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Collisional coupling between hyperfine and Stark components of molecular spectra

S. Belli, G. Buffa, and O. Tarrini
Dipartimento di Fisica dell’Universita`, Piazza Torricelli 2, I-56126 Pisa, Italy

~Received 8 July 1996!

A theoretical treatment, based on a tensorial expansion of the scattering matrix, is presented for collisional
coupling between hyperfine and Stark components of molecular spectral lines. This treatment also describes the
dependence of collisional broadening of well-resolved components onF andMF quantum numbers. The case
of molecules with a large dipole moment is discussed in detail and simple selection rules are obtained for
collisional coupling by using our treatment of the relaxation matrix within a perturbative expansion of the
scattering matrix. The existing experimental results are explained.@S1050-2947~97!02701-7#

PACS number~s!: 33.70.Jg, 34.10.1x
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I. INTRODUCTION

As is well known, when the rotational momentumJ of a
molecule is coupled to the nuclear spinI of one of its atoms,
a quadrupole hyperfine structure of the states is present. E
component corresponds to different values of the quan
numberF eigenvalue of total angular momentumF5I1J.

A few studies deal with collisional broadening and a sh
of hyperfine components@1–7#. Some theoretical prediction
about the dependence onF andMF of the collisional broad-
ening of the single components were given in Ref.@1#. No
F dependence was observed for theJ51←0 rotational line
of the symmetric top molecules CH3Cl @2# and
CH3CN @3,4#. On the contrary, a relevant hyperfine variati
was observed and theoretically explained for theJ54←3,
K53 rotational line of CH3I @5#. The problem was also
discussed theoretically in Ref.@6# for the particular case o
linear molecules colliding with an atom.

The frequency spread of the hyperfine structure depe
on the molecule and on the rotational transition. In so
cases the frequency distance between the components
small that they cannot be resolved. In other cases they
resolved at low pressures and overlapped at higher press
Anyhow, a simplifying assumption is implicitly or explicitly
used in almost all existing collisional line-shape studies:
spectrum is treated as the sum of noninterfering hyper
components. This may lead to unreliable conclusions w
collisional coupling is present. Indeed, due to coherent a
plitude transfer between lines, when some collisio
broadened lines are overlapping, the resulting spectrum
be different from the simple sum of the individual Lorentzi
shapes. This effect was discussed in many experimental
theoretical studies@7–13#, but the case of hyperfine lines
almost unexplored. No general indication can be found in
literature. Some works@3,4,6,14# have shown that collisiona
coupling between hyperfine components should be sma
particular spectra. In Ref.@7# the collisional line shape o
rotational transitions of the CHF2Cl asymmetric-top mol-
ecule was studied. A negligible collisional coupling betwe
hyperfine components of a single rotational transition w
observed, while coupling, in some cases, was relevant
tween hyperfine components of different rotational tran
tions. Some hints were given in that paper on the theoret
explanation of the phenomenon.

We present here a general treatment of the problem
551050-2947/97/55~1!/183~8!/$10.00
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also includes the possible presence of a static electric
magnetic field splitting the hyperfine lines into compone
with different values of the hyperfine magnetic quantu
numberMF . Since the particular caseI50 is included, our
treatment also describes, for a molecule without hyperfi
structure, the dependence of collisional broadening and c
pling on the magnetic quantum numberMJ .

In Sec. II the general dependence of collisional broad
ing and coupling on hyperfine and magnetic quantum nu
bers is obtained from the symmetry properties of the scat
ing matrix and its expansion in terms of tensorial operat
on the separate degrees of freedom of the colliding m
ecules. It is supposed that the nuclear spinI has a negligible
influence on the collisional dynamics. Both cases of the pr
ence and absence of static field are considered. In Sec. II
theory is adapted to the standard perturbative approximat
obtaining results that can be used within any of the differ
perturbative models@15–17# commonly used in the litera
ture. In Sec. IV the case of molecules interacting during c
lisions mainly by their dipole moment is considered a
simple selection rules are obtained, allowing one to evalu
in which cases collisional coupling between hyperfine a
Stark components must be taken into account.

II. HYPERFINE DEPENDENCE
OF THE RELAXATION MATRIX

The present section is devoted to disentangling the dep
dence of the relaxation matrix from hyperfine (F andM ) and
from nonhyperfine (a andJ) quantum numbers of the state
aJ,FM of the absorbing molecule, whereM5MF is the
component ofF along the quantization axis anda summa-
rizes all quantum numbers other thanJ, F, andM . We first
suppose that the presence of a static field completely reso
theM degeneration of the states~linear Stark effect or Zee-
man effect!. Then we treat the case when degeneration in
sign ofM occurs~quadratic Stark effect!. Finally, we con-
sider the zero-field case. In the present work we assume
the perturbation energy due to the external static field is s
ficiently small with respect to the spacing between the
perturbed rotational and hyperfine levels so that, at the s
order of approximation,F can be treated as a good quantu
number.

A spectral transition
183 © 1997 The American Physical Society
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l5 l f← l i5a fJf ,F fM f←a iJi ,FiM i

is represented by the line vector

u l &&5ua fJf ,F fM f&^a iJi ,FiM i u,

wheree5M f2Mi50,61 labels the polarization of the ra
diating field. Within the impact approximation@18#, the col-
lisional broadeningG l l of isolated linesl and the collisional
couplingG l l 8 between linesl ,l 8 are linear with the numbe
densityn of the perturbing molecules.G l l 8 are the elements
m
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d
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of a relaxation matrixG in the space of the line vector
u l &&. Since no data can be found in literature for the hyperfi
dependence of the imaginary part of the relaxation mat
we consider here only the real part ofG l l 8. However our
treatment can be extended with no modification to the ima
nary part, whose diagonal elements represent the collisio
shift of the lines.

G l l 8 can be expressed in terms ofT-matrix elements de-
scribing the collisional transitions from the initial and fin
states of the linesl i and l f ,
G l ,l 85~G l ,l
i 1G l ,l

f !d l ,l 81G l ,l 8
i , f , ~2.1a!

G l ,l
i 5nŠ^quru^a iJi ,FiM i uTua iJi ,FiM i&ur&uq&‹q,r , ~2.1b!

G l ,l
f 5nŠ^qu^ru^a fJf ,F fM f uT†ua fJf ,F fM f&ur&uq&‹q,r , ~2.1c!

G ł ,l 8
i , f

52nK (
r8

E dq8^qu^ru^a iJi ,FiM i uTua i8Ji8,Fi8Mi8&ur8&uq8&^q8u^r8u^a f8Jf8,F f8M f8uT
†ua fJf ,F fM f&ur&uq&L

q,r

,

~2.1d!
f
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the
where ^ &q,r stands for the thermal average on bath para
eters, which are the internal states of the perturberr and the
momentumq of relative translational motion of colliding
molecules. From Eq.~2.1a! we can see that the relaxatio
matrix can be decomposed into two ‘‘single-state,’’
‘‘outer,’’ terms and one ‘‘double-state,’’ or ‘‘middle,’’ term.
The single-state termsG l ,l

i andG l ,l
f are diagonal in the spac

of the lines and account for the collisional relaxation of t
two statesl i and l f considered separately. The double-st
termG l ,l 8

i , f involves both initial and final states of the line an
is given by a correlated product of collisional matrix el
ments^ l i uTu l i8& and ^ l f8uT

†u l f&. Its diagonal partG l ,l
i , f is usu-

ally negative and decreases the contribution of semiadiab
collisional transitionsl iq,r→ l iq8,r8 andl fq,r→ l fq8,r8 to the
relaxation of the single linel . Its off-diagonal part
G l ,l 8
i , f (12d l ,l 8) accounts for the rate of amplitude transfer b

tween different lines and hence for collisional coupling.
As we will show in the following, any hyperfine and mag

netic dependence is restricted to the double-state part o
relaxation matrix. Hence theF andM dependence of pres
sure broadening of linel comes fromG l ,l

i , f while collisional
coupling between linesl and l 8, and itsF andM depen-
dence, comes fromG l ,l 8

i , f .
By rotational invariance we can put theT matrix in the

tensorial form@19#

T5(
k

(
l,n

CkRl
†n~k!Ql

n~k!, ~2.2a!

Ql
n~k!5 (

l1 ,l2 ,n1 ,n2
^lnul1n1l2n2&

1tl1

n1~k!2tl2

n2~k!,

~2.2b!
-

e

tic

-

he

whereC are scalar operators,R are tensors in the space o
translational states, andt are tensors in the spaces of intern
degrees of absorbing~1! and perturbing~2! molecules, as
denoted by the presuperscript. The labelk accounts for the
presence of many terms with the same tensorial degreel,
l1, andl2.

A relevant simplification is obtained by assuming that t
hyperfine energy is small in comparison to the other energ
involved ~translational and rotational energy! and that the
nuclear spin statesuIM I& are not influenced appreciably b
collisional forces. In this case the scalarsCk in Eq. ~2.2! do
not depend onF and 1t operates only on the space of ve
tors uJMJ&. The matrix elements of

1t in the coupled repre-
sentationuJFMF& can be related directly to the matrix ele
ments in the uncoupled representationuJMJIM I& by means
of the Racah coefficients of the unitary transformation b
tween the two-vector basis:

^aJ,FM u1tl1

n1ua8J8,F8M 8&

5^FM ul1n1F8M 8&^aJi1tl1
ia8J8&

3@~2J811!~2F11!#1/2W~JIl1F8;FJ8!.

~2.3!

At this point, by using in Eq.~2.1! the tensor decomposition
~2.2! for T and resorting to~2.3! for the matrix elements of
tensors1t operating in the space of internal degrees of
absorber, the above-mentionedF andM dependence of the
relaxation matrixG l l 8 is obtained. In fact, performing for the
diagonal terms ofT in Eqs. ~2.1b! and ~2.1c! a thermal av-
erage on the directions ofq and r , only scalar operators
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R0
0(k), 1t0

0(k), and 2t0
0(k) are left in the single-state relax

ation terms. Hence the effectiveT matrix for the calculation
of G l l

i andG l l
f becomes

T05(
k
CkR0

0~k!1t0
0~k!2t0

0~k!. ~2.4!

Moreover, using the rotational invariance of the scalar ope
tors t0 and remembering that for the Racah coefficients
identity

W~JI0F;FJ!5@~2J11!~2F11!#21/2

holds, Eq.~2.3! yields

^a8J8,F8M 8u1t0
0uaJ,FM &5^a8J8i1t0iaJ&dJJ8dFF8dMM8.

~2.5!

Hence

G l ,l
i 5nK (

k
Ck^a iJi i1t0~k!ia iJi&^r i2t0~k!ir &

3^qiR0~k!iq&L
q,r

, ~2.6a!

G l ,l
f 5nK (

k
Ck^a fJf i1t0~k!ia fJf&^r i2t0~k!ir &

3^qiR0~k!iq&L
q,r

. ~2.6b!

Equation ~2.6! proves that, because of the average on
directions of bath variablesq and r , the single-state colli-
sional broadening termsG l ,l

i andG l ,l
f do not depend on the

hyperfine and magnetic quantum numbersF andM .
By similar considerations, based on the tensorial prop

ties of the operatorst and R under rotations and on th
orientational averages onq and r , the double-state term in
Eq. ~2.1d! becomes

G l ,l 8
i , f

52nK (
l1 ,k, j

Pk, j~q,r !^a iJi i1tl1
~k!ia i8Ji8&

3^a fJf i1tl1
~ j !ia f8Jf8&F l ,l 8

l1 L
q,r

, ~2.7a!

whereP(q,r ) describes the contribution toG l ,l 8
i , f of each type

of collision with given values of bath variablesq andr and is
given by

Pk, j~q,r !5 (
l,l2 ,r 8

E dq8CkCj^qiRl~k!iq8&^qiRl~ j !iq8&

3^r i2tl2
~k!ir 8&^r i2tl2

~ j !ir 8&. ~2.7b!

F
l ,l 8

l1 in ~2.7a! is given by
a-
e

e

r-

F
l ,l 8

l1 5@~2Ji811!~2Jf811!~2Fi11!~2F f11!#1/2

3W~Ji Il1Fi8;FiJi8!W~Jf Il1F f8;F fJf8!

3^FiM i ul1n1Fi8Mi8&^F fM f ul1n1F f8M f8&.

~2.7c!

The presence of the geometric factorF
l ,l 8

l1 comes from the
correlated product in Eq.~2.1d! of the two matrix elements

^a fJf ,F fM f u1tl1

n1ua f8Jf8 ,F f8M f8&, ~2.8a!

^a iJi ,FiM i u1tl1

n1ua i8Ji8 ,Fi8Mi8& ~2.8b!

representing the collisional transitions between the final
initial states of the two lines induced by1tl1

n1(k) and
1tl1

n1( j ). Because of the directional average on the bath v

ablesq andr , only scalar products of tensors for each deg
of freedom are left in the double-state relaxation term~2.1d!.
Hence we have the same tensorial indicesl i and n i for
1t(k) and 1t( j ) in ~2.8! and in the expression~2.7c! of
F

l ,l 8

l1 . The matrix elements~2.8! are different from zero only

if DMi5Mi82Mi and DM f5M f82M f are both equal to
n1. Hence collisional coupling is possible only if

DMi5DM f . ~2.9!

We point out that Eqs.~2.6! and~2.7! describe completely
the dependence of relaxation matrixG on F andM and give
two important results. First, the single-state termsG l ,l

i and
G l ,l
f are independent ofF andM . Second, the dependence

the double-state termG l ,l 8
i , f is due to the geometric factor

F
l ,l 8

l1 , which are a simple product of Clebsch-Gordan a
Racah coefficients.

We consider now the case of the quadratic Stark effe
The observed lines are a superimposition of two compone
u l M&&,u l2M&& degenerate in the sign ofM . According to the
‘‘effective-line’’ model described in Ref.@11# for represent-
ing degenerate spectra, the line vector basis appropriate
describing such Stark lines is

u l̄ M&&5AMu l M&&1A2Mu l2M&&. ~2.10!

In fact, u l̄ M&& is the average of two degenerate componen

u l M&&5ua fJf ,F fM f&^a iJi ,FiM i u,

u l2M&&5ua fJf ,F f2M f&^a iJi ,Fi2Mi u,

weighted with normalized amplitude factors

AM51/A2, A2M5~21!12F f1Fi/A2,

where the factor (21)12F f1Fi follows from the symmetry
property of AM}^F fM f u1eFiM i& under sign inversion
M→2M .

In this representation it is straightforward to obtain t
relaxation matrix in the form
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G l̄ M l̄ M8
l̄ 85G l MlM8

8 1G l Ml2M8
8 ~21!12F f1Fi. ~2.11!

Due to the selection rule~2.9!, the second term on the righ
hand side of Eq.~2.11! is different from zero only if
e5M f2Mi5M f82Mi850.

By Eqs.~2.1a!, ~2.6!, ~2.7!, and~2.11! the relaxation ma-
trix G l̄ M , l̄ 8M8

in the space of theM -sign degenerate lines ca

be obtained. The single-state termsG l̄ M , l̄ M
andG

l̄ M , l̄ M

f
are

still given by Eq.~2.6!. Moreover, since theM dependence
of G l ,l 8

i f in Eq. ~2.7! is contained in the factorF
l ,l 8

l1 , the same
equations can be extended to the double degenerate r
ation termsG

l̄ M , l̄ 8M8

i , f
provided that Eq.~2.7c! for F

l ,l 8

l1 is

changed to

F
l̄ M , l̄ M8

8

l1
5@~2Ji811!~2Jf811!~2Fi11!~2F f11!#1/2

3W~Ji Il1Fi8;FiJi8!W~Jf Il1F f8;F fJf8!

3@^FiM i ul1n1Fi8Mi8&^F fM f ul1n1F f8M f8&

1~21!12F f1Fi^FiM i ul12m1Fi82Mi8&

3^F fM f ul12m1F f82M f8&#, ~2.12!

whereM f1M f85Mi1Mi85m1.
Let us extend now our treatment to the case of zero st

field, where allM components

l M5a fJf ,F fM f←a iJi ,FiM i

merge into a single line

l̄5a fJf ,F f←a iJi ,Fi .

The appropriate vector basis@11# representing such degene
ated spectral transitions is

u l̄ &&5(
M

AMu l M&&, ~2.13a!

where the average of the degenerate componentsu l M&& is
weighted with the normalized amplitude factors

AM5S 3

2F f11D
1/2

^F fM f u1eFiM i&. ~2.13b!

In this vector basis, the relaxation matrix becomes

G l̄ , l̄ 85 (
M ,M8

AMG l MlM8
8 AM8. ~2.14!

At this point, all the considerations already given for t
case ofM quantum numbers degenerate only in sign can
extended to the case of completeM degeneracy, leading to
ax-

ic

e

conclude that Eqs.~2.1a!, ~2.6!, and ~2.7! are still valid for
the matrix elementsG l̄ , l̄ 8 if Eq. ~2.7c! is replaced by

F
l̄ , l̄ 8

l1 5 (
Mi ,Mi8

AMF
l ,l 8

l1 AM85@~2Ji811!~2Jf811!~2Fi11!

3~2F f11!~2Fi811!~2F f811!#1/2

3W~Ji Il1Fi8 ;FiJi8!W~Jf Il1F f8 ;F fJf8!

3W~1FiF f8l1 ;F fFi8!. ~2.15!

III. PERTURBATIVE CALCULATIONS

So far we have derived general expressions of the re
ation matrix by using symmetry properties and rotational
variance of the scattering matrix. However, an exact cal
lation of the scattering matrixT and of the tensorial
operatorst andR in Eq. ~2.2!, in general is not easily real
ized. Further simplifying hypotheses are needed in orde
obtain more practical and computable expressions.

A remarkable simplification is obtained if weak collision
dominated by the long-range part of interaction potentialV,
are treated by a perturbative expansion inV. This type of
collision gives an important contribution both to the sing
state relaxation termsG l ,l

i and G l ,l
f and to the double-state

termG l ,l 8
i , f in Eq. ~2.1!. On the other hand, strong collision

occurring when molecules come very close, give a large c
tribution to the single-state terms, but only a negligible co
tribution to the double-state term, which is bilinear inT. In
fact, for short impact parametersb, the T-matrix elements
have rapidly oscillating phase factors and the correla
product ^ l i uT(b)u l i8&^ l f uT

†(b)u l f8& in Eq. ~2.1d! averages to
zero when integrated onb. On the contrary, such fluctuatin
phase factors are not present in Eqs.~2.1b! and~2.1c! for the
single-state terms. This kind of difference between stro
and weak collision was observed in Ref.@7# by studying the
collisional broadening and coupling effects on some ro
tional CHF2Cl lines for self-collisions and for collisions with
N2 and O2 molecules. A clear correlation was found b
tween the coupling to broadening ratio and the long-ran
part of intermolecular interaction, which is very different fo
the three perturbers considered. The lowering of the inte
tion range, and hence of the importance of weak collisio
produced a strong decrease of the coupling to broade
ratio. This confirms that strong collisions have a large bro
ening effect but give only a small contribution to collision
coupling and to the double-state part of the relaxation mat
Since any hyperfine dependence is contained in this part
can focus our attention on weak collisions only and resor
a lowest-order perturbative expansion inV. This amounts to
assuming for the scattering matrix elements in Eq.~2.1d!,

^ l i uTu l i8&^ l f8uT
†u l f&.

d~E82E!

\2 ^ l i uVu l i8&^ l f8uV
†u l f&,

~3.1!

whered(E82E) provides energy conservation for incomin
and outgoing collisional states.
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The long-range interactionV can be written as a sum

V5(
s
Vs , ~3.2a!
on

-

d

y

-
l
s
e
on

i

e

f
ur

fo
n

a
i
ol
ef
e
k

where each termVs is characterized by a particular value
the three tensor degreesl, l1, andl2 and of the exponen
m describing the dependence ofVs on the intermolecular
distanced:
Vs5Cs(
n

Yl~s!
* n ~ d̂!

dm~s! (
n1 ,n2

^l~s!nul1~s!n1l2~s!n2&
1tl1~s!

n1 2tl2~s!

n2 , ~3.2b!
in
ic-
in

l-

c

whereY(d̂) is a spherical harmonic of the angular directi
of d. By use of Eqs.~3.1! and ~3.2!, Eq. ~2.7! yields

G l ,l 8
i , f .2

n

\2(
l1 ,s

^P~s,q,r !^a iJi i1tl1~s!ia i8Ji8&

3^a fJf i1tl1~s!ia f8Jf8&F l ,l 8

l1~s!
&q,r , ~3.3a!

P~s,q,r !5Cs
2(
r 8

E dq8U K qI Yl~s!~ d̂!

dm~s! Iq8L U2
3 z^r i2tl2~s!ir 8& z2d~E82E!, ~3.3b!

where the transitionr ,q→r 8,q8 is connected by energy con
servation to the transitionl→ l 8.

For a particular interactionV, with tensor orderl1 in the
internal space of the absorbing molecule, the hyperfine
pendence ofG l ,l 8

i , f is contained in the geometric factorF
l ,l 8

l1

given by~2.7c! if all MF quantum numbers are resolved, b
~2.12! in case of quadratic Stark effect or by~2.15! in the
absence of a static field.

Within the limit of validity of the second-order perturba
tive treatment, Eq.~3.3! allows one to calculate collisiona
coupling between different hyperfine lines and, if the ca
l5 l 8 is considered, to calculate also the hyperfine dep
dence of collisional broadening. If a dipole-dipole interacti
is assumed (l15l251) and the model of Ref.@15# is used,
Eq. ~3.3! reduces to the method of calculation described
detail and experimentally verified in Ref.@5# for self-
collisional broadening of the hyperfine and Stark resolv
hyperfine, components of theJ54←3, K53 rotational line
of CH3I. However, Eq.~3.3! can be used for any kind o
long-range interaction and with any of the different pert
bative calculation models@15–17# commonly used in the
literature, independently of the particular choice adopted
collisional trajectories or for interpolation between weak a
strong collisions.

It is worthwhile noting that if Eqs.~3.3!, and ~2.7c! or
~2.12! are used withI50, F5J, andM5MJ , theMJ de-
pendence of collisional broadening and coupling of the St
resolved lines of a molecule without hyperfine structure
obtained. Such a procedure, with the assumption of a dip
dipole interaction and of the approximations given in R
@15#, gives the treatment exposed in detail and experim
tally verified in Ref. @20# for self-broadening of the Star
components of CH3F linesJ53←2, K51,2.
e-

e
n-

n

d

-

r
d

rk
s
e-
.
n-

IV. DIPOLE INTERACTION

We specialize now the perturbative treatment obtained
Sec. III to the particular case of molecules with an electr
dipole moment large enough to play a predominant role
the long-range partV. Namely, we suppose that in Eq.~3.2!
l151 and 1tl1

n1 is the dipole moment of the absorbing mo

eculem1
n1:

V5(
s
Vs

5(
s,n

Cs

Yl~s!
* n ~ d̂!

dm~s! (
n1 ,n2

^l~s!nu1n1l2~s!n2&m1
n12tl2~s!

n2 .

~4.1!

As a consequence, Eq.~3.3! becomes

G l ,l 8
i , f .2

n

\2(
s
ŠP~s,q,r !^a iJi imia i8Ji8&

3^a fJf imia f8Jf8&F l ,l 8
1
‹q,r

52(
s
ŠP~s,q,r !^ l i umu l i8&^ l f umu l f8&‹q,r , ~4.2a!

P~s,q,r !5(
r 8

Cs
2E dq8ZK qI Yl~s!~ d̂!

dm~s! Iq8L Z2
3 z^r i2tl2~s!ir 8& z2d~E82E!. ~4.2b!

F l ,l 8
1 can be obtained by~2.7c! in the presence of a stati

field

F l ,l 8
1

5@~2Ji811!~2Jf811!~2Fi11!~2F f11!#1/2

3W~Ji I1Fi8;FiJi8!W~Jf I1F f8;F fJf8!

3^FiM i u1n1Fi8Mi8&^F fM f u1n1F f8M f8& ~4.3a!

and by~2.15! in the opposite case

F
l̄ , l̄ 8
1

5@~2Ji811!~2Jf811!~2Fi11!~2F f11!~2Fi811!

3~2F f811!#1/2W~Ji I1Fi8 ;FiJi8!

3W~Jf I1F f8 ;F fJf8!W~1FiF f81;F fFi8!. ~4.3b!
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Equation ~4.3a! holds for cases of both the linear and t
quadratic Stark effect because when the dipolar interac
and the perturbative expansion are adopted, the Cleb
Gordan coefficients ^FiM i u12m1Fi82Mi8& and
^F fM f u12m1F f82M f8& in Eq. ~2.12! vanish.

Fortunately, in many cases Eqs.~4.2! and ~4.3! predict
zero or very small values forG l ,l 8

i , f , and one has not to worry
about the hyperfine or Stark structure in collisional lin
shape studies. In other cases collisional coupling cannot a
between any two hyperfine components but only betw
particular pairs. By looking at Eq.~4.2a! it is simple to see
when the hyperfine structure must be taken into account
when this is not the case. The hyperfine-structure-depen
part of relaxationG l ,l 8

i , f is proportional to the product of two
dipole matrix elements, which are well-known quantitie
However, involved here are not the usual eleme
^ l i umu l f& and ^ l i8umu l f8& describing the intensities of linesl
and l 8, but the matrix elementŝl i umu l i8& and ^ l f umu l f8& be-
tween initial and final states of the two lines. For this reas
here and in the following we useD to denote difference
between linesl and l 8; for instance,DMi5Mi82Mi .

Before giving a detailed discussion of the selection ru
that can be deduced from Eqs.~4.2! and~4.3!, we recall here
the selection rule~2.9! obtained in Sec. II, which holds ex
actly and independently of perturbative approximation a
interaction type. When different values of the polarizati
quantum numbere are present in the radiation, Eq.~2.9!
allows one to reduce the calculation of the relaxation ma
to the Liouville subspaces with fixed values ofe and to ex-
clude collisional coupling between lines with different valu
of M f2Mi5e. For instance, if the resolution inM is due to
a linear Stark effect and the polarization of radiation is p
pendicular to the static field, the two Stark compone
Mi→Mi11 andMi2Fi→Mi2Fi21 of the hyperfine tran-
sition Fi→F f5Fi11 are degenerate. However, collision
coupling between them is excluded.

The selection rules

DJi50,61; DJf50,61 ~4.4a!

are obtained from the reduced matrix moments present in
~4.2a!. For molecules with parity splitting another selectio
rule is obtained. In this kind of molecule, such as ammon
the rotational states are split into two different energy lev
with different parity; a symmetric levels and an antisymmet
ric onea. Dipole transitions are allowed only between sta
of different parity: there areas and sa lines, but neither
aa nor ss lines. In this case collisional coupling is possib
only between hyperfine components of lines with differe
parity: anas line can interfere with ansa line but not with
anotheras line.

The selection rules

DFi50,61; DF f50,61 ~4.4b!

are a consequence of the Racah coefficient in Eqs.~4.3!. The
same coefficients are very small, in case of largeJ values,
unless the relations
n
h-

-
ise
n

nd
nt

.
s

n

s

d

x

-
s

q.

,
s

s

t

DFi5DJi , DF f5DJf ~4.4c!

hold, which can be used as approximate selection rules w
J is large. For the case ofM resolved lines, the additiona
selection rules

DMi50,61; DM f50,61 ~4.4d!

come from the Clebsch-Gordan coefficients in Eq.~4.3b!.
Further specific selection rules are obtained for differ

kind of molecules. We discuss separately linear, symmet
and asymmetric-top molecules. For linear and symmetric
molecules the frequency distance between lines with dif
ent J values is usually much larger than the spread of
hyperfine structure. Therefore, collisional interference
tween hyperfine components of lines with differentJ is
rarely a problem of interest because it may arise only wh
the lines are so broadened that the hyperfine structure c
pletely disappears. For this kind of molecules, we restrict
discussion to interference between lines with equalJ values,
namely, we assumeDJi5DJf50, a restriction that we do
not extend to the case of asymmetric-top molecules beca
their spectrum is less ordered and lines with differentJ may
have close frequencies.

A. Linear molecules

For a linear molecule the selection rule of the dipole m
ment operator isDJ561 and no coupling is expected be
tween the hyperfine components of the same rotational
DJi5DJf50. For the same reasonG l ,l

i , f.0 in Eq.~4.2a! and
no hyperfine-structure-dependence is expected for collisio
broadening. Our conclusions on this point are in agreem
with that found by Green@6# who studied the case of HCN
perturbed by a noble-gas atom and concluded that the hy
fine effects on the collisional line shape are, in that case,
or very small.

B. Symmetric-top molecules

The rotational state of a symmetric-top molecule is d
scribed by the two quantum numbersJ andK. While lines
with different J values have usually very different freque
cies, theK structure for a givenJ value may have a fre-
quency spread comparable to, or even smaller than, the
perfine spread. However, the dipole selection rules fo
symmetric-top molecule areDJ50,61 andDK50, so that
from Eq.~4.2a! one can see that collisional coupling betwe
lines with differentK values vanishes. We may restrict ou
selves to the caseJi5Ji8, Jf5Jf8, Ki5Ki8, andKf5Kf8.

Equation~4.2a! yields

G l ,l 8
i , f .2nK P~q,r !

KiK f

@Ji~Ji11!Jf~Jf11!#1/2
F l ,l 8

1 L
q,r

.

~4.5!

This explains the null result obtained in Refs.@2–4# for
Ki5Kf50. At fixedJ, the effect is expected to increase wi
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K. However, for large-J values a very small collisional cou
pling is expected between two different hyperfine comp
nents of a rotational transition. Indeed, in this case we h
DJi5DJf50, but eitherDFiÞ0 or DF fÞ0, which contra-
dicts the approximate selection rule~4.4c!. On the contrary, a
relevant collisional coupling can exist between the St
components of a hyperfine line, provided that conditi
~4.4d! holds.

C. Asymmetric-top molecules

The rotational state of an asymmetric-top molecule is
noted byJ and by the two pseudoquantum numbersKa and
Kc . The selection rules forJ are, as usual,DJ50,61, while
the selection rules forKa andKc depend on the orientatio
of m with respect to the principal axis of inertia of the mo
ecule@21#. If the dipole is in the direction of the axis of lea
inertia (m5ma) only transitions are allowed that conser
the parity ~even or odd! of Ka and change the parity o
Kc . Vice versa, ifm is in the direction of the axis of maxi
mum inertia (m5mc) the allowed transitions conserve th
parity of Kc and change the parity ofKa . Finally, if m is in
the direction of the axis of intermediate inertia (m5mb) only
transitions are allowed that change the parity of bothKa and
Kc .

On the whole, by parity considerations, transitions t
conserve bothKa andKc are forbidden for any direction o
the dipole moment. As a consequence, if the hyperfine c
ponents of a single rotational line are considered, the redu
matrix elements in~4.2a! are zero. This conclusion is in
agreement with the results of Ref.@7# where no collisional
coupling between hyperfine components of a single ro
tional transition was observed for the asymmetric ro
CHF2Cl.

On the contrary, collisional coupling is possible betwe
the hyperfine components of two different rotational tran
tions, provided that the aforementioned selection rules
Ka andKc are satisfied together with~4.4a! and~4.4b!. If J is
large, also condition~4.4c! must be considered. Indeed,
Ref. @7# pairs of closely lying CHF2Cl rotational transition
were studied having the sameJ values but differentKa or
Kc values. In that caseJ.18 and, in agreement with th
selection rule~4.4c!, collisional coupling was observed onl
between hyperfine components with the same quantum n
bers:DFi5DF f50.
.
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V. CONCLUSION

We developed a theoretical treatment for collisional co
pling between hyperfine components of molecular spe
and for the dependence of collisional broadening of in
vidual lines on hyperfine quantum numbersF andMF . The
cases of both the presence and absence of a static fiel
solving the quantum numbersMF , were considered. Ou
treatment extends also to collisional coupling and broaden
of Stark resolved lines of a molecule without hyperfine stru
ture.

We have shown that the relaxation matrix can be deco
posed into two single-state terms and one double-state t
The single-state terms are diagonal in the space of the l
and account for the collisional relaxation of their initial an
final states, considered separately. The double-state term
volves both initial and final states. Its diagonal part decrea
the contribution of collisions that are adiabatic in the intern
degrees of the absorber to the relaxation of a single l
while its off-diagonal part accounts for collisional couplin
By using the symmetry properties of the scattering ma
and by supposing that the nuclear spinI has a negligible
influence on the collisional dynamics we have shown that
single state terms are independent onF andMF , while, for a
collisional interaction of given tensor rank in the space of
absorbing molecule, the dependence of the double-state
can be expressed by a simple product of Clebsch-Gordan
Racah coefficients.

Our treatment was adapted to the perturbative mod
commonly used in the literature and the case of rotatio
lines of molecules with a large electric-dipole moment w
discussed in detail. The double-state part of relaxation ma
is in this case proportional to the product of the dipole m
ment matrix elementŝl i umu l i8& and^ l f umu l f8& between initial
and final states of the lines. Simple selection rules were
rived, allowing one to understand whether or not collision
coupling between hyperfine and Stark components is
pected. As far as the coupling between hyperfine compon
of the same rotational transition is concerned, we ha
shown that only a small effect is expected for linear a
asymmetric-top molecules, while for symmetric-top mo
ecules the effect grows withK for a fixed J and becomes
negligible for largeJ values. For asymmetric-top molecule
a relevant collisional coupling may occur only between t
hyperfine components of different rotational transitions. A
the data in the literature may be explained by the pres
treatment.
B

.

nt.
@1# L. Carenini, thesis, University of Pisa, Italy, 1982~unpub-
lished!.

@2# R. C. Ham and S. L. Coy, J. Chem. Phys.74, 5453~1981!.
@3# G. Buffa, D. Giulietti, M. Lucchesi, M. Martinelli, and O

Tarrini, Nuovo Cimento D10, 511 ~1988!.
@4# J. Haekel and H. Ma¨der, J. Quant. Spectrosc. Radiat. Trans

41, 9 ~1989!.
@5# G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli

Phys. Rev. A37, 3790~1988!.
@6# S. Green, J. Chem. Phys.88, 7331~1988!.
@7# G. Cazzoli, L. Cludi, G. Cotti, C. Degli Esposti, G. Buffa, an

O. Tarrini, J. Chem. Phys.102, 1149,~1995!; J. Quant. Spec-
r

trosc. Radiat. Transfer52, 847, ~1994!.
@8# A. Ben-Reuven, Phys. Rev. Lett.14, 349 ~1965!; Phys. Rev.

145, 7 ~1966!.
@9# G. Buffa, A. Di Giacomo, and O. Tarrini, Nuovo Cimento

20, 281 ~1974!.
@10# P. W. Rosenkranz, IEEE Trans. Antennas Propagat.23, 498

~1975!.
@11# G. Buffa and O. Tarrini, Phys. Rev. A16, 1612~1977!.
@12# M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, and N. N

Filippov, J. Quant. Spectrosc. Radiat. Transfer31, 3790
~1988!.

@13# J. Boissoles, C. Boulet, L. Bonamy, and D. Robert, J. Qua



,

190 55S. BELLI, G. BUFFA, AND O. TARRINI
Spectrosc. Radiat. Transfer42, 509 ~1989!.
@14# G. Buffa, O. Tarrini, and M. Inguscio, Appl. Opt.26, 3066

~1987!.
@15# P. W. Anderson, Phys. Rev.76, 647 ~1949!; C. T. Tsao and I.

Curnutte, J. Quant. Spectrosc. Radiat. Transfer2, 41 ~1962!.
@16# J. S. Murphy and J. E. Boggs, J. Chem. Phys.47, 691 ~1967!.
@17# D. Robert and J. Bonamy, J. Phys.~Paris! 40, 923 ~1979!.
@18# M. Baranger, Phys. Rev.111, 481~1958!; U. Fano,ibid. 131,
259 ~1963!; A. Di Giacomo, Nuovo Cimento34, 473 ~1964!.

@19# A. Di Giacomo, Nuovo Cimento B44, 140 ~1966!.
@20# G. Buffa, A. Di Lieto, P. Minguzzi, O. Tarrini, and M. Tonelli

Phys. Rev. A34, 1065~1986!.
@21# C. H. Townes and A. L. Schawlow,Microwave Spectroscopy

~Dover, New York, 1975!, Chap. 4.


