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Upper bounds to the eigenvalues of the no-pair Hamiltonian
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~Received 14 June 1996!

A Dirac-like HamiltonianH with two-body terms, and its no-pair HamiltonianH15L11HL11 where
L11 is related to a one-particle Hamiltonianh0, are studied in finite-basis representationsH andH1. Using
finite-basis eigenfunctions ofh0, it holdsEi

1<EN21 i , i.0, whereEN21 i andEi
1 are the ordered eigenvalues

of H andH1, andN2 is the difference between the dimensions ofH andH1. The states of orderi<N2

exhibit continuum dissolution. In contrast, those of orderN21i , i.0, are bounded from below and after
application of a variational principle they represent bound states.@S1050-2947~97!08702-7#

PACS number~s!: 31.10.1z, 11.80.Fv, 31.30.Jv
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The starting point of atomic calculations for relativist
atomic structures is the no-pair HamiltonianH1 @1–3#

H15L11HL11, ~1!

H1C i
15Ei

1C i
1 , ~2!

whereL11 is a product of one-particle projection operato

L115)
i51

N

l1~ i !, ~3!

l1~1!5 (
n~en.0!

uun
1~1!&^un

1~1!u, ~4!

and un
1’s are the positive-energy eigenfunctions of a on

particle operatorh0(1) yet to be specified:

h0~1!un
1~1!5enun

1~1!, en.0. ~5!

The negative-energy eigenfunctions

h0~1!un
2~1!5enun

2~1!, en,0 ~6!

are defined likewise. Thus in projection operator theo
~POT! a ~1! state means a positive-energy eigenfunction o
suitable one-particle operatorh0, and similarly for~–! states.

The choice ofh0 completely specifies the Hamiltonia
H1, and defines a set of state functions over which the qu
tized QED fields may act. This formulation allows the co
sistent incorporation of QED effects using perturbati
theory and, at the same time, it delimits the validity of Eq
~1!–~5!, implicitly showing the relevance of the negativ
energy states excluded by POT. At present there is g
interest in going beyond a POT formulation@4#, particularly
in connection with the calculation of transition probabiliti
@5#, which are gauge dependent unless negative-energy s
are incorporated.

In Eq. ~1!, H is a relativisticN-particle Hamiltonian

H5HD1Ve-e , ~7!

whereHD is a sum of one-particleDirac HamiltonianshD ,
551050-2947/97/55~3!/1781~4!/$10.00
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HD5(
i51

N

hD~ i !, ~8!

hD5caW •pW 1bmc22
Z

r
, ~9!

andVe-e is a two-body electron-electron interaction. Accor
ing to @1–3,6,7#, the use ofH is meaningless, since ‘‘by
turning on slowly the electron-electron interaction the syst
can make real transitions to states where one electron h
large negative energy and the other electron is in
positive-energy continuum’’@1#, an effect known ascon-
tinuum dissolutionor Brown-Ravenhall ‘‘disease’’@2#. Fur-
thermore, it is widely held@1,3# that the equation for station
ary states,

HC5EC, ~10!

has no bound state solutions. The purpose of this paper
study finite-basis representationsH andH1 of the operators
H andH1, and to discuss its physical consequences.

Let us define anm-dimensional one-particle basis of no
malizableDirac bispinors

Cni l jm j

~ i ! 5
1

r S Pni l j
~r !Ykmj

iQni l 8 j~r !Y2kmj
D . ~11!

This one-particle basis will be called asingle primitive~SP!
basis. To obtain a finite-basis representationh0 of h0, this
original m-dimensional SP basis is supplemented with a
other complementary set ofm Dirac bispinors,

Cni l jm j

~ i1m!5
1

r S Pni l j
~r !Ykmj

2 iQni l 8 j~r !Y2kmj

D , ~12!

differing from the firstm in the minus sign preceding th
lower componentsQ. In analogy with the SP set, the fu
2m-dimensional one-particle basis will be called adouble
primitive ~DP! set. All Dirac-Hartree-Fock~DHF! calcula-
tions to date@8,9# use DP sets. TheP andQ radial functions
are always chosen so as to avoid variational collapse@10# at
the one-particle level. A finite-basis representation in ter
1781 © 1997 The American Physical Society
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1782 55JÁUREGUI, BUNGE, AND LEY-KOO
of m positive-energy andm negative-energy eigenfunction
of h0 is obtained by diagonalizingh0 in a DP basis,

h0~1!un
1~1!5e iun

1~1!, en.0, n51, . . . ,m, ~13!

h0~1!un
2~1!5enun

2~1!, en,0, n51, . . . ,m. ~14!

We will now focus on configuration-interaction~CI! ex-
pansions in whichall configuration state functions that ca
be constructed from the given SP basis are included, kn
as full CI. Full CI is always an absolute invariant,viz. the
spectrum of the full CI matrixH(SP) is independent of any
nonsingular linear transformations among the one-part
basis. In other words, theN(m) eigenvaluesEi

(SP) and eigen-
functionsCi

(SP) of H(SP),

H~SP!Ci
~SP!5Ei

~SP!Ci
~SP! , i51,2, . . . ,N~m!, ~15!

are entirely determined by the SP basis. We shall alw
assume that the eigenvaluesEi

(SP) are arranged in nonde
creasing order,E1

(SP)<E2
(SP)•••<EN(m)

(SP) . Everyone doing
relativistic CI today uses Eq.~15!, or truncations of it, with
some kind of positive-energy orbitals$un

1 ,n51, . . . ,m%,
namely,H15H(SP).

Let us now consider a full CI expansion using the ent
2m-dimensional DP set. Its full CI matrixH gives rise to an
eigenproblem of dimensionN(2m),

HC i5EiCi i51,2, . . . ,N~2m!. ~16!

Equation ~16!, dealing with the complete spectrum ofH,
including negative-energyN-particle states, has not bee
considered before. Clearly, the left upper corner ofH up to
rows and columns of orderN(m) can always be made t
coincide withH(SP). If N2(2m) is defined as the differenc
between the dimensions ofH andH(SP),

N2~2m!5N~2m!2N~m!, ~17!

a corollary of the interleaving theorem@11# for finite-size
Hermitian matrices yields

Ei
SP<EN2~2m!1 i , i.0, ~18!

indicating that the eigenvaluesEi
SPof relativistic CI calcula-

tions with SP bases will always liebelow the eigenvalues
EN2(2m)1 i of the CI matrixH, whatever choice of SP base
is made, includingany kind of $un

1 ,n51, . . . ,m%.
The first question about Eq.~18! is what happens if the

eigenvalues of orderN21i , i.0, are minimized upon gen
eral variations of the nonlinear parameters defining the
basis. Thegeneral behaviorwill be illustrated with full CI
for U901 1s2 with a DP basis of 12 1s1/2 orbitals. Thus
m56, the CI size isN(2m)578, andN2(2m)557. We use
Eqs.~11! and ~12! with radial functions

Pni l j
~r !5Qni l j

~r !5r ge2l i r , ~19!

g5Ak22~aZ!2, l i5habi , i51, . . . ,6. ~20!

We setb51.4, whilea was optimized at the nonrelativisti
level. The scaling parameterh will be varied between 0 and
n

le

s

P

1. In Fig. 1 we show eigenvalues ofH of orders 51–60 as a
function of h. For definiteness,Ve2e5(r i j

21 , thus H is
taken as theDirac-CoulombHamiltonian.

According to Eq.~18!, we must look for a target eigen
value of orderN2(2m)11558. However, forh51, E58 is
seen to be located just below the line signaling the zero
energy~fully ionized system!, and high above its expected
position around29651 a.u. Furthermore, we find an eigen
value Eb and an eigenfunctionCb closely resembling the
sought after N-particle electron state, within the firs
N2(2m) eigenvalues, initially at position Nb553
<N2(2m). The resemblance ofCb with a bound state is
linked to a bound character discussed below, associated
dominant configuration expected to represent it.

Now we proceed to vary the scaling parameterh charac-
terizing the radial functionsP andQ, so as to lower as much
as possible the target eigenvalue. This corresponds to m
ing leftwards in Fig. 1. We find that eventually a minimum
energy for the target eigenvalue is reached at which point
eigenfunction faithfully represents the lowest state of t
given symmetry. In the process in which the original D
basis is being changed into a relativistically energy-
optimized DP basis, the energyEb of the stateCb varies
slightly, while some of the eigenvalues above begin to a
proachEb . A bit later, the lowest of them becomes almo
degeneratewith Eb . At this point, coinciding with an
avoided crossing, there is a transfer of character from o
state to another: the lower state exchanges its bound cha
ter with the state immediately above. Thereafter, the eig
value of orderNb , now deprived from its former bound-stat
character, starts to sink down toward (N22)mc2, around
237558 a.u.~after subtractingNmc2).

We shall now delve into the nature of the variation
eigenfunctions. In Fig. 2 we amplify the region of Fig.
showing thelast avoided crossing toward the buildup of th
lowest bound state, corresponding toE58, around29651
a.u. andh50.5088. In the vicinity of pointsA andA8, the
eigenvalue of order 58 is appreciably above the eigenva
of order 57, which is at the approximately correct boun

FIG. 1. Behavior of selected eigenvalues ofH for U901 1s2 as
a function of a scaling parameterh, exhibiting bound states above
EN2 and continuum dissolution at and below it.
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55 1783UPPER BOUNDS TO THE EIGENVALUES OF THE NO- . . .
state energy. PointsB andB8 are very close to the avoide
crossing. Toward the left, pointsC andC8 show that while
E58 stays close to the correct bound-state energy,E57 starts
going down very quickly. An examination of the compos
tion of the respective wave functionsC57 andC58 shows
how the bound-state character is transferred from level 5
level 58 as the neighborhood ofB andB8 is crossed from
right to left. In Table I, the dominant configurations of th
respective eigenfunctions are shown through the CI coe
cientsa andb

C'a@1s~1 !2#1b@2s~1 !3s~2 !#, ~21!

2s~1 !5
1

A2
@2s13s#, 3s~2 !5

1

A2
@2s23s#. ~22!

In Eqs.~21! and ~22!, 1s(1), 2s and 3s denote the first
three natural orbitals~NO’s! @12,13#, while 2s(1) and
3s(2) were constructed from corresponding NO’s throu
Eq. ~22! so that they are~1! and ~–! orbitals, respectively.
@A ~1! NO has positive expectation values ofcaW •pW and of
the mass operatorbc2.# For h50.5090 the positive bound
state orbital 1s(1) is almost doubly occupied in level 57
with a very small contribution from the 2s(1)3s(2) con-
figuration directly related to continuum dissolution; mea
while, level 58 exhibits a complementary orthogonal comp
sition. For h50.5088, both levels show practically equ
contributions from the bound-state and continuu

FIG. 2. Amplification of the neighborhood of the last avoid
crossing of Fig. 1.
to

-

-
-

-

dissolution configurations. Finally, forh50.5086 the bound
character has been definitely transferred to level 58, as
pected, while level 57 dissolves into 2s(1)3s(2).

The values ofh in the previous paragraph are still fa
from the optimized valueh50.2635 yielding the actua
minimum for E585 29651.385 651 88. Thecorrespond-
ing eigenfunction for the optimal value ofh is

C58'0.999 999@1s~1 !2#20.001 388@2s~1 !2#

20.000 269@3s~1 !2#10.000 065@4s~2 !2#

20.000 028@5s~1 !2#10.000 010@6s~2 !2#. ~23!

Its dominant configurations are formed by~1! NO’s. Small
contributions from~–! NO’s are presentonly in configura-
tions with both electrons in the same orbital, where
continuum-dissolution ~1!~–! configurations have com
pletely disappeared. This result is consistent with the Q
prediction that to fourth-order perturbation theo
continuum-dissolution terms vanish identically@14#; it also
incorporates the expected presence of configurations
both electrons in negative-energy states. In addition, the
ergy contribution of these (2) NO’s, when using DP bases
will always be of positive sign as a consequence of the
terleaving theorem.

Many previous workers found these~–! N-particle states
and concluded that their existence would prevent the oc
rence of authentic bound states; becauseH is not bound from
below, the variational theorem cannot be applied to them
contrast, the targetEN211 and all eigenvalues above it reac
real minima corresponding to the ground and successive
cited states: they do not dissolve into the continuum as th
of orderN2(2m) and below. Asm is increased, conver
gence to anexactbound state solution isalways found; it
may be from above, from below, or show oscillatory beha
ior @13#, in contrast with the familiar nonrelativistic situatio
where convergence is from above. This suggests the e
ence of a variational principle for all states above
N2(2m), for any value ofm.

A second question about Eq.~18! is how do the eigenval-
ues ofH andH1 compare in actual calculations. In Table
we show that using POT with positive-energy NO and DH
eigenfunctions, the lowest eigenvalue ofH1 for U901 1s2

sinks 843 and 3340mhartree belowEN211, respectively,
indicating the energy effect of negative-energy one-part
states, included inH but not in H1.
bor-
TABLE I. Variational parameterh, and energies and eigenfunctions of levels 57 and 58 in the neigh
hood of the last avoided crossing, Fig. 2; energies in a.u.,c5137.0373.

h E57 C57

E58 C58

0.5090 29651.3874 0.999 92@1s(1)2#10.012 40@2s(1)3s(2)#
29638.3541 20.012 40@1s(1)2#10.999 92@2s(1)3s(2)#

0.5088 29651.5430 0.715 93@1s(1)2#10.698 17@2s(1)3s(2)#
29651.2197 0.698 17@1s(1)2#20.715 93@2s(1)3s(2)#

0.5086 29670.8397 0.008 31@1s(1)2#10.999 97@2s(1)3s(2)#
29651.3841 0.999 96@1s(1)2#20.008 31@2s(1)3s(2)#
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1784 55JÁUREGUI, BUNGE, AND LEY-KOO
Notice that theN(2m) eigenvalues ofH are entirely de-
termined by the DP set, independently of anya priori iden-
tification of ~1! and ~–! one-particle bases. Thus the thi
question about Eq.~18! is what happens if wemaximizethe
energiesEi

(SP), Eq. ~16!, with respect to a nonsingular linea
transformation within the entire DP set? It immediately fo
lows that Eq.~18! contains a minimax theorem, whose n
merical consequences will be examined elsewhere@15#, in-
cluding the determination ofbestpositive-energy orbitals in
calculations beyond DHF.

Now one can ask a fourth question: is it possible, within
given DP basis, to find a SP basis such that

E1
SP5EN2~2m!11? ~24!

In @16# we show this to be the case at the independe
particle-model level of approximation, and this is the reas
why our DHF results are in excellent agreement@16# with
finite-difference DHF calculations. However, in general, b
yond DHF, Eq.~24! cannot be satisfied.

TABLE II. Full CI calculations for Fe241 and U901 1s2 ground
states using a DP basis, and SP basis of positive-energy NO
DHF eigenfunctions. The three calculations use the same nins
Slater-type orbital bases. Energies in a.u.,c5137.035 981 for
Fe241 andc5137.0373 for U901.

Basis Fe241 U901

DP 2665.8546 46 29651.3855 03
~1! NO’s 2665.8546 50 29651.3863 46
~1! DHF orbitals 2665.8546 98 29651.3888 43
e

ol

ol-
B:

s

a

t-
n

-

It remains to answer the riddle posed by the Brow
Ravenhall argument at the beginning of this paper. We h
solved the time-independent equation for stationary sta
Eq. ~10!, with Ve -e replaced byxVe -e , wherex is varied
between 0 and 100,x51 corresponding to the actual phys
cal situation. When considering a true atomic resonance,
nonrelativistic He 2s2, the various excited eigenvalues ass
ciated with resonant states as a function ofx show a behav-
ior like the one exhibited on the right side of Fig. 1, wi
many saddle points and associated wave functions unde
ing change of character in the vicinity of avoided crossin
similarly to continuum-dissolution states discussed befo
Instead, if we return to the relativistic problem of Fig. 1 a
use the optimal scaling parameterh50.2635, for the relevan
eigenvalues of orderN2(2m)1i , i.0 we obtain a smooth
behavior,withoutavoided crossings, even whenx5100, one
hundred times larger than its actual physical value. This
havior reinforces our argument about the bound characte
the pertinent variational eigenfunctions.

In conclusion, we have rigorously shown, using the int
leaving theorem, that after climbing over the firstN2 eigen-
values ofH, the remaining eigenvalues are upper bounds
the eigenvalues of the no-pair Hamiltonian. Its correspo
ing eigenfunctions incorporate both~1! and~–! one-particle
states to all orders and are bonafide bound states, tha
without the Brown-Ravenhall disease, thus restoring phys
meaning to the unprojectedN-particle Hamiltonian. A
wealth of numerical results have been obtained ther
@13,15–17#, including excited states@13#; finite-basis DHF
results of numerical quality foranyopen shells, and transla
tion of nonrelativistic into relativistic results@16#, and elastic
electron scattering factors@17#.
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