
virial theorem for the noninteracting Kohn-Sham system

“v~r !52FKS~r !, ~45!

where

FKS~r !5“vee
KS~r !1

1

r~r ! F2
1

4
“¹2r~r !1z~r ;@gs# !G .

~46!
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55 1851PHYSICAL INTERPRETATION OF DENSITY- . . .
The fieldFKS~r ! depends on the densityr~r !, and the idem-
potent density matrixgs~r ,r 8! through the fieldz~r ;@gs#!, and
instead of the fieldEee~r ! it is the gradient of the Kohn-Sham
potential vee

KS(r ) that appears. On equating Eqs.~43! and
~45!, one obtains

“vee
KS~r !52HEee~r !1

1

r~r !
@z~r ;@gs# !2z~r ;@g#!#J

52F~r !, ~47!

which in turn leads to the interpretation ofvee
KS(r ) as the

work done to move an electron in the fieldF~r !, and shows
that this field is conservative.

IV. ELECTRON-INTERACTION ENERGY
OF KOHN-SHAM THEORY

As is the case for the electron-interaction poten
vee
KS(r ), the Kohn-Sham electron-interaction energyEee

KS@r#
of Eq. ~15! can also be expressed in terms of fields~and thus
source distributions! corresponding to the quantum
mechanical electron-interaction and correlation-kinetic
ergy components. The quantum-mechanical electr
interaction energy component Eq.~7! is

Eee@r#5E dr r~r !r•Eee~r !, ~48!

which can be reduced further to its Coulomb self-energy@Eq.
~9!# and exchange-correlation@Eq. ~10!# components as

EH@r#5E dr r~r !r•EH~r ! ~49!

and

Exc@r#5E dr r~r !r•Exc~r !, ~50!

respectively. The correlation-kinetic-energy component
Eq. ~17! is

Tc@r#5
1

2 E dr r~r !r•Ztc
~r !. ~51!

The fieldsEee~r !, EH~r !, Exc~r !, andZtc
(r ) are as defined in

the previous section.
The proof of Eq.~48! for Eee@r# follows @7# trivially from

the symmetry in an interchange ofr and r 8 of the pair-
correlationfunction h~r ,r 8!5g~r ,r 8!/r~r 8!. We provide here
the proof of Eq.~51! for Tc@r# via the virial theorem.

Proof via integral virial theorem

The virial theorem@Eq. ~42!# can also be written as@4,23#

Eee@r#1E dr r~r !r•“S dEee@r#

dr~r ! D
522T2E dr r~r !r•“S dT@r#

dr~r ! D . ~52!
l

-
n-

f

SinceEee
KS@r#5Eee@r#1Tc@r#, we have

vee
KS~r !5

dEee@r#

dr~r !
1

dTc@r#

dr~r !
5Wee~r !1Wtc

~r !, ~53!

and thus

“vee
KS~r !5“S dEee@r#

dr~r ! D1“S dTc@r#

dr~r ! D52Eee~r !2Ztc
~r !.

~54!

On substituting for“~dEee/dr! from Eq. ~54! into Eq. ~52!
we obtain

Eee@r#2E dr r~r !r•Eee~r !2E dr r~r !r•Ztc
~r !

522Ts@r#22Tc@r#2E dr r~r !r•“S dTs@r#

dr~r ! D .
~55!

Using the relation of Eq.~48! and those of@4,23#

dTs@r#

dr~r !
52vs~r !1const ~56!

and

2Ts@r#5E dr r~r !r•“vs ~57!

in Eq. ~55! leads to Eq.~51! for Tc@r#. It is interesting to note
that in deriving the expression forTc@r#, the question
whether“3Eee~r ! and“3Ztc

(r ) vanishes or not is of no
consequence. What is important is that the curl of the sum
these fields vanishes. We also note that Eq.~51! for Tc@r#
can equally well be derived@24# from the density-functional
theory virial theorem Eq.~41!.

V. PHYSICAL INTERPRETATION
OF DENSITY-FUNCTIONAL THEORY REPRESENTATION

OF THE HARTREE-FOCK
AND HARTREE APPROXIMATIONS

As a consequence of the constrained search formula
@9# as well as a Green’s-function analysis@14# of density-
functional theory, there exists@9–11# an energy functional
EHF@r# that has a minimum corresponding to the Hartre
Fock @12# ~HF! ground-state energy at the HF ground-sta
densityr~r !. In the context of Kohn-Sham theory, this mea
that it is possible to define an electron-interaction ene
functional Eee

KSHF@r# whose functional derivativevee
KSHF(r )

leads to the HF density and thereby the energy.@Similar
remarks are valid for the Hartree@13# (H) approximation.#
In the following subsection we provide therigorous physical
interpretation of the local potentials and energies in terms
the fields and source distributions which give rise to the
@The symbolr~r ! here indicates either the HF orH density,
as the case may be.#
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1852 55VIRAHT SAHNI
A. Hartree-Fock approximation

In the HF approximation, the wave functionC is assumed
to be a single Slater determinantF$f i

HF% of spin orbitals
f i
HF(r ). The pair-correlation densitygHF~r ,r 8! corresponding

to this wave function@see Eq.~5!# is

gHF~r ,r 8!5r~r 8!1rx
HF~r ,r 8!, ~58!

whererx
HF(r ,r 8) is the HF theory Fermi hole charge define

in terms of the HF spinless idempotent Dirac density ma
gHF~r ,r 8! as rx

HF(r ,r 8)52ugHF(r ,r 8)u2/@2r(r )#. ~This ex-
pression is valid for spin-compensated systems of a cer
symmetry such as closed-shell atoms, open-shell atom
the central field approximation, jellium metal surfaces, e!
The Fermi hole satisfies the constraints of charge neutra
negativity, and value at electron position:*rx

HF(r ,r 8)dr 85

21, rx
HF(r ,r )<0, rx

HF(r ,r )52r(r )/2. The electron-
interaction energyEee

HF is then

Eee
HF@r;gHF#5

1

2 E E r~r !gHF~r ,r 8!

ur2r 8u
dr dr 8

5EH@r#1Ex@r;gHF#, ~59!

where the exchange energyEx@r;g
HF# is the energy of inter-

action between the electronic and Fermi hole charge de
ties:

Ex@r;gHF#5
1

2 E E r~r !rx
HF~r ,r 8!

ur2r 8u
dr dr 8. ~60!

Thus, the ground-state energy is

EHF@r;gHF#5THF@r#1E v~r !r~r !dr1EH@r#

1Ex@r;gHF#. ~61!

The HF theory differential equation, obtained by variation
minimization of this energy for arbitrary variations of th
space orbitals, is then

F2
1

2
¹21v~r !1vH~r !1vx,i~r !Gf i

HF~r !5e if i
HF~r !,

~62!

wherevx,i~r ! is an orbital-dependent potential defined as

vx,i~r !5E rx,i~r ,r 8!

ur2r 8u
dr 8, ~63!

due to the orbital-dependent Fermi holerx,i~r ,r 8! which in
turn is defined as

rx,i~r ,r 8!5 1
2gHF~r¢,r¢8!f i

HF~r¢8!/f i
HF~r¢!. ~64!

Thus, as described by Slater@25#, Hartree-Fock theory can
be viewed as one in which each electron moves in a lo
effective potential of its own.~Of course, when the HF
theory differential equation is written@3# in terms of the
Hermitian nonlocal integral exchange operator, the effec
potential is identical for all orbitals!.
x

in
in
.
y,

si-

l

al

e

In the Kohn-Sham representation of the HF approxim
tion, the corresponding energy functional and different
equation are

EHF@r#5Ts@r#1E v~r !r~r !dr1Eee
KSHF@r# ~65!

and

F2
1

2
¹21v~r !1vee

KSHF~r !Gf i~x!5e if i~x!, ~66!

respectively. HereEee
KSHF@r# is the energy functional, and

vee
KSHF~r !5

dEee
KSHF@r#

dr~r !
, ~67!

the local potential representing electron correlations, wh
lead to the HF density

r~r !5(
i

(
s

uf i~rs!u252(
i

uf i
HF~r¢!u2, ~68!

and thereby to the HF ground-state energy.
The physical interpretation of the local potenti

vee
KSHF(r ) is that it is the work done to move an electron

the fieldF HF~r !:

vee
KSHF~r !52 È r

F HF~r 8!•dl8, ~69!

where

F HF~r !5EeeHF~r !1Ztc
HF~r !. ~70!

HereEeeHF(r ) is the field due to the pair-correlation densi
gHF~r ,r 8! obtained via Coulomb’s law, andZtc

HF(r ) the dif-

ference of the fieldsz~r ! obtained from the Kohn-Sham an
Hartree-Fock kinetic-energy-density tensors:

EeeHF~r !5E gHF~r ,r 8!~r2r 8!

ur2r 8u3
dr 8,

Ztc
HF~r !5

1

r~r !
$z~r ;@gs# !2z~r ;@gHF# !%. ~71!

Thus, the potentialvee
KSHF(r ) may be written as

vee
KSHF~r !5Wee

HF~r !1Wtc
HF~r !, ~72!

where

Wee
HF~r !52 È r

EeeHF~r 8!•dl8, Wtc
HF~r !52 È r

Ztc
HF~r 8!•dl8.

~73!

Furthermore, since“vee
KSHF(r )52FHF(r ), the sum of the

work Wee
KSHF(r ) andWtc

HF(r ) is path independent. The wor
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Wee
HF(r ) can be further split into its HartreeWH~r ! and ex-

changeWx
HF(r ) components, where

Wx
HF~r !52 È r

ExHF~r 8!•dl8,

ExHF~r !5E rx
HF~r ,r 8!~r2r 8!

ur2r 8u3
dl8. ~74!

Note thatWx
HF(r ) is the work done in the fieldExHF(r ) due to

the HF theory Fermi hole chargerx
HF(r ,r 8).

A comparison of Eqs.~61! and~65! shows that the Kohn-
Sham theory functionalEee

KSHF@r# can also be separated in
the quantum-mechanical electron-interaction and correlat
kinetic-energy components as

Eee
KSHF@r#5Eee

HF@r;gHF#1Tc
HF@r#, ~75!

where

Tc
HF@r#5THF@r#2Ts@r#. ~76!

The quantum-mechanical exchangeEx@r;g
HF# component of

Eee
HF@r;gHF#, andTc

HF@r# can also be written in terms of th
fields which give rise to them as

Ex@r;gHF#5E dr r~r !r•ExHF~r ! ~77!

and

Tc
HF@r#5

1

2 E drr~r !r•Ztc
HF~r !, ~78!

respectively.
The equations of the physical interpretation of t

density-functional theory representation of the HF appro
mation are derived by replacing the system wave functionC
in the expectations of Secs. III and IV by the HF wave fun
tion F$f i

HF%. The proof of this statement lies in the fact th
in the Hartree-Fock approximation the virial theorem in
tegral form is satisfied and the differential form of the viri
theorem Eq.~43! remains unchanged@26#.

Finally, we note that provided the HF theory density
known, it is possible@27# to determine a local effective po
tential whose orbitals generate the same density. Howe
the total ground-state energy as determined by these orb
via the HF energy functional Eq.~61! must be greater than
that of HF theory. In principle these energies should also
greater than those of the optimized potential method@28#.
The Kohn-Sham theory electron-interaction energy fu
tional and potential that give the HF theory density and
ergy are given in Eqs.~75! and ~72!, respectively.

B. Hartree approximation

In the Hartree approximation@13# in which the system
wave function is assumed to be a product of spin orbi
C5P jf i

H~rs!, each electron also moves in a local effecti
potential of its own given by@v(r )1vH(r )1v i

SIC(r )#, where
the potential
n-

i-

-

r,
als

e

-
-

ls

v i
SIC~r !5E qi~r 8!

ur2r 8u
dr 8 ~79!

is due to the static self-interaction-correction~SIC! charge
qi52(sf i

H~rs!f i
H~rs!. The pair-correlation density

gH~r ,r 8! in this case is

gH~r ,r 8!5r~r 8!1rSIC
H ~r ,r 8!, ~80!

where rSIC
H (r ,r 8)52( iqi(r )qi(r 8)/r(r ), with

*rSIC~r ,r 8!dr 8 521. Thus, the electron-interaction energ
Eee

H is

Eee
H @r;f i

H#5EH@r#1ESIC
H @r;f i

H#, ~81!

where the SIC energyESIC
H @r;f i

H# is

ESIC
H @r;f i

H#5
1

2 E E r~r !rSIC
H ~r ,r 8!

ur2r 8u
dr dr 8. ~82!

In a manner similar to that previously described, a rigoro
physical interpretation can be derived for the Kohn-Sh
theory electron-interaction energy functionalEee

KS-H@r# and
local potentialvee

KS-H(r )5dEee
KS-H@r#/dr(r ) that lead to the

Hartree approximation ground-state density and energy. N
that once again the differential form of the virial theorem E
~43! remains unchanged in this approximation and that
virial theorem in integral form is satisfied. Thus, the potent
vee
KS-H(r ) is the work done in the fieldFH~r !:

vee
KS-H~r !52 È r

FH~r 8!•dl85Wee
H ~r !1Wtc

H~r !, ~83!

whereFH~r ! is the sum of the fieldsE eeH ~r ! due to the pair-
correlation densitygH~r ,r 8! obtained by Coulomb’s law, and
Ztc
H(r ) the difference of the fieldsz~r ! obtained from the

Kohn-Sham and Hartree kinetic-energy-density tensors.
work Wee

H ~r ! done in the fieldE eeH ~r ! can be split into a
HartreeWH~r ! and a SIC componentWSIC

H (r ), where

WSIC
H ~r !52 È r

ESICH ~r 8!•dl8,

ESICH ~r !5E rSIC
H ~r ,r 8!~r2r 8!

ur2r 8u3
dr 8. ~84!

The workWtc
H(r ) is that done in the fieldZtc

H(r ). The sum of

the work @WSIC
H (r )1Wtc

H(r )# is path independent.

The Kohn-Sham electron-interaction energy function
Eee
KS-H@r# is then

Eee
KS-H@r#5Eee

H @r;f i
H#1Tc

H@r#, ~85!

where the SICESIC
H @r;f i

H# component ofEee
H [r;f i

H] @see
Eq. ~81!#, andT c

H@r# can be written in terms of the fields tha
give rise to them as

ESIC
H @r;f i

H#5E dr r~r !r•ESICH ~r !, ~86!

and
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1854 55VIRAHT SAHNI
Tc
H@r#5

1

2 E dr r~r !r•Ztc
H~r !, ~87!

respectively.

VI. WORK FORMALISM HARTREE-FOCK
AND HARTREE APPROXIMATIONS

The work formalism@15,16# Hartree-Fock approximation
is obtained from the density-functional theory representa
of the HF approximation by neglecting the correlatio
kinetic-energy contribution, i.e., by settingWtc

HF andTc
HF@r#

in Eqs. ~72! and ~75! to zero. ~This implies that the pair-
correlation density and Fermi hole are modified and not
same as those of Hartree-Fock theory.! The resulting Kohn-
Sham differential equation Eq.~66! then becomes

F2
1

2
¹21v~r !1vH~r !1Wx~r !Gc i~x!5e ic i~x!, ~88!

whereWx~r ! is the work done in the fieldEx~r ! due to the
Fermi holerx~r ,r 8! constructed from the solutions of th
equation. Additionally @see Eq. ~75!#, the corresponding
electron-interaction energy is the same as the Hartree-F
theory expression, but determined with the orbitalsci~x! of
Eq. ~88!. The resulting ground-state energy is then a rigoro
upper bound to the HF theory value.

The work formalism approximation leads to resu
@15,16,29,30# for atoms and atomic ions that are essentia
the same as those of Hartree-Fock theory@15#. Thus, for
example, the ground-state energies of atoms lie within@31#
50 ppm of those of Hartree-Fock theory@32#, the difference
for 35Br-86Rn being less than 10 ppm. These results a
indicate that the correlation-kinetic-energy contribution
the exchange-only level is negligible for atoms. In all pro
ability, this is also the case for molecules.

On neglect of the correlation-kinetic-energy contributio
the path independence@33# of the workWx~r ! of Eq. ~88!
must be ensured for systems such as open-shell atoms
molecules. This is achieved either within the central fie
approximation@31# or by considering@7,34# only the irrota-
tional component of the fieldEx~r ! in constructing the po-
tential. In the latter case, the local exchange poten
Wx

eff(r ) is due to astaticeffective exchange charge distribu
tion rx

eff(r )5“•Ex(r )/4p so that

Wx
eff~r !5E rx

eff~r 8!

ur2r 8u
dr 8. ~89!

For atoms, the solenoidal component of the fieldEx~r ! is
negligible @34# in comparison to its irrotational componen
The reason for this is that the correlation-kinetic-ene
work Wtc

HF(r ) is negligible. Recall that it is the sum

@Wx
HF(r )1Wtc

HF(r )# that is path independent. For negligib

Wtc
HF(r ), the corresponding workWx~r ! is then essentially

path independent. Thus, the path-independent pote
Wx

eff(r ), constructed from the irrotational component
Ex~r !, is an accurate representation of Pauli correlations.
n

e

ck

s

o
t
-

,

nd

l

y

ial

Once again, with the correlation-kinetic-energy contrib
tions Wtc

H(r ) and T c
H@r# neglected in the equations of th

density-functional theory representation of the Hartree
proximation, one obtains the work formalism@15,16# Hartree
approximation. The resulting differential equation is

F2
1

2
¹21v~r !1vH~r !1WSIC~r !Gc i~x!5e ic i~x!,

~90!

with the ground-state energy expression being the sam
that of the Hartree approximation but determined with t
orbitals ci~x! of Eq. ~90! instead. Again, the ground-stat
energy in this approximation is an upper bound to that
Hartree theory. For atoms these energies are@35# within 50
ppm of the results of the latter. Further, remarks similar
those on the path dependence ofWx~r ! are equally valid for
the workWSIC~r !.

VII. CONCLUSION

In this paper we have provided a rigorous physical int
pretation of the electron-interaction energy functional a
functional derivative ~potential! of Kohn-Sham density-
functional theory. The interpretation is in terms of a sum
two fields whose source distributions are expectations
Hermitian operators. The first of these fields accounts for
purely quantum-mechanical electron correlations due to
Pauli exclusion principle and Coulomb repulsion. Its sou
is the pair-correlation density and it is determined by Co
lomb’s law. The second accounts for the correlation con
bution to the kinetic energy, and its source is the differen
between the kinetic-energy-density tensor for the nonin
acting and interacting systems. The corresponding field is
derivative of this tensor. The sum of the electron-interact
and correlation-kinetic-energy fields is conservative. Th
the Kohn-Sham theory potential representingall electron
correlations is the work done in the sum of these fields. T
Kohn-Sham electron-interaction energy functional in tu
can also be expressed in virial form in terms of these fie
This then is the explanation of Kohn-Sham theory from t
physical perspective of fields~and sources! representative of
the different correlations present.

The physical description in terms of fields and the
sources provides many insights into density-functio
theory. These insights can then be used to construct accu
energy functionals and their derivatives. For example it le
to ana priori understanding of the structure of the comp
nents of the Kohn-Sham potential. Thus, we know that
~quantum-mechanical! exchange-correlation compone
Wxc~r ! must approach the nucleus of an atom quadratic
having zero slope there. This is because for an electron a
nucleus, the Fermi-Coulomb hole charge distribution
spherically symmetric. Thus, the field due to it at the elect
position vanishes, which in turn implies that the potent
there must have zero slope. In the interior of atoms and m
ecules, this potential must exhibit shell structure but
monotonic throughout since positive work must be done
remove an electron against the force of the field. Any no
monotonicity of the Kohn-Sham potential can then be attr
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55 1855PHYSICAL INTERPRETATION OF DENSITY- . . .
uted to correlation-kinetic-energy effects. Asymptotically,
the classically forbidden region, the potentialWxc~r ! must
vanish as21/r since the total charge of the Fermi-Coulom
hole is negative unity. Precisely the same reasoning app
to the corresponding exchangeWx

HF(r ) and SICWSIC
H (r ) po-

tentials respectively of the density-functional representa
of the Hartree-Fock and Hartree approximations.

Thus, together with previous quantitative work@7,15,29–
31,36#, there is considerable understanding of the struct
of the exchangeWx~r ! and exchange-correlationWxc~r ! com-
ponents for finite systems. Recently, methods@27,37# have
been developed whereby given a ground- or excited-s
wave function and corresponding density, it is possible
determine the Kohn-Sham orbitals that lead to the same
sity. As such it is now possible to also study the structure
the correlation-kinetic-energy fieldZtc

(r ) and the componen
Wtc

(r ) of the Kohn-Sham potential. Preliminary studies i

dicate@24# the fieldZtc
(r ) for atoms to be oscillatory, so tha

Wtc
(r ) is not monotonic as expected. Furthermore, the ma

mum values ofZtc
(r ) andWtc

(r ) are an order of magnitud
smaller than the corresponding exchange-correlation term

As another example, the physical interpretation leads
an understanding of electron correlations in approxim
Kohn-Sham theory. When an approximate electro
interaction energy functional and its functional derivative a
both derived via thesamefield and source distribution, cor
relations beyond those assumed in the construction of
energy functional itself then appear. This in turn leads t
better understanding of the approximation and of its resu
For a discussion of electron correlations within the dens
functional theory Hartree, local density, and gradient exp
sion approximations, we refer the reader to the literat
@38–41#.

Finally, as is known, there is no equivalent Hohenbe
Kohn-Sham variational principle for the excited-state ene
in terms of the excited-state density. The physical interp
tation for the ground state, however, leads to a plaus
argument for the existence@7# of a local potential for excited
states that incorporates all correlation effects. The argum
is as follows: ~i! A system in an excited state has a w
defined wave function. Therefore, the electron-interact
field Eee~r ! due to the corresponding pair-correlation dens
exists. ~ii ! If a system of noninteracting fermions with th
true excited-state density exists, then the kinetic energie
the noninteracting and interacting systems must differ. T
corresponding kinetic-energy-density tensors differ, a
therefore a correlation-kinetic fieldZtc

(r ) exists. ~The as-
sumption of the existence of a local potential leading to
excited state density, i.e., simultaneousv-representability of
the interacting and noninteracting densities, is the sam
that made in the excited-state Kohn-Sham scheme for
sembles,@4,42#!. ~iii ! The proof of the physical interpretatio
for the ground state is based on the virial theorem. Both
integral and differential forms of the theorem are also va
for bound excited states. Thus, it seems reasonable to as
that excited states can be described by the same phy
interpretation as for the ground state. The question of wh
noninteracting excited state of a given density to assoc
with the interacting excited state of the same density is
lated to the existence of an energy functional and variatio
es
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principle for such states. Provided such an energy functio
exists, one would choose that noninteracting excited s
which leads to the same energy as that of the interac
system. Such a functional has been determined@43# for the
lowest state of a given symmetry whereby orthogonality
the lower lying states is ensured. However, since a gen
energy functional for excited states is unknown, another w
to determine the energy would be to strip the electrons
sum the removal energies, i.e., sum the highest occu
eigenvalues of the neutral and ionized systems.

There is also recent numerical evidence to support
physical description of excited states. These calculations
for @44# the excited states of Be and Na, the@24,45# 2 3S He
isoelectronic sequence, and several@46# doubly excited au-
toionizing states of He. There are also calculations@47# for
various multiplets of the ground, and singly and doubly e
cited states of carbon and silicon which also support the
istence of a local potential for excited states.

In conclusion, the principal contribution of this work ha
been to combine the original ideas of Harbola and Sahni w
their formal extension by Holas and March to provide
simple description of the physics underlying Kohn-Sha
density-functional theory. In other words, we have explain
the physics whereby the electron-interaction operator
wave function of Schro¨dinger theory can be replaced by
local potential and single Slater determinant, respectiv
such that the same density and energy are obtained for
ground state. Harbola and Sahni arrived at their interpre
tion of the electron-interaction field through the physic
consideration of the dynamic nature of the pair-correlat
density, and proposedad hoc the addition of a correlation-
kinetic potential. On the other hand, Holas and March
rived an expression for the Kohn-Sham exchange-correla
potential in terms of density matrices from the different
form of the virial theorem. It is from this expression that th
electron-interaction and correlation-kinetic fields, a
thereby the connection to the work of Harbola and Sah
then emerges. The physical description of the Kohn-Sh
theory electron-interaction potential is then unified with th
of the corresponding energy functional by deriving via t
integral virial theorem an expression for the energy in ter
of these fields. We have in addition shown that the physic
the Kohn-Sham representation of the Hartree-Fock and H
tree theories is the same as that of its representation
Schrödinger theory. That is, it is the expectation of the sa
Hermitian operators but taken with respect to the Hartr
Fock and Hartree theory wave functions, respectively, t
are the source distributions for the electron-interaction a
correlation-kinetic fields of these representations. We h
furthermore shown that if in these representations,
correlation-kinetic-energy component is neglected, the eq
tions then reduce to those of the work formalism Hartre
Fock and Hartree approximations. Finally, we have provid
a plausible argument extending the physical picture
ground-state Kohn-Sham theory to excited states.
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