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Configuration-interaction calculations with infinite angular expansions

S. P. Goldman and T. Glickman*

Department of Physics, The University of Western Ontario, London, Ontario, Canada N6A 3K7
~Received 4 September 1996!

A simplification of the modified configuration-interaction~MCI! method@S. P. Goldman, Phys. Rev. A52,
3718 ~1995!# is introduced. In its original form, the MCI method improves dramatically the convergence of
standard CI calculations by a modification of the radial representation and ana priori mixing of a large number
of angular configurations. In this work, the large but finite number of angular configurations mixed is replaced
by aninfinitenumber of configurations. Angular integrations are performed in closed form, resulting in simpler
angular momentum calculations. Numerical accuracy and stability are substantially improved as one avoids
handling very large values of angular momentum quantum numbers. As a result, calculations involving very
high angular mixing can be done with a much shorter amount of CPU time. This angular method can be used
in the framework of CI or MCI ~i.e., using standard orordered radial electron coordinates!.
@S1050-2947~97!08602-2#

PACS number~s!: 31.25.2v, 31.10.1z, 31.15.Pf
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I. INTRODUCTION

The standard configuration-interaction~CI! method has
been very widely used and is still very widely used in
unaltered form to perform calculations on systems of sev
electrons, although it is well known that the convergen
patterns of CI are very slow@1,2#. At the heart of CIs succes
is a straightforward simplicity and ease of implementat
that results from the expansion of the interelectron poten
in terms of single-electron spherical coordinates. Consi
for example, the case of the helium Hamiltonian~atomic
units will be used throughout this paper!

H52 1
2¹ r1

2 2 1
2¹ r2

2 2
Z

r 1
2

Z

r 2
1

1

r 12
, ~1!

in which, for the purpose of CI calculations, the electro
electron potential is expanded as

1

r 12
5 (

l50

`
4p

2l11

r,
l

r.
l11 (

q52 l

l

Ylq* ~ r̂1!Ylq~ r̂2! . ~2!

It is this expansion that characterizes the CI method, a
allows one to approximate the wave function in terms
symmetrized or antisymmetrized products of one-elect
~hydrogenic! basis functions. In the case of two electrons,
example, the two-electron basis functions for a state w
total angular momentumL will be of the form

c i
CI5 f 1,i~r 1! f 2,i~r 2!L l1i l2i

LM ~ r̂1 , r̂2!6r1
r2 , ~3!

where
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L l1i l2i
LM ~ r̂1 , r̂2!

5 (
m1,m2

^ l 1im1l 2im2uLM &Yl1i ,m1
~ r̂1!Yl2i ,m2

~ r̂2! . ~4!

Recently, a modification to standard CI was introduc
@3# that results in a vast improvement on the accuracies
tained using standard CI calculations. This new meth
called the modified configuration-interaction~MCI! method,
introduced two major changes to standard CI:~i! the use of
ordered radial coordinates which improved the radial conv
gence of CI calculations by over nine orders of magnitu
and ~ii ! the mixinga priori of a large number of spherica
configurations which results in a much faster rate of conv
gence. In this paper we shall not concern ourselves with
radial functions used, but we shall concentrate on a new t
of generalized angular representations. These angular b
functions will provide a vast improvement in convergen
over the usual~simple! functionsL l1i l2i

LM ( r̂1 , r̂2) @Eq. ~4!#. The

angular functions introduced here can be used withany type
of radial functions of the CI or MCI types. In other word
the angular modification introduced here will result in a va
improvement in convergence and therefore in accuracy w
applied to standard CI calculations.

The modified angular functions introduced in this pap
are both a generalization and a simplification of the origi
angular functions introduced by MCI. We start then with
short review of the MCI angular strategy.

In standard CI calculations, the basis set used is compo
of basis functions containing each one set of coupled sph
cal harmonics@Eq. ~3!#, all with the same total angular mo
mentum but with different one-electron angular moment
quantum numbers. Each basis function will then contain
angular part of the form~4!, with different basis functions
including different values ofl 1 and l 2. Correlation effects
enter in the calculations as these different angular functi
are mixed by the infinite angular sum in Eq.~2! upon the
diagonalization of the Hamiltonian matrix. As a result, o
obtains a wave function containinglinear combinations of
h-
1772 © 1997 The American Physical Society
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55 1773CONFIGURATION-INTERACTION CALCULATIONS WITH . . .
coupled spherical harmonics with different values ofl 1 and
l 2 ~the Hamiltonian diagonalization minimizes these line
coefficients!. The convergence of the variational energies
the number of different one-electron spherical harmonic
increased is, however, very slow. In MCI the angular co
vergence of the CI calculations is vastly improved by int
ducing ana priori superposition of angular functions th
depends on a set ofnonlinear variational parameters. In
other words, rather than letting the diagonalization do
work of mixing angular configurations, one starts with a
of angular functions in which spherical harmonics are
ready mixed in large quantities. These functions are writ
in terms of a few~nonlinear! parameters that are varied an
optimized through energy minimization. In other word
MCI introduces the linear combinations of coupled spheri
harmonics,

Q
l̃ 1 l̃ 2

LM
~ r̂1 , r̂2!5(

i51

NQ

C
l̃ 1 l̃ 2

i
~u!L l1i l2i

LM ~ r̂1 , r̂2! , ~5!

whereu denotes a set of nonlinear~angular! parametersu1,
u2 , . . . ,unu. The values ofl̃ 1 and l̃ 2 refer to the angular

momenta that provide the most important contribution toQ
in the limit of small correlation effects, withu50 in the case
of no correlation:

lim
u→0

Q
l̃ 1 l̃ 2

LM
~ r̂1 , r̂2!5L l1l2

LM ~ r̂1 , r̂2! . ~6!

The power of this approach is based on the fact tha
small numbernu of angular parameters control the line
combination of a very large numberNQ of spherical harmon-
ics with different angular momenta. In this way one can m
a very large number of angular configurations: e.g. 200–
values ofl 1 and l 2 @1# rather than the ten or so that is th
most that can be used in standard CI. The set of nonlin
parametersu is optimized in the same way in which th
radial exponential parameters are optimized: by a minim
tion of the variational energy eigenvalues. This simple te
nique results in energy eigenvalues that are several orde
magnitude more accurate than those of standard CI w
much smaller basis set sizes. There are however a coup
concerns as the numberNQ of angular functions become
very large. The angular portion of the calculations involv
integrals of the type

E E L l1al2a
* LM ~ r̂1 , r̂2!v lL l1bl2b

LM ~ r̂1 , r̂2!dV1dV2 ,

whereL l1i l2i
LM ( r̂1 , r̂2) is defined in Eq.~4!, andv l is given by

v l5~21! l
4p

~2l11!1/2
L l l
005Pl~cosu12! , ~7!

wherePl(z) is a Legendre polynomial andu125 r̂1• r̂2. This
integral is calculated using the orthonormality of theL l1i l2i

LM

and the relation

v l L l1al2a

LaMa5 (
k1,k2

blak; l
La Lk1k2

LaMa , ~8!
r
s
is
-
-

e
t
l-
n

,
l

a

0

ar

-
-
of
th
of

s

where, for arbitrary values of the angular momentum qu
tum numbers,b is

blal b ; l
L 5bl1al2al1bl2b ; l

L

5~21! l1L
@ l 1a ,l 2a ,l 1b ,l 2b#

1/2

2l11

3Tl1al1b ; lTl2al2b ; l H l 1a l 1b l

l 2b l 2a LJ , ~9!

with

Tk1k2 ;k5Tk2k1 ;k5~21!k~2k11!1/2 S k1 k k2

0 0 0 D ,
~10!

where we used the standard notation

@a,b, . . . #5~2a11!~2b11!••• . ~11!

The quantityTk1k2 ;k is nonzero only for

k5uk12k2u, uk12k2u12, . . . ,k11k2 ~12!

and satisfies

(
k

Tk1k2 ;k
2 51

and

T0k1 ;k25Tk1k2 ;05dk1k2 .

With these results we obtain

E E L l1al2a
* LM ~ r̂1 , r̂2!v lL l1bl2b

LM ~ r̂1 , r̂2!dV1dV2 ~13!

5blal b ; l
L . ~14!

Notice that a sum overqi involving the coefficients
Tq1q2 ;q3, whereqi is any of its indices, will always be take

with dqi52 betweenuqj2qku<qi<qj1qk , whereqj and
qk are the two other indices inTq1q2 ;q3. In the caseL50, for
example, Eq.~9! becomes

bla ,l b ; l
0 5~21! l@ l 1a ,l 1b#

1/2d l1al2ad l1bl2b S l 1a l l 1b

0 0 0 D 2 .
As a consequence,~i! the number of angular overlaps~14!

to calculate increases quadratically withNQ , and~ii ! the 3-j
symbols involved in the calculation of these overlaps invo
very large angular momentum quantum numbers, makin
difficult to maintain numerical accuracy~e.g., one has to cal
culate quantities involving factorials that can easily exce
factorials of thousands!. Notice that the overlaps~14! appear
in standard CI as well as MCI, so that these are proble
inherentto CI. Standard CI did not encounter these proble
yet because it isunableto deal with more than a few angula
momenta before exceeding machine limitations. In Sec
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1774 55S. P. GOLDMAN AND T. GLICKMAN
proceed to formulate a strategy that addresses these
cerns, based on allowingNQ→` in the expansion~5!.

Before we proceed, we introduce another definition t
will be useful for the rest of this paper. We introduce t
general integral

blal b ;k1k2
L 5E E L l1al2a

* LM ~ r̂1 , r̂2!vk1
vk2

L l1bl2b
LM

3~ r̂1 , r̂2!dV1dV2 , ~15!

a calculation of which yields

blal b ;k1k2
L 5(

k
Tk1k2 ;k
2 blal b ;k

L ~16!

and

blal b ;k0
L 5bla ,l b ;0k

L 5blal b ;k
L , ~17!

with blal b ;k
L given in Eq.~9!.

II. INFINITE EXPANSIONS

A. Angular functions

In this section we introduce angular basis functions t
perform ana priori mixing of an infinite number of angula
orbitals. We call these angular functionsFa, and give them
the general form

Fa5L l1al2a

LaMaGa~v1! , ~18!

whereL l1al2a

LaMa is the usual single angular basis function

standard CI, defined in Eq.~4! andv1 is defined in Eq.~7!.
The method is based on requiring the functionGa(v1) to

satisfy the following requirements:~i! Ga can be expanded in
the form

Ga~v1!5 (
n50

`

Ga,n

v1
n

n!
, ~19!

~Taylor expansion!, where we have used the notation

f ,n5
dnf ~x!

dxn U
x50

,

~ii ! Ga can be expanded in the form

Ga~v1!5(
l50

`

cl
av l , ~20!

wherecl
a are constants, and~iii ! Ga satisfies an associativ

condition that we denote with the shorthand notation

Ga~v1!Gb~v1!5Ga1b~v1!. ~21!

The functionGa(v1) introduces thea priori angular mix-
ing. This can be seen explicitly using the expansion of
~20! in the generalized angular functionFa :
on-

t

t

.

Fa5(
l50

`

cl
av lL l1al2a

LaMa5(
l50

`

(
k1 ,k2

cl
ablak; l

La Lk1k2

LaMa ,

where the coefficientsblak; l
La are defined in Eq.~9!. The

power-series expansion will be used to find a closed-fo
expression for the operatorLi

2 , while the associative condi
tion will help to simplify the angular matrix elements.

In spherical coordinates, the Hamiltonians~1! and~2! can
be written as

H52
1

2r 1

]2

]r 1
2 r 12

1

2r 2

]2

]r 2
2 r 21

1

2

L1
2

r 1
2 1

1

2

L2
2

r 2
2 2

Z

r 1
2

Z

r 2

1 (
l50

` r,
l

r.
l11 vl , ~22!

wherevl is defined in Eq.~7! andL i is the angular momen
tum operator for thei th electron. In order for the method t
be successful, we need to be able to calculate in closed f
the angular matrix elements

^FauLi
2uFb&5E E L l1al2a

* LaMaGa* ~v1!Li
2L l1bl2b

LbMb

3Gb~v1!dV1dV2

and

^Fauv l uFb&5E E L l1al2a
* LaMaGa* ~v1!v lL l1bl2b

LbMb

3Gb~v1!dV1dV2 .

In the following sections we shall find simple expressions
these matrix elements that avoid the sums over expansion
the type of Eq.~5!.

B. Operators L i
2 and v l

We start by finding a closed-form expression f
Li
2G(v1), whereG(v1) is any function that satisfies th

conditions~19!–~21!. We first note that

Li
2~v1

n!5L i•~L iv1
n!5nL i•@~L iv1!v1

n21#

5n~Li
2v1!v1

n211n~n21!~L iv1!
2v1

n22

52nv1
n211n~n21!~L i v1!

2v1
n22 .

We can use this result in expansion~19!:

Li
2Ga~v1!5 (

n51

` 2v1
n

~n21!!
Ga,n

1 (
n52

`

~L iv1!
2

v1
n22

~n22!!
Ga,n

52v1 (
n50

` v1
n

n!
Ga,n8 1~L iv1!

2(
n50

` v1
n

n!
Ga,n9

52v1

]Ga

]v1
1~L iv1!

2
]2Ga

]v1
2

to finally obtain
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Li
2Ga~v1!52v1

]Ga

]v1
1
2

3
~v22v0!

]2Ga

]v1
2 . ~23!

The result of the last equation is crucial for the success of
method presented in this paper, and presents a fundam
departure from methods based on expansion~5!. For those
methods, including standard CI, a concise result like the
in Eq. ~23! is not possible, and an explicit sum over part
angular momenta is necessary. Such a sum is fully avo
when an infinite angular expansion is used.

Armed with the powerful result of Eq.~23!, we can now
address the problem ofLi

2 acting on the general angula
functionsFa @Eq. ~18!#:

Li
2Fa5Li

2@L l1al2a

LaMaGa~v1!#

5 l ia~ l ia11!L l1al2a

LaMaGa~v1!1L l1al2a

LaMa@Li
2Ga~v1!#

12~L iL l1al2a

LaMa !•„L iGa~v1!…,

which results in

Li
2Fa5Li

2@L l1al2a

LaMaGa~v1!#

5 l ia~ l ia11!L l1al2a

LaMaFGa~v1!2v1

]Ga~v1!

]v1
G

2 (
k1 ,k2

ki~ki11!blak;1
La Lk1k2

LaMa
]Ga~v1!

]v1

1 2
3 ~v22v0!L l1al2a

LaMa
]2Ga~v1!

]v1
2 , ~24!

whereblak;1
La is defined in Eq.~9!, and the sum is restricted t

the valuesk156 l 1a andk256 l 2a .
The formula of Eq.~24! constitutes one of the most im

portant results of this work. Given that it involves only a fe
terms, it avoids the very high values of angular moment
quantum numbers present in the previous generation of M
This implies a greater numerical accuracy as well as av
ing the large number of terms in the otherwise explicit e
pansion ofLi

2 acting on each partial wave in expansion~5!.
We use now the expressions introduced in Sec. II A, a

the expansion of Eq.~20! to calculate the angular matri
elements ofv l in the basis setFa to obtain

^Fauv l uFb&5(
k
ck
a1bblal b; lk

L , ~25!

where the sum is taken over all values ofk that yield nonzero
n-j symbols inv l al b ; lk

L . These matrix elements are need

for the computation of the electron-electron potential

(
l50

` r,
l

r.
l11 v l . ~26!

The sum in Eq.~26! cannot be avoided by writing it in close
form, as was the case for the operatorLi

2 . The reason is tha
the coefficients in the sum depend on the radial matrix e
e
tal

e
l
ed

I.
-
-

d

-

ments. It has therefore to be calculated term by term unt
desired convergence is achieved. This featurecharacterizes
the configuration-interaction method. For these terms, the
sociative rule~21! is instrumental to simplify substantially
the matrix elements.

III. ANGULAR BASIS SETS

A. Exponential basis functions

An example of an angular function that satisfies the th
conditions of Eqs.~19!–~21! is given by the exponentia
function

ga5egav1, ~27!

for which

~ i! ga5egav15 (
n50

` ga
n

n!
v1
n , ~28!

~ ii ! ga5egav15(
l50

`

~2l11!ul~ga!v l , ~29!

~ iii ! ga gb5egav1egbv15e~ga1gb!v1, ~30!

whereul(z) in Eq. ~29! is a modified spherical Bessel func
tion of the first kind@4#:

ul~z!5S p

2zD
1/2

I l1 1
2
5~2 i ! l j l~ iz!. ~31!

The functionsul(z) can be written in terms of a series e
pansion

ul~z!5
zl

133353•••3~2l11!
F11

1
2z

2

1!~2l13!

1
~ 1
2z

2!2

1!~2l13!~2l15!
1•••G ,

or in terms of hyperbolic functions

ul~z!5v l~z!sinhz1v2 l21~z!coshz,

v0~z!5z21 , v1~z!52z22,

v l21~z!2v l11~z!5~2l11!z21v l~z! ,

and satisfy the useful recurrence relations@4#

ul~z!5
z

2l11
@ul21~z!2ul11~z!#, ~32!

dul~z!

dz
5

l

2l11
ul21~z!1

l11

2l11
ul11~z!. ~33!

Although we shall concentrate on the functionsga @Eq. ~27!#
for the purpose of illustrating the method, later in the pap
we shall introduce other possible choices for the generali
angular functionsGa(v1).

We define then the angular basis functions



et

x

u-
l
the
I

e

ti-
of
in
n-
re

sis

ns
m

1776 55S. P. GOLDMAN AND T. GLICKMAN
w l
a5w l1al2a

a 5L l1al2a

LaMaegav1. ~34!

We now apply the results of Sec. II to the functionsw l
a of

Eq. ~34! to obtain

Li
2w l

a5Li
2@L l1al2a

LaMaegav1#

5 l ia~ l ia11!~12gav1!w l
a

2ga (
k1,k2

ki~ki11!blak;1
La wk

a

1 2
3ga

2~v22v0!w l
a. ~35!

This expression satisfies the correct boundary condition

lim
ga→0

Li
2w l

a5 l ia~ l ia11!w l
a .

We can now write, using the shorthand notation

g5ga1gb , ~36!

the matrix elements ofLi
2 for the most general basis s

w l
a:

^w l
auLi

2uw l
b&5(

q
~2q11!uq~g!H l ib~ l ib11!

3@blal b;q
L 2gbblal b;1q

L #2gb (
k1,k2

ki~ki11!

3blbk;1
L blak;q

L 1 2
3gb

2@blal b;2q
L 2blal b;q

L #J ,
~37!

where the sum overq is limited to the values for which the
n-j symbols involved are nonzero@Eq. ~12!#, resulting in
general in a small number of contributing terms. For e
ample, for the bound states of heliumlike ions we obtain

^w0l2a
a uL1

2uw0l2b
b &5d l2al2bH 2gagb

g
u1~g!J , ~38!

^w0l2a
a uL2

2uw0l2b
b &5d l2al2bH 22

gb
2

g
u1~g!1 l 2b~ l 2b11!

3@u0~g!2gbu1~g!#1gbu1~g!

3 (
k5u l2b21u

l2b11

k~k11!Tl2b1;k
2 J , ~39!
-

^w l1a0
a uL1

2uw0l2b
b &5d l1al2bH 2 2

3gb
2ul2b~g!

12gb (
k5u l2b21u

l2b11

Tl2b1;k
2 uk~g!

1 2
3gb

2 (
k5u l2b22u

l2b12

Tl2b2;k
2 uk~g!J , ~40!

^w l1a0
a uL2

2uw0l2b
b &5d l1al2bH @ l 2b~ l 2b11!2 2

3gb
2#ul2b~g!

1gb (
k5u l2b21u

l2b11

k~k11!Tl2b1;k
2 uk~g!

2gbl 2b~ l 2b11! (
k5u l2b21u

l2b11

Tl2b1;k
2 uk~g!

1 2
3gb

2 (
k5u l2b22u

l2b12

Tl2b2;k
2 uk~g!J , ~41!

wheredk52 in all the sums.
Again, there are only a few terms involved in the calc

lation of the matrix elements ofLi
2 and these involve smal

angular momentum quantum numbers. This replaces
large numberNQ of terms in the first generation of MC
involving angular momenta of the order ofNQ .

For the matrix elements ofv l , needed to calculate th
electron-electron interaction potential@Eq. ~26!#, we obtain

^w l
auv l uw l

b&5(
k

~2k11!uk~g!blal b ;kl , ~42!

which for the bound states of helium, for example, yields

^w0l2a
a uv l uw0l2b

b &5d l2al2bul~g! ~43!

and

^w l1a0
a uv l uw0l2b

b &5d l1al2b (
k
Tl2bl ;kuk~g! , ~44!

with g5ga1gb .
We now show examples of angular functions that op

mize the variational energy of two of the bound states
helium. In the calculations, we follow the strategy of MCI
two respects:~i! we use basis functions that include the ge
eralized radial structure of MCI, i.e., our basis functions a
of the form

f i j5e2a i r12b i r22s i r,
2t i r.r 1

air 2
bir

,

si r
.

t i w l
j6r1
r2,

and ~ii ! the basis set is divided into two parts: the ba
functions in which bothr

,
andr

.
appear with positive pow-

ers (si.0 and t i.0) ~call these basis functionsf i j
1), and

those in which the powers ofr
.
are negative (t i,0) ~call

thesef i j
2). We then call the corresponding angular functio

w l
j1 andw l

j2 , and adopt the MCI strategy to optimize the
separately. Interestinglyw l

j1 andw l
j2 are of a very different
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55 1777CONFIGURATION-INTERACTION CALCULATIONS WITH . . .
nature. Consider, for example, a calculation using eight
gular functions for thef i j

1 and thef i j
2 basis functions, i.e.

j51,2, . . . ,jmax, with jmax58. The optimization proces
can be accelerated by writing the complete set of ang
nonlinear parametersg j in terms of only two variational pa
rameters~we call themx andy) in the following way:

g j5sinh@~ j21!x1y# with j51,2, . . . ,jmax.
~45!

In this way only two parameters need to be optimized. T
functional form of Eq.~45! was not derived from a funda
mental principle, but rather was found experimentally to a
proximate well the optimized angular nonlinear paramet
of a large set of trial runs.

For the ground state of helium, for a double precisi
calculation with jmax58, yielding a precision of
dE/E'1028, we obtain the following optimized values
x150.385 812, y1523.493 39131023, x251.226 034,
and y2520.318 313. In order to analyze these results,
define thenormalizedexponential angular function

g̃a~v1!5
ga~v1!

@u0~ga!#
1/2 ~46!

satisfying

E E ug̃a~v1!u2 dV1dV251 .

Using Eq.~29!, we can then write

g̃a~v1!5(
l
wl~ga! v l , ~47!

where

wl~ga!5
1

@u0~2ga!#
1/2 ~2l11! ul~ga! ~48!

FIG. 1. Relative distribution of single-orbital angular functio
for a basis set with eight exponential-type generalized angular fu
tions, for thef1 basis set optimized for the 11S state of helium.
l refers to the quantum number ofv l , andwl is the normalized
coefficient in the expansion ofeg v1.
n-

ar

e

-
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e

will give us the relative distribution of different values o
different values ofl in g̃a . This distribution is presented in
Figs. 1 and 2 for thef1 andf2 states, respectively. Eac
curve in these diagrams corresponds to one of the eight
ues ofg in Eq. ~45! for the ground state of helium, with th
values ofg increasing for the curves further to the right. Th
mixing of different angular orbitals is clearly seen. Th
larger the value ofg, the larger the value ofl at which the
angular distribution peaks and the larger the width of t
distribution. Both peak and width scale roughly asg1/2. It is
interesting to observe the fundamentally different angular
ture of the angular distributions between thef1 and f2

basis functions. The radial component of thef1 basis func-
tions peaks further away from the nucleus than that of
f2 functions, and therefore is affected less by the correlat
effects. As a consequence we find that in thef1 the number
of angular orbitals mixed is an order of magnitude sma
than that with the same weight in thef2 basis functions.
The same behavior is observed in Figs. 3 and 4, which
the corresponding ones for the 31P state of helium. In this
case eight generalized orbitals were also used@i.e., jmax58
in Eq. ~45!#. The following optimized values were used
x150.526 817,y152.554 35731025, x250.921 248, and
y2520.060 222. Notice that the positive-power functio
f1 use a similar small number of angular distributions in t
1 1S and 31P cases, while the negative ones mix a smal
number of orbitals in the 31P case than in the 11S case, a
result of the smaller correlation effects. Notice also that,
both cases, the optimization favors the inclusion for thef1

states, of an angular function withg'0 which results in the
original unperturbed~uncorrelated! two-electron angular
state being part of the basis set.

B. Basis functions with exponentials and powers

The basis set of Sec. III A can be generalized to the s

h l
a5h l1al2a

a 5L l1al2a

LaMav1
naegav1.

This extension can be done easily using the property

c- FIG. 2. Relative distribution of single-orbital angular function
for a basis set with eight exponential-type generalized angular fu
tions, for thef2 basis set optimized for the 11S state of helium.
l refers to the quantum number ofv l , andwl is the normalized
coefficient in the expansion ofeg v1.
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h l
a5v1

naw l
a5

]na

]ga
na

w l
a ,

with w l
a the exponential basis functions defined in Eq.~34!.

With this result we obtain simply

^h l
auLi

2uh l
b&5

]na1nb

]gna1nb ^w l
auLi

2uw l
b&

and

^h l
auv l uh l

b&5
]na1nb

]gna1nb ^w l
auv l uw l

b& .

These matrix elements can then be easily calculated u
the results of Sec. III A and recurrence relations of the ty
of Eq. ~33!.

C. Exponentials of imaginary arguments

The basis set

j l
a5j l1al2a

a 5L l1al2a

LaMaeigav1

is very similar in structure to the previously introduced ba
sets, with expansion~20! now given by

eigav15(
l50

`

~2l11!i l j l~ga!v l ,

where j l(g) is a spherical Bessel function of the first kin
@4#. These functions are automatically normalized. This ba
set is relevant only within a multiexponential framework,
otherwise it reverts to traditional CI given that in the mat
elements the exponential factor cancels out throu
(eigav1)* eigav151. Within the multiexponential sets, ther
is one that makes the exponential factors orthogonal:

1

16p2E E e2 i ~ga1np!v1ei ~ga1mp!v1dV1dV25dn,m,

FIG. 3. Relative distribution of single-orbital angular functio
for a basis set with eight exponential-type generalized angular fu
tions, for thef1 basis set optimized for the 31P state of helium.
l refers to the quantum number ofv l , andwl is the normalized
coefficient in the expansion ofeg v1.
ng
e

s

is

h

where we used

1

16p2E E eizv1dV1dV25 j 0~z!5
sinz

z
.

All the formulas of Secs. III A and III B can be used b
replacingul with i

l j l . The matrix elements obtained will, in
general, be complex. This could be avoided by using, inst
of eigav1, the two basis sets cos(gav1) and sin(gav1).

D. Powers of rational functions

The basis set presented in this section presents a fu
mental departure from those introduced earlier in the pa
as it does not rely on an exponential function to satisfy
associative condition@Eq. ~21!#, but rather on powers of the
square root of a second-order polynomial. The basis set
the form

za5L l1al2a

LaMaua
na , ~49!

where

ua5@11ga
222gav1#

1/2, ~50!

the powerna of u is a positive or negative integer, andga is
a variational parameter satisfying

ugau,1 . ~51!

The three conditions of Eqs.~19!–~21! are satisfied in the
following way @5#:

~ i! un5 (
k50

`

~11g2!~n/2!2k
~22v1!

k

k! S n211D
~2k!

, ~52!

where

c-

FIG. 4. Relative distribution of single-orbital angular function
for a basis set with eight exponential-type generalized angular fu
tions, for thef2 basis set optimized for the 31P state of helium.
l refers to the quantum number ofv l , andwl is the normalized
coefficient in the expansion ofeg v1.



tr
th
t
he
p

d
r
m
it
c

e
m
m
i

m
o

in
eds
or
acy
0
is
in

rix

vast

cia-
se
r
e
-
ns,
e is
th-
me

he
um

two
ing
an
ite
e
c-

ents
la-

55 1779CONFIGURATION-INTERACTION CALCULATIONS WITH . . .
z~ j !5
G~z1 j !

G~z!
,

~ ii ! un5(
l50

`

Anlv l , ~53!

with

Anl5

S 2
n

2D
~ l !

S 12D
~ l !

g l
2F1S l2 n

2
,2

11n

2
; l1

3

2
;g2D ,

and

~ iii ! una unb5una1nb , ~54!

where 2F1 is a hypergeometric function.
For the angular momentum operator we use Eq.~23! and

]un

]v1
52ngun22

to initially obtain

L1
2un522ngv1u

n221 2
3 ~v221!n~n22!g2un24 .

Now using Eq.~53! and rewriting Eq.~50! as

v152
u2

2g
1
11g2

2g
,

after some algebra we obtain:

L1
2un5

n

2 S n211D un22S n2D
2

~11g2!un22

1
n

2 S n221D ~12g2!un24 .

With these expressions in hand, all the necessary ma
elements can be simply calculated following the steps of
previous sections. Although this basis set does not have
flexibility of the ones in the previous sections, it has t
advantage that it depends on a single overall nonlinear
rameter to optimize.

IV. CONCLUSIONS

The angular convergence of calculations using the tra
tional CI method is very slow. This forces one to use ve
large arrays even for low accuracies, placing a strong li
tation on the precision of the results. The MCI method, in
original form, is able to drastically increase the CI accura
by mixing angular configurations in advance~i.e., before the
diagonalization process!. One can mix then a small or a larg
number of angular configurations, with the maximum nu
ber to mix decided by the sought accuracy and by the li
tations on that accuracy imposed by the radial functions
the basis set. With that simple strategy, MCI is able to i
prove the accuracy of the CI results by several orders
ix
e
he

a-

i-
y
i-
s
y

-
i-
n
-
f

magnitude with much smaller basis sets. In the cases
which correlation effects are very strong however, one ne
to include a very large number of angular configurations. F
example, for the ground state of helium to a relative accur
of the order of 1028 one needs of the order of 250–30
angular functions. Note that it is not a weakness of MCI, it
the number of angular configurations one would need
standard CI to obtain such an accuracy@2#. In this case, MCI
is faced with the calculation of a very large number of mat
elements between the individual terms in expansion~5!.
These are the cases addressed by this paper, in which a
simplification is introduced by the use ofinfinite admixtures
of angular orbitals satisfying specific expansion and asso
tive criteria. The accuracies obtained are similar to tho
using expansions~5! of MCI ~as those were optimized fo
the accuracies obtained!; however, the computations ar
much quicker~and tidier! given that the closed-form expres
sions derived involve a much smaller number of calculatio
and the numerical accuracy is higher. For example, on
now able to perform calculations in double precision ari
metic that required before quadruple precision for the sa
level of accuracy. In a sense~and particularly if orthogonal-
ized in advance!, the angular functionsFa of Eq. ~18! for
which onlyL andM are good quantum numbers, replace t
angular functions of CI based on the hydrogenic quant
numbersl i .

The extension to systems composed of more than
electrons is straightforward. The angular momentum mix
follows the same rationale as traditional CI, only that
infinite number of orbitals are mixed in advance, or a fin
number~as in MCI!. To illustrate we shall consider the cas
of three electrons, in which the single-orbital angular fun
tions can be written in terms of

L l1al2al3a

kaLM ~1,2;3!5 (
mka ,m3a

^kamkal 3am3auLM &L l1al2a

kamka~ r̂1 , r̂2!

3Yl3am3a
~ r̂3! .

The MCI extension will be given by

Fa~1,2;3!5L l1al2al3a

kaLM ~1,2;3!Ga~1,2,3!,

where, in its more general form,

Ga~1,2,3!5Ga~1,2!Ga~2,3!Ga~3,1! ,

with Ga( i , j ) a function of the type of Eqs.~19!–~21!.
Closed-form expressions forLi

2Fa can be found on the
basis of the general expression~23! following the same steps
as in the case of two-electron systems. The matrix elem
of Li

2 andv l can be calculated using the orthogonality re
tion

E E E L l1al2al3a
* kaLM ~1,2;3!L l1bl2bl3b

kbLM ~1,2;3!dV1dV2dV3

5dkakbd l1al1bd l2al2bd l3al3b ,

the recoupling transformation@6#
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L l1al2al3a

kaLM ~1,2;3!5(
kc

L l2al3al1a

kcLM ~2,3;1!~21! l1a1 l2a1 l3a1L

3@ka ,kc#
1/2H l 1a l 2a ka

l 3a L kc
J ,

and the relation of Eq.~8!,

v lL l1al2a

LaMa5 (
k1 ,k2

blak; l
La Lk1k2

LaMa.

In the cases of very weak correlation in which a sm
amount of angular mixing occurs, or in the cross-correlat
cases involving, for example,G(1,2)G(2,3), G( i , j ) might
be set to the original MCI form or to just 1, reverting to th
traditional CI single-orbital basis functions. The efficiency
the method in the case of more electrons will certainly
m

l
n

f
e

superior to that of standard CI, as one does not have to
with the explicit choice of a small number of configuratio
to be added, as an infinite number~or a very large number in
the original MCI strategy! is automatically introduced. On
the other hand, the increased accuracy of MCI will bri
further questions about the relevance of contributions t
are negligible within the low accuracy of CI, like multipl
excitations. How these will affect the efficiency of th
method will be discussed in subsequent work on three-
four-electron systems.
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