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Upper bounds to the eigenvalues of the no-pair Hamiltonian
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A Dirac-like HamiltonianH with two-body terms, and its no-pair Hamiltonigh™ =A**HA ™" where
A*7 is related to a one-particle Hamiltonidi, are studied in finite-basis representatibhsindH*. Using
finite-basis eigenfunctions dik, it holdsE;"<E,~_;, i>0, whereE,~_; andE;" are the ordered eigenvalues
of H andH*, and A"~ is the difference between the dimensionstbfand H*. The states of order<N\"~
exhibit continuum dissolution. In contrast, those of ordér+i, i>0, are bounded from below and after
application of a variational principle they represent bound st@8%050-2947@7)08702-7

PACS numbes): 31.10+2z, 11.80.Fv, 31.30.Jv

The starting point of atomic calculations for relativistic N
atomic structures is the no-pair Hamiltonigit [1-3] Hp= >, hp(i), (8)
=1
HY=ATTHATY, (1) .
hp=ca-p+Bmc——, 9
HYw =E o}, 2 o CarpTAMET ©

whereA ** is a product of one-particle projection operators,f"mdve-e is a two-body eIectron-_eIectron_interactio_n. Accord-

ing to [1-3,6,7, the use ofH is meaningless, since “by

N turning on slowly the electron-electron interaction the system

ATt = H (), ®) can make real transitions to states where one electron has a

i=1 large negative energy and the other electron is in the
positive-energy continuum’[1], an effect known ason-
tinuum dissolutioror Brown-Ravenhall “diseasel2]. Fur-

+ _ + +
A (1)_,1(;0) |un (D))uq (LI, ) thermore, it is widely held1,3] that the equation for station-
n

ary states,

and u,’s are the positive-energy eigenfunctions of a one-

particle operatohy(1) yet to be specified: HY=Ev, (10

N N has no bound state solutions. The purpose of this paper is to
ho(1)un (1) =€pu, (1),  €,>0. (5 study finite-basis representatiodsandH* of the operators
) ] ) H andH™, and to discuss its physical consequences.
The negative-energy eigenfunctions Let us define am-dimensional one-particle basis of nor-
B B malizableDirac bispinors
ho(1)uy (1)= €ty (1),  €<0 (6)
) . ) . . . 1 Pnilj(r)yxmj
are defined likewise. Thus in projection operator theory PO T (11)
(POT) a(+) state means a positive-energy eigenfunction of a mlim; = | 1Qn (N Yoy |-
suitable one-particle operatbg, and similarly for(—) states.

+The choice ofh, completely specifies the Hamiltonian g gne-particle basis will be calledsingle primitive(SP
H™, and defines a set of state functions over which the quansasis. To obtain a finite-basis representatignof h, this
tized QED fields may act. This formulation allows the con- original m-dimensional SP basis is supplemented with an-

sistent incorporation of QED effects using perturbation i, complementary set afi Dirac bispinors
theory and, at the same time, it delimits the validity of Eqgs. ’

(1)—(5), implicitly showing the relevance of the negative- 1 Pnij (N Yim
energy states excluded by POT. At present there is great \pg |+,rrrT]1>:_ e ! , (12)
interest in going beyond a POT formulatif4l, particularly Hmr —|Qni|,j(r)y, K,

in connection with the calculation of transition probabilities
[5], which are gauge dependent unless negative-energy statdéfering from the firstm in the minus sign preceding the

are incorporated. lower component®). In analogy with the SP set, the full
In Eq. (1), H is a relativisticN-particle Hamiltonian 2m-dimensional one-particle basis will be calleddauble
primitive (DP) set. All Dirac-Hartree-FockDHF) calcula-
H=Hp+ Ve, (7)  tions to datd8,9] use DP sets. ThE andQ radial functions
are always chosen so as to avoid variational colldp&¢at
whereHp is a sum of one-particl®irac Hamiltonianshp, the one-particle level. A finite-basis representation in terms
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of m positive-energy andn negative-energy eigenfunctions 10000, . : T . ; : . . :

of hy is obtained by diagonalizing, in a DP basis, o | ]
ho(Luf (1)=eui (1), €,>0, n=1,...m, (13 . |
ho(1)u, (1)=€,u, (1), €,<0, n=1,...m. (14 5000 w .

We will now focus on configuration-interactio(€l) ex- ooy 2

pansions in whictall configuration state functions that can 15t
be constructed from the given SP basis are included, Known g0 |
asfull Cl. Full Cl is always an absolute invariantiz. the
spectrum of the full Cl matrixd? is independent of any =~ 2%%°f
nonsingular linear transformations among the one-particle .s00 |
basis. In other words, th&{(m) eigenvalue€ (" and eigen-

functionsC{P) of H(SP), |

40000 ) L L . L L . L L
0 01 02 0.3 0.4 0.5 06 0.7 0.8 09 n 1

HSPCSP=ESPCSP | i=12,... Mm), (15

are entirely determined by the SP basis. We shall always FIG: 1. Behavior of selected eigenvaluestofior U 1s? as
assume that the eigenvaIuE$SP) are arranged in nonde- a function of a scaling parameter;, exhibiting bound states above

. . E,~ and ti dissoluti t and below it.
creasing order,ESP<ESP:--<ERF) . Everyone doing " and confinitim dissolution at and below !
relativistic Cl today uses Eq15), or truncations of it, with

some kind of positive-energy orbitalau, ,n=1, ... m}, 1. In Fig. 1 we show eigenvalues bff of orders 51-60 as a
namely,H " =H(P), function of . For definitenessV,_o==r;*, thus H is
Let us now consider a full Cl expansion using the entiretaken as théirac-CoulombHamiltonian.
2m-dimensional DP set. Its full Cl matrik gives rise to an According to Eq.(18), we must look for a target eigen-
eigenproblem of dimensio{2m), value of order\/™ (2m)+1=58. However, foryp=1, Esg is
seen to be located just below the line signaling the zero of
HC=EC; i=12,... M2m). (16)  energy(fully ionized system and high above its expected

position around—9651 a.u. Furthermore, we find an eigen-

quljadt!on(16), ?gallng with thet_clomptlette sphectrumt bg value E,, and an eigenfunction¥, closely resembling the
Including negative-energi-particle states, has not been sought after N-particle electron state, within the first

considered before. Clearly, the left upper corneHotip to N-(2m) eigenvalues, initially at position N, =53

rows _and ?0'“?;2)5 of °_rde"/("_‘) can always be made to <N~ (2m). The resemblance d¥, with a bound state is
coincide withH™>". If A™(2m) is dgg)ned as the difference |jheq to a bound character discussed below, associated to a
between the dimensions &f andH'™", dominant configuration expected to represent it.

- _ _ Now we proceed to vary the scaling paramefecharac-
N (2m) =M2m) = Mm), (17 terizing the radial function® andQ, so as to lower as much

a corollary of the interleaving theorefil1] for finite-size ~ @S possible the target eigenvalue. This corresponds to mov-

Hermitian matrices yields ing leftwards in Fig. 1. We find that eventually a minimum
energy for the target eigenvalue is reached at which point its
EPP<En-(my+is 10, (18)  eigenfunction faithfully represents the lowest state of the

given symmetry. In the process in which the original DP

indicating that the eigenvaluds™ of relativistic Cl calcula-  basis is beingchanged into a relativistically energy-
tions with SP bases will always libelow the eigenvalues optimized DP basis, the enerds;, of the state¥, varies
En-(2m)+i Of the CI matrixH, whatever choice of SP bases slightly, while some of the eigenvalues above begin to ap-
is made, includinganykind of {u; ,n=1, ... m}. proachEy. A bit later, the lowest of them becomes almost

The first question about Eq18) is what happens if the degeneratewith E,. At this point, coinciding with an
eigenvalues of ordeN™ +i, i>0, are minimized upon gen- avoided crossing, there is a transfer of character from one
eral variations of the nonlinear parameters defining the DPtate to another: the lower state exchanges its bound charac-
basis. Thegeneral behaviowill be illustrated with full CI  ter with the state immediately above. Thereafter, the eigen-
for U%" 1s? with a DP basis of 12 4,,, orbitals. Thus Vvalue of ordeN,, now deprived from its former bound-state
m=6, the ClI size is\(2m) =78, and\~ (2m)=57. We use character, starts to sink down towartll € 2)mc?, around

Egs.(11) and(12) with radial functions — 37558 a.u(after subtractindNmc).
We shall now delve into the nature of the variational
Prij (1) =Qnj(r)=r7e ", (190 eigenfunctions. In Fig. 2 we amplify the region of Fig. 1
showing thelast avoided crossing toward the buildup of the
y=Vk’—(aZ)?, N=nab, i=1,...,6. (20 lowest bound state, corresponding Egg, around —9651

a.u. and»=0.5088. In the vicinity of pointA andA’, the
We setb=1.4, whilea was optimized at the nonrelativistic eigenvalue of order 58 is appreciably above the eigenvalue
level. The scaling parameter will be varied between 0 and of order 57, which is at the approximately correct bound
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-9625 . . r : . dissolution configurations. Finally, fay=0.5086 the bound
E?e;fg character has been definitely transferred to level 58, as ex-
pected, while level 57 dissolves ints@t+)3s(—).
9635 1 A 1 The values ofy in the previous paragraph are still far
9640 | | from the optimized valuen=0.2635 yielding the actual
minimum for Esg= —9651.385 651 88. Theorrespond-
el ) ing eigenfunction for the optimal value of is
9650 - c B,/" ]
0655 | B N | W5g~0.999 9991s(+)?]—0.001 3882s(+)?]
-9660 | 1 —0.000 2693s(+)?]+0.000 0654s(—)?]
9665 | . —0.000 0285s(+)?]+0.000 0106s(—)?]. (23
-9670 c
Its dominant configurations are formed by) NO’s. Small

o 508 05086 05087 05080 0508 05090 1 contributions from(—) NO’s are presenonly in configura-
tions with both electrons in the same orbital, whereas
continuum-dissolution (+)(—) configurations have com-
pletely disappeared. This result is consistent with the QED
. , : prediction that to fourth-order perturbation theory
state energy. Poini® andB’ are very close to the avoided continuum-dissolution terms vanish identicalli4]; it also

Erosstlng. Tlowarf[j t[f Ieft,rrpo![nf a:éj_ct tShO\r']V that Vchr'tle incorporates the expected presence of configurations with
5 Stays close to the correct bound-state enefgy,starts . both electrons in negative-energy states. In addition, the en-

going down very q_uickly. An examination of the composi- ergy contribution of these-{) NO’s, when using DP bases,
tion of the respective wave funct|onks7 and ¥sg shows will always be of positive sign as a consequence of the in-
how the bound-state character is transferred from level 57 s rleavin g theorem

"?Ve' 58 as the neighharhoad ac and B’ is. crossed from Many previous workers found thege) N-particle states
right tot_left. _In T?blet_l, the dom;]nant ct:r?nﬂguhrattrl]onélof th:?f.and concluded that their existence would prevent the occur-
respective eigentunctions are shown throug € oM ence of authentic bound states; becadds not bound from
clentsa andb below, the variational theorem cannot be applied to them. In
W~a[1s(+)2]+b[2s(+)3s(—)], (21)  contrast, the targef -, and all eigenvalues above it reach
real minima corresponding to the ground and successive ex-
i i[ZS— 3s]. (22 cited states: they do not dissolve into the continuum as those
J2 J2 of order N~ (2m) and below. Asm is increased, conver-
_ gence to arexactbound state solution ialwaysfound; it

In Egs.(21) and(22), 1s(+), 2s and 3 denote the first  may be from above, from below, or show oscillatory behav-
three natural orbitalSNO's) [12,13, while 2s(+) and  jor[13], in contrast with the familiar nonrelativistic situation
3s(—) were constructed from corresponding NO’s throughwhere convergence is from above. This suggests the exist-
Eq. (22) so that they aré+) and(-) orbitals, respectively. ence of a variational principle for all states above
[A (+) NO has positive expectation values@k-p and of N~ (2m), for any value ofm.
the mass operatgBc?.] For =0.5090 the positive bound- A second question about E(L8) is how do the eigenval-
state orbital $(+) is almost doubly occupied in level 57, ues ofH andH™* compare in actual calculations. In Table II
with a very small contribution from thes2+)3s(—) con-  we show that using POT with positive-energy NO and DHF
figuration directly related to continuum dissolution; mean-eigenfunctions, the lowest eigenvalue téf for U%" 1s?
while, level 58 exhibits a complementary orthogonal composinks 843 and 334Quhartree belowE,~ ., respectively,
sition. For »=0.5088, both levels show practically equal indicating the energy effect of negative-energy one-particle
contributions from the bound-state and continuum-states, included it butnotin H*.

FIG. 2. Amplification of the neighborhood of the last avoided
crossing of Fig. 1.

2s(+)=—=[2s+3s], 3s(—)=

TABLE I. Variational parameter, and energies and eigenfunctions of levels 57 and 58 in the neighbor-
hood of the last avoided crossing, Fig. 2; energies in a1137.0373.

n Es; ¥sy
Esg Wsg
0.5090 —9651.3874 0.999 QZS(+)Z]+O.012 402s(+)3s(—)]
—9638.3541 —-0.012 4le(+)2] +0.999 922s(+)3s(—)]
0.5088 —9651.5430 0.715 S[&s(+)2]+0.698 172s(+)3s(—)]
—9651.2197 0.698 2[ls(+)2]—0.715 932s(+)3s(—)]
0.5086 —9670.8397 0.008 le(+)2]+0.999 972s(+)3s(—)]

—9651.3841 0.999 9@5(+)2]—0.008 312s(+)3s(—)]
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TABLE I1. Full CI calculations for Fé*" and U*®* 1s? ground It remains to answer the riddle posed by the Brown-
states using a DP basis, and SP basis of positive-energy NO arRlavenhall argument at the beginning of this paper. We have
DHF eigenfunctions. The three calculations use the same sine solved the time-independent equation for stationary states,
Slater-type orbital bases. Energies in a.05137.035981 for Eq. (10), with V. replaced byyV._.., wherey is varied

Fe** andc=137.0373 for U°'. between 0 and 100;=1 corresponding to the actual physi-
cal situation. When considering a true atomic resonance, like

Basis Fe* U nonrelativistic He 22, the various excited eigenvalues asso-

DP — 665.8546 46 _ 9651.3855 03 _ciate_:d with resonant states as a functiorxosfhow a behav_-

(+) NO's  665.8546 50 96513863 46 ior like the one _exh|b|ted on the right side of Flg. 1, with

(+) DHF orbitals — 665.8546 98 0651 3888 43 many saddle points and associated wave functions undergo-

ing change of character in the vicinity of avoided crossings,
similarly to continuum-dissolution states discussed before.

Notice that the\(2m) eigenvalues oH are entirely de- Instead, if we return. to the relativistic problem of Fig. 1 and
termined by the DP set, independently of anpriori iden- ~ US€ the optimal scaling paramgmo.2635, for'the relevant
tification of (+) and (=) one-particle bases. Thus the third €igenvalues of ordeN™(2m)+i, i>0 we obtain a smooth
question about Eq(18) is what happens if wenaximizethe ~ Pehaviorwithoutavoided crossings, even whgr-100, one
energiefi(sp), Eq. (16), with respect to a nonsingular linear hun_dred times larger than its actual physical value. This be-
transformation within the entire DP set? It immediately fol- havior reinforces our argument about the bound character of

lows that Eq.(18) contains a minimax theorem, whose nu- the pertlnent_varlatlonal elg_enfuncnons. . .
merical consequences will be examined elsewligg, in- In conclusion, we have rigorously shown, using the inter-

cluding the determination diestpositive-energy orbitals in €aving theorem, that after climbing over the fi'6t eigen-
calculations beyond DHF. values ofH, the remaining eigenvalues are upper bounds to

Now one can ask a fourth question: is it possible, within a_the eigenvalues of the no-pair Hamiltonian. Its correspond-

given DP basis, to find a SP basis such that ing eigenfunctions incorporate both) and(—) one-particle
states to all orders and are bonafide bound states, that is,

EfP: En-2m+1? (24) without the Brown-Ravenhall disease, thus restoring physical
meaning to the unprojectedN-particle Hamiltonian. A
In [16] we show this to be the case at the independentwealth of numerical results have been obtained thereby
particle-model level of approximation, and this is the reasorf13,15-17, including excited stategl3]; finite-basis DHF
why our DHF results are in excellent agreemgh] with results of numerical quality foany open shells, and transla-
finite-difference DHF calculations. However, in general, be-tion of nonrelativistic into relativistic resul{d 6], and elastic
yond DHF, Eq.(24) cannot be satisfied. electron scattering factof4d7].
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