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Relativistic, retardation, and radiative corrections in Rydberg states of lithium

A. K. Bhatia and Richard J. Drachman
Laboratory for Astronomy and Solar Physics, Goddard Space Flight Center, Greenbelt, Maryland 20771

~Received 10 October 1996!

We have used third-order perturbation theory to calculate the effect of the Breit-Pauli relativistic interaction
on the dipole polarizability of Li1 ions of ordera2. Results are in good agreement with the value obtained by
Johnson and Cheng@Phys. Rev. A53, 1375~1996!#. In addition, the retardation~Casimir! corrections to singly
excited~1s2NL! states of neutral lithium have been computed. When both of these corrections are added to the
previously calculated Rydberg state energies, 1s agreement is found with experiment@N. E. Rotheryet al.,
Phys. Rev. A51, 2919 ~1995!#. Addition of radiative~Lamb-shift! corrections produces essentially exact
agreement.@S1050-2947~97!04503-4#

PACS number~s!: 31.50.1w, 31.30.Jv
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I. INTRODUCTION

Recently, accurate measurements have been made of
eral fine-structure intervals in singly excited lithium atom
@1#, and accurate nonrelativistic calculations have also b
reported@2#. The agreement between the two is fairly goo
and the remaining discrepancies are of the order of (Za)2, as
would be expected for relativistic corrections. More recen
a relativistic configuration-interaction calculation of the d
pole polarizabilities of two-electron atomic systems has b
made@3#, and about34 of the discrepancy in lithium has bee
removed.

In this paper we verify the results of Ref.@3# for the
relativistic correction to the dipole polarizability of the Li1

core using third-order perturbation theory and the Breit-Pa
relativistic operator, which is correct to ordera2. We carry
out the intermediate-state sums appearing in the perturba
calculation by the use of pseudostates. In addition, we c
pute the effect of the retardation~Casimir! effect, again using
pseudostates and applying the formalism of Auet al. @4#.
These two corrections together bring theory and experim
into almost perfect agreement, to just outside their combi
errors. The largest remaining correction is the Lamb sh
whose leading term~of orderZa3! we also compute.

II. NONRELATIVISTIC CALCULATIONS

Let us briefly review the standard method of evaluat
the nonrelativistic energy shifts of Rydberg states of lithiu
like systems@2#. The Hamiltonian~in atomic units with en-
ergies in rydbergs! of the three-electron system~with the
nucleus taken as fixed and of atomic numberZ! is
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Herer i refers to the two core electrons, andx is the coordi-
nate of the outer, Rydberg electron. The expression in
first set of brackets is the core Hamiltonian, that in the s
ond set is the Hamiltonian of the Rydberg electron moving
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the Coulomb field of the nucleus shielded by the two co
electrons. The remainder~in curly brackets! is the perturba-
tion due to the mutual interaction of core and outer electro

In Ref. @2# the perturbation theory is developed in deta
but here we are only interested in the leading asympt
term. Expanding the interaction term of Eq.~1! in multipoles
we find

Hdip5
2

x2
~rW11rW2!•xŴ ~2!

as the leading~dipole! term for x@r i . Second-order pertur
bation theory applied to this interaction leads to the we
known polarizability potential

V2~x!5(
n

^0uHdipun&^nuHdipu0&
~E02En!

52
a1

x4
. ~3!

Strictly speaking, the quantitiesu0&, E0, un&, andEn should
be eigenvectors and eigenenergies of the core Hamilton
representing the ground and excited states, respectively
practice we use normalized, approximate functions and e
gies obtained variationally. Hylleraas trial functions ha
been found@2# to give good convergence for the dipole p
larizability a1. The energy shift of a particular Rydberg sta
due to this polarizability potential, is given by the expec
tion value ofV2(x) in the corresponding hydrogenic state
appropriateZ.

III. RELATIVISTIC CORRECTION
TO THE POLARIZATION POTENTIAL

We wish to compute a correction to the energy shift o
Rydberg level of lithium due to the Breit-Pauli relativist
Hamiltonian of ordera2. Thus we must carry out a third
order mixed perturbation calculation, retaining the effect
the Breit-Pauli operator only to first order@5#. The Breit-
Pauli perturbation is
1842 © 1997 The American Physical Society
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~4!

The complete third-order potential has the form

V3~x!5(
n,m

^0uhun&^nuhum&^muhu0&
~E02En!~E02Em!

2(
n

^0uhun&^nuhu0&
~E02En!

2 ^0uhu0&, ~5!

whereh5Hdip1HBP. Keeping terms of ordera2 results in
the following:

V3
a2~x!5(

n,m
F ^0uHdipun&^nuHBPum&^muHdipu0&

~E02En!~E02Em!

12
^0uHdipun&^nuHdipum&^muHBPu0&

~E02En!~E02Em! G
2(

n

^0uHdipun&^nuHdipu0&
~E02En!

2 ^0uHBPu0&

52
Da1

x4
, ~6!

where we have taken account of the facts that the gro
state has angular momentumL50, the excited statesn,m are
L50 or 1, andHBP is rotationally invariant.

The summations in Eq.~6! are carried out using optimize
pseudostates. For all theL50 states we have chosen nonli
ear parameters giving the best ground-state energy. Fo
L51 pseudostates the nonlinear parameters were those m
mizing the nonrelativistic polarizabilitya1, Eq. ~3!, and Ref.
@2#. The¹4 andd(rW) terms are larger than the other two
Eq. ~4!, but they are of opposite sign and, as noted by We
hold @5#, there is significant cancellation. Our best-converg
result, obtained with 161 terms withL50 and 165 terms
with L51, isDa1524.51831025; this should be compare
with Da1524.48531025, the result of Ref.@3#. It is encour-
aging to see agreement to better than 1% between two
tinct methods of calculation. We will show the effect of th
correction on the Rydberg states of lithium below.

As an interesting aside we note thatDa1(Z) has been
calculated for a set of different values of atomic numberZ up
to 30 in Ref.@3#. For largeZ this quantity can be well rep
resented by the expressionDa1(Z)524.8631024Z22. For
the one-electron atom the relativistic polarizability correcti
can be given exactly@6# asDa1(Z)5228(Za)2(a1/27). If
we note that for the two-electron ions of interest he
a1→9Z24 for largeZ, then we can form the ratio of the tw
formulas as follows:
d

he
xi-

-
d

is-

F2
4.8631024

Z2 G
F2

28

27
~Za!2

9

Z4G
5
5.20731025

a2 50.978. ~7!

This ratio is so close to 1 that we might almost have gues
the relativistic correction from the previous work. Presu
ably this simple relation reflects the fact that for highZ the
two-electron ions become increasingly less correlated
hence more like two one-electron atoms scaled accord
to Z.

IV. RETARDATION CORRECTIONS
TO RYDBERG STATE ENERGIES

Up to now we have considered the situation where
Rydberg electron is at a distance from the nucleus m
greater than the radius of the two-electron core, in orde
simplify the calculations in two ways. First, the asympto
form of the interaction potential involving the multipole ex
pansion is applicable. Second, exchange between the
electrons and the outer one can be neglected, since
wave functions do not overlap appreciably. When the d
tance between the Rydberg electron and the core isvery large
~greater than about 137a0! something new happens: it is n
longer adequate to treat the interaction as purely Coulom
character. This is because the delay due to the finite l
propagation time between the core and the outer electro
comparable to the characteristic timet5a0/v. This retarda-
tion ~or Casimir! effect @7# brings in a new type of term@8#
in the effective potential acting on the Rydberg electron t
falls off like x25; for very large distances it replaces th
ordinary nonadiabatic term that falls likex26. But for fairly
large distances these asymptotic forms are not accurate,
it is in this more complicated intermediate region that t
experimentally interesting wave functions lie.

We wish to calculate the shift in energy of a high Rydbe
state of lithium (1s2NL) due to retardation. In@4# the fol-
lowing expressions are given for the modification of the
fective potential producing the energy shift:

DRet
NL5
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n
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I n5E
0

` dt

~ t211!
E
0

` dx

x6
RNL
2 ~x!

3e22znt@325zn
21zn

41~6zn22zn
3!t#

1E
0

` dx

x6
RNL
2 ~x!F6zn2 zn

3

2
2
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2 G , ~9!

wherezn5
1
2ax(En2E0). @In Eq. ~9! we have inserted the

parametric integral forms for the auxiliary functionsf andg
@9#.! There are several possible ways to evaluate Eqs.~8! and
~9!, but we have chosen to evaluate analytically the integ
over the radial hydrogenic functionsRNL(x) first. Then we
carry out the sum over the core indexn, after which the
integral over the parametert is done numerically. The gen
eral expression forRNL(x) is complicated, so we have cho
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TABLE I. Retardation corrections for lithium in MHz. Items in parentheses are from the approximate calculation of Ref.@10#; the present
results should be correct to the number of figures given.A@2B# meansA3 f102B.

N L5N21 L5N22 L5N23 L5N24 L5N25 L5N26

21 0.512914@26# 0.784730@26# 0.120167@25# 0.184893@25# 0.286846@25# 0.450239@25#

20 0.824531@26# 0.128704@25# 0.201008@25# 0.315574@25# 0.500108@25# 0.803228@25#

~0.24@25#! ~0.37@25#!

19 0.135954@25# 0.216716@25# 0.345638@25# 0.554594@25# 0.899641@25# 0.148237@24#

18 0.230336@25# 0.375457@25# 0.612534@25# 0.100660@24# 0.167579@24# 0.284215@24#

17 0.401893@25# 0.671099@25# 0.112235@24# 0.189396@24# 0.324660@24# 0.569129@24#

16 0.724279@25# 0.124177@24# 0.213463@24# 0.371126@24# 0.657790@24# 0.119830@23#

15 0.135305@24# 0.238860@24# 0.423474@24# 0.761733@24# 0.140352@23# 0.267594@23#

~0.16@24#! ~0.28@24#! ~0.50@24#!

14 0.263198@24# 0.480106@24# 0.881605@24# 0.164958@23# 0.318213@23# 0.641113@23#

~0.31@24#! ~0.56@24#! ~0.10@23#!

13 0.536064@24# 0.101492@23# 0.194088@23# 0.380458@23# 0.775800@23# 0.167406@22#

~0.23@23#! ~0.44@23#!

12 0.115116@23# 0.227499@23# 0.456352@23# 0.946219@23# 0.206712@22# 0.487218@22#

11 0.262951@23# 0.546500@23# 0.116111@22# 0.258099@22# 0.616036@22# 0.163382@21#

10 0.646286@23# 0.142682@22# 0.325464@22# 0.790948@22# 0.212477@21# 0.653658@21#

~0.91@22#! ~0.24@21#!

9 0.173556@22# 0.412753@22# 0.103097@21# 0.282191@21# 0.880362@21# 0.119784
8 0.520102@22# 0.135982@21# 0.383258@21# 0.122084 0.179089
7 0.179285@21# 0.531534@21# 0.175064 0.285004
6 0.744191@21# 0.260226 0.492489
5 0.397834 0.950122
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sen to simplify the analytic evaluation by working with fun
tions of increasing numbers of nodes. That is, we fixN2L at
1,2, . . . ,5; foreach such choice the analytic form ofRNL(x)
is simple, and this method includes the higherL values for
eachN for which the asymptotic method is best suited. R
sults of this calculation are shown in Table I, along w
some earlier estimates@10#.

V. LAMB-SHIFT CORRECTIONS

A good deal of work has been reported on the Lamb s
of atomic helium@11# and some on general two-electron io
such as Li1 @12#, which is the core of the lithium Rydber
atom that interests us here. But since we are only intere
in the L-dependent fine-structure splitting of these Rydb
levels only thechangein the Lamb shift of the two-electron
core due to its interaction with the outer electron needs to
calculated. The main parts of the Lamb shift~mass renormal-
-

ft

ed
g

e

ization, vacuum polarization, and radiative correction to
magnetic moment! can be written in terms of̂ d(rW1)
1d(rW2)&, and it is only necessary to calculate the depe
dence of thesed functions on the state of the outer electro
This idea has been developed previously@13# for the helium
Rydberg states, where the core has only one elect
Smaller corrections due to the effect of the electric field
the Rydberg electron and of two-electron correlations will
omitted here; they have been discussed~for the case of he-
lium! in Ref. @13#.

Following @13# we can write the expression for the two
electron Lamb shift as

DLamb
NL 5

8

3
Za3H 22 lna1

19

30
2 lnkJ ^d~rW1!1d~rW2!&. ~10!

Here thed functions refer to the two core electrons but a
influenced by the outer electron. We have already compu
ift,
TABLE II. Effect of the small corrections. Relativistic polarizability, retardation, Lamb sh
and the total including the uncorrected interval from@2#, in MHz, for theN510 manifold. The
quantities in parentheses are estimated errors in the last figures retained.

L
Uncorrected

shift
Relativistic
polarizability Retardation Lamb shift Total

4 2535.343~115! 0.1201 0.0654 20.0251 2535.183~115!
5 2195.5397~11! 0.0416 0.0212 20.0087 2195.4856~11!
6 286.2932~3! 0.0170 0.0079 20.0036 286.2719~3!

7 243.49739~7! 0.0078 0.0033 20.0016 243.4879~1!

8 224.02231~2! 0.0039 0.0014 20.0008 224.0178
9 214.013679~4! 0.0020 0.0006 20.0004 214.0115
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their expectation values in Sec. III using third-order pert
bation theory, since suchd functions appear in the Breit
Pauli operator. Since the third-order perturbation theory
pression involves the dipole term in the potential twice,
expectation value of 1/x4 must be evaluated. This is how th
state of the outer electron manifests itself, since we are
suming here that the Bethe logarithm lnk depends only on
the properties of the unperturbed Li1 core. ~There is a cor-
rection to this discussed, for the one-electron case, in R
@13#. In that case it is very small, and since it is fairly diffi
cult to evaluate we will not worry about it here.! The two-
electron Bethe logarithm has been evaluated as a functio
Z in Ref. @12#: lnk52.984 128 5612 ln~Z20.00615!. From
our previous discussion we know that the Lamb-shift corr
tion to the Rydberg states of lithium must be proportional
the expectation value of 1/x4. In effect, this behaves like
another correction to the dipole polarizability of the tw
electron core.

VI. RESULTS AND DISCUSSION

From the preceding work we can write the relativis
corrections calculated here as

DNL5@1.486310523.1033104#K 1x4 L
NL

1D ret
NL, ~11!

TABLE III. Comparison of level differences for lithium, in
MHz, between theory and experiment@1#. The standard deviation
are experimental and theoretical combined in quadrature. ‘‘Exp
ment’’ refers to Ref.@1#, ‘‘theory’’ means the present results, an
Ref. @2# omits the present relativistic, retardation, and radiative c
rections.

Interval
Experiment
2 Ref. @2#

Experiment
2 Theory

Standard
deviation

10G-10H 20.08 0.02 0.11
10H-10I 20.0326 0.0003 0.0048
. A

u

h

l

-

-
e

s-

f.

of

-

where the quantities in square brackets are the coeffici
~in MHz! of the relativistic polarizability and Lamb-shif
corrections, respectively.~We have converted from rydber
units to MHz using the value 1 Ry53.2893109 MHz.! The
hydrogenic expectation valuê1/x4&NL is given analytically
@14# as

K 1x4 L
NL

516
~2L22!!

~2L13!! F 3N32
L~L11!

N5 G , ~12!

while the retardation shift comes from Table I. In Table II w
show the three types of corrections for the experimenta
interesting caseN510 and their total in MHz.~It is simple to
obtain results for other cases if needed.! Finally, in Table III,
we compare the experimental fine-structure intervals
lithium @1# with the theoretical totals including the unco
rected values@2,15# and the three small corrections calc
lated here. It is clear that there is better agreement when
small corrections are included, although the almost per
agreement is presumably fortuitous.

At present there are only two fine-structure intervals
lithium measured with enough precision to enable a comp
son between theory and experiment to be made, and only
for which the present asymptotic calculation is good enou
to begin testing the theory fairly rigorously. The lithium sy
tem is clearly not too difficult to handle theoretically, an
higher-order corrections and more measurements seem
warranted. This is a program that should be able to test b
quantum electrodynamics and our computational techniq
in a critical way.
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