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In this paper we provide a rigorous physical interpretation of the Kohn-SK&ndensity-functional theory
electron-interaction energy functionBfs[p] and its functional derivative ks(r) = 6EXS p]/ Sp(r) based on
the original ideas of Harbola and Sahni, and of their extension by Holas and March. The functional, and hence
the derivative, incorporate electron correlations due to the Pauli exclusion principle and Coulomb repulsion as
well as those of the correlation contribution to the kinetic energy. The interpretation is in terms of &(ield
which is the sum of two fields whose source distributions are expectations of Hermitian operators. The first of
these fields€.(r) accounts for Pauli and Coulomb correlations. Its source is the pair-correlation density and
it is determined by Coulomb’s law. The secohg(r) accounts for the correlation-kinetic contribution, and its
source is the difference between the kinetic-energy-density tensor for the noninteracting and interacting sys-
tems. The corresponding field is the derivative of this tensor. The functional derivéﬁ(/e) is the work done
to move an electron in the fiel@(r). Since the fieldF(r) is conservative, this work done is path independent.
The quantum-mechanical electron-interaction enétgyp] and correlation-kinetic energy.[p] components
of E¢glp] can also be expressed in virial form in terms of the respective f&glds) andz, (r), which give
rise to them. A similar rigorous physical interpretation of the Kohn-Sham theory representation of the Hartree-
Fock and Hartree approximations is also given. If in these representations, the correlation kinetic energy is
neglected the equations reduce to the corresponding approximations of the work formalism of electronic
structure. Finally, it is argued on physical grounds that the interpretation provided for the ground state is
equally valid for excited state§S1050-294®7)04703-3

PACS numbegs): 31.15.Ew, 0.3.65-w

[. INTRODUCTION electron-interaction energy functional. From the wave func-
tion of the model system, which is single Slater determi-
Hohenberg-Kohn-Shani1,2] density-functional theory nant of the solutions of the Kohn-Sham equation, the
[3-5] is founded in Schidinger[6] theory. Thus, according ground-state density(r) and therefore the enerdy[p] are
to the first theorem of Hohenberg and Kohn, the ground-statthen determined. It is in this mathematical framework that
wave function? is a functional of the exact ground-state Kohn-Sham density-functional theory is generally under-
electronic density(r) so that the expectation value of any stood.
observable is a unique functional of the density. The ground- In this paper we provide ggorous physicalunderstand-
state energ¥|[p] is, therefore, such a functional. The density ing of Kohn-Sham theory via a quantum-mechanical inter-
itself in turn is the expectation of a Hermitian operator. Sincepretation of the electron-interaction energy functional and its
the ground-state density does not discriminate between intefunctional derivative (potentia). The interpretation is in
acting and noninteracting electronic systems, the basic aserms of fields arising from source distributions that are
sumption in the Kohn-Sham version of the theory is thatquantum-mechanical expectations of Hermitian operators.
there exists a model-system wbninteractingfermions pos- Thereby the relationship between Kohn-Sham theory and
sessing the true density. To account for the distinction beSchralinger theory via the system wave functidh[rather
tween the interacting Schdimger and noninteracting Kohn- than through the density(r)] is also made explicit. The
Sham systems, one therefore defines within the latter amterpretation further distinguishes between the Pauli-
electron-interaction energy functional that represents correla=oulomb correlation and the correlation-kinetic-energy com-
tions due to the Pauli exclusion principle and Coulomb reponents of the energy functional and potential, each compo-
pulsion as well as those of the correlation contribution to thenent arising from a separate field and source distribution.
kinetic energy. Further, since the model fermions are noninThe physical interpretation in terms of fields and their
teracting, the electron-interaction operator representative afources is arrived at by combining the original ideas of Har-
these correlations in the corresponding Sdimger (Kohn-  bola and Sahni7] with that of the recent work of Holas and
Sham equation isocal or multiplicative. As a consequence March[8]. In this manner we present a simple physical pic-
of the second theorem of Hohenberg and Kohn, which estaliure of that model system of noninteracting fermions that has
lishes the variational character of the ground-state energghe same electronic density and energy as that of Satger
functional, this local operator hasra@orous mathematical theory.
definition: it is thefunctional derivativewith respect to arbi- The constrained search formulati#, which generalizes
trary norm-conserving variations of the density of thethe proofs of the Hohenberg-Kohn theorems thereby elimi-
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nating theuv-representability constraint further shows that The first property of interest is the spinless single-particle
there exist$9—11] a density-functional theory representation density matrixy(r,r') defined as
of the Hartree-Fock12] and Hartred 13] theory approxima-

tions. The same conclusion is arrivEt¥] at via many-body ,

perturbation theory. This means that in each case there exists y(r.r')= NE(T: j WH(roxg, ... Xy

a Kohn-Sham theory electron-interaction energy functional

and derivative, which lead to the same ground-state density XWY(r'o,Xy, ... Xn)dXo, ... ,dXy

and energy as those of these approximations. In a hierarchi- ~

cal manner, a rigorous physical interpretation entirely similar =(V[X]W¥), ©)

to that for the fully correlated case can be provided for these .
energy functionals and local potentials. Once again, the inhere the Hermitian operatpt7]

terpretation is in terms of fields and their source distribu- A A A

tions, which are expectations of tsameHermitian opera- X=A+iB,

tors as for the fully correlated case, but taken with respect to .

the Hartree-Fock and Hartree theory wave functions instead. ~ A=(1/2)Z;[&(r;—n)T;(@+o(r;—r")T;(—a)],
Again, the purely quantum-mechanical electron-interaction

and correlation-kinetic-energy components can be distin- I§=—(i/Z)EJ[é(rj—r)Tj(a)—5(rj—r’)TJ-(—a)],
guished. If in the Kohn-Sham theory representation of the

Hartree-Fock and Hartree approximations, the correlationTj (a) is a translation operator such that
kinetic-energy component is neglected, the equations then

reduce to those of the work formalisfh5,16 for these ap- T(@W¥( - -1 )=V - -r+a- - ),
proximations.

For the quantum-mechanical description of density-anda=r’—r. The single-particle density matrix constructed
functional theory, We begin with the definitions of reqUiSite from the wave functiortV is not idempotent_ The diagona|
properties within Schidinger and Kohn-Sham theories. We matrix element of the density matrix is the densjifr).
then provide a description and proof of the physical interpre£quivalently, it is the expectation value of the density opera-
tation of the electron-interaction energy functional and func+or p(r)==;8(r;—r), so that
tional derivative of Kohn-Sham theory. Following this we
describe the interpretation for the Kohn-Sham representation p(r)=y(r,r)=(¥|p|P). (4)
of Hartree-Fock and Hartree theories, from which the equa-
tions of the work formalism then emerge. Finally, based on  The property associatefi7] with the purely electron-
the physical picture of Kohn-Sham theofg ground-state interaction component of the Kohn-Sham theory many-body
theory), we present in the concluding section a plausible arpotential as well as the electron-interaction energy is the
gument that a similar description is equally valid for excitedpair-correlation densitg(r,r’). It is defined in terms of the
states. Hermitian  pair-correlation  operator P(r,r’)=3/5(r;

—r)o(rj—r’) as
Il. SCHRODINGER AND KOHN-SHAM THEORIES

We define in this section properties within the context of g(r.r ) =(W[P(r,r)¥)/p(r). ©)

Schradinger theory fe'e"a'.’“ to the physical interpretation .OfNote that in the definition of the pair-correlation density
Kohn-Sham density-functional theory. We also give a brief,

there is no self-interaction. In physical terms, the pair-

description of Kohn-Sham theory in order to define the Iocalcorrelation density is thdensityatr’ for an electron at. Its

potential representing electron correlations as well as Othe['btal charge for arbitrary electron position is thus

properties derived within its context. Jg(r,r")dr’=N—1. The pair-correlation density is a property
) that arises due to the Pauli and Coulomb correlations be-
A. Definitions within Schrodinger theory tween electrons. Thus, it can also be interpreted as the den-

T . . H ’ ’ . . . .
The Schidinger equation for a system of electrons in Sty p(r’) atr’ plus the reduction in this density et due to

an external potential of local single particle founr) is the electron correlations. The reduction in Qensny gbout an
electron that occurs as a result of the Pauli exclusion prin-

ﬁ\p(xly LX) =EW(X, LX), (1) ciple and Coulomb repulsion is the quantum-mechanical
Fermi-Coulomb hole charge distributign.(r,r'). Thus, we
where the Hamiltoniat in atomic units is may write the pair-correlation density as
. 1 1 1 g(r,r')=p(r') +py(r,r'), (6)
H=2 - o VE+ 2 o(r)+5 2" m——r, (2
i 2 i 297 |ri=ry| and consequently the total charge of the Fermi-Coulomb

hole for arbitrary electron position igp(r,r")dr’'=—1.
and wherel andE are the normalized system wave function Note that the self-interaction contribution to the Fermi-
and energy, respectively. The energy is the expectatio@oulomb hole charge is canceled by the density, so that the
E=(V|H|W¥). (Herex=ro, wherer is the spatial andr the  pair-correlation density as defined by E¢p) is self-
spin coordinate of the electron. The integfalx=3,/dr). interaction free.
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The electron-interaction enerdgf.. can be afforded a whereTyp] is the corresponding kinetic energy of the non-
physical interpretation in terms of the pair-correlation den-interacting system. This equation defines the Kohn-Sham
sity as the energy of interaction between it and the electronitheory electron-interaction energy functiori&fS[ p], which
density: can then be further partitioned as

1 1
o= (| _;’ = ) Eselp]=Enlp]+ETpl, (15
whereE[p] is the Coulomb self-energy defined previously.
ff p(r) g(r r') dr’ 7 Comparison with Eq.(13) for the energy expression in
drdr”. @) Schralinger theory then defines the Kohn-Sham theory
exchange-correlation energy functiogf]p] as the sum of
Using the form ofg(r,r’) as given by Eq(6), the electron-  the quantum-mechanical exchange-correlation enetgy
interaction energy can be split further as and the correlation-kinetic enerdgy[p]:

Eee=En+Exe, ® ExTp]=Edp]+Tdpl, (16)

whereE,, is the Coulomb self-energy, where in turn

E,= sz p(r)p(r) rdr, (9) Tdpl=Tlpl-Tdpl. (17)

The application of the variational principle to the ground-
state energy functional of Eq(l4) for arbitrary norm-
conserving variations of the density leads to the Kohn-Sham

r)p (r r') , equation
Ey= f f X drdr, (10)

—EV2+v(r)+v S [di(0)=€di(x), i=1,...N,

andE,. is the quantum-mechanical exchange-correlation en-
ergy,

which is the energy of interaction between the density and

the Fermi-Coulomb hole charge distribution. (18
The property associatgd] with the correlation-kinetic-

energy component of the Kohn-Sham potential is the kmetlcwherevee(r) is the local potential in whiclall the electron

energy-density tensdr,(r). This is a real, symmetric tensor correlations are incorporated. As a result of the variational

defined in terms of the single-particle density maix,r’)  Principle, this potential is derived to be the functional deriva-

as tive of EXS[p1]:

32 32

— — (I’ I’) -
argarﬁ Jr por )y [rr=rrr.

1 vee(r)=SELT pl Sp(r). (19

taﬂ(r;[’)/]): Z (
(1)  With the partition ofEXI[p] according to Eq(15), the po-
tential can be written as the sum
The trace of the kinetic-energy-density tensor is the scalar
kinetic energy density(r)=3t,,(r)=0. The kinetic energy ves(N=vp(r)+oi(r), (20)
T is then
which defines the density-functional theory Hartree potential

1 vy(r) as the functional derivative
T:<\If|—§i: Evﬂqf):f dr t(r). @ "
SEdlpl _ [ 1)
Finally, the total energf can thus be written as on(r)= Sp(r)y ) |r—r’| dr’, (21)

_ and the Kohn-Sham theory “exchange-correlation” potential
E T+f v(Np(r)dr+Eee, 13 KS(r) as the functional derivative
with T andE., as defined above. vRS(r) = 6EXI p11 6p(1). (22)

B. Definitions within Kohn-Sham theory The ground-state “wave function” corresponding to this

noninteracting system is then single Slater determinant
D (¢ (x)} of the lowest occupied orbitak; (x) of the Kohn-
ham differential equation. The Dirdd8] single-particle
ensity matrixy(r,r') that results from this Slater determi-
nant is

The basic idea underlying Kohn-Sham the¢®j is the
construction of a model system of noninteracting fermions
for which the density is the same as that of the interactin
system. As such the ground-state energy functi&jall is
partitioned as

E[p]=TS[p]+f v(Np(r)dr+ESp], (14) ys(r,r’)=<<1>SI>A<|‘1>S>=2i ; ¢ (ro)¢i(r'o), (23
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and it is idempotent. The exact ground-state dengityand  where

the noninteracting kinetic energy [p] are also obtained

from this Slater determinant as r
Wedr)=—| Eedr')-dl’, (29

p(r>=<<1>s|b|c1>s>=2 2 |i(ro)]?, (24)

and

and r
Wtc(r)=—LZtc(r’)~dl’. (30

1
—§V2 di(x)dr, (25)

Tdpl=2 f ¢t (%)
' The interpretation of the functional derivativ§3(r) as the
respectively. The ground-state energy is then determined B{ork done is due to the fact that it can be written as
the energy functional of Eq14). Finally, in addition to gen- Ks
erating the orbitals from which the exact ground-state den- Voeelr)=—F(r), (31)
sity and energy of the interacting system are determined, the
highest occupied eigenvalue of the Kohn-Sham differentiap0 that the sum of the wolW/,(r) andW, (r) is path inde-
equation Eq(18) has the physical interpretatidd9] of be-  pendent. The path independence of the work is, of course,
ing the removal energy. Thus, in principle, its solution canrigorously valid provided the fieldF(r) is smooth, i.e., it is
lead to the determination of properties such as the ionizationontinuous, differentiable, and has continuous first deriva-
potential, electron affinity, and work function. tives. Equation(31) also implies that the curl of the field
JF(r) vanishes:
Ill. PHYSICAL INTERPRETATION
OF ELECTRON-INTERACTION POTENTIAL VX ZF(r)=0. (32
OF KOHN-SHAM THEORY

) ) ) ) For systems of a certain symmetry such as closed-shell at-

Since the electron-interaction energy functioBgf[p] of  oms. jellium metal clusters, jellium metal surfaces, open-
Kohn-Sham theory is representative of Pauli and Coulomihe|| atoms in the central-field approximation, etc., the work
netic energy, so is the corresponding local potem@(r) since VX £ (Cr)=V><Z (1)=0
obtained from it through functional differentiation. In the ee te '
physical interpretation of the potentimﬁ(r), however, it is
poss|b|e to dlst|ngu|sh between thpurely quantum_ A. The quantum'mechanical electron-interaction
mechanical(Pauli and Coulompelectron-correlation com- componentWe(r)

ponentWe(r), and the correlation-kinetic-energy component  The physical interpretation of the electron-interaction
W, (r). We begin this section with a description of the componeniW,(r) was originally proposed by Harbola and
physical interpretation ob55(r), and then discuss its com- Sahni[7], and derived by them via Coulomb’s law. It is
ponentsW«(r) a”thC(f) more fully. based on the observation that the pair-correlation density
g(r,r’) is not a static but ratherdynamiccharge distribution
whose structure changes as a function of electron position.
The dynamic nature of this charge then must be accounted
for in the description of the potential. Thus, in order to obtain
SEXSIp] ; the local potential in which the electron moves, the force
vKS(r)= = —f F(r')-dl". (26) field £.4(r) due to this charge distribution must first be de-

The electron-interaction potentialS(r) of Kohn-Sham
theory is the work done to bring an electron from infinity to
its position atr against a fieldF(r):

op(r) termined. According to Coulomb’s law this field is
The field F(r) is the sum of two fields: (r,r’)(r=r")
See(r)zf Wdr’. (33)
F(r)=Eedn)+Z, (1). 27)

The componentW,(r) is then the work done to bring an
glectron from infinity to its position at in this force field as
defined by Eq(29).

The field E.4(r) is strictly representative of Pauli and Cou-
lomb correlations since its quantum-mechanical sourc

charge distribution is the pair-correlation denggiy,r’). On The componeni,(r) can be further simplified by em-

the other hand, the fleI(Ztc(r) arises from the Kkinetic- ploying the expression fog(r, 1) [see Eq.(6)] in terms of

energy-density tensdr,(r). It is the difference of the fields &’ gensityp(r’) and the Fermi-Coulomb hole charge density
derived from the tensor for the interacting and Kohn-Sha (r,r"). The field £,4r) is then the sum of the Hartree

noninte(actin_g systems, anq is thereby representative of tth(r) and exchange-correlatiof,(r) fields:
correlation-kinetic contribution.

Thus, the potentiab5s(r) may be expressed as the sum Eod1)=En(N +E(T), (34)

vga(r)=Wedr)+ W, (1), 28 where
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p(r)(r=r") t,5(r;[ys]) written in terms of the idempotent Dirac density
SH(f)ZJ L dr’, matrix y(r,r') of Kohn-Sham theory, the field; (r) is then
defined as
TN =1")
Exc(r)=f Xcerdr . (35) 1
Ztc(r)=W{Z(r;[vs])—Z(r;[v])}- (40)

The componenW,(r) is in turn the sum of the work done
Wy(r) and W,(r) to move an electron in the Hartree and Note that the determination of this field thus requires knowl-

exchange-correlation fields, respectively, edge of the Kohn-Sham orbitals and system wave function.
Wed(r) =Wi(r) +Wy(r), (36) C. Proof via the differential virial theorem
where The electron-interaction componéi,(r) was originally

derived, as noted previously, by Harbola and Sdfiivia
r , , r , , Coulomb’s law. Since this component does not contain an
WH(r):_LgH(r )-dl’, ch(r)z—J;ch(r )-dl”. correlation-kinetic-energy contrilka)utions, it does finR0,21 y
(37) satisfy the Kohn-Sham theory sum rule relating the corre-
sponding electron-interaction ener@ﬁf[p] to its functional
Now, the electronic density(r) is a static charge distribu-  derivative(potentia) vX3(r). The sum rule, which is derived
tion whose structure does not change as a function of ele¢22 23 from the virial theorem, and in which the correlation-

tron position. Thus, the Hartree field can be written asgjnetic energyT [p] contribution is made explicit, is
EL(r)=—VW(r), where

p(r') EES[pr dr p(Nr-Voss(n)=—T,<0. (41
WH(r)=f m dr’. (38)

Consequently, Harbola and Salifj21] proposed that a term
The workW,,(r) is path independent arMdX €,(r)=0. Fur-  that accounts for the correlation-kinetic energy contribution
thermore, the scalar potentidl,;(r) is recognized to be the be added toW,(r) in order to obtain the Kohn-Sham poten-
density-functional theory Hartree potentigl(r) of Eq.(21).  tial v53(r). As such they suggested adding a term propor-
Thus, the functional derivative of the Coulomb self-energytional to ST [pldp(r). The term to add tdV,(r) is the work
functional E,[ p] has the physical interpretation of being the Wtc(r)- Both the component#/,(r) and Wtc(f) can, how-

work done i.n the field of the electronic density. The Compo'ever, be derived from the virial theorem and we give here for
nentW,4(r) is then the sum of the Hartree potential and theCompleteneSS the proof according to Holas and M&&3h

work do_ne to move an electron in the field of the_ quantum--rpo integral form of the quantum-mechanical virial theo-
mechanical Fermi-Coulomb hole charge dlstr|but|on:rem which is

Wed(r)=vy(r)+W,(r). The work W,(r) is path indepen-
dent for the symmetrical density systems noted previously
since theVXE,(r)=0 for these cases. It is important to 2T+ Eee=f dr p(r)r-Vu(r), (42
note, however, that the corresponding Fermi-Coulomb hole

charge distributionp,(r,r'), which gives rise to the field
E..(r) need not possess the same symmetry for arbitrar
electron position. For example, in either closed-shell atoms Vo(r)=—F(r) (43)
or open-shell atoms in the central-field approximation for '

which the density is spherically symmetric, the Fermi-\ nere

Coulomb hole is not, the only exception being when the
electron is at the nucleus.

)(l:an be written in differential formi8] as

1 1
F(N=—Eeet —y |~ VoD +ARIYD | (44
B. The correlation-kinetic energy componentWtC(r)

The correlation-kinetic energy componew, (r) is the ~ Note that the fieldF(r) depends upon the densipf(r), as
¢ well as the single-particle density matrixr,r’) and the pair-

) L . correlation density(r,r’) through the fieldz(r) andE.(r),
pressed by E(30). The fieldZ, (r) is given in terms of @ egpectively. The corresponding differential form of the
field z(r;[y]) whose component,(r) is derived from the virial theorem for the noninteracting Kohn-Sham system is
kinetic-energy-density tensay,s(r;[y]) as[8]

work done to move an electron in the fie}ﬁc(r) as ex-

3 Vo(r)=—F(r), (45)
J
za<r;m>=2B§l ar tae(HLYD). 39 \where
The field z(r;[y]) thus defined is for the interacting system FRS() = VokS(r) + 11 % VVZp(I’)-i-Z(I’;[‘yS])}.

since the tensor involves the density matsifc, r’) of Eq. p(r)
(3). With the fieldz(r;[ y.]) derived similarly from the tensor (46)
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The fieldF*S(r) depends on the densip(r), and the idem-  SinceEKS p]1=E.dp]+ Tlp], we have

potent density matrix(r,r') through the fieldz(r;[ y.]), and

instead of the fiel&(r) it is the gradient of the Kohn-Sham S SEed p]l  OT[p]

potential vk3(r) that appears. On equating Eq43 and vee(r)= o) T ep(r) e M)+ W, (), (53)
(45), one obtains
and thus
Vold(n=—1Eedr)+ ()[z<r[ys]> 2(r;[ D] ] .
KS/ .\ _ ed P cLp __ _
=—F), 055 )W( 6p<r>) Eed ) =20

(54)
which in turn leads to the interpretation of3(r) as the
work done to move an electron in the fieff(r), and shows On substituting forV(SE.Jdp) from Eq. (54) into Eq. (52)

that this field is conservative. we obtain
IV. ELECTRON-INTERACTION ENERGY
OF KOHN-SHAM THEORY Eed p] f dr p(n)r-Eed) f dr p(rr-Z,,(r)
As is the case for the electron-interaction potential oTd p]
vK3(r), the Kohn-Sham electron-interaction eneig§;[ p] =—2Tdp]=2Tlp]= | dr p(r)r-v sp(r)
of Eq. (15) can also be expressed in terms of figldsd thus
source distributions corresponding to the quantum- (59

mechanical electron-interaction and correlation-kinetic en-
ergy components. The quantum-mechanical electron
interaction energy component E@) is

Using the relation of Eq(48) and those of4,23

oT4p]

=—yp4(r)+const (56)
Sp(r s
Eodpl= [ dr p(or-Eeun), 49 P
and
which can be reduced further to its Coulomb self-enéEyy.
(9)] and exchange-correlatidiEq. (10)] components as
2Ts[p]=f dr p(r)r-Vos (57)
Elp)= | ar p(r)r-£4(n) (49 o
in Eq. (55) leads to Eq(51) for T.[p]. It is interesting to note
and that in deriving the expression folf[p], the question
whetherVx&€,(r) and VxXZ, (r) vanishes or not is of no
consequence. What is important is that the curl of the sum of
Exc[p]:f dr p(r)r-&E(r), (50 these fields vanishes. We also note that &4) for T [p]

can equally well be derivef24] from the density-functional

respectively. The correlation-kinetic-energy component ofheory virial theorem Eq(41).
Eq.(17) is
1 V. PHYSICAL INTERPRETATION
Ipl== f dr p(r)r'Ztc(r). (51) OF DENSITY_FUSE?SSﬁ;;?EgER_T:OREERESENTATION
AND HARTREE APPROXIMATIONS
The fields€.(r), E4(r), Ex(r), andZ; (r) are as defined in
the previous section.

The proof of Eq(48) for E.d p] follows [7] trivially from
the symmetry in an interchange ofand r’ of the pair-
correlationfunction hr,r")=g(r,r")/p(r'). We provide here
the proof of Eq.(51) for T [p] via the virial theorem.

[9] as well as a Green’'s-function analy$&4] of density-
functional theory, there exisf®—11] an energy functional
Ef[p] that has a minimum corresponding to the Hartree-

densityp(r). In the context of Kohn-Sham theory, this means

As a consequence of the constrained search formulation

Fock [12] (HF) ground-state energy at the HF ground-state

that it is possible to define an electron-interaction energy

Proof via integral virial theorem functional EXS"p] whose functional derivative s (r)

The virial theorenfEq. (42)] can also be written d¢},23] leads to the HF density and thereby the enef@imilar
remarks are valid for the Hartrdd3] (H) approximation]

OEed p] In the following subsection we provide thigjorous physical
Eee[P]+f dr p(r)r-V( Sp(r) ) interpretation of the local potentials and energies in terms of
the fields and source distributions which give rise to them.
o7 f dr p(r)r- V( [P]) 52 [The symbolp(r) here indicates either the HF &t density,
Sp(r))’ as the case may be.
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A. Hartree-Fock approximation In the Kohn-Sham representation of the HF approxima-
In the HF approximation, the wave functidihis assumed tion, the corresponding energy functional and differential
to be a single Slater determinadit{ """} of spin orbitals ~€duation are
iHF(r). The pair-correlation density"(r,r') corresponding
to this wave functiorisee Eq.(5)] is EHF[p]=TS[p]+f v(Np(r)dr+ES" o] (85
gi(rr)=p(r")+p(r,r), (58)
and
Wherep F(r,r') is the HF theory Fermi hole charge defined
in terms of the HF spinless idempotent Dirac density matrix
YH(rr') as py(r,r')=—[y"(r,r")|%[2p(r)]. (This ex-
pression is valid for spin-compensated systems of a certain

symmetry such as closed-shell atoms, open-shell atoms irespectively. Her&S" p] is the energy functional, and
the central field approximation, jellium metal surfaces,)etc.

S V(0o | 40— €0, (60

The Fermi hole satisfies the constraints of charge neutrality, 5EKSHF[p]

.. e HF ’ r_— v SHF( ) (67)
negativity, and value at electron positiofip,” (r,r')dr’= ee (r) '
-1, pff(r,r)=<0, pMF(r,ry=—p(r)/2. The electron-
interaction energ)Eeg is then the local potential representing electron correlations, which

. lead to the HF density
R p(r)g (r r)
Eeelpi v 1= dr dr’
p(N=2 2 |iro)P=22 |47, (68
=Enlp]+Edp: "1, (59 b '

where the exchange energy[p;y "] is the energy of inter- and thereby to the HF ground-state energy. _
action between the electronic and Fermi hole charge densi- The physical interpretation of the local potential

ties: vKSH(r) is that it is the work done to move an electron in
the field 7 *7(r):
p(r)p
Edpiv*l=5 f f dr dr’. (60 KSHF ' HF
Vea ()=—1 F"(r")-dl', (69
Thus, the ground-state energy is
where
HFf . HF_ THF +j +

+E[p;y™]. (61)
* Here £X5(r) is the field due to the pair-correlation density
The HF theory differential equation, obtained by variationalg™ (r,r’) obtained via Coulomb’s law, anZlHF(r) the dif-

minimization of this energy for arbitrary variations of the fgrence of the fieldg(r) obtained from the Kohn Sham and

space orbitals, is then Hartree-Fock kinetic-energy-density tensors:
1 HF
2 HF _ HF, r,r r
=5 ViHu(n)+ou(n+o.(n| o (N =€ (r), £t )_J g <|r 3<|3 D,
(62)
wherev, ;(r) is an orbital-dependent potential defined as HF, o HE
zf(n= (r) nlyD-2nl»y Dk @D
.(r)—f Mdr’ (63)
Uxith) = [r—r’] ’ Thus, the potentiadKsH(r) may be written as
due to the orbital-dependent Fermi hglg;(r,r') which in vKSPR(n) =WEE(r) + WHF(r), (72

turn is defined as
(1) =3y FF RS EN ). (64 Where

Thus, as described by Slatg5], Hartree-Fock theory can W)= — frggg(f’)'dv, WH(r) = — fthHF(r’)-dl’.
be viewed as one in which each electron moves in a local o ¢ w

effective potential of its own(Of course, when the HF (73
theory differential equation is writtefi3] in terms of the

Hermitian nonlocal integral exchange operator, the effectivé-urthermore, sinc&vs"(r)=—F"7(r), the sum of the
potential is identical for all orbita)s work WKSHR(r) and WHF(r) is path independent. The work
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WEE(r) can be further split into its Hartred/,,(r) and ex- sc(p) J' i(r
Uj r)=

/) ,
changew!f(r) components, where a dr (79

[r—r
is due to the static self-interaction-correcti@®IC) charge
q=—2,6"ro)¢l(ro). The pair-correlation density
g"(r,r') in this case is

r
WEF<r>=—f EF(rny-dl,

HF ’ ot
exHF(r):J S (Irr’r:i—(f[—s " ar. (74) g =p(r) +pSielrr), (80
- T where  pg(r.r')=—Ziqi(r)ai(r')/p(r), with
Note thatW, " (r) is the work done in the fiel&, " (r) due to prg,C(r,r’)dr’ =—1. Thus, the electron-interaction energy
the HF theory Fermi hole chargg' (r,r’). Ef.is

A comparison of Eqs(61) and(65) shows that the Kohn- H " H H
Sham theory functionatksH p] can also be separated into Ecdpi ¢ 1=Enlpl+Esdp;éi'], (81)

the quantum-mechanical electron-interaction and correlation- H r .  H+
kinetic-energy components as where the SIC energisd p; ¢i'] is

H 2
EXSHT p]= X s P+ T 1, 79) eidoi =5 [ | %d dr. (82

where o ) ) )
In a manner similar to that previously described, a rigorous

T:;'F[p]ZTHF[p]—TS[p]. (76) physical interpretation can be derived for the Kohn-Sham
theory electron-interaction energy functiorléﬁ'”[p] and
The quantum-mechanical exchariggp;y*"] component of  local potentialo XS (r)= 6EXSH[ p]/8p(r) that lead to the
ESfp; vF], andTH p] can also be written in terms of the Hartree approximation ground-state density and energy. Note
fields which give rise to them as that once again the differential form of the virial theorem Eq.
(43) remains unchanged in this approximation and that the
virial theorem in integral form is satisfied. Thus, the potential

EX[p;yHF]:f dr p(n)r- £(r) 77 KSH(r) is the work done in the fieldF" (r):

Uee

and vﬁS'H(r):—fry-'H(r').dlfzwge(r)+w{1(r), (83)

1
Te'lp]= 2 J drp(r)r-Zt*iF(r), (78) where F1(r) is the sum of the field€5(r) due to the pair-
correlation densit;g”(r,r’) obtained by Coulomb’s law, and
respectively. Zg(r) the difference of the fieldz(r) obtained from the
The equations of the physical interpretation of theykghn-Sham and Hartree kinetic-energy-density tensors. The
density-functional theory representation of the HF approXiyyork WH(r) done in the field€Xr) can be split into a

mation are derived by replacing the system wave funclfon |, reew (r) and a SIC componem! (r), where
in the expectations of Secs. Ill and IV by the HF wave func- H iV

tion ®{¢"}. The proof of this statement lies in the fact that " o
in the Hartree-Fock approximation the virial theorem in in- Wgic(r)=— LES,C(r’)-dI’,
tegral form is satisfied and the differential form of the virial
theorem Eq(43) remains unchange®6].

Finally, we note that provided the HF theory density is gglc(r)zf
known, it is possibld27] to determine a local effective po-
tential whose orbitals generate the same density. Howeve Hyx - . . oH
the total ground-state egnergy as determined by tr{ese orbitajig1e workWtC(r) is that done in the f'eldtc(r)' The sum of
via the HF energy functional Eq61) must be greater than the work[Wg,(r) + W' (r)] is path independent.
that of HF theory. In principle these energies should also be The Kohn-Sham electron-interaction energy functional
greater than those of the optimized potential meth28l. E?S'H[p] is then
The Kohn-Sham theory electron-interaction energy func-
tional and potential that give the HF theory density and en- EXSHIp1=ES  p; 6P 1+ TH p], (85)
ergy are given in Eq975) and(72), respectively.

A (84

where the SICESJ p; ¢!'] component ofE f{p; ] [see
B. Hartree approximation Eq.(81)], andT J[p] can be written in terms of the fields that

) ] ) ) give rise to them as
In the Hartree approximatiofiL3] in which the system
wave function is assumed to be a product of spin orbitals " " "
V=I1I;4{(ro), each electron also moves in a local effective Esd p; ¢i ]:f dr p(r)r-Eg(r), (86)
potential of its own given bjv (r) +vy(r)+v7'(r)], where

the potential and
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" 1 y Once again, with the correlation-kinetic-energy contribu-
Telrl=5 J dr p(r)r-Z(r), (87)  tions Wi!(r) and T{[p] neglected in the equations of the
density-functional theory representation of the Hartree ap-

respectively. proximation, one obtains the work formaligitb,16 Hartree
approximation. The resulting differential equation is

VI. WORK FORMALISM HARTREE-FOCK
AND HARTREE APPROXIMATIONS

1
The work formalism{ 15,16 Hartree-Fock approximation {_ 5 V24 u(r) +on(r) +Wsidr) [#i(X) = €4i(X),
is obtained from the density-functional theory representation (90)
of the HF approximation by neglecting the correlation-
kinetic-energy contribution, i.e., by settivg;’” andT¢"[p]  with the ground-state energy expression being the same as
in Egs. (72) and (75) to zero.(This implies that the pair- that of the Hartree approximation but determined with the
correlation density and Fermi hole are modified and not th@rbitals ¢ (x) of Eq. (90) instead. Again, the ground-state
same as those of Hartree-Fock thebifhe resulting Kohn-  energy in this approximation is an upper bound to that of
Sham differential equation E¢66) then becomes Hartree theory. For atoms these energies[ag within 50
ppm of the results of the latter. Further, remarks similar to
those on the path dependenceVdf(r) are equally valid for

D Vo) (D) W) (0= g0, (89 8 WorkWeilr),

whereW,(r) is the work done in the fiel&,(r) due to the Vil. CONCLUSION

Fermi hole p,(r,r’) constructed from the solutions of this  |n this paper we have provided a rigorous physical inter-
equation. Additionally[see Eq.(75)], the corresponding pretation of the electron-interaction energy functional and
electron-interaction energy is the same as the Hartree-Fodkinctional derivative (potentia) of Kohn-Sham density-
theory expression, but determined with the orbitals) of  functional theory. The interpretation is in terms of a sum of
Eq.(88). The resulting ground-state energy is then a rigorouswo fields whose source distributions are expectations of
upper bound to the HF theory value. Hermitian operators. The first of these fields accounts for the
The work formalism approximation leads to results purely quantum-mechanical electron correlations due to the
[15,16,29,30 for atoms and atomic ions that are essentiallyPauli exclusion principle and Coulomb repulsion. Its source
the same as those of Hartree-Fock thefit§f]. Thus, for s the pair-correlation density and it is determined by Cou-
example, the ground-state energies of atoms lie wifBf  lomb’s law. The second accounts for the correlation contri-
50 ppm of those of Hartree-Fock thedi32], the difference  bution to the kinetic energy, and its source is the difference
for **Br-*Rn being less than 10 ppm. These results alsetween the kinetic-energy-density tensor for the noninter-
indicate that the correlation-kinetic-energy contribution atacting and interacting systems. The corresponding field is the
the exchange-only level is negligible for atoms. In all prob-derivative of this tensor. The sum of the electron-interaction
ability, this is also the case for molecules. and correlation-kinetic-energy fields is conservative. Thus,
On neglect of the correlation-kinetic-energy contribution,the Kohn-Sham theory potential representialyj electron
the path independend@3] of the work W,(r) of Eq. (88)  correlations is the work done in the sum of these fields. The
must be ensured for systems such as open-shell atoms ar@hn-Sham electron-interaction energy functional in turn
molecules. This is achieved either within the central fieldcan also be expressed in virial form in terms of these fields.
approximation31] or by considerind7,34] only the irrota-  This then is the explanation of Kohn-Sham theory from the
tional component of the fiel&,(r) in constructing the po- physical perspective of fieldand sourcesrepresentative of
tential. In the latter case, the local exchange potentiathe different correlations present.
V\/iﬁ(r) is due to astatic effective exchange charge distribu-  The physical description in terms of fields and their
tion piﬁ(r)=V-8X(r)/47r so that sources provides many insights into density-functional
theory. These insights can then be used to construct accurate
energy functionals and their derivatives. For example it leads
to ana priori understanding of the structure of the compo-
nents of the Kohn-Sham potential. Thus, we know that the
(quantum-mechanical exchange-correlation component
For atoms, the solenoidal component of the fi€ldr) is  W,.(r) must approach the nucleus of an atom quadratically
negligible [34] in comparison to its irrotational component. having zero slope there. This is because for an electron at the
The reason for this is that the correlation-kinetic-energynucleus, the Fermi-Coulomb hole charge distribution is
work W{*CF(r) is negligible. Recall that it is the sum spherically symmetric. Thus, the field due to it at the electron
[WHF(r) +WHF(r)] that is path independent. For negligible position vanishes, which in turn mphgs that the potential
HE c ) _ . there must have zero slope. In the interior of atoms and mol-
W, (r), the corresponding workV,(r) is then essentially gcyles, this potential must exhibit shell structure but be
path independent. Thus, the path-independent potentimhonotonic throughout since positive work must be done to
V\/iﬁ(r), constructed from the irrotational component of remove an electron against the force of the field. Any non-
E,(r), is an accurate representation of Pauli correlations. monotonicity of the Kohn-Sham potential can then be attrib-

wein= [

eff 1
px (r')
|rx_r,| dr’. (89)
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uted to correlation-kinetic-energy effects. Asymptotically, in principle for such states. Provided such an energy functional
the classically forbidden region, the potenti(r) must exists, one would choose that noninteracting excited state
vanish as—1/r since the total charge of the Fermi-Coulomb which leads to the same energy as that of the interacting
hole is negative unity. Precisely the same reasoning appliesystem. Such a functional has been determi@& for the
to the corresponding exchanyé' (r) and SICWg(r) po-  lowest state of a given symmetry whereby orthogonality to
tentials respectively of the density-functional representationhe lower lying states is ensured. However, since a general
of the Hartree-Fock and Hartree approximations. energy functional for excited states is unknown, another way
Thus, together with previous quantitative wgik15,29—  to determine the energy would be to strip the electrons and
31,36, there is considerable understanding of the structurg,m the removal energies, i.e., sum the highest occupied
of the exchang#V,(r) and exchange-correlatioNl,(r) COm-  gjgenvalues of the neutral and ionized systems.
ponents for finite systems. Recently, meth¢@2,37 have There is also recent numerical evidence to support the

been (fjevetl_oped \(/jvhereby givcej_n a dgrou_tnd-_to_r excite_gl-st?t hysical description of excited states. These calculations are
wave function and corresponding density, It IS poSSIDIE 1G4 the excited states of Be and Na, 2,45 23S He

determine the Kohn-Sham orbitals that lead to the same den: .\ .o sequence, and sevdrs] doubly excited au-

sity. As such it is now possible to also study the structure of . ~ " .
. L . oionizing states of He. There are also calculatipfig for
the correlation-kinetic-energy field, (r) and the component . ; .
c various multiplets of the ground, and singly and doubly ex-

W, (r) of the Kohn-Sham potential. Preliminary studies in- cited states of carbon and silicon which also support the ex-
dicate[24] the fieldZ, (r) for atoms to be oscillatory, so that istence of a local potential for excited states.

W, (r) is not monotonic as expected. Furthermore, the maxi- In conclusion, the principal contribution of this work has
mum values sztc(f) anthc(r) are an order of magnitude been to combine the original ideas of Harbola and Sahni with

ller than th di h lation t their formal extension by Holas and March to provide a
smaller than the corresponding exchange-correlation erms'simple description of the physics underlying Kohn-Sham
As another example, the physical interpretation leads t

%ensity-functional theory. In other words, we have explained

En hungﬁrstancgrl]ng of e\l/sﬁtron correlatlons_ |ntapprI(JX|{natqhe physics whereby the electron-interaction operator and
rohn-sham theory.  When —an —approximateé electrony, o e fynction of Schidinger theory can be replaced by a
interaction energy functional and its functional derivative ar

) ; , Lo Clocal potential and single Slater determinant, respectively,
both derived via thesamefield and source distribution, cor- such that the same density and energy are obtained for the

relatlon? be%(ondl t'?osh? tﬁlssumed n Ephe. c'ontstrucltlorclj OI thq&round state. Harbola and Sahni arrived at their interpreta-
energy functional 11sell then appear. 1S In trn 1€ads 10 &5, of the electron-interaction field through the physical

better understanding of the approximation and of its results, \qiqeration of the dynamic nature of the pair-correlation

For a discussion of electron correlations within the denSity'density and proposead hocthe addition of a correlation-
fqnctional th_eory. Hartree, local density, and gradien_t eXpang;inetic 'potential. On the other hand, Holas and March de-
sion approximations, we refer the reader to the literaturg; o 5 expression for the Kohn-Sham exchange-correlation
[38_.4]]' : . . potential in terms of density matrices from the differential
Finally, as IS "'FOW”- ther_e IS no equwa_lent Hohenberg-form of the virial theorem. It is from this expression that the
Kohn-Sham variational principle for the excited-state ENer9%actron-interaction and correlation-kinetic fields, and
in terms of the excited-state density. The physical imerprefhereby the connection to the work of Harbola and’Sahni
tation for the ground state, however, Iead_s to a plgusibl en emerges. The physical description of the Kohn-Sharﬁ
argument for the existeng] of a local potential for excited theory electron-interaction potential is then unified with that
; > . . "% the corresponding energy functional by deriving via the
is as follows: () A system in an excited state has a well integral virial theorem an expression for the energy in terms

d_efmed wave function. Therefote, the_ electron.— mteractl_orbf these fields. We have in addition shown that the physics of
field £q¢(r) due to the corresponding pair-correlation densityy, ok ohn-sham representation of the Hartree-Fock and Har-

exists. (i) If a system of noninteracting fermions with the tree theories is the same as that of its representation of
true excited-state density exists, then the kinetic energies chradinger theory. That is, it is the expectation of the same
the noninte_r acting ar_ld interacting systems must (_jiffer. The ermitian operators but ta{ken with respect to the Hartree-
corresponding k|ne't|c-er'1ergy—d.en3|ty ten;ors differ, an ock and Hartree theory wave functions, respectively, that
therefore a correlation-kinetic field, (r) exists.(The as- are the source distributions for the electron-interaction and
sumption of the existence of a local potential leading to thesorrelation-kinetic fields of these representations. We have
excited state density, i.e., simultaneausepresentability of  fyrthermore shown that if in these representations, the
the interacting and noninteracting densities, is the same aﬁ)rre|ation_kinetic-energy component is neglected, the equa-
that made in the excited-state Kohn-Sham scheme for enjons then reduce to those of the work formalism Hartree-
sembles[4,42)). (iii ) The proof of the physical interpretation Fock and Hartree approximations. Finally, we have provided

Tor the grOUnd. state |S based on the virial theorem. Both th% p|ausib|e argument extending the physica| picture of
integral and differential forms of the theorem are also validground-state Kohn-Sham theory to excited states.

for bound excited states. Thus, it seems reasonable to assume

that excited states can be described by the same physical

interpretation as fo_r the ground state. The question of wh_lch ACKNOWLEDGMENT

noninteracting excited state of a given density to associate

with the interacting excited state of the same density is re- The author thanks Professor Andrzej Holas for his con-
lated to the existence of an energy functional and variationadtructive comments.
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