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Relativistic, retardation, and radiative corrections in Rydberg states of lithium
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We have used third-order perturbation theory to calculate the effect of the Breit-Pauli relativistic interaction
on the dipole polarizability of Li ions of ordera?. Results are in good agreement with the value obtained by
Johnson and Cherj¢hys. Rev. A53, 1375(1996)]. In addition, the retardatio(Casimip corrections to singly
excited(1s? NL) states of neutral lithium have been computed. When both of these corrections are added to the
previously calculated Rydberg state energias,agjreement is found with experimefid. E. Rotheryet al,

Phys. Rev. A51, 2919 (1995]. Addition of radiative (Lamb-shif) corrections produces essentially exact
agreement[ S1050-294{@7)04503-4

PACS numbd(s): 31.50+w, 31.30.Jv

[. INTRODUCTION the Coulomb field of the nucleus shielded by the two core
electrons. The remaindéin curly bracketsis the perturba-
Recently, accurate measurements have been made of sdign due to the mutual interaction of core and outer electrons.
eral fine-structure intervals in singly excited lithium atoms In Ref.[2] the perturbation theory is developed in detail,
[1], and accurate nonrelativistic calculations have also beehut here we are only interested in the leading asymptotic
reported[2]. The agreement between the two is fairly good,term. Expanding the interaction term of Ed) in multipoles
and the remaining discrepancies are of the ordeZaf)f, as  we find
would be expected for relativistic corrections. More recently,
a relativistic configuration-interaction calculation of the di-

pole polarizabilities of two-electron atomic systems has been oo = 2 2 5
made[3], and abouf of the discrepancy in lithium has been ap=32 (M+12) X @
removed.

In this paper we verify the results of Rdf3] for the
relativistic correction to the dipole polarizability of the™Li as the leadingdipole) term for x>r; . Second-order pertur-
core using third-order perturbation theory and the Breit-Paulbation theory applied to this interaction leads to the well-
relativistic operator, which is correct to ordef. We carry  known polarizability potential
out the intermediate-state sums appearing in the perturbation
calculation by the use of pseudostates. In addition, we com-
pute the effect of the retardatig@asimip effect, again using (O[H gip| ) {n[H ;| O) a;
pseudostates and applying the formalism of éwal. [4]. Vz(X):zn: (Eq—E.) T ©)
These two corrections together bring theory and experiment o =
into almost perfect agreement, to just outside their combined
errors. The largest remaining correction is the Lamb shift
whose leading ternof orderZa®) we also compute.

Strictly speaking, the quantitidé), E,, |n), andE,, should

be eigenvectors and eigenenergies of the core Hamiltonian,
representing the ground and excited states, respectively. In
[I. NONRELATIVISTIC CALCULATIONS practice we use normalized, approximate functions and ener-
gies obtained variationally. Hylleraas trial functions have
been found 2] to give good convergence for the dipole po-
larizability «; . The energy shift of a particular Rydberg state,
due to this polarizability potential, is given by the expecta-
tion value ofV,(x) in the corresponding hydrogenic state of

Let us briefly review the standard method of evaluating
the nonrelativistic energy shifts of Rydberg states of lithium-
like systemq2]. The Hamiltonian(in atomic units with en-
ergies in rydbergsof the three-electron systerfwith the
nucleus taken as fixed and of atomic numBegis

appropriateZ.

22 2Z 2 2(Z—-2)
Hyr= —vi—vg————+—}+ -Vio ——

fi T2 T X Ill. RELATIVISTIC CORRECTION

TO THE POLARIZATION POTENTIAL
4 2 2 !
it et . . .
[X—Fq|  |X—1,] @ We wish to compute a correction to the energy shift of a

Rydberg level of lithium due to the Breit-Pauli relativistic
Herer, refers to the two core electrons, ards the coordi- Hamiltonian of ordera®. Thus we must carry out a third-
nate of the outer, Rydberg electron. The expression in therder mixed perturbation calculation, retaining the effect of
first set of brackets is the core Hamiltonian, that in the secthe Breit-Pauli operator only to first ord¢§]. The Breit-
ond set is the Hamiltonian of the Rydberg electron moving inPauli perturbation is
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B I S N N 4.86<10*
Hgp=« _Z[V1+V2]+WZ[5(H)+5("2)] T T 72| 5.207x10°° 0978 .
= 2 = V. .
. 1 . - -~ o~ o _gg(za)zg @
+27T5(r12)+r—lz[vl'V2+r12'(r12'V1)Vz] : 27 z*

(4) This ratio is so close to 1 that we might almost have guessed
the relativistic correction from the previous work. Presum-
ably this simple relation reflects the fact that for higtthe
two-electron ions become increasingly less correlated and
hence more like two one-electron atoms scaled according

(0lh|n)(n|h|m)(m|h|0) to Z.

The complete third-order potential has the form

Va(x)=2 - —~
am - (Bo~En)(Eo=En) IV. RETARDATION CORRECTIONS
(0lh|n)(n|h|0) TO RYDBERG STATE ENERGIES
-2 — =7 (0lh|o), (5) . o
n (Eo—En) Up to now we have considered the situation where the

Rydberg electron is at a distance from the nucleus much
greater than the radius of the two-electron core, in order to
whereh=Hg,+Hgp. Keeping terms of order” results in  simplify the calculations in two ways. First, the asymptotic
the following: form of the interaction potential involving the multipole ex-
pansion is applicable. Second, exchange between the core
electrons and the outer one can be neglected, since their
V“Z(x)=2 (O[H gigl M){n[H gel m)(M[Haip| O) wave functions do not overlap appreciably. When the dis-
3 am (Eo—En)(Eo—Em) tance between the Rydberg electron and the coreriglarge
(greater than about 138g) something new happens: it is no
(O[H gip| n){n[Hgipl m){m[Hgp|0) longer adequate to treat the interaction as purely Coulomb in

2 (Eo—En)(Eo—Em) character. This is because the delay due to the finite light
(O H i n)(n| g O) propagation time between th'e core and the OL_Jter electron is
-3 dip L (0|HgplO) comparable to the characteristic tirtve ag/v. This retarda-
n (Eo—En) tion (or Casimip effect[7] brings in a new type of terrf8]

in the effective potential acting on the Rydberg electron that
=_ % (6) falls off like x°; for very large distances it replaces the
x* ordinary nonadiabatic term that falls like ©. But for fairly
large distances these asymptotic forms are not accurate, and

it is in this more complicated intermediate region that the
where we have taken account of the facts that the groungxperimentally interesting wave functions lie.

state has angular momenturr=0, the excited states,m are We wish to calculate the shift in energy of a high Rydberg

L=0or 1, andHgp is rotationally invariant. state of lithium (&°NL) due to retardation. Ifi4] the fol-

The summations in Ed6) are carried out using optimized |4ing expressions are given for the modification of the ef-
pseudostates. For all the=0 states we have chosen nonlin- foctive potential producing the energy shift:

ear parameters giving the best ground-state energy. For the

L =1 pseudostates the nonlinear parameters were those maxi- 16 [(n|z;+ 25| 0) ]2

mizing the nonrelativistic polarizability;, Eq. (3), and Ref. ANL=—7 —E—g 7 'n (8)
[2]. The V* and &(F) terms are larger than the other two in Ton (En=Eo)

Eq. (4), but they are of opposite sign and, as noted by Wein-

hold[5], there is significant cancellation. Our best-converged | = fm dt f“ d_X R2, (x)

result, obtained with 161 terms with=0 and 165 terms " Jo (t2+1) Jo xB NG

with L=1, is Aay;=—4.518<10">; this should be compared _2 5 4 3

with Aa;=—4.485<105, the result of Ref[3]. It is encour- X e ?n[3— 57,47+ (62, 22Z,)t]

aging to see agreement to better than 1% between two dis- . 3

tinct methods of calculation. We will show the effect of this +f d_;( RZ (x)| 6z,— Zn_ 37 (9)
correction on the Rydberg states of lithium below. x® N 2 27

As an interesting aside we note thaw,(Z) has been
calculated for a set of different values of atomic numbep  wherez,= 3 ax(E,—Ey). [In Eq. (9) we have inserted the
to 30 in Ref.[3]. For largeZ this quantity can be well rep- parametric integral forms for the auxiliary functiohsindg
resented by the expressidn,(Z)=—4.86x10 *Z~2 For  [9].) There are several possible ways to evaluate Bysand
the one-electron atom the relativistic polarizability correction(9), but we have chosen to evaluate analytically the integrals
can be given exactl{f] asAa,(Z)=—28(Za)?(«,/27). If  over the radial hydrogenic functiory, (x) first. Then we
we note that for the two-electron ions of interest herecarry out the sum over the core index after which the
a,—9Z 4 for largeZ, then we can form the ratio of the two integral over the parameteris done numerically. The gen-
formulas as follows: eral expression foRy, (x) is complicated, so we have cho-



1844 A. K. BHATIA AND RICHARD J. DRACHMAN 55

TABLE I. Retardation corrections for lithium in MHz. Items in parentheses are from the approximate calculation[dORehe present

results should be correct to the number of figures givdr-B] meansAx f10™E.

N L=N-1 L=N-2 L=N-3 L=N—4 L=N-5 L=N-6
21 0.51291f6] 0.784730—-6] 0.120167-5] 0.184898-5] 0.28684¢—5] 0.450239—5]
20 0.82453[1—6] 0.128704-5] 0.201008-5] 0.315574—5] 0.500108—5] 0.803228-5]
(0.24-5)) (0.37-5))
19 0.1359505] 0.216716-5] 0.345638—5] 0.554594—5] 0.899641-5] 0.148237-4]
18 0.23033p-5] 0.375457-5] 0.612534—5] 0.100660—4] 0.167579—4] 0.28421%5-4]
17 0.40189B-5] 0.671099-5] 0.112236—4] 0.189396—4] 0.324660—4] 0.569129—4]
16 0.72427p-5] 0.124177-4] 0.213468—4] 0.37112¢—4] 0.657790—4] 0.119830-3]
15 0.1353054] 0.238860—4] 0.423474—4] 0.761733-4] 0.140359—3] 0.267594—3]
(0.1d-4]) (0.2 —-4)) (0.50—-4])
14 0.26319p-4] 0.480106—4] 0.88160%—4] 0.164958—3] 0.318218-3] 0.641118—3]
(0.31—-4)) (0.5 —4)) (0.10-3))
13 0.53606f—4] 0.101498—3] 0.194088—3] 0.380458—3] 0.775800—-3] 0.167406—2]
(0.29-3)) (0.44-3))
12 0.11511p-3] 0.227499—3] 0.45635p—3] 0.946219-3] 0.206718—2] 0.487218-2]
11 0.26295[-3] 0.546500—3] 0.116111{-2] 0.258099— 2] 0.616036—2] 0.163382—1]
10 0.64628p-3] 0.142689—2] 0.325464—2] 0.790948—2] 0.212477-1] 0.653658—1]
(0.91-2) (0.24-1))

9 0.173556—2] 0.412758-2] 0.103097—-1] 0.282191—1] 0.88036¢—1] 0.119784

8 0.520109—2] 0.13598¢—1] 0.383258—1] 0.122084 0.179089

7 0.1792861] 0.531534—1] 0.175064 0.285004

6 0.74419[—1] 0.260226 0.492489

5 0.397834 0.950122

sen to simplify the analytic evaluation by working with func- ization, vacuum polarization, and radiative correction to the
tions of increasing numbers of nodes. That is, weNfixL at ~ magnetic moment can be written in terms of(5(f;)
1,2,...,5; foreach such choice the analytic form R, (x) +48(f5)), and it is only necessary to calculate the depen-
is simple, and this method includes the highevalues for  dence of thesé functions on the state of the outer electron.
eachN for which the asymptotic method is best suited. Re-This idea has been developed previoydig] for the helium
sults of this calculation are shown in Table I, along with Rydberg states, where the core has only one electron.
some earlier estimat¢40]. Smaller corrections due to the effect of the electric field of
the Rydberg electron and of two-electron correlations will be
omitted here; they have been discuss¢kn the case of he-
lium) in Ref.[13].

A good deal of work has been reported on the Lamb shift  Following [13] we can write the expression for the two-
of atomic heliun{11] and some on general two-electron ions electron Lamb shift as
such as LT [12], which is the core of the lithium Rydberg
atom that interests us here. But since we are only intereste 8 19 . .
in the L-dependent fine-structure splitting of these Rydbergg&mb: 3 Za3| —2Ina+ 30 Ink] (8(r)+a(ry). (10
levels only thechangein the Lamb shift of the two-electron
core due to its interaction with the outer electron needs to bélere theé functions refer to the two core electrons but are
calculated. The main parts of the Lamb sfiiftass renormal- influenced by the outer electron. We have already computed

V. LAMB-SHIFT CORRECTIONS

TABLE IlI. Effect of the small corrections. Relativistic polarizability, retardation, Lamb shift,
and the total including the uncorrected interval fr¢j, in MHz, for the N=10 manifold. The
quantities in parentheses are estimated errors in the last figures retained.

Uncorrected Relativistic

L shift polarizability Retardation Lamb shift Total
4 —535.343115 0.1201 0.0654 —0.0251 —535.183115
5 —195.539711) 0.0416 0.0212 —0.0087 —195.485611)
6 —86.29323) 0.0170 0.0079 —0.0036 —86.27193)
7 —43.497397) 0.0078 0.0033 —0.0016 —43.48791)
8 —24.022312) 0.0039 0.0014 —0.0008 —24.0178

9 —14.013679%4) 0.0020 0.0006 —0.0004 —14.0115
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TABLE Ill. Comparison of level differences for lithium, in where the quantities in square brackets are the coefficients
MHz, between theory and experimeii]. The standard deviations (in MHz) of the relativistic polarizability and Lamb-shift
are experimental and theoretical combined in quadrature. “Expericorrections, respectivelyWe have converted from rydberg
ment” refers to Ref[1], “theory” means the present results, and nits to MHz using the value 1 Ry3.289x 10° MHz.) The
Ref.[2] omits the present relativistic, retardation, and radiative corhydrogenic expectation valud/x*,, is given analytically

rections. [14] as
Experiment Experiment Standard 1 (2L-2)!' | 3 L(L+1)
Interval — Ref.[2] — Theory deviation v NL: (2L+3)! NN (12
10G-10H —0.08 0.02 0.11 . . .
10H-101 00326 0.0003 0.0048 while the retardation shift comes from Table I. In Table Il we

show the three types of corrections for the experimentally
interesting casél=10 and their total in MHz(lt is simple to

their expectation values in Sec. Ill using third-order pertur-Obtain results for other cases if needegnally, in Table Iil,
bation theory, since such functions appear in the Breit- We compare the experimental fine-structure intervals for
Pauli operator. Since the third-order perturbation theory exlithium [1] with the theoretical totals including the uncor-
pression involves the dipole term in the potential twice, the'ected valueg2,15] and the three small corrections calcu-
expectation value of £# must be evaluated. This is how the lated here. It is clear that there is better agreement when the
state of the outer electron manifests itself, since we are agmall corrections are included, although the almost perfect
suming here that the Bethe logarithmkldepends only on agreement is presumably fortuitous.

the properties of the unperturbed’Leore. (There is a cor- At present there are only two fine-structure intervals in
rection to this discussed, for the one-electron case, in Refithium measured with enough precision to enable a compari-
[13]. In that case it is very small, and since it is fairly diffi- SON between theory and experiment to be made, and only one
cult to evaluate we will not worry about it heyeThe two-  for which the present asymptotic calculation is good enough
electron Bethe logarithm has been evaluated as a function @ begin testing the theory fairly rigorously. The lithium sys-

Z in Ref.[12]: Ink=2.984 128 56-2 In(Z—0.00615. From  tem is clearly not too difficult to handle theoretically, and
our previous discussion we know that the Lamb-shift correchigher-order corrections and more measurements seem to be
tion to the Rydberg states of lithium must be proportional towarranted. This is a program that should be able to test both
the expectation value of A%. In effect, this behaves like guantum electrodynamics and our computational techniques
another correction to the dipole polarizability of the two- in & critical way.

electron core.
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