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Collisional coupling between hyperfine and Stark components of molecular spectra
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A theoretical treatment, based on a tensorial expansion of the scattering matrix, is presented for collisional
coupling between hyperfine and Stark components of molecular spectral lines. This treatment also describes the
dependence of collisional broadening of well-resolved componenEs amd M ¢ quantum numbers. The case
of molecules with a large dipole moment is discussed in detail and simple selection rules are obtained for
collisional coupling by using our treatment of the relaxation matrix within a perturbative expansion of the
scattering matrix. The existing experimental results are expla[ig50-294{@7)02701-1

PACS numbs(s): 33.70.Jg, 34.16:x

I. INTRODUCTION also includes the possible presence of a static electric or
magnetic field splitting the hyperfine lines into components

As is well known, when the rotational momentuhof a  with different values of the hyperfine magnetic quantum
molecule is coupled to the nuclear spinf one of its atoms, numberM. Since the particular cade=0 is included, our
a quadrupole hyperfine structure of the states is present. Eagfeatment also describes, for a molecule without hyperfine
component corresponds to different values of the quanturgtructure, the dependence of collisional broadening and cou-
numberF eigenvalue of total angular momentuss= | + J. pling on the magnetic quantum numkbdr; .

A few studies deal with collisional broadening and a shift  |n Sec. Il the general dependence of collisional broaden-
of hyperfine componenf{d-7]. Some theoretical predictions ing and coupling on hyperfine and magnetic quantum num-
about the dependence &nandM¢ of the collisional broad-  bers is obtained from the symmetry properties of the scatter-
ening of the single components were given in R&l. No  ing matrix and its expansion in terms of tensorial operators
F dependence was observed for the10 rotational line  on the separate degrees of freedom of the colliding mol-
of the symmetric top molecules GE&I [2] and ecules. It is supposed that the nuclear dpitas a negligible
CH3CN [3,4]. On the contrary, a relevant hyperfine variation influence on the collisional dynamics. Both cases of the pres-
was observed and theoretically explained for fve4—3,  ence and absence of static field are considered. In Sec. Ill the
K=3 rotational line of CHI [5]. The problem was also theory is adapted to the standard perturbative approximation,
discussed theoretically in Reff6] for the particular case of obtaining results that can be used within any of the different
linear molecules colliding with an atom. perturbative model§15—17 commonly used in the litera-

The frequency spread of the hyperfine structure dependsire. In Sec. IV the case of molecules interacting during col-
on the molecule and on the rotational transition. In somdisions mainly by their dipole moment is considered and
cases the frequency distance between the components is siinple selection rules are obtained, allowing one to evaluate
small that they cannot be resolved. In other cases they ai@ which cases collisional coupling between hyperfine and
resolved at low pressures and overlapped at higher pressurestark components must be taken into account.

Anyhow, a simplifying assumption is implicitly or explicitly

used in almost all existing collisional line-shape studies: the

spectrum is treated as the sum of noninterfering hyperfine Il. HYPERFINE DEPENDENCE

components. This may lead to unreliable conclusions when OF THE RELAXATION MATRIX

collisional coupling is present. Indeed, due to coherent am-

plitude transfer between lines, when some collision- The present section is devoted to disentangling the depen-
broadened lines are overlapping, the resulting spectrum cagtence of the relaxation matrix from hyperfire andM) and

be different from the simple sum of the individual Lorentzian from nonhyperfine & andJ) quantum numbers of the states
shapes. This effect was discussed in many experimental ane,FM of the absorbing molecule, whetd =M is the
theoretical studieg7—13], but the case of hyperfine lines is component ofF along the quantization axis and summa-
almost unexplored. No general indication can be found in thaizes all quantum numbers other thanF, andM. We first
literature. Some workg3,4,6,14 have shown that collisional suppose that the presence of a static field completely resolves
coupling between hyperfine components should be small ithe M degeneration of the statéénear Stark effect or Zee-
particular spectra. In Ref7] the collisional line shape of man effect. Then we treat the case when degeneration in the
rotational transitions of the CHEEI asymmetric-top mol- sign of M occurs(quadratic Stark effegt Finally, we con-
ecule was studied. A negligible collisional coupling betweensider the zero-field case. In the present work we assume that
hyperfine components of a single rotational transition washe perturbation energy due to the external static field is suf-
observed, while coupling, in some cases, was relevant bdiciently small with respect to the spacing between the un-
tween hyperfine components of different rotational transiperturbed rotational and hyperfine levels so that, at the same
tions. Some hints were given in that paper on the theoreticalrder of approximationt- can be treated as a good quantum
explanation of the phenomenon. number.

We present here a general treatment of the problem that A spectral transition
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|=l¢—li=a¢J; ,FiMi—a;J; ,FiM; of a relaxation matrixI' in the space of the line vectors
_ _ [I). Since no data can be found in literature for the hyperfine
is represented by the line vector dependence of the imaginary part of the relaxation matrix,

_ we consider here only the real part bf;,. However our
)= lasdr FMo{adi FiMil, treatment can be extended with no modification to the imagi-

wheree=M;—M,;=0,+1 labels the polarization of the ra- hary part, whose diagonal elements represent the collisional

diating field. Within the impact approximatidi 8], the col- ~ shift of the lines.

lisional broadening™;, of isolated lined and the collisional I'y;» can be expressed in terms Bfmatrix elements de-

couplingT’};, between lined,|’ are linear with the number scribing the collisional transitions from the initial and final

densityn of the perturbing moleculed’;,, are the elements states of the lines andl;,

F|,|':(FI,|+F|f,|)5|,|'+F::|fr, (2.1a
i,|:n(<Q|r|<01iJi FiMi| Tl 3i , FiMp)[r)|a))g, (2.1b
Il =n((al(r[(ards , FM| TMards F M) [n)|a)q,, (2.19

F:er:—n<2 J’dq,<q|<r|<ai‘]iaFiMi|T|ai,‘Ji,!Fi’Mi,>|r,>|q,><q’|<r,|<af"Jf,!F§Mf,|TT|af‘]f!Ffo>|r>|q> :
r’
ar

(2.19

where (), stands for the thermal average on bath paramwhereC are scalar operator® are tensors in the space of
eters, which are the internal states of the perturb&nd the translational states, andare tensors in the spaces of internal
momentumq of relative translational motion of colliding degrees of absorbin¢l) and perturbing(2) molecules, as
molecules. From Eq(2.1a we can see that the relaxation denoted by the presuperscript. The lakedccounts for the
matrix can be decomposed into two ‘“single-state,” or presence of many terms with the same tensorial degrees
“outer,” terms and one “double-state,” or “middle,” term. )\, andX,.

The single-state ternEIJ andl“,fyI are diagonal in the space A relevant simplification is obtained by assuming that the
of the lines and account for the collisional relaxation of thehyperfine energy is small in comparison to the other energies
two stated; andl; considered separately. The double-stateinvolved (translational and rotational enepggnd that the
termI'}’\, involves both initial and final states of the line and nuclear spin state§M ) are not influenced appreciably by
is given by a correlated product of collisional matrix ele- Collisional forces. In this case the scaldgin Eq. (2.2) do
ments(l;| T/} and{(I{|T'|I;). Its diagonal parl’"| is usu-  not depend orF and “r operates only on the space of vec-
ally negative and decreases the contribution of semiadiabatf®'s [JMy). The matrix elements O*T in the coupled repre-
collisional transitions;g,r—1,q’,r’ andl;q,r—!;q’,r’ to the sentation|]JFMg) can be related directly to the matrix ele-

relaxation of the single linel. Its off-diagonal part Ments in the uncoupled representatjdM,IM,) by means
F::r'(l_al,l’) accounts for the rate of amplitude transfer be-Of the Racah coefficients of the unitary transformation be-

tween different lines and hence for collisional coupling. tween the two-vector basis:
As we will show in the following, any hyperfine and mag-
netic dependence is restricted to the double-state part of the
relaxation matrix. Hence the and M dependence of pres-
sure broadening of liné comes froml“i;,f while collisional
coupling between line$ and1’, and itsF and M depen-

(adFM['7a’d" F'M)

=(FM[A1piF' MK ed| 7, [la’ ")

if
dence, Comes frlorﬂlyl',. o X[(ZJ,+1)(2F+1)]1/2\N(J|)\1F,,FJ,)
By rotational invariance we can put the matrix in the
tensorial form[19] 2.3
_ tv v At this point, by using in Eq(2.1) the tensor decompaosition
T Ek: % CR(kKQx(K), (229 (2.2 for T and resorting td2.3) for the matrix elements of

tensors'r operating in the space of internal degrees of the
absorber, the above-mentionEdand M dependence of the
relaxation matrix’}; . is obtained. In fact, performing for the
diagonal terms off in Egs.(2.1b and(2.1¢9 a thermal av-
(2.2b erage on the directions af andr, only scalar operators

A= X (Arhgadory) (k) n2(K),

N1.Ao, v,V



55 COLLISIONAL COUPLING BETWEEN HYPERFINE AND ... 185

Ro(K), *7o(k), and ?rg(k) are left in the single-state relax- ) O =[(23] +1)(23} +1)(2F; + 1)(2F+ 1))
ation terms. Hence the effectiiematrix for the calculation
of I'}, andT'|, becomes XW(JiIN1F{;F I )W(IINLF{;F 1))

X(FiMi\v1F{ M{)(FiM¢|N v, F{M).

To= 2 CuR(K) 70(K)*75(K). (2.4 279

Moreover, using the rotational invariance of the scalar operal he presence of the geometric factbyl, comes from the

tors 7o and remembering that for the Racah coefficients thecorrelated product in Eq2.19 of the two matrix elements

identity

(arde FMel 7t g 37 FiM), (2.89

W(JIOF;FJ)=[(2J+1)(2F+1)]¥?

holds, Eq.(2.3) yields (i di FiMi[*7 Vl' o I FiM7) (2.8
ing the collisional transitions between the final and

/J/’F/M/ 1.0 J,FM — /J/ 1 J 5 ,5 '5 . I’epresentlngt .
(a "role )={a' I [Frollad) 03y Oer '\?\2/'5) initial states of the two lines induced bﬁrrﬁ(k) and

17-;1(]). Because of the directional average on the bath vari-

Hence ablesq andr, only scalar products of tensors for each degree

of freedom are left in the double-state relaxation t€Pxid.
i —n Cul at: I ra(K s I 27 (K) I P Hence we have the same tensorial indiegsand v; for
i <2 ardilFrotolla i (rlFroCiolir) 7(k) and 7(]) in (2.8 and in the expressiof2.70 of

<I)| Il, The matrix element&2.8) are different from zero only

X<Q|Ro(k)||Q>> : (263 if AM;=M/—M,; and AM;=M/—M; are both equal to
a.r v1. Hence collisional coupling is possible only if

AM;=AM;. 2.9
ri=n| 3 Culedl ol riPmoln) o 29
K We point out that Eq92.6) and(2.7) describe completely
the dependence of relaxation matfixon F andM and give
><<Q|Ro(|<)||(1>> ‘ (2.6b two important results. First, the single-state terﬁﬁ and
ar Ff, are independent df andM Second, the dependence of

Equation (2.6) proves that, because of the average on thethe double-state terriTI ,» is due to the geometric factors

directions of bath variableg andr, the single-state colli- ‘I’?w which are a simple product of Clebsch-Gordan and

sional broadening termE| , andT'|, do not depend on the Racah coefficients.

hyperfine and magnetic quantum numbErand M. We consider now the case of the quadratic Stark effect.
By similar considerations, based on the tensorial properThe observed lines are a superimposition of two components

ties of the operators- and R under rotations and on the [lm)./l -v) degenerate in the sign &fi. According to the

orientational averages om andr, the double-state term in “effective-line” model described in Ref.11] for represent-

Eg. (2.1d becomes ing degenerate spectra, the line vector basis appropriate for

describing such Stark lines is

1—‘::If':_n )\zkj Hk,j(Qur)<ai‘]i||l7')\1(k)||ai,‘]i/> ||_M>:AM|IM>+A—M|I—M>>- (2.10
1K,
In fact, |I_M)) is the average of two degenerate components
X<af‘]f||17-)\ ||af,‘]f>q)| | ’ (273

ar [Tm) =13, FiM)(a;3; ,FiM;l,
wherell(q,r) describes the contribution 1q ., of each type _m)=lasdi ,Fi—M){a;di ,Fi— M,
of collision with given values of bath varlablqsandr and is ] ] ) )
given by weighted with normalized amplitude factors

Aw=1N2, A _y=(-1)r FitFi2,
M (an= 2 | dg’CCialRuKkla }alRu()la’)

Aot where the factor £ 1)1 F1*Fi follows from the symmetry
, N roperty of Ayx(FiM¢|1eF;M;) under sign inversion
<t Pr (I Pr D). @7n DroPer of Au(FiM 1R M) ¢

In this representation it is straightforward to obtain the

| |' in (2.7 is given by relaxation matrix in the form
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Prole=T o 40 (1)t Fref
M M -M

(2.11

Due to the selection rul@.9), the second term on the right-
hand side of Eq.(2.11) is different from zero only if
EZMf_Mi:Mé_Mi,ZO.

By Egs.(2.13, (2.6), (2.7), and(2.1]) the relaxation ma-
trix It 77, in the space of thil-sign degenerate lines can
be obtalned The single-state terﬁh§ N andF oy are

still given by Eq.(2.6). Moreover, since the/I dependence
of F:fl, in Eq. (2.7) is contained in the factocb s the same
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conclude that Eq92.13, (2.6), and(2.7) are still valid for
the matrix element$ - if Eq. (2.70 is replaced by

@xli

o= > AMcb”,AM,—[(zJ +1)(23; +1)(2F;+1)

Mi'Mi
X(2F;+1)(2F/ +1)(2F;+1)]Y?
XW(JiINF{ 5 FIDW(IgINF 5 F¢f)

XW(LF;FiNg;F¢F)). (2.15

equations can be extended to the double degenerate relax-

ation termsl“* ﬁ
M
changed to

, provided that Eq (2.70 for CI>I y is

q;% - =023/ +1)(23{+ 1)(2F; + 1)(2F+ 1)1~

XW(JINFFIDW(IdINFe Fedg)
X[(FiMi[\ v, F{M{)(FM[\ v F(M¢)
+ (=D FRE M N — g F
M1,

M{)

X(FM¢|hg— uqF— (2.12

whereM¢+M{=M;+M; = u;.

Ill. PERTURBATIVE CALCULATIONS

So far we have derived general expressions of the relax-
ation matrix by using symmetry properties and rotational in-
variance of the scattering matrix. However, an exact calcu-
lation of the scattering matriXT and of the tensorial
operatorsr andR in Eqg. (2.2), in general is not easily real-
ized. Further simplifying hypotheses are needed in order to
obtain more practical and computable expressions.

A remarkable simplification is obtained if weak collisions,
dominated by the long-range part of interaction potential
are treated by a perturbative expansionMinThis type of
collision gives an important contribution both to the single-
state reIaxatlon termk} | and F| ; and to the double-state

termF ,, in Eg. (2.1). On the other hand, strong collisions,

Let us extend now our treatment to the case of zero statieccurring when molecules come very close, give a large con-

field, where allM components
IM:af‘]f ,Ffo(*aiJi lFiMi
merge into a single line

I_: C(f\]f ,Ff<—aiJi 'Fi .

The appropriate vector badit1] representing such degener- *~

ated spectral transitions is

=3 Aull), (2.133

where the average of the degenerate compongpts is
weighted with the normalized amplitude factors

1/2
(FiM¢|1eFM;).

Ay = (2.13b

2F +1

In this vector basis, the relaxation matrix becomes

FI 1= 2 AmT |’ AM’
M,M’

(2.19

At this point, all the considerations already given for the
case ofM quantum numbers degenerate only in sign can bevhere S(E’ —

extended to the case of compléie degeneracy, leading to

tribution to the single-state terms, but only a negligible con-
tribution to the double-state term, which is bilinearTinin

fact, for short impact parametels the T-matrix elements
have rapidly oscillating phase factors and the correlated
product(I;| T(b) |1/ ){1¢| TT(b)|I{) in Eq. (2.1d averages to
zero when integrated dm. On the contrary, such fluctuating
phase factors are not present in E@s1b and(2.19 for the
single-state terms. This kind of difference between strong
and weak collision was observed in REf] by studying the
collisional broadening and coupling effects on some rota-
tional CHF,Cl lines for self-collisions and for collisions with
N, and O, molecules. A clear correlation was found be-
tween the coupling to broadening ratio and the long-range
part of intermolecular interaction, which is very different for
the three perturbers considered. The lowering of the interac-
tion range, and hence of the importance of weak collisions,
produced a strong decrease of the coupling to broadening
ratio. This confirms that strong collisions have a large broad-
ening effect but give only a small contribution to collisional
coupling and to the double-state part of the relaxation matrix.
Since any hyperfine dependence is contained in this part, we
can focus our attention on weak collisions only and resort to
a lowest-order perturbative expansionMn This amounts to
assuming for the scattering matrix elements in &j10),

SE'-E)
—z— (I,

(3.1

T TH ) =

E) provides energy conservation for incoming
and outgoing collisional states.
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The long-range interactio can be written as a sum where each ternvy is characterized by a particular value of
the three tensor degreas A4, and\, and of the exponent
m describing the dependence Wf on the intermolecular

VZES Vs, (3.28  (distanced:
)\( ) v
Ve=C 2» dnsq(s) E (M(S)VINL(S)viNo(S)v) 7y (3)2 }\2(3), (3.2b
|
whereY(a) is a spherical harmonic of the angular direction IV. DIPOLE INTERACTION

of d. By use of Eqs(3.1) and(3.2), Eq. (2.7) yields We specialize now the perturbative treatment obtained in

N Sec. Ill to the particular case of molecules with an electric-
rif~ M(s.a.r){eal|t &Y dipole moment large enough to play a predominant role in
L hzz (H(s,q.){aidi[ "7 (ol @ 7) the long-range pai/. Namely, we suppose that in E@.2)
N=1 and 17{1 is the dipole moment of the absorbing mol-

><<afJf|| ™, s)”af f>q)||/ >qri (3.39 vy,
eculep,:
Y, o (d) 2
I(s,q,r)=C2> qu’ <q‘ fﬁw > V=2 Vq
r’ s
XKrlPrysllr )P S(E'—E), (3.3

Y (d) vy

:SZ} s )a(r?])(s) 2 (N(S)v[1vihp(S) vo) puy P 2(5)-
where the transition,g—r',q’ is connected by energy con- ’

servation to the transitioh—|’. (4.9

For a particular interactiol, with tensor ordei in the

internal space of the absorbing molecule, the hyperfine de-
pendence oF ,, is contained in the geometric factdr'*

As a consequence, E(B.3) becomes

LI if n RV
given by (2.70 if all Mg quantum numbers are resolved, by Tpp=- ﬁzs (TL(s,q,r){ @i Jil| el @ I7)
(2.12 in case of quadratic Stark effect or K§2.15 in the
absence of a static field. ><<0[f;|f||,u¢||af'Jf'>c1>|1yl,>q’r

2

Within the limit of validity of the second-order perturba-
tive treatment, Eq(3.3) allows one to calculate collisional B , ,
coupling between different hyperfine lines and, if the case __ES <H(S’q’r)<|i|““i><|f|'“||f>>q'f' (4.29
I=1" is considered, to calculate also the hyperfine depen-
dence of collisional broadening. If a dipole-dipole interaction Y (a)
is assumedX;=\,=1) and the model of Re{lS] is u§ed, _ (s,q,r)=>, ng dq’ <q )(\;r?l)(s) Hq’>
Eq. (3.3 reduces to the method of calculation described in r’
detail and experimentally verified in Ref5] for self- < l(rlI2 "2 r_
collisional broadening of the hyperfine and Stark resolved Kl TAZ(S)Hr )I"O(E'~E). (@.20
hyperfine, components of thle=4«3, K= 3 rotational line 1 . . :
of CHal. However, Eq.(3.3 can be used for any kind of @, can be obtained b§2.7¢ in the presence of a static
long-range interaction and with any of the different pertur—f'el
bative calculation model§15—17 commonly used in the 1 , , 12
literature, independently of the particular choice adopted for @1 =[(2Ji +1)(2Jt+1)(2F;+1)(2F+1)]
collisional trajectories or for interpolation between weak and XW(JILF/ sF 3 )W(I 1F L F (1)
strong collisions.

It is worthwhile noting that if Eqs(3.3), and (2.79 or X(FiM;|1viF/M!)F{M{ 1, FIM})  (4.39
(2.12 are used with =0, F=J, andM=M;, the M; de-
pendence of collisional broadening and coupling of the Starland by(2.15 in the opposite case
resolved lines of a molecule without hyperfine structure is
obtained. Such a procedure, with the assumption of a dipole- q>——[(23 +1)(2J;+1)(2F;+1)(2F¢+1)(2F/ +1)
dipole interaction and of the approximations given in Ref.
[15], gives the treatment exposed in detail and experimen- X(2F{+1)1YAN(J 1 1F] ;F))
tally verified in Ref.[20] for self-broadening of the Stark
components of CHF linesJ=3—2,K=1,2. XW(Isl 1F¢  F I )W(LFF{1FF/). (4.3b
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Equation(4.33 holds for cases of both the linear and the AF,=AJ;, AF;=AJ; (4.40
guadratic Stark effect because when the dipolar interaction

and the perturbative expansion are adopted, the Clebsch- i ) i
Gordan coefficients  (F;M;|1— usF/ —M/) and hold, which can be used as approximate selection rules when
| 1

(FiM{|1— usF!—M!) in Eq. (2.12 vanish. J is large. For the case dfl resolved lines, the additional

Fortunately, in many cases Eqgt.2) and (4.3) predict selection rules
zero or very small values de::,f, , and one has not to worry
about the _hyperflne or Stark structure in C(_)II|S|onaI Ilne_- AM;=0=1; AM;=0,+1 (4.40)
shape studies. In other cases collisional coupling cannot arise
between any two hyperfine components but only between
particular pairs. By looking at Eq4.23 it is simple to see come from the Clebsch-Gordan coefficients in E43b).
when the hyperfine structure must be taken into account and Further specific selection rules are obtained for different
when this is not the case. The hyperfine-structure-dependekrind of molecules. We discuss separately linear, symmetric-
part of relaxationl“;'lf, is proportional to the product of two and asymmetric-top molecules. For linear and symmetric top
dipole matrix elements, which are well-known quantities. molecules the frequency distance between lines with differ-
However, involved here are not the usual element£ntJ values is usually much larger than the spread of the
(| |ty and (I/|u|l}) describing the intensities of linds hyperfine structure. Therefore, co!hsmna! mtgrferenge be-
and|’, but the matrix elementé;|x|1/) and (I¢|x|l}) be- tween hyperfine components of lines with differehtis

tween initial and final states of the two lines. For this reasorf2€ly @ problem of interest because it may arise only when
here and in the following we usA to denote difference the lines are so broadened that the hyperfine structure com-

between lined and!’; for instance AM; =M/ —M, . pletely disappears. For this kind of molecules, we restrict our

Before giving a detailed discussion of the selection rules,dISCUSSIOn fo interference between Imes_w!th eduadlues,
that can be deduced from Ed4.2) and(4.3), we recall here namely, we assumaJ;=AJ;=0, a restriction that we do
the selection rul€2.9) obtained in Sec. II, which holds ex- not_extend to the case of asymmetr_lc-top _molecules because
actly and independently of perturbative approximation an heir spectrum is Ies_s ordered and lines with diffedbniay
interaction type. When' different values of the polarizationave close frequencies.
guantum numbel are present in the radiation, ER.9
allows one to reduce the calculation of the relaxation matrix A. Linear molecules
to the Liouville subspaces with fixed values ofind to ex- For a linear molecule the selection rule of the dipole mo-
clude collisional com_Jpllng bet\_/veen lines vv_lth d|ff§rent values ant operator i\J=+1 and no coupling is expected be-
of My—M;=e. For instance, if the resolution M is due 0 yeen the hyperfine components of the same rotational line
a Ime_ar Stark effect an.d the polarization of radiation is PEr"A 3.=AJ,=0. For the same reasdf}'=0 in Eq.(4.2a and
pendicular to the static field, the two Stark components, , hyperfine—structure—dependencé is expected for collisional
M;—M;+1 andM;~F;—M;—F;—1 of the hyperfine tran- broadening. Our conclusions on this point are in agreement
sition F;—F¢=F;+1 are degenerate. However, collisional \yis, that found by Greei6] who studied the case of HCN
coupling between them is excluded. perturbed by a noble-gas atom and concluded that the hyper-

The selection rules fine effects on the collisional line shape are, in that case, null

or very small.
AJ;=0,%£1; AJ=0=x1 (4.43 ,
B. Symmetric-top molecules
are obtained from the reduced matrix moments present in Eq. The rotational state of a symmetric-top molecule is de-
(4.2a. For molecules with parity splitting another selection scribed by the two quantum numbetsand K. While lines
rule is obtained. In this kind of molecule, such as ammoniaWith differentJ values have usually very different frequen-
the rotational states are split into two different energy levelsies, theK structure for a givenJ value may have a fre-
with different parity; a symmetric leved and an antisymmet- gquency spread comparable to, or even smaller than, the hy-
ric onea. Dipole transitions are allowed only between statesPerfine spread. However, the dipole selection rules for a
of different parity: there ar@s and sa lines, but neither ~Symmetric-top molecule ar&J=0,=1 andAK=0, so that
aa nor sslines. In this case collisional coupling is possible from Eq.(4.2a one can see that collisional coupling between
only between hyperfine components of lines with differentlines with differentK values vanishes. We may restrict our-
parity: anas line can interfere with asa line but not with ~ selves to the casg=J;, J;=J;, Ki=K{, andK;=Kj.
anotheras line. Equation(4.23 yields
The selection rules

) KiK

if i f 1
AF,;=0,+1; AF;=0,*1 (4.4 b= n<H(q’r)[Ji(Ji+1)Jf(3f+1)]l/2q)"">qr'
(4.5

are a consequence of the Racah coefficient in Eg3.. The
same coefficients are very small, in case of lajgealues, This explains the null result obtained in Ref2-4] for
unless the relations K;=K;=0. At fixed J, the effect is expected to increase with
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K. However, for large} values a very small collisional cou- V. CONCLUSION
pling is expected between two different hyperfine compo-

nents of a rotational transition. Indeed, in this case we have,. .
: ’ . ling between hyperfine components of molecular spectra
AJi=AJ;=0, but eitherAF;#0 or AF+0, which contra- Endgfor the depgﬁdence of cgllisional broadening ofpindi-
dicts the approximate selection ru#e4g. On the contrary, a ;iqual lines on hyperfine quantum numbé&raandMg . The
relevant collisional coupling can exist between the Stark.gses of both the presence and absence of a static field re-
components of a hyperfine line, provided that conditionsoh,ing the quantum numbersl-, were considered. Our
(4.4 holds. treatment extends also to collisional coupling and broadening
of Stark resolved lines of a molecule without hyperfine struc-
C. Asymmetric-top molecules ture.
. . . We have shown that the relaxation matrix can be decom-
The rotational state of an asymmetric-top molecule is dei:)osed into two single-state terms and one double-state term.
noted byJ and by the two pseudoquantum numbkrsand

. B . The single-state terms are diagonal in the space of the lines
Kc. The selection rules faf are, as usual\J=0,=1, while  anq account for the collisional relaxation of their initial and

the selection rules foK, andK depend on the orientation fina| states, considered separately. The double-state term in-
of  with respect to the principal axis of inertia of the mol- \|yes both initial and final states. Its diagonal part decreases
ecule[21]. If the dipole is in the direction of the axis of least the contribution of collisions that are adiabatic in the internal
inertia (u=pu,) only transitions are allowed that conserve degrees of the absorber to the relaxation of a single line,
the parity (even or odd of K, and change the parity of while its off-diagonal part accounts for collisional coupling.
K. Vice versa, ifu is in the direction of the axis of maxi- By using the symmetry properties of the scattering matrix
mum inertia w=pu.) the allowed transitions conserve the and by supposing that the nuclear spirhas a negligible
parity of K. and change the parity ¢, . Finally, if wisin  influence on the collisional dynamics we have shown that the
the direction of the axis of intermediate inertia€ ;) only  single state terms are independentroandM¢, while, for a
transitions are allowed that change the parity of béthand  collisional interaction of given tensor rank in the space of the
Ke. absorbing molecule, the dependence of the double-state term
On the whole, by parity considerations, transitions that@n be expressed by a simple product of Clebsch-Gordan and

conserve bottK , andK are forbidden for any direction of Racah coefficients. dapted to th bati del
the dipole moment. As a consequence, if the hyperfine com- OUr treatment was adapted to the perturbative models

ponents of a single rotational line are considered, the reducq?ﬁgsmoﬁngoresfje? Vf/?ti l:ﬁ;"’r‘ugeeézﬂig‘; %{’I‘;’em(gn:gﬁt'vc\’/gil
matrix elements in(4.29 are zero. This conclusion is in 9 P

agreement with the results of Ré#] where no collisional discussed in detail. The double-state part of relaxation matrix

coupling between hyperfine components of a single rota'-s in this case proportional to the product of the dipole mo-

: " : ment matrix elementdl;|u|l{) and{l{|u|l{) between initial
?:oﬁgl Ctlransmon was observed for the asymmetric "OlOTand final states of the lines. Simple selection rules were de-
2 .

- L . rived, allowing one to understand whether or not collisional
On the contrary, collisional coupling is possible betweengqhing between hyperfine and Stark components is ex-
the hyperfine components of two different rotational trans"pected. As far as the coupling between hyperfine components
tions, provided that the aforementioned selection rules fop¢ the same rotational transition is concerned, we have
Ka andK are satisfied together witd.4a and(4.4b. If Jis  shown that only a small effect is expected for linear and
large, also conditiort4.49 must be considered. Indeed, in asymmetric-top molecules, while for symmetric-top mol-
Ref. [7] pairs of closely lying CHELCI rotational transition ecules the effect grows witk for a fixedJ and becomes
were studied having the sandevalues but differeniK, or  negligible for largel values. For asymmetric-top molecules
K. values. In that casd>18 and, in agreement with the a relevant collisional coupling may occur only between the
selection ruleg(4.40, collisional coupling was observed only hyperfine components of different rotational transitions. All
between hyperfine components with the same quantum nunthe data in the literature may be explained by the present

We developed a theoretical treatment for collisional cou-

bers:AF;=AF;=0. treatment.
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