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Configuration-interaction calculations with infinite angular expansions
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A simplification of the modified configuration-interactioMCl) method[S. P. Goldman, Phys. Rev. 32,
3718(1995] is introduced. In its original form, the MCI method improves dramatically the convergence of
standard ClI calculations by a modification of the radial representation amg@ori mixing of a large number
of angular configurations. In this work, the large but finite number of angular configurations mixed is replaced
by aninfinite number of configurations. Angular integrations are performed in closed form, resulting in simpler
angular momentum calculations. Numerical accuracy and stability are substantially improved as one avoids
handling very large values of angular momentum quantum numbers. As a result, calculations involving very
high angular mixing can be done with a much shorter amount of CPU time. This angular method can be used
in the framework of CI or MCI (i.e., using standard orordered radial electron coordinatgs
[S1050-294{@7)08602-2

PACS numbdps): 31.25-v, 31.10:+z, 31.15.Pf

I. INTRODUCTION A:_lwllz (F1:F2)
The standard configuration-interacti¢g®l) method has
been very widely used and is still very widely used in its = > (imylsmo LMY, o (F) Y m(F2) . (D)
unaltered form to perform calculations on systems of several my,m; e ane

electrons, although it is well known that the convergence o )

patterns of Cl are very sloyd,2]. At the heart of Cls success ___R€cently, a modification to standard Cl was introduced
is a straightforward simplicity and ease of implementation[3] that results in a vast improvement on the accuracies ob-
that results from the expansion of the interelectron potentiaf@ined using standard CI calculations. This new method,
in terms of single-electron spherical coordinates. Considec@lleéd the modified configuration-interactioMCI) method,

for example, the case of the helium Hamiltoniéatomic  introduced two major changes to standard @lthe use of
units will be used throughout this paper ordered radial coordinates which improved the radial conver-

gence of CI calculations by over nine orders of magnitude,
and (ii) the mixinga priori of a large number of spherical
He—1y2 _1y2 _ E_ E+ i (1) configuratiops which results in a much faster rate of conver-
T N N PR ST gence. In this paper we shall not concern ourselves with the
radial functions used, but we shall concentrate on a new type
of generalized angular representations. These angular basis
functions will provide a vast improvement in convergence

over the usualsimple functionsAlLl':’l'Zi(Fl,Fz) [Eq.(4)]. The

o N angular functions introduced here can be used wititype
i: 4m < z Y* (F1)Yyo(F2) ) of radial functions of the CI or MCI types. In other words,
ro x=o 2\+1 r);—lq:—l AL That 2] the angular modification introduced here will result in a vast
improvement in convergence and therefore in accuracy when
It is this expansion that characterizes the Cl method, as ff‘pp“ed to sta_mdard Cl calculayons.. . .
The modified angular functions introduced in this paper

allows one to approximate the wave function in terms of 2 S L
. . : are both a generalization and a simplification of the original
symmetrized or antisymmetrized products of one-electror

(hydrogenig basis functions. In the case of two electrons, forangular f_uncnons introduced by MCI. We start then with a
short review of the MCI angular strategy.

example, the two-electron basis functions for a state with ! ; .
. In standard CI calculations, the basis set used is composed
total angular momenturh will be of the form . : - ;
of basis functions containing each one set of coupled spheri-
cal harmonicgEqg. (3)], all with the same total angular mo-
YO =F1(r )i (r)AEM (Fy ) =r=r (3)  mentum but with different one-electron angular momentum
i 1i\t1)t2i\t 2 |1i|2i 1:12 1 2 . . . .
quantum numbers. Each basis function will then contain an
angular part of the forn{4), with different basis functions
where including different values of,; andl,. Correlation effects
enter in the calculations as these different angular functions
are mixed by the infinite angular sum in E@) upon the
*Present address: Department of Physics, Cornell University, Ithdiagonalization of the Hamiltonian matrix. As a result, one
aca, NY 14850. obtains a wave function containinear combinations of

in which, for the purpose of ClI calculations, the electron-
electron potential is expanded as
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coupled spherical harmonics with different valued pind  where, for arbitrary values of the angular momentum quan-
[, (the Hamiltonian diagonalization minimizes these lineartum numbersp is
coefficienty. The convergence of the variational energies as

. . . . L _
the number of different one-electron spherical harmonics is b|a|b;|—b|1a|23|lb|2b;|
increased is, however, very slow. In MCI the angular con-
vergence of the Cl calculations is vastly improved by intro-
ducing ana priori superposition of angular functions that
depends on a set afonlinear variational parameters. In

12
[l1a.12a,1 10,1 20]

21+1

:(_1)I+L

other words, rather than letting the diagonalization do the lia lip |
i - : : Xt ip it Toalop il , 9
work of mixing angular configurations, one starts with a set N R I P PV
of angular functions in which spherical harmonics are al-
ready mixed in large guantities. These functions are writterwith
in terms of a few(nonlineaj parameters that are varied and
optimized through energy minimization. In other words, T _T (— )M 2kt D)2 ki Kk ky
MCI introduces the linear combinations of coupled spherical kaky k™ Tkoky ik 0O 0o 0/
harmonics, (10)
No where we used the standard notation
LM~ = ~
OF 7 (ff2)=2 C7 1 (WAL, (Fufo) . (9)
=1 [a,b,...]=(2a+1)(2b+1)--- . (12)
whereu denotes a set of nonline@angulay parametersi,, The quantityT, .., is nonzero only for
Uz, ... Uy . The values ofl; andl, refer to the angular 12
momenta that provide the most important contributior®to k=|ki—ky|, |ki—ks|+2,...ki+ks (12

in the limit of small correlation effects, with=0 in the case
of no correlation: and satisfies

. LM~ ~ 0 S IM,> 2
|u|_r2) Tsz(rlyrz)—A|1|2(r1'r2) . (6) Ek Tﬁlkz;kzl
The power of this approach is based on the fact that And

small numbern, of angular parameters control the linear
combination of a very large numbbskg of spherical harmon-
ics with different angular momenta. In this way one can mix
a very large number of angular configurations: e.g. 290_30%ith these results we obtain
values ofl; andl, [1] rather than the ten or so that is the
most that can be used in standard Cl. The set of nonlinear
parametersu is optimized in the same way in which the
radial exponential parameters are optimized: by a minimiza-
tion of the variational energy eigenvalues. This simple tech-
nigue results in energy eigenvalues that are several orders of
magnitude more accurate than those of standard CI with . . . -
much smaller basis set sizes. There are however a couple tice that a sum overg; .|n\{olvmg . the coefficients
concerns as the numbét, of angular functions becomes | a.dz:ay WHETed; is any of its indices, will always be taken
very large. The angular portion of the calculations involveswith 89;=2 between|q;—q,|<qg;<q;+0qx, whereq; and
integrals of the type gk are the two other indices ifig q,:q,- In the case. =0, for

example, Eq(9) becomes

Tok, 1k, = Tkyky:0= Okyk, -

f f P ()@ ALY (F1,72)dQdQ,  (13)

:bILalb;l. (14)

f f ALY (T )@ AL (11,72)d0Q4dQy, TRERIRE
bO
: 0 0 0O

oy = ("D Tha 18 1, 810,

whereAlLl':ﬁ'Zi(Fl,Fz) is defined in Eq(4), andw, is given by
As a consequencé) the number of angular overlaji$4)

(1) =T A% P (coshyy) (7)
= Wﬁ n="ri 12) »

whereP,(2) is a Legendre polynomial anéy,=r-r,. This
integral is calculated using the orthonormality of t,hl{i'l'i\’f2i
and the relation

ALaMa_E b'—a ALaMa (8)

w - .
PP 3, ekl kil

to calculate increases quadratically witly , and(ii) the 34
symbols involved in the calculation of these overlaps involve
very large angular momentum quantum numbers, making it
difficult to maintain numerical accuradg.g., one has to cal-
culate quantities involving factorials that can easily exceed
factorials of thousandsNotice that the overlap&l4) appear

in standard Cl as well as MCI, so that these are problems
inherentto CI. Standard CI did not encounter these problems
yet because it isnableto deal with more than a few angular
momenta before exceeding machine limitations. In Sec. Il
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proceed to formulate a strategy that addresses these con- o

cerns, based on allowinge— in the expansior5). Fa=2, CloA? Z E cfb, % |AL aMa
Before we proceed, we introduce another definition that 1=0 alza 2

will be useful for the rest of this paper. We introduce the

general integral where the coefficients*.)I il are defined in Eq(9). The

power-series expansion will be used to find a closed-form

L expression for the operatthjiz, while the associative condi-
lalp ikika (rl'rZ)wklwszllblzb tion will help to simplify the angular matrix elements.
o In spherical coordinates, the Hamiltoniaid$ and(2) can
X (rq,r,)dQ,dQ,, (15  be written as
a calculation of which yields A +1L_§+£L_§_E_E
Co2r ari Y o2r, a3 202 215 1y o1,
bi T 2 Tklk2 i ol ik (16)
+ 20 )\+1 W) (22)
and
. wherew, is defined in Eq(7) andL; is the angular momen-
by, ko= b| 1y i0k= =by ko (17 tum operator for théth electron. In order for the method to
be successful, we need to be able to calculate in closed form
with b} I ik given in Eq.(9). the angular matrix elements
alp:

FfiF = | [ Arcicootalat

II. INFINITE EXPANSIONS lal2 ; Il 26

A. Angular functions X Gp(wq1)dQ,dQ,

In this section we introduce angular basis functions tha
perform ana priori mixing of an infinite number of angular

bnd

orbitals. We call these angular functiokg, and give them (Falo|Fo)= f f A*la MaG* (0p) A LyMp,
the general form al®iT b l1al2a O FTAPY
Fa:A:_]jAZiGa(wl) , (18) XGb(a)l)dﬂldQZ.

In the following sections we shall find simple expressions for
whereA a 23 is the usual single angular basis function of these matrix elements that avoid the sums over expansions of

standard CI defined in E¢4) and w, is defined in Eq(7). the type of Eq(5).
The method is based on requiring the funct®g ;) to
satisfy the following requirements§;) G, can be expanded in
the form We start by finding a closed-form expression for
LiZG(wl), where G(w,) is any function that satisfies the

B. Operators L? and e,

” o} conditions(19)—(21). We first note that
Ga(©1)= 2, Ganpr (19 , B
" ' Li(o]) =L (Lio))=nL;-[(Liw)w] ]
(Taylor expansiopy where we have used the notation =n(L?w;) 0] *+n(n—1)(Ljo,)%w] 2
d"f(x) =2nw] *+n(n—1)(L; w;)?w] 2.
nT T aon )
dx x=0 We can use this result in expansi@id):
(i) G, can be expanded in the form ” 2]
: LiZGa(wl): Z — lGa,n
S n=1 (n 1)
Ga(wy) =, cfoy, (20) = o2
=0

1
+r122 (Liwl)zmea,n

wherec} are constants, andii) G, satisfies an associative
n

condition that we denote with the shorthand notation , .
=2w, 2 Gan+(L 1) 2 —Gan
Ga(@1)Gp(w1) =Garp(wy). (21) ,
a
The functionG,(w,) introduces the priori angular mix- = 2w1(9

ing. This can be seen explicitly using the expansion of Eq. wl

(20) in the generalized angular functidf, : to finally obtain
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) a 2 r9ZGa ments. It has therefore to be calculated term by term until a
LiGa(w1) =2w1——+ (w2~ wo)——- (23)  desired convergence is achieved. This featharacterizes
(90)1 3 (9(1)1 . . . .
the configuration-interaction method. For these terms, the as-

The result of the last equation is crucial for the success of thgo¢iative rule(21) is instrumental to simplify substantially

method presented in this paper, and presents a fundamentdf matrix elements.

departure from methods based on expang)n For those

methods, including standard Cl, a concise result like the one Ill. ANGULAR BASIS SETS
in Eq. (23) is not possible, and an explicit sum over partial

angular momenta is necessary. Such a sum is fully avoided ] o
when an infinite angular expansion is used. An example of an angular function that satisfies the three

Armed with the powerful result of Eq23), we can now ~conditions of Eqs.(19)—(21) is given by the exponential
address the problem df? acting on the general angular function
functionsF, [Eq. (18)]:

A. Exponential basis functions

ga=e’"1, (27)
LEFa=LF[A ) 2Gy(w1)] for which

—1. (1. LaMg LaMar| 2 © n
_||a(||a+1)A|1a|ZaGa(w1)+A|1a|2a[|-|Ga(wl)] (i) ga:eyawlzz %wg, 28)

n=0 N

+2(LiA) - (LiGq( @),
which results in (i) ga=eni=2, 21+ u(ya)er, (29
2 g 21 A LaMg

Li Fa_ Li [AllaIZaGa(wl)] (||| ) Oa Op= eYa®1eYb@01= e(7a+ Vb)“’l, (30)

dG,(w . . - .
=1iy(lia+ 1)A|La';/|a Ga(wl)—wlLl) whereu(z) in Eq. (29) '|s a modified spherical Bessel func-
la'2a Jwy tion of the first kind[4]:
dG,(w1) 1/2
_ Tl Ly A LaM 7Pal®1 T L
2 kit Db s u|<z>=(z) 2 3=(=0)'ji(i2). (31)
#G4(wq) : . . ,
+2(w— w) AaMa 2 ' 24 The functionsu,(z) can be written in terms of a series ex-
3(602 (UO) |1a|2a (9(1)]_2 ( ) panSion
whereblLak_1 is defined in Eq(9), and the sum is restricted to 7! 172
aw =

the valuesk,= 1, andky=* 1 ,. W)= axex - x@+n | T 12+3)

The formula of Eq.(24) constitutes one of the most im-
portant results of this work. Given that it involves only a few (32%)°
terms, it avoids the very hi_gh values _of angular momentum + 11(21+3)(21+5) Tl
guantum numbers present in the previous generation of MCI.
This implies a greater numerical accuracy as well as avoider in terms of hyperbolic functions
ing the large number of terms in the otherwise explicit ex- _
pansion ofL? acting on each partial wave in expansié). ui(z2)=v(z)sinhe+v _,_y(z)coslz,

We use now the expressions introduced in Sec. Il A, and . _2
the expansion of Eq(20) to calculate the angular matrix vo(2)=z2 7, vi(z)=-Z7°%,

elements ofw, in the basis sef, to obtain .
v-1(2)—v141(2)=(21+ 1)z""v(2) ,

(Falw,|Fb):§k‘, cﬁ*bbbb;,k, (25 and satisfy the useful recurrence relati¢a
z

where the sum is taken over all valueskahat yield nonzero u(z)= m[m_l(z) —Uu+1(2)1, (32
n-j symbols inw:_alb;lk' These matrix elements are needed
for the computation of the electron-electron potential du(z) | |+1 a3

. 47 g W-1@ o uea(). (33

- 26)
i=o r—'? @i ( Although we shall concentrate on the functiang Eq. (27)]

for the purpose of illustrating the method, later in the paper
The sum in Eq(26) cannot be avoided by writing it in closed we shall introduce other possible choices for the generalized
form, as was the case for the operaltdr. The reason is that angular functionsG,(w,).
the coefficients in the sum depend on the radial matrix ele- We define then the angular basis functions
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LM

a_ _a — anYa®w1
e <(p'ala0| L] (P8|2b>= I %Y§U|2b( Y)
We now apply the results of Sec. Il to the functiopd of lap*1 )
Eq. (34) to obtain +2'}’bk=‘%71| T 1kUk(Y)
lp+2
2 12 LaM [9)
Ligr=L; LA e7e] +§7§k:%‘4)72| TI22b2;kuk( ?’)J, (40)

=lia(lia+ 1)(1— yaw1) o

(of olL3lef Y=4 {[|2b(|2b+1)_§7§]u| (y)
L a la 2b la'2b 2b
—Ya 2, Ki(ki+1)b, 3., ¢k
KKo aki

lop+1
+§¥2(w2— wo) ¢ (35) + ybHZ y Kk DT? 1ak(7)
~f-
. . - i lop*1
This expression satisfies the correct boundary condition — 2b(|2b+1)k: 2_” TI22b1;kuk( ¥)
lim LfeP=lia(lia+ 1) e} 72
a—0 +%7§k7“2 . TI22b2;kuk( V(. (41
—'2b™

where k=2 in all the sums.
Again, there are only a few terms involved in the calcu-
lation of the matrix elements df? and these involve small
Y=Yat Yo, (36 angular momentum quantum numbers. This replaces the
large numberNg of terms in the first generation of MCI
. ) . involving angular momenta of the order N, .
the matrix elements ot{ for the most general basis set kg the matrix elements ob,, needed to calculate the

ol electron-electron interaction potent[&q. (26)], we obtain

We can now write, using the shorthand notation

Boey=2, (2k+1 by wis 42
(RIS (21| et (oflanlel) =3 G+ DU by, (@2

which for the bound states of helium, for example, yields

X[bl .= ¥obl ) 1a]— ki(ki+1
P~ 76011y ”’klz,kz D) (931, o111, )= 81,1, () 43)
X b:_bk;lb:_ak;q+ % 'Yg[b:-alb;Zq_ b:-alb;q]] ) and
(37) (ef oloileg, ) =811, % T kUk(y) . (49

where the sum ovey is limited to the values for which the With y=7Ya+ . _ .
n-j symbols involved are nonzerEq. (12)], resulting in 'We now s'holw examples of angular functions that opti-
general in a small number of contributing terms. For ex-Mize the variational energy of two of the bound states of

ample, for the bound states of heliumlike ions we obtain ~Nelium. In the calculations, we follow the strategy of MCl in
two respects(i) we use basis functions that include the gen-
eralized radial structure of MCI, i.e., our basis functions are
Ya¥b of the form

C ¢8|2b>: 5|Za|2b[ 2—— uy( 7)] . (39

— a— il —Bify—oir_—7r_paibis b ] .
pij=e" AT TA TSt gl 21 =1,

7§ and (i) the basis set is divided into two parts: the basis
<¢3|23|L§| <p'3|2b>= 5|2a|2b[ - 27 Ug(y)+1op(lop+1) functions in which bothr _ andr _ appear with positive pow-
ers (5,.>0 andt;>0) (call these basis function$§), and
X [Ug(¥)— ypus(¥) ]+ ypui(y) those in which the powers of are negative t{<0) (call
lop+1 thesed;;). We then call the corresponding angular functions
X > k(k+1)T? 1'k]1 390 ¢l ande| , and adopt the MCI strategy to optimize them
k=[lop—1] 2 separately. Interestingly! © and |~ are of a very different
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FIG. 1. Relative distribution of single-orbital angular functions

for a basis set with eight exponential-type generalized angular funcf— F'S' 2, Relatll\;]e Q|sr]tr|but|on of .S|Ingle-orb|tal allpgl:jlar funlctlofns
tions, for the¢p™ basis set optimized for the'B state of helium. or a basis set with eight exponential-type generalized angular func-

. - . o 1 .
| refers to the quantum number af;, andw, is the normalized ltlon?, for thiff’ basis set opti)mlzzg for (tjhe B st:te of helll_uma
coefficient in the expansion @& .. refers to the quantum number af;, andw; is the normalize

coefficient in the expansion @& “1.

nature. Consider, for example, a calculation using eight ang give us the relative distribution of different values of
gular functions for theg;; and theg;; basis functions, i.e., gifferent values of in G,. This distribution is presented in
j=1.2,... jmax With jm,,=8. The optimization process Figs. 1 and 2 for thep™ and ¢~ states, respectively. Each
can be accelerated by writing the complete set of angulagyrve in these diagrams corresponds to one of the eight val-
nonlinear parameterg; in terms of only two variational pa- yes ofy in Eq. (45) for the ground state of helium, with the

rameterswe call themx andy) in the following way: values ofy increasing for the curves further to the right. The
] ] ] ) ] mixing of different angular orbitals is clearly seen. The
yi=sinf{(j—1)x+y]  with J=12,...] max-(45) larger the value ofy, the larger the value df at which the

angular distribution peaks and the larger the width of that
distribution. Both peak and width scale roughly €& It is
Einteresting to observe the fundamentally different angular na-
ture of the angular distributions between ti¢ and ¢~
basis functions. The radial component of #3é basis func-
Yions peaks further away from the nucleus than that of the
¢~ functions, and therefore is affected less by the correlation
effects. As a consequence we find that in ¢ the number
of angular orbitals mixed is an order of magnitude smaller
than that with the same weight in th#~ basis functions.
The same behavior is observed in Figs. 3 and 4, which are
Ghe corresponding ones for the'B state of helium. In this
case eight generalized orbitals were also ysed, j .= 8
9a(®1) in Eq. (45)]. The following optimized values were used:
Talwy)= ——2 (46) x"=0.526817y"=255435K 10 °, x_ =0.921 248, and
[Uo(7a)] y~ =—0.060 222. Notice that the positive-power functions
¢* use a similar small number of angular distributions in the
1S and 3P cases, while the negative ones mix a smaller
number of orbitals in the 3P case than in the iS case, a
f f [Ga(wp)]?2 dQ,dQ,=1 . result of the smaller correlation effects. Notice also that, in
both cases, the optimization favors the inclusion for #e
] ) states, of an angular function witfr==0 which results in the
Using Eq.(29), we can then write original unperturbed(uncorrelateyl two-electron angular
state being part of the basis set.

In this way only two parameters need to be optimized. Th
functional form of Eq.(45) was not derived from a funda-
mental principle, but rather was found experimentally to ap
proximate well the optimized angular nonlinear parameter
of a large set of trial runs.

For the ground state of helium, for a double precision
calculation with j,,—=8, vyielding a precision of
SE/IE~108, we obtain the following optimized values:
x*=0.385812, y*=—-3.49339K 10 3, x =1.226 034,
andy™ =—0.318 313. In order to analyze these results, w
define thenormalizedexponential angular function

satisfying

Oa(wq1)= w o), 4
Gal 1) E| (7a) @ “) B. Basis functions with exponentials and powers
The basis set of Sec. Ill A can be generalized to the set
where
LM ®
1 nlaz n?1a|2a:A|1aa|2zwnaeya B
Wi(va) = 5~z (21+1) u(ya) (48) . . Lo
& Tup(2ya)1" 2 This extension can be done easily using the property
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FIG. 3. Relative distribution of single-orbital angular functions ~ FIG. 4. Relative distribution of single-orbital angular functions
for a basis set with eight exponential-type generalized angular fundor a basis set with eight exponential-type generalized angular func-
tions, for the¢* basis set optimized for the P state of helium.  tions, for the¢ ™ basis set optimized for the'® state of helium.
| refers to the quantum number af;, andw, is the normalized | refers to the quantum number af;, andw, is the normalized

coefficient in the expansion & “. coefficient in the expansion & “.
Ja where we used
a_ Ng a__ a
= w9 _ﬂfﬁ )
Ya 1 . _ sinz
. . . . _ _ — e*“1d0,d0,=jo(2) = —.
with ¢ the exponential basis functions defined in E2p). 16m z

With this result we obtain simply
All the formulas of Secs. Ill A and Ill B can be used by

a2 b a2 b replacingu; with i'j,. The matrix elements obtained will, in
(m|Lil )= (97,na+nb<“°| Liler) general, be complex. This could be avoided by using, instead
of e'7a“1, the two basis sets cogfw;) and sinfy,w;).

Ngtny

and
Nat Ny D. Powers of rational functions

(o] 77|b>:m<¢|a|w||¢|b> : The basis set presented in this section presents a funda-
mental departure from those introduced earlier in the paper
These matrix elements can then be easily calculated usimgs it does not rely on an exponential function to satisfy the
the results of Sec. Ill A and recurrence relations of the typeassociative conditiofEq. (21)], but rather on powers of the

of Eq. (33). square root of a second-order polynomial. The basis set has
the form
C. Exponentials of imaginary arguments
- p g y arg é/a:A:—a':/'aega' (49)
The basis set la'2a
a_sa  _ ALaMajiye where
§ =8 = A e

. L . . . _ 2
is very similar in structure to the previously introduced basis 0a=[1+v3—2ya0,]"? (50)

sets, with expansiof20) now given by
the powem, of @ is a positive or negative integer, ang is
a variational parameter satisfying

o

eeei=23 (2+D)i'ji(va)o,
i=o
|7a| <1l. (51
wherej,(y) is a spherical Bessel function of the first kind
[4]. These functions are automatically normalized. This basis The three conditions of Eq§19)—(21) are satisfied in the
set is relevant only within a multiexponential framework, asfollowing way [5]:

otherwise it reverts to traditional CI given that in the matrix

elements the exponential factor cancels out through _ > (—2wy)K
(e'7a@1)*gl7a®1=1 Within the multiexponential sets, there (i) o"= Z (1+ )2k . (52
is one that makes the exponential factors orthogonal: k=0 k! §+ 1)

(=k)

1

—i(yatNmwi1ai (Yot mm) o —
WJJG ) e d€2,d 2= Sn,m where
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I'(z+j)
0T T(z)
(i) a"=|20 Ano, (53
with
-3
A RSNy F(|_” n 3.5
ni 1 Y or1 2" 2 2,7 )
2,
and
(i)  O"a gho=g"atM (54

where ,F4 is a hypergeometric function.
For the angular momentum operator we use 8) and

6"
(7(01

=—nyg" 2

to initially obtain
L20"= —2nyw, 0" 2+ 2(w,—1)N(N—2)y?0" 4 .
Now using Eq.(53) and rewriting Eq(50) as

6> 1+y?
___I,_ y ,
2y 2y

w1=

after some algebra we obtain:
o"—2 n
2

n
_ _ A2ypn—4
5 1)(1 Y2 on—4 .

2
(1+y% 6" 2

L2on="[ 241
7212

W
2

With these expressions in hand, all the necessary matrix
elements can be simply calculated following the steps of the
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magnitude with much smaller basis sets. In the cases in
which correlation effects are very strong however, one needs
to include a very large number of angular configurations. For
example, for the ground state of helium to a relative accuracy
of the order of 108 one needs of the order of 250—300
angular functions. Note that it is not a weakness of MCl, it is
the number of angular configurations one would need in
standard CI to obtain such an accur@2y In this case, MCI

is faced with the calculation of a very large number of matrix
elements between the individual terms in expans{bn
These are the cases addressed by this paper, in which a vast
simplification is introduced by the use wffinite admixtures

of angular orbitals satisfying specific expansion and associa-
tive criteria. The accuracies obtained are similar to those
using expansion$5) of MCI (as those were optimized for
the accuracies obtaingdhowever, the computations are
much quicker(and tidiey given that the closed-form expres-
sions derived involve a much smaller number of calculations,
and the numerical accuracy is higher. For example, one is
now able to perform calculations in double precision arith-
metic that required before quadruple precision for the same
level of accuracy. In a sengand particularly if orthogonal-
ized in advancg the angular function§, of Eq. (18) for
which onlyL andM are good quantum numbers, replace the
angular functions of Cl based on the hydrogenic quantum
numbersl; .

The extension to systems composed of more than two
electrons is straightforward. The angular momentum mixing
follows the same rationale as traditional CI, only that an
infinite number of orbitals are mixed in advance, or a finite
number(as in MCJ). To illustrate we shall consider the case
of three electrons, in which the single-orbital angular func-
tions can be written in terms of

AKalM
I 1a| 2a| 3a

(12:3= 2 (KaMialsaMaa| LMYA 2171, T)

Mg M35
X YI 3am3a( r 3) .

The MCI extension will be given by

kLM
I laI 261I 3a

Fa(1,2;3)=A (1,2;3)G4(1,2,3,

previous sections. Although this basis set does not have the

flexibility of the ones in the previous sections, it has thewhere, in its more general form,
advantage that it depends on a single overall nonlinear pa-
rameter to optimize. G,(1,2,3=G,(1,2G,(2,9G,(3,]) ,
IV. CONCLUSIONS with G,(i,j) a function of the type of Eqg19)—(21).

. . . Closed-form expressions fdr?F, can be found on the
The angular convergence of calculations using the tradlba

. . ! sis of the general expressi@B) following the same steps
tional Cl method is very slow. Th'.s forces_one t0 US€ VEIY,q in the case of two-electron systems. The matrix elements
large arrays even for low accuracies, placing a strong limi-

2 . .

tation on the precision of the results. The MCI method, in its?i(f)rlgi andw can be calculated using the orthogonality rela-
original form, is able to drastically increase the ClI accuracy
by mixing angular configurations in advan@e., before the
diagonalization processOne can mix then a small or a large J f fAl*klaL“l/' (1,2;3)A|kb|-IMI (1,2;3dQ,d0,dQ4
number of angular configurations, with the maximum num- la'2a'sa 10'2b'3b

ber to mix decided by the sought accuracy and by the limi-
tations on that accuracy imposed by the radial functions in
the basis set. With that simple strategy, MCI is able to im-

prove the accuracy of the ClI results by several orders ofhe recoupling transformatidrf]

- 5kakb g 1al1b 4 2al2p 5l3al 3’
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superior to that of standard Cl, as one does not have to deal

AatM keLM : . = ) , )
A (123 = E A a(2,3,1)(—1)'1‘5‘“26‘“3&“' with the explicit choice of a small number of configurations
to be added, as an infinite numker a very large number in
" l1a loa ki the original MCI strategyis automatically introduced. On
X[Ka kel l.. L k|’ the other hand, the increased accuracy of MCI will bring

further questions about the relevance of contributions that
and the relation of Eq8), are negligible within the low accuracy of ClI, like multiple
excitations. How these will affect the efficiency of the
w,A:‘ l:/la_ E b:.ak |At aMa method will be discussed in subsequent work on three- and
lai2a Kk ky 1k four-electron systems.

In the cases of very weak correlation in which a small
amount of angular mixing occurs, or in the cross-correlation
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