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Expansions of density functionals in terms of homogeneous functionals:
Justification and nonlocal representation of the kinetic energy, exchange energy,

and classical Coulomb repulsion energy for atoms

Shubin Liu and Robert G. Parr
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290

~Received 9 August 1996!

For atoms or molecules, a general argument is given justifying expanding well behaved density functionals
in series of functionals that are homogeneous to different degrees with respect to density scaling. Employing
only appropriate local homogeneous functionals^rk&, few-term fits of atomic Hartree-FockT@r#, Ex@r#, and
J@r# ~kinetic energy, exchange energy, and classical Coulomb repulsion energy density functionals! are shown
to give excellent results, as do self-consistent calculations on atoms using thisEx@r# plus an earlier obtained
representation ofEc@r#. The representations may be local~as the one forEc) or nonlocal, where nonlocal
products of two or morêrk& can be included.@S1050-2947~97!10302-X#

PACS number~s!: 31.15.Pw, 03.65.Db
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I. INTRODUCTION

Recently we have been studying@1,2# the development of
a functional expansion approach to the density-functio
theory of electronic structure, in which functionals of co
cern are expanded in terms of their own functional deri
tives. In Ref. @1#, a general formulations was describe
showing how a typical well-behaved one of these function
can be expanded up to a constant in terms of its functio
derivatives of higher and higher orders,

Q@r#5C1E r~r !
dQ@r#

dr~r !
d3r

2
1

2E E r~r1!r~r2!
d2Q@r#

dr~r1!dr~r2!
d3r 1d

3r 2

1
1

3!E E E r~r1!r~r2!r~r3!

3
d3Q@r#

dr~r1!dr~r2!dr~r3!
d3r 1d

3r 2d
3r 32•••, ~1!

and it was shown that the approximations available, such
local-density approximation~LDA !, generalized gradient ap
proximation weighted density approximation, were includ
as special cases. This scheme, however, is limited by the
that to implement it fully one has to know functional deriv
tives of all orders. Later, it was discovered@2–4# that the
correlation-energy density functionalEc@r# and its kinetic
componentTc@r# can be expanded to good accuracy in ter
of homogeneous functionals with respect to coordinate s
ing of degrees 0,21, 22, . . . ,(12n), . . . . In particular,
a rather compact local form forEc@r# was obtained@2#,

Ec@r#5aN1bE r2/3~r !d3r1cE r1/3~r !d3r , ~2!

where N is the number of electrons in the system a
a, b, andc are parameters. Results for atoms and molecu
are remarkably accurate. This method, however, canno
551050-2947/97/55~3!/1792~7!/$10.00
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applied to expand theTs@r#, Ex@r#, andJ@r# density func-
tionals, whose homogeneities in coordinate scaling are
actly known~2, 1, and 1, respectively!.

In this paper, first another scheme for the functional e
pansion will be examined, in which a well-behaved fun
tional is expanded in terms ofhomogeneous functionals wit
respect to density scaling~hereafter called density
homogeneous functionals!. This scheme does not necessar
have to have functional derivatives explicitly in the expa
sion, and one is able to expand such energy density funct
als asTs@r#, Ex@r#, andJ@r#. We will consider the specia
case in whichTs@r#, Ex@r#, andJ@r# take the form of power
series built from strictly local density functionals. The pa
ticular analytical forms are quite restricted because of th
homogeneity properties. Promising numerical results
found for atoms and ions.

Since any power ofr is as good a variable asr for de-
terminingQ, an alternative to Eq.~1! is an expansion

Q@ra#5C1E ra~r !
dQ@ra#

dra~r !
d3r

2
1

2E E ra~r1!r
a~r2!

d2Q@ra#

dra~r1!dra~r2!
d3r 1d

3r 2

1
1

3!E E E ra~r1!r
a~r2!r

a~r3!

3
d3Q@ra#

dra~r1!dra~r2!dra~r3!
d3r 1d

3r 2d
3r 32•••,

~3!

where a is any number. The case of most interest
a51/3.

II. THEOREMS GOVERNING FUNCTIONAL
EXPANSION IN TERMS

OF DENSITY-HOMOGENEOUS FUNCTIONALS

Theorem 1. For any well-behaved functionalQ@r#, as-
sume that the series of Eq.~1! exists and converges an
1792 © 1997 The American Physical Society
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55 1793EXPANSIONS OF DENSITY FUNCTIONALS IN TERMS . . .
assume that we may regard as accurate this expansion
cated after thenth-order contribution (n11 terms!. Then in
principle Q@r# can also be expanded in terms of densi
homogeneous functionals of any (n11) distinct orders.

Proof. Rewrite Eq.~1! as

Q@r#5(
i50

n

Qi@r#, ~4!

whereQi@r# stands for thei th term on the right-hand side o
Eq. ~1!. Now, assume that one has another expansion
Q@r#,

Q@r#5(
j50

n

H j@r#, ~5!

whereHj@r# is a density-homogeneous functional of degr
nj , that is@2#,

E r~r !
dHj@r#

dr~r !
dr5njH j@r#. ~6!

Employing Eq.~6!, one readily obtains the relationship b
tween theQi@r# and theHj@r#,

Qi@r#5(
j50

n
nj !

i ! ~nj2 i !!
Hj@r# ~7!

for i51,2, . . . ,n. Solving Eqs.~5! and ~7! simultaneously,
one then obtains the (n11) quantitiesHi@r# by elementary
linear algebra. If one assumesnj5 j , for example, the resul
is

H0@r#5Q@r#2Q1@r#2Q2@r#2Q3@r#2•••,

H1@r#5Q1@r#12Q2@r#13Q3@r#1•••,

H2@r#52Q2@r#23Q3@r#2•••, ~8!

H3@r#5Q3@r#1•••,

•••

The theorem is thereby proved.
A few examples of this theorem are given in the Appe

dix. Note that in order to have a nontrivial solution from th
above equations, thenj must be distinct from each othe
Otherwise, the determinant of coefficients will be zero.
Eq. ~3! above, thenj are not necessarily integers. Note al
that the above theorem only guarantees the existence o
Hj@r#. Their analytical forms are rather complex. Since ea
Hj@r# in the solution is a combination of allQi@r#, each of
which, as shown in Eq.~1!, is expressed as an integral in
volving a functional derivative ofi th order, the analytica
form of Hj@r# should, in principle, depend both on fun
tional derivatives of alln orders and on all distinctnj ’s cho-
sen. Meanwhile, it is this very complexity that stimulates o
to suppose that there may be some cancellation happe
among these functional derivatives such that a good appr
mation for a givenHj@r# does not necessarily explicitly de
pend on all functional derivatives ofQ@r#. We will consider
special cases of this argument for three energy density fu
un-
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tionals,T@r#, Ex@r#, andJ@r#, in this paper. Another prob
lem with this kind of expansion of Eq.~5! is convergence.
What we know is only that given theQi@r# from Eq.~1!, one
is able to obtain all theHj@r# by linear combinations of
them. We do not know if Eq.~5! converges faster or slowe
than Eq.~4!. Since the form ofHj@r# depends on its homo
geneity, one hopes that by a careful choice ofnj for a given
case, one may be able to find the best series of Eq.~5! so that
it converges faster than Eq.~4!.

Suppose now thatQ@r# is a power series of somestrictly
local functionalsHj (r) ~which means that eachHj is inte-
gral of a function of the densityr!,

Q@r#5(
j51

n

Cj@Hj #
j , ~9!

where theCj are constants to be determined. It is shown
the following theorem that this form will guarantee that ea
term in this expansion possesses a certain homogeneity p
erty with respect to density scaling if its homogeneity
coordinate scaling is known.

Theorem 2. Given the functional

Qj@r#5Cj@Hj #
j , ~10!

where theHj is a homogeneous and local functional, if it
homogeneous of degreem in coordinate scaling, it takes th
form

Qj@r#5Cj F E r [11~m/3j !]~r !d3r G j . ~11!

Further, if Qj@r# is homogeneous of degreek in density
scaling, j is determined by the relation

j5k2
m

3
~12!

Proof. It is known @1# that any strictly local functional
L@r# satisfies the identity

L@r#52
1

3E r•“r~r !
dL@r#

dr~r !
d3r . ~13!

Taking the functional derivative of Eq.~10! with respect to
r, one obtains the identity

Qj@r#52
1

3 j E r•“r~r !
dQj@r#

dr~r !
d3r . ~14!

Meanwhile, becauseQj is homogeneous of degreem in co-
ordinate scaling@5#,

2E r~r !r•“
dQj@r#

dr~r !
d3r5mQj@r#. ~15!

Combining Eqs.~14! and ~15!, one finds

E r~r !
dQj@r#

dr~r !
d3r5

m13 j

3
Qj@r#, ~16!
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1794 55SHUBIN LIU AND ROBERT G. PARR
which shows thatQj@r# is homogeneous of degre
(m13 j )/3 in density scaling. Finally using the explicit form
of Q@r# in Eq. ~10! and taking functional derivatives with
respect to density at both sides of Eq.~16!, one arrives at Eq
~11!. Equation~12! also follows.

This theorem is a generalization of Theorems 1 and 2
the Appendix of Ref.@2#, where strictly local functionals
were considered. The theorem shows, interestingly, th
product of strictly local functionals is no longer strictly loca
It does not satisfy Eq.~13!, which is the test for strict locality
of a functional; instead, it satisfies Eq.~14!.

III. EXPANSION OF T†r‡, Ex†r‡, AND J†r‡ FOR ATOMS

The Hartree-Fock kinetic-energy density functionalT@r#
~or its density-functional versionTs@r#), the exchange-
energy density functionalEx@r# and the classical Coulom
repulsion energiesJ@r# are, respectively, coordinate hom
geneous functionals of degree two, one, and one@6#. In ad-
dition, J@r#, whose analytical form is

J@r#5
1

2E E r~r1!r~r2!

ur12r2u
d3r 1d

3r 2 , ~17!

is homogeneous of degree two with respect to density s
ing. Therefore, we would like to infer that, to some level
approximation,

T@r#5(
j51

n

Cj F E r [11~2/3j !]~r !d3r G j , ~18!

TABLE I. Accurate and fitted values of the total kinetic ener
T@r#, the exchange energyEx@r#, and the Coulomb repulsion en
ergyJ@r# of the first- and second-row neutral atoms using Hartr
Fock densities~a.u.!. Accurate values are from Ref.@11# of the text.
Fitted values are from Eqs.~20!, ~22!, and~23! of the text.

T@r# Ex@r# J@r#

Atom Fitted Accurate Fitted Accurate Fitted Accura

H 0.327 0.500 20.244 20.3125 0.297 0.3125
He 2.875 2.862 21.010 21.026 1.948 2.051
Li 7.487 7.433 21.729 21.781 3.948 4.062
Be 14.682 14.573 22.623 22.667 7.134 7.156
B 24.496 24.529 23.680 23.744 11.673 11.853
C 37.400 37.388 24.947 25.045 17.990 17.751
N 53.852 54.401 26.435 26.596 26.383 25.973
O 74.165 74.809 28.113 28.174 36.854 36.567
F 98.982 99.409 210.031 210.00 49.967 49.852
Ne 128.90 128.55 212.198 212.11 66.037 66.147
Na 162.55 161.86 214.087 214.02 79.481 80.034
Mg 200.66 199.61 216.078 215.99 95.094 95.811
Al 243.19 241.87 218.135 218.07 112.14 112.82
Si 290.36 288.85 220.309 220.28 131.52 131.91
P 342.36 340.71 222.603 222.64 153.29 153.19
S 399.39 397.50 224.998 225.00 177.15 176.81
Cl 461.40 459.46 227.521 227.51 203.65 202.90
Ar 528.92 526.81 230.179 230.19 232.95 231.61
n

a

l-

Ex@r#5(
j51

n

Cj F E r [11~1/3j !]~r !d3r G j , ~19!

and

J@r#5CJF E r6/5~r !d3r G5/3, ~20!

where T@r# and Ex@r# are series expansions of differe
density-homogeneous functionals, whileJ@r#, because of its
simple density scaling homogeneity, has only one term in
expansion. Notice that when one truncates atj51 in Eqs.
~18! and ~19!, one obtains the classical Thomas-Fermi a
Dirac formulas. ForJ@r#, there have been several modelin
attempts@7–9# in terms of local density-functional formulas
Equation~20! is much simpler and compact and, as is sho
below, gives better results. It may be mentioned that us
Sobolev and Ho¨lder inequalities, Gadre, Bartolotti, an
Handy @10# obtained a bound for Coulomb energies in t
same form as Eq.~20!,

J@r#<1.1648F E r6/5~r !d3r G5/3. ~21!

In our formula, the fitted constant forJ@r# is CJ51.0829,
which is smaller than 1.1648 and thus satisfies this boun

Coefficients appearing in Eqs.~18!–~20! were obtained by
using the least-square-fit procedure and the accurate Har
Fock values ofT@r#, Ex@r#, andJ@r# for first- to third-row
neutral atoms@11#. We truncated the expansion series
j53. Thus,

-

TABLE II. Accurate and fitted values of the total kinetic energ
T@r#, the exchange energyEx@r#, and the Coulomb repulsion en
ergy J@r# for the third-row neutral atoms using Hartree-Fock de
sities ~a.u.!. Values as in Table I.

T@r# Ex@r# J@r#

Atom Fitted Accurate Fitted Accurate Fitted Accura

K 601.32 599.16 232.655 232.677 258.25 257.31
Ca 678.81 676.76 235.196 235.212 285.97 284.90
Sc 761.07 759.73 238.007 238.031 319.92 318.45
Ti 848.79 848.41 240.970 240.993 357.31 355.27
V 942.19 942.88 244.070 244.089 397.88 395.34
Cr 1041.3 1043.3 247.518 247.489 446.84 442.96
Mn 1147.0 1149.9 250.694 250.686 489.07 485.58
Fe 1258.6 1262.3 254.182 254.190 539.18 535.99
Co 1376.9 1381.4 257.825 257.835 593.05 590.09
Ni 1501.9 1506.9 261.611 261.624 650.52 648.01
Cu 1634.4 1639.0 265.841 265.793 719.27 716.70
Zn 1773.6 1777.8 269.666 269.640 777.65 775.89
Ga 1919.4 1923.3 273.496 273.517 836.21 835.17
Ge 2072.7 2075.4 277.415 277.444 898.02 897.06
As 2232.2 2234.2 281.396 281.432 962.51 961.62
Se 2399.1 2399.9 285.458 285.493 1029.4 1028.9
Br 2573.6 2572.4 289.623 289.635 1099.6 1099.1
Kr 2755.7 2752.1 293.894 293.852 1173.2 1172.3



s

e

55 1795EXPANSIONS OF DENSITY FUNCTIONALS IN TERMS . . .
TABLE III. Predictions of the total kinetic energyT@r#, the exchange energyEx@r#, and the Coulomb
repulsion energyJ@r# for isoelectronic ions of Be using Hartree-Fock densities~a.u.!. Values are the same a
in Table I.

T@r# Ex@r# J@r#

Ion Predicted Accurate Predicted Accurate Predicted Accurat

Be 14.682 14.573 22.623 22.667 7.134 7.156
B1 24.348 24.238 23.442 23.492 9.532 9.610
C12 36.490 36.409 24.258 24.315 11.901 12.034
N13 51.106 51.082 25.073 25.135 14.260 14.444
O14 68.193 68.258 25.888 25.956 16.612 16.848
F15 87.757 87.934 26.702 26.776 18.962 19.248
Ne16 109.79 110.11 27.517 27.596 21.310 21.646
Na17 134.29 134.79 28.331 28.415 23.656 24.042
Mg18 161.28 161.97 29.146 29.235 26.005 26.436
Al19 190.71 191.64 29.959 210.054 28.347 28.831
Si110 222.83 223.82 210.772 210.874 30.698 31.224
P111 257.02 258.50 211.586 211.693 33.032 33.617
S112 293.87 295.68 212.400 212.513 35.374 36.010
Cl113 333.20 335.36 213.214 213.332 37.717 38.402
Ar114 375.00 377.54 214.027 214.152 40.060 40.794
K115 419.26 422.21 214.841 214.971 42.401 43.186
Ca116 465.99 469.39 215.654 215.790 44.742 45.577
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T@r#5CT1E r5/3~r !d3r1CT2F E r4/3~r !d3r G2

1CT3F E r11/9~r !d3r G3, ~22!

Ex@r#5CX1E r4/3~r !d3r1CX2F E r7/6~r !d3r G2

1CX3F E r10/9~r !d3r G3. ~23!

Hartree-Fock densities@12# were used through the fit an
prediction processes. To find the best fits, we recognized
while Ex is relatively small,T andJ are large numbers. To
determine the coefficients, forEx we minimized the sum of
squares of absolute errors; forT and J, we minimized the
sum of squares of the absolute percentage errors. Co
cients found wereCT153.26 422,CT2520.02 631,CT3
50.00 498;CX1520.85 238,CX250.00 4911, andCX35
20.00 0074. ForCJ , the fitted value for the first 36 atoms
1.0829. Note that the coefficients in both Eqs.~22! and~23!
alternate in sign and that their magnitudes decrease rap
as j increases in both.

Tables I and II show the fitted and accurate values ofT,
Ex , andJ for the first 36 neutral atoms. Excellent agreeme
with accurate values is observed. One finds that except
hydrogen, the average relative percentage errors are less
1% for all three quantities. Meanwhile, in order that one m
see whether these formulas are applicable to positive i
Tables III and IV tabulate the results for the Be isoelectro
series and the Ne positive-ion series, respectively. Very g
agreement between predictions and accurate values is fo
and one should note that these tables represent predic
involving only previously determined parameters.
at
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t
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y
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c
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nd,
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As j increases, the factors multiplying the coefficients
the expansions of Eqs.~20! and ~21! increase. This is com-
pensated, however, by the coefficients themselves, which
crease faster. So the expansions converge nicely. Cont
tions of the successive terms inT andEx for the atoms He
and Kr are shown in Table V. The main contributions com
from the first term, and the contribution for the third term
less than 10%. Another observation is that as N gets lar
the contributions from latter terms become more importa

IV. SAMPLE CALCULATIONS ON ATOMS
AND MOLECULES

The ultimate test for approximate density functionals
how well they perform in variational calculations. In Tab
VI we give the results of self-consistent energy calculatio
on atoms, employing, for the exchange-correlation poten
in the Kohn-Sham equation, the functional derivative of t

TABLE IV. Predictions of the total kinetic energyT@r#, the
exchange energyEx@r#, and the Coulomb repulsion energyJ@r#
for Ne ions of using Hartree-Fock densities~a.u.!. Values are the
same as in Table I.

T@r# Ex@r# J@r#

Ion Predicted Accurate Predicted Accurate Predicted Ac

Ne 128.90 128.55 212.198 212.110 66.037 66.14
Ne1 127.31 127.82 211.672 211.617 58.817 58.93
Ne12 124.99 126.31 210.989 210.994 51.143 51.23
Ne13 122.01 123.90 210.231 210.268 43.337 43.37
Ne14 118.19 120.47 29.362 29.446 35.478 35.65
Ne15 114.02 115.91 28.447 28.552 28.060 28.32
Ne16 109.79 110.11 27.517 27.596 21.309 21.64
Ne17 102.90 102.63 26.638 26.843 15.716 16.34
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1796 55SHUBIN LIU AND ROBERT G. PARR
exchange functional of Eq.~23! above and the correlatio
functional of Eq.~2! @2,3#.

It has already been shown that Eq.~2! is quite accurate for
molecules@3#. However, one does not necessarily exp
such high accuracy for Eqs.~20! and ~23! when applied to
molecules.

V. COMPARISON WITH GRADIENT-CORRECTED
DENSITY FUNCTIONALS

The major conclusion of this work is that the types
functional expansions we are using, employing integr
^rk& in profusion, are highly promising for finite system
The classical LDA is good but not good enough for accur
work on atoms and molecules. The traditional way to corr
the LDA is to introduce gradient approximation or gener
ized gradient approximation, in which integrals involvin
gradients of the density are introduced to correct the zer
order, uniform electron gas approximation, which is t
LDA.

The viewpoint in the present paper is different. The arg
ment is that atoms and molecules are far from uniform.
deed, their essential nature is exponential falloff from nuc
The evidence that the LDA is the best starting point is
strong. Note that an atom is a spherically symmetric, no
translationally invariant, entity, and that even ‘‘first-ord
gradient terms’’ appear to be allowed in their descripti
@13,14#. Furthermore, note that values of several integr
^rk& clearly provide a lot of information about the densit
including information about local gradients of the density.
methods using integralŝrk& prove accurate, they will be
much more convenient to use than methods requiring ca
lations of local gradients.

To strengthen this statement of optimism, consider
problem of a simple exponentially decaying densi
r5exp(2r). How well can this density be predicted from
two or three or more values of integralsAk5^rk&? How well
can the second-order gradient termT25^¹r¹r/r& be pre-
dicted fromAk values? Information theory tells one how
solve this problem. Maximize2^r lnr& subject to con-
straintsAk5^rk& for a fewk, with a Lagrange multiplier for
eachk. Even two terms give remarkable accuracy, as
following table shows:

k values used CalculatedT2/trueT2

1, 3/2 1.304
1, 4/3 1.008
1, 101/100 0.982

TABLE V. Percentage contribution of different terms in expa
sion ofT andEx for atoms He and Kr. See the text.

First term Second term Third term

T Contribution
He 101.3% 21.3% 0.0%
Kr 106.9% 213.7% 6.8%

Ex Contribution
He 101.1% 21.1% 0.0%
Kr 108.9% 217.8% 8.9%
t
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In this particular case, in fact, if twok values that are very
close to 1 are used, the exactT2 is obtained, and also the
exact density. The exponentially decaying nature of atom
and molecular densities thus appears to be a factor that
strongly for the use of the quantitieŝrk& in density-
functional theory of atoms and molecules. Since the old
rameterr s is proportional tor

21/3, this argument is no less
than an appeal for renewed emphasis onr s expansions in
atomic and molecular work.

The nonlocal functionals of Eqs.~18!–~20! are not size
consistent. We do not believe, however, that this vitiates
general ideas we are proposing here.
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APPENDIX: EXAMPLES OF THE BASIC THEOREMS

Example 1. Consider a simple one-variable functio
f (x). Suppose that near the pointx0, f (x) can be expanded
in terms of a Taylor series

f ~x!5 f ~x0!1 f 8~x0!~x2x0!1
1

2
f 9~x0!~x2x0!

2

1
1

3!
f-~x0!~x2x0!

31•••, ~A1!

where f 8, f 9, and f- stand for its the first-, second-, an
third-order derivatives, respectively, andx0 is not necessarily
equal to 0. By rearrangement~assumed valid!, one obtains

TABLE VI. Self-consistently calculated total electronic energi
for the first- and second-row neutral atoms~a.u.!.

Atom Truea Calculatedb Error Error~%!

H 20.500 20.436 0.064 12.80
He 22.904 22.897 0.007 0.25
Li 27.478 27.416 0.062 0.83
Be 214.67 214.60 0.07 0.48
B 224.65 224.58 0.07 0.29
C 237.84 237.77 0.07 0.22
N 254.59 254.46 0.13 0.22
O 275.07 275.02 0.05 0.06
F 299.73 299.77 20.04 20.04
Ne 2128.94 2129.03 20.09 20.07
Na 2162.25 2162.30 20.05 20.03
Mg 2200.05 2200.09 20.04 20.02
Al 2242.35 2242.36 20.01 20.00
Si 2289.36 2289.33 0.03 0.01
P 2341.26 2341.17 0.09 0.03
S 2398.11 2398.03 0.08 0.02
Cl 2460.15 2460.07 0.08 0.02
Ar 2527.54 2527.43 0.11 0.02

aReference@15#.
bMethod of Sec. IV.
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f ~x!5F f ~x0!2 f 8~x0!x01
1
2 f 9~x0!x0

22
1

3!
f-~x0!x0

31••• G
1@ f 8~x0!2 f 9~x0!x01

1
2 f-~x0!x0

22•••#x

1 1
2 @ f 9~x0!2 f-~x0!x01•••#x21•••, ~A2!

so that

f ~x!5C1C1x1C2x
21•••, ~A3!

which shows thatf (x) can be expanded in terms homog
neous inx. Equation~A3! looks like a McLaurin expansion
for f (x) expanded about the pointx050, but it is generally
not such an expansion. The constantC in Eq ~A3! is not, in
general,f (0); thepoint x050 may not be within the conver
gence domain. Equation~A1! is not a series of homogeneou
functions; Eq.~A3! is.

Example 2. Now take

F@r#5E r~r !

11r~r !
dr . ~A4!

This is a nonhomogeneous functional, but it is not as eas
in the forgoing example to show that it can be expanded
terms of density-homogeneous functionals. We compute

Q1@r#5E r~r !

11r~r !
dr2E r2~r !

@11r~r !#2
dr ,

Q2@r#5E r2~r !

@11r~r !#2
dr2E r3~r !

@11r~r !#3
dr , ~A5a!

Q3@r#5E r3~r !

@11r~r !#3
dr2E r4~r !

@11r~r !#4
dr ,

A

Then, from Eq.~8!, we obtain

H0@r#50,

H1@r#5E dr F r~r !

11r~r !
1

r2~r !

@11r~r !#2
1

r3~r !

@11r~r !#3

1
r4~r !

@11r~r !#4
1••• G ,

H2@r#52E dr F r2~r !

@11r~r !#2
1

2r3~r !

@11r~r !#3

1
3r4~r !

@11r~r !#4
1••• G , ~A5b!

H3@r#5E dr F r3~r !

@11r~r !#3
1

3r4~r !

@11r~r !#4
1••• G ,

A

as
n

It can be verified that Eq.~6! is rigorously satisfied for each
Hj in Eq. ~A5b!.

Example 3. Suppose thatQ@r# when expanded as in Eq
~1! becomes simply

Q@r#5Q0@r#1Q1@r#, ~A6!

with all other terms in Eq.~4! zero. Now try expressingQ in
terms of two homogeneous functionals as

Q@r#5Hn0
@r#1Hn1

@r#, ~A7!

that is, as the sum of functionals of degreen0 andn1, respec-
tively. Then

Q1@r#5n0Hn0
@r#1n1Hn1

@r#, ~A8!

and

Q2@r#52 1
2n0~n021!Hn0

@r#2 1
2n1~n121!Hn1

@r#50.
~A9!

Solving Eqs.~A7! and ~A8!, one gets

Hn0
@r#5

n1
n12n0

Q@r#2
1

n12n0
Q1@r#,

~A10!

Hn1
@r#52

n0
n12n0

Q@r#1
1

n12n0
Q1@r#.

It may be straightforwardly verified that

E r~r !
dHn0

@r#

dr~r !
dr5n0Hn0

@r# ~A11!

and

E r~r !
dHn1

@r#

dr~r !
dr5n1Hn1

@r#, ~A12!

wheren0 and n1 in principle are arbitrary numbers. Note
however, that for the exactly truncated series one also
Eq. ~A9!, which forcesn050 andn151. The generalization
of this result is that whenever there arek terms in the expan-
sion of Eq. ~A6!, an equivalent exact representation ofQ
exists that is the sum ofk homogeneous functionals of de
grees 0, 1,...,k.
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