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Expansions of density functionals in terms of homogeneous functionals:
Justification and nonlocal representation of the kinetic energy, exchange energy,
and classical Coulomb repulsion energy for atoms
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For atoms or molecules, a general argument is given justifying expanding well behaved density functionals
in series of functionals that are homogeneous to different degrees with respect to density scaling. Employing
only appropriate local homogeneous function@l¥), few-term fits of atomic Hartree-FocK p], E,[p], and
J[p] (kinetic energy, exchange energy, and classical Coulomb repulsion energy density funcéimmal®wn
to give excellent results, as do self-consistent calculations on atoms usirig,fthisplus an earlier obtained
representation oE [ p]. The representations may be lo¢ak the one folE.) or nonlocal, where nonlocal
products of two or morép*) can be included.S1050-294®7)10302-X|

PACS numbeis): 31.15.Pw, 03.65.Db

[. INTRODUCTION applied to expand th& [ p], E,[p], andJ[ p] density func-
tionals, whose homogeneities in coordinate scaling are ex-
Recently we have been studyifity2] the development of actly known(2, 1, and 1, respectively

a functional expansion approach to the density-functional In this paper, first another scheme for the functional ex-

theory of electronic structure, in which functionals of con- pansion will be examined, in which a well-behaved func-

cern are expanded in terms of their own functional derivational is expanded in terms domogeneous functionals with

tives. In Ref.[1], a general formulations was described respect to density scaling(hereafter called density-

showing how a typical well-behaved one of these functionalf©iomogeneous functionalsThis scheme does not necessarily

can be expanded up to a constant in terms of its functiondhave to have functional derivatives explicitly in the expan-

derivatives of higher and higher orders, sion, and one is able to expand such energy density function-
als asT{ p], E\[p], andJ[p]. We will consider the special
B oQlp] , case in whichT [ p], E,[ p], andJ[ p] take the form of power
Q[P]—CJFJ p(r) 5p(1) d°r series built from strictly local density functionals. The par-
52 ticular analytical forms are quite restricted because of their
B _f J AT o°Q[p] 3. dr homogeneity properties. Promising numerical results are
VP2 s, (r) dp(ry) 2 found for atoms and ions.
Since any power op is as good a variable gs for de-
ilf f f p(r)p(ro)p(rs) termining Q, an alternative to Eq1) is an expansion
oQ[p“]
“I=C+ | p*(r d3r
53Q[p:| d3r1d3r2d3r3— o (1) Q[P ] fp ( ) 6pa(r)
op(r1) 6p(rz)ép(rs) o
o oQ[p*]l 5 3
and it was shown that the approximations available, such as f f p(r)p(ry 5p“(r1) 5p*(ry) Soaregary 4 Tad T
local-density approximatiofLDA ), generalized gradient ap-
proximation weighted density approximation, were included 1 N N N
as special cases. This scheme, however, is limited by the fact _f f f (r)p®(rz)p®(rs)

that to implement it fully one has to know functional deriva-

tives of all orders. Later, it was discoveré®—4] that the y 5°Q[p”] &r o . ..
correlation-energy density function&.[p] and its kinetic Sp(ry)dp*(ry)dp(ry) 1 2073 :
componenfl [ p] can be expanded to good accuracy in terms 3)
of homogeneous functionals with respect to coordinate scal-
ing of degrees 0,—1, —2,...,(1-n), ... . Inparticular, \where o is any number. The case of most interest is
a rather compact local form fdE [ p] was obtained?2], a=1/3.

Efp]l=aN+ bf pZ/s(r)derf PN d3r, (2 Il. THEOREMS GOVERNING FUNCTIONAL

EXPANSION IN TERMS

. . OF DENSITY-HOMOGENEOUS FUNCTIONALS
where N is the number of electrons in the system and

a, b, andc are parameters. Results for atoms and molecules Theorem 1 For any well-behaved function®[p], as-
are remarkably accurate. This method, however, cannot beume that the series of Eql) exists and converges and
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assume that we may regard as accurate this expansion trutienals, T[p], E,[ p], andJ[ p], in this paper. Another prob-
cated after theath-order contributionf+1 termg. Then in  lem with this kind of expansion of E(5) is convergence.

principle Q[ p] can also be expanded in terms of density-What we know is only that given th®;[ p] from Eq.(1), one
homogeneous functionals of ang{ 1) distinct orders. is able to obtain all theH;[p] by linear combinations of
Proof. Rewrite Eq.(1) as them. We do not know if E¢(5) converges faster or slower
than Eq.(4). Since the form oH;[p] depends on its homo-

geneity, one hopes that by a careful choicenpfor a given

Q[P]:Eo Qilpl, (4) case, one may be able to find the best seriespotﬂﬁqso that

it converges faster than E¢g).
whereQ;[ p] stands for theéth term on the right-hand side of Suppose now tha[ p] is a power series of songrictly
Eqg. (1). Now, assume that one has another expansion dbcal functionalsH;(p) (which means that eadH; is inte-

Qlpl, gral of a function of the density),
n n
Q[p]=j20 Hilp], (5) Qlpl=2, Ci[H,], ©)
= “
whereH iLp] is a density-homogeneous functional of degree, here theC; are constants to be determined. It is shown in
, that '3[2] the foIIowmg theorem that this form will guarantee that each
term in this expansion possesses a certain homogeneity prop-
SH [ p] . . R 2 E
f p(r) ] dr=n;H;[p]. (6) erty with respect to density scaling if its homogeneity in
p(r) coordinate scaling is known.
Employing Eq.(6), one readily obtains the relationship be- Theorem 2Given the functional
tween theQ;[p] and theH;[p], Qj[p]=Cj[Hj]i, (10)
n
Qilpl=2, - i —Hi[p] (7)  Where theH; is a homogeneous and local functional, if it is
=0 it(n;—i)! homogeneous of degree in coordinate scaling, it takes the
form
fori=1,2,...,n. Solving Egs.(5) and (7) simultaneously,
one then obtains then(+ 1) quantitiesH;[ p] by elementary _ i
linear algebra. If one assumag=j, for example, the result Qilp]=C; f pl MBI (rya3r | (11)
is
_ _ _ _ _ Further, if Q.[p] is homogeneous of degrdein density
H — ce ]
ol p]=QLp1=Qulp]=Qzl ]~ Qslp] ’ scaling,j is determined by the relation
Hilp]=Qa[p]+2Qo[p]+3Qs[p]+ -, m
j=k-% (12)
Halp]=—Qalp]=3Qslp]—---, (8 3
Hi[p]=Qalp]+ - -, Proof. It is known [1] that any strictly local functional
L[ p] satisfies the identity
- _ 1 SLlp]
The theorem is thereby proved. L[p]——§ r-Vo(r ) 3p(1) dqr. (13

A few examples of this theorem are given in the Appen-
dix. Note that in order to have a nontrivial solution from the
above equations, the; must be distinct from each other.
Otherwise, the determinant of coefficients will be zero. By
Eq. (3) above, then; are not necessarily integers. Note also
that the above theorem onl [ 1 f QL] 3

y guarantees the existence of the Qjlpl= r-Vp(r) der. (14)

Hj[p]. Their analytical forms are rather complex. Since each Sp(r)
H:[p] in the solution is a combination of a;[ p], each of . . .
thich, as shown in Eq(l), is expressed as an integral in- Megnwhlle, b_ecaus@j is homogeneous of degree in co-
volving a functional derivative ofth order, the analytical ordinate scaling5],
form of H;[p] should, in principle, depend both on func-
tional derivatives of alh orders and on all distinat;’s cho- f Ql[p] 3=

R : ] p(r)r-v d’r=mQy[p]. (15
sen. Meanwhile, it is this very complexity that stimulates one op(r)
to suppose that there may be some cancellation happening
among these functional derivatives such that a good approxfc0mbining Eqs(14) and(15), one finds
mation for a giverH;[ p] does not necessarily explicitly de-
pend on all functional derivatives @[ p]. We will consider f 1) oQj[p] P — m-+ 3] Qull, 16
special cases of this argument for three energy density func- Sp(r) P

Taking the functional derivative of Eq10) with respect to
one obtains the identity
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TABLE |. Accurate and fitted values of the total kinetic energy =~ TABLE Il. Accurate and fitted values of the total kinetic energy

T[p], the exchange enerdy,| p], and the Coulomb repulsion en- T[p], the exchange enerdy,[ p], and the Coulomb repulsion en-

ergy J[ p] of the first- and second-row neutral atoms using Hartree-ergy J[ p] for the third-row neutral atoms using Hartree-Fock den-

Fock densitiega.u). Accurate values are from RéfL1] of the text.  sities(a.u). Values as in Table I.

Fitted values are from Eq$20), (22), and(23) of the text.

Tle] Exlp] Jlp]
Tlp] Epl Jp] Atom Fitted Accurate Fitted Accurate Fitted Accurate
Atom Fitted Accurate Fitted Accurate Fitted Accurate

601.32 599.16 —32.655 —32.677 258.25 257.31
H 0.327 0500 -0.244 -0.3125 0.297 03125 Ca 678.81 676.76 —35.196 —35.212 285.97 284.90
He 2875 2862 —-1010 —-1.026 1948 2.051 Sc 761.07 759.73 —38.007 —38.031 319.92 318.45
Li 7487 7.433 —1.729 -—-1.781 3.948 4.062 Ti 848.79 848.41 —40.970 —40.993 357.31 355.27
Be 14.682 14.573 —2.623 —2.667 7.134 7.156 \% 94219 942.88 —44.070 —44.089 397.88 395.34
B 24496 24529 -3.680 —3.744 11.673 11.853 Cr 1041.3 1043.3 —47.518 —47.489 446.84 442.96
Cc 37.400 37.388 —4.947 -—-5.045 17.990 17.751 Mn 1147.0 1149.9 —50.694 —50.686 489.07 485.58
N 53.852 54.401 -6.435 —6.596 26.383 25.973 Fe 1258.6 1262.3 —54.182 —54.190 539.18 535.99
@) 74.165 74.809 —-8.113 —-8.174 36.854 36.567 Co 1376.9 1381.4 —57.825 —57.835 593.05 590.09
F
N
N

98.982 99.409 —10.031 —10.00 49.967 49.852 Nij 1501.9 1506.9 —61.611 —61.624 650.52 648.01

e 128.90 128,55 —12.198 —12.11 66.037 66.147 Cu 1634.4 1639.0 —65.841 —65.793 719.27 716.70
a 162.55 161.86 —14.087 —14.02 79.481 80.034 7zn 1773.6 1777.8 —69.666 —69.640 777.65 775.89
Mg 200.66 199.61 —16.078 —15.99 95.094 95811 Ga 1919.4 1923.3 —73.496 —73.517 836.21 835.17
Al 243.19 24187 —18.135 —18.07 11214 11282 Ge 2072.7 2075.4 —77.415 —77.444 898.02 897.06
Si 290.36 288.85 —20.309 —20.28 13152 13191 As 2232.2 2234.2 —81.396 —81.432 962.51 961.62
P 342.36 340.71 —22.603 —22.64 153.29 153.19 Se 2399.1 2399.9 —85.458 —85.493 1029.4 1028.9
S 399.39 397.50 —24.998 —25.00 177.15 176.81 Br 2573.6 2572.4 —89.623 —89.635 1099.6 1099.1
Cl 461.40 459.46 —27.521 —27.51 203.65 202.90 Kr 27557 2752.1 —93.894 —93.852 1173.2 1172.3
Ar 528.92 526.81 —30.179 —30.19 23295 231.61

n i

which shows thatQ[p] is homogeneous of degree Edpl=> CJU pll*(l’3j)](r)d3r} , (19
(m+3j)/3 in density scaling. Finally using the explicit form =1
of Q[p] in Eqg. (10) and taking functional derivatives with
respect to density at both sides of Ef6), one arrives at Eq. and
(11). Equation(12) also follows.

This theorem is a generalization of Theorems 1 and 2 in 5/3
the Appendix of Ref[2], where strictly local functionals J[P]:CJU PGIS(F)dSF} : (20
were considered. The theorem shows, interestingly, that a
product of strictly local functionals is no longer strictly local.
It does not satisfy Eq13), which is the test for strict locality
of a functional; instead, it satisfies E@{.4).

where T[p] and E,[p] are series expansions of different
density-homogeneous functionals, whilgp ], because of its
simple density scaling homogeneity, has only one term in its
expansion. Notice that when one truncateg=atl in Egs.
lIl. EXPANSION OF T[p], E\[p], AND J[p] FOR ATOMS (18) and (19), one obtains the classical Thomas-Fermi and
o ) , Dirac formulas. Fol[ p], there have been several modeling
The Hartree-Fock kinetic-energy density functiof@b]  aitemptg7—9] in terms of local density-functional formulas.
(or its density-functional versionl[p]), the exchange- Equation(20) is much simpler and compact and, as is shown
energy density functionak,[p] and the classical Coulomb g6y, gives better results. It may be mentioned that using
repulsion energies[p] are, respectively, coordinate homo- gopoley and Hider inequalities, Gadre, Bartolotti, and
geneous functionals of degree two, one, and [@eln ad-  H{andy [10] obtained a bound for Coulomb energies in the

dition, J[ p], whose analytical form is same form as Eq20),
1( [ p(r)p(ry) 513
J[p]=§f Jﬁd%d%, (17) J[p]s1.1645“ p6’5(r)d3r} : (21)

is homogeneous of degree two with respect to density scalh our formula, the fitted constant falf p] is C,=1.0829,
ing. Therefore, we would like to infer that, to some level of which is smaller than 1.1648 and thus satisfies this bound.
approximation, Coefficients appearing in Eq&l8)—(20) were obtained by
using the least-square-fit procedure and the accurate Hartree-
n J. Fock values ofT[ p], E,[p], andJ[ p] for first- to third-row
T[p]=2 C“ p[1+<2/3j>](r)d3r} ’ (18) neutral atomg11]. We truncated the expansion series at
= j=3. Thus,
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TABLE lll. Predictions of the total kinetic energy| p], the exchange enerdy,[ p], and the Coulomb
repulsion energy| p] for isoelectronic ions of Be using Hartree-Fock densitees). Values are the same as

in Table I.
Tlpl] Exlp] Jlp]
lon Predicted Accurate Predicted Accurate Predicted Accurate
Be 14.682 14.573 —2.623 —2.667 7.134 7.156
B* 24.348 24.238 —3.442 —3.492 9.532 9.610
c*t? 36.490 36.409 —4.258 —4.315 11.901 12.034
N*3 51.106 51.082 —-5.073 —5.135 14.260 14.444
o4 68.193 68.258 —5.888 —5.956 16.612 16.848
F+s 87.757 87.934 —6.702 —6.776 18.962 19.248
Ne*® 109.79 110.11 —7.517 —7.596 21.310 21.646
Na™’ 134.29 134.79 —8.331 —8.415 23.656 24.042
Mg+8 161.28 161.97 —9.146 —9.235 26.005 26.436
AlT® 190.71 191.64 —9.959 —10.054 28.347 28.831
Sit1o 222.83 223.82 —-10.772 —10.874 30.698 31.224
prit 257.02 258.50 —11.586 —11.693 33.032 33.617
st12 293.87 295.68 —12.400 —12.513 35.374 36.010
clt13 333.20 335.36 —13.214 —13.332 37.717 38.402
Arti4 375.00 377.54 —14.027 —14.152 40.060 40.794
K15 419.26 422.21 —14.841 —14.971 42.401 43.186
Ca 16 465.99 469.39 —15.654 —15.790 44,742 45.577
2 As | increases, the factors multiplying the coefficients in
Tlel= CTlJ’ p>3(r)d% +Cr, f P4/3(f)d3r} the expansions of Eq$20) and (21) increase. This is com-

pensated, however, by the coefficients themselves, which de-
crease faster. So the expansions converge nicely. Contribu-
tions of the successive terms Thand E, for the atoms He
and Kr are shown in Table V. The main contributions come

2 from the first term, and the contribution for the third term is
fp7/6(r)d3r}

3
: (22)

+ CT3 f pll/g(l’)dsr

less than 10%. Another observation is that as N gets larger,
the contributions from latter terms become more important.

Edpl= Cx1f p*3(r)d3r +Cx,

3
. (23

+ CX3[ f plO/Q(r)d3r
IV. SAMPLE CALCULATIONS ON ATOMS

AND MOLECULES

Hartree-Fock densitiegl2] were used through the fit and _ _ . . .
t The ultimate test for approximate density functionals is

prediction processes. To find the best fits, we recognized th% Il th ; , iational calculati bl
while E, is relatively small,T andJ are large numbers. To VCI)W well t ehy per olrm '? va|1][|at|ong calculations. Iln 'Il'a. €
determine the coefficients, fd, we minimized the sum of we give the results or seli-consistent energy calculations

squares of absolute errors; farand J, we minimized the on atoms, employing, for the exchange-correlation potential

sum of squares of the absolute percentage errors. Coeffi the Kohn-Sham equation, the functional derivative of the

cients found wereCq;=3.26 422, C1,=—0.02 631, C15

—0.00 498; Cy; = — 0.85 238, Cy, = 0.00 4911, andCys= TABLE IV. Predictions of the total kinetic energy[p], the

. . . exchange energ#,[ p], and the Coulomb repulsion enerdyp]
—0.00 0074. FoC,, the fitted value for the first 36 atoms is for Ne ions of using Hartree-Fock densitiesu). Values are the

1.0829. N.ote .that the coefﬂmgnts in bpth E(2) and(23) _ same as in Table I.
alternate in sign and that their magnitudes decrease rapidly
asj increases in both. Tlp] E,[p] Jp]
. Tabfjfl a?f? I]lc_ ST%"%’ the :'ttﬁdtand aécurﬁte t\/alueﬂ' of lon  Predicted Accurate Predicted Accurate Predicted Accurate
«,» andJ for the firs neutral atoms. Excellent agreement
with accurate values is observed. One finds that except fdxe 128.90  128.55 —12.198 —12.110 66.037  66.147
hydrogen, the average relative percentage errors are less théla*  127.31  127.82 —11.672 —11.617 58.817 58.939
1% for all three quantities. Meanwhile, in order that one mayNe*? 124.99  126.31 —10.989 —10.994 51.143 51.233
see whether these formulas are applicable to positive iongye*® 122.01  123.90 —10.231 —10.268 43.337  43.376
Tables Il and IV tabulate the results for the Be isoelectronicNe** 118.19  120.47 —9.362 —9.446 35.478 35.655
series and the Ne positive-ion series, respectively. Very goole*®> 114.02 11591 —8.447 —8552 28.060 28.329
agreement between predictions and accurate values is foundet® 109.79 110.11 —-7.517 —-7.596 21.309 21.646
and one should note that these tables represent predictioRg*? 102.90 102.63 —6.638 —6.843 15.716 16.348
involving only previously determined parameters.
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TABLE V. Percentage contribution of different terms in expan-  TABLE VI. Self-consistently calculated total electronic energies

sion of T andE, for atoms He and Kr. See the text. for the first- and second-row neutral atoasu).

First term Second term Third term Atom True? Calculated Error Error(%)
T Contribution H —0.500 —0.436 0.064 12.80

He 101.3% -1.3% 0.0% He —2.904 —2.897 0.007 0.25
Kr 106.9% —13.7% 6.8% Li —7.478 —7.416 0.062 0.83
E, Contribution Be —14.67 —14.60 0.07 0.48

He 101.1% -1.1% 0.0% B —24.65 —24.58 0.07 0.29
Kr 108.9% —17.8% 8.9% C —37.84 —-37.77 0.07 0.22
N —54.59 —54.46 0.13 0.22

O —75.07 —75.02 0.05 0.06

exchange functional of Eq23) above and the correlation F ~99.73 ~99.77 —0.04 —0.04
functional of Eq.(2) [2,3]. Ne —-128.94 —129.03 —-0.09 -0.07
It has already been shown that EB) is quite accurate for Na —162.25 ~162.30 —0.05 ~0.03
molecules[3]. However, one does not necessarily expect Mg —200.05 —200.09 ~004 ~0.02
such high accuracy for Eq$20) and (23) when applied to Al 24235 24236 _o0o01 ~0.00
molecules. Si -289.36  —289.33 0.03 0.01
P —341.26 —341.17 0.09 0.03

V. COMPARISON WITH GRADIENT-CORRECTED S —398.11 —398.03 0.08 0.02
DENSITY FUNCTIONALS Cl —460.15 —460.07 0.08 0.02

Ar —527.54 —527.43 0.11 0.02

The major conclusion of this work is that the types of
functional expansions we are using, employing integralSreferencd15].
<pk> in profusion, are highly promising for finite systems. bypethod of Sec. IV.
The classical LDA is good but not good enough for accurate
work on atoms and molecules. The traditional way to correcin, this particular case, in fact, if twk values that are very
the LDA is to introduce gradient approximation or general-cjose to 1 are used, the exaks is obtained, and also the
ized gradient approximation, in which integrals involving exact density. The exponentially decaying nature of atomic
gradients of the density are introduced to correct the zerothsng molecular densities thus appears to be a factor that calls
order, uniform electron gas approximation, which is thestrongly for the use of the quantitieé®) in density-
LDA. . e o functional theory of atoms and molecules. Since the old pa-
The viewpoint in the present paper is different. The argUrameterr, is proportional top~ 2 this argument is no less

ment is that atoms and molecules are far from uniform. INthan an appeal for renewed emphasisrgrexpansions in
deed, their essential nature is exponential falloff from nucleigiomic and molecular work.

The evidence that the LDA is the best starting point is N0t The nonlocal functionals of Eq€18)—(20) are not size

strong. Note that an atom is a spherically symmetric, not gqnsjstent. We do not believe, however, that this vitiates the
translationally invariant, entity, and that even “first-order general ideas we are proposing here.

gradient terms” appear to be allowed in their description
[13,14). Furthermore, note that values of several integrals
{p*) clearly provide a lot of information about the density, ACKNOWLEDGMENTS

including information about local gradients of the density. If Support from the National Science Foundation is grate-

methods using integralé*) prove accurate, they will be iy acknowledged. Suggestions from Professor Weitao

much more convenient to use than methods requiring calcuyang and discussions with Dr. Y. A. Wang were helpful.
lations of local gradients.

To strengthen this statement of optimism, consider the _
problem of a simple exponentially decaying density, APPENDIX: EXAMPLES OF THE BASIC THEOREMS

p=exp(-r). How well can this density be predicted from  gyample 1 Consider a simple one-variable function

two or three or more values_of integralig=(p*)? How well f(x). Suppose that near the poixy, f(x) can be expanded
can the second-order gradient tefip=(VpVp/p) be pre- iy terms of a Taylor series

dicted fromA, values? Information theory tells one how to

solve this problem. Maximize-{p Inp) subject to con- 1
straintsA, = (p*) for a fewk, with a Lagrange multiplier for f(X)=f(Xg) + ' (Xo) (X—Xg) + = " (Xo) (X— X0)?
eachk. Even two terms give remarkable accuracy, as the 2

following table shows: 1
+ o7 " (X0) (X=X0)%+ - - -, (A1)
k values used CalculatedT,/true T, 3!
1,32 1.304 where f’, f”, and f” stand for its the first-, second-, and
1, 4/3 1.008 third-order derivatives, respectively, arglis not necessarily

1, 101/100 0.982 equal to 0. By rearrangemeftdssumed valig one obtains
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) , 1 5 It can be verified that E(6) is rigorously satisfied for each
f(x)=|f(X0) = ' (Xo)Xo+ 3 f"(Xo)Xg— gf'"(xo)xo"‘ e H; in Eq. (A5b).
' Example 3 Suppose tha®[ p] when expanded as in Eq.
[ (X) — F"(Xo)Xo+ 3" (X)X5— - - - Ix (1) becomes simply
+3[f"(Xo) = " (X0)Xo+ - - - X+ - -, (A2)
Qlp]=Qolp]+Qulpl, (A6)
so that
f(X)=C+CyX+Cox?+ - - -, (A3)  Wwith all other terms in Eq(4) zero. Now try expressin@ in

terms of two homogeneous functionals as
which shows thaff (x) can be expanded in terms homoge-
neous inx. Equation(A3) looks like a McLaurin expansion .
for f(x) expanded about the poirg=0, but it is generally Q[p]_H”o[p]+H“1[p]'
not such an expansion. The const@nin Eq (A3) is not, in
generalf(0); thepointx,=0 may not be within the conver- hat is, as the sum of functionals of degregandn,, respec-
gence domain. Equatioih\1) is not a series of homogeneous tjyely. Then
functions; Eq.(A3) is.
Example 2 Now take

(A7)

Qilp]=noHn[p]+n1Hn [p], (A8)

p(r)

F[p]=f dr. (A4)
1+p(r) and

This is a nonhomogeneous functional, but it is not as easy as

in the forgoing example to show that it can be expanded in Q,[p]=—%ng(ng—1)H, [p]—2ns(n;—1)H, [p]=0.

terms of density-homogeneous functionals. We compute 2 o 2 M

(A9)
p(r) 2(r)
Ql[p]:f 1+p(r)dr_f [1+p(r)]2dr’ Solving Egs.(A7) and (A8), one gets
p?(r) p3(r)
= R — R — 1
Qe | e ) mepmp . A9 Holp1= 5o Qp] - s Qulp)
YV EACERY AL -
P (] [1+p(n]* Mo 1
nlp]=— nl_nOQ[p]+ nl_nOQl[P]-
Then, from Eq.(8), we obtain It may be straightforwardly verified that
H =0,
olp] f ( )5Hno[p]d e A1)
2 3 p(r) ————dr=ngH, [p
Hl[p]=J dr p(r) L P (r) + p=(r) . Sp(r) 0
1+p(r) [I+p(n)]° [1+p(r)]
p*(r) and
[1+p(n]* " [
2 200 [ o0 o a2
p p p(r)——~—dr=n;H, [p],
= B 1
o)== | et i e P
N 3p4(r) ‘.. } (A5b) whereng and ny in principle are arbitrary numbers. Note,
[1+p(n)]* ’ however, that for the exactly truncated series one also has

Eq. (A9), which forcesny,=0 andn,;=1. The generalization
p3(r) 3p™(r) of this result is that whenever there &¢erms in the expan-
[1+ p(r)]3+ [1+p(|")]4+ o sion of Eq.(A6), an equivalent exact representation @f
exists that is the sum df homogeneous functionals of de-
grees 0, 1,.k,

Hilpl= [ dr
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