PHYSICAL REVIEW A VOLUME 55, NUMBER 3 MARCH 1997
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We calculate the electronic structure of several atoms and small molecules by direct minimization of the
self-interaction-corrected—local-density-approximat{@®C-LDA) functional. To do this, we first derive an
expression for the gradient of this functional under the constraint that the orbitals be orthogonal and then show
that previously given expressions do not correctly incorporate this constraint. In our atomic calculations, the
SIC-LDA vyields total energies, ionization energies, and charge densities that are superior to results obtained
with the local density approximatio(LDA). However, for molecules, SIC-LDA gives bond lengths and
reaction energies that are inferior to those obtained from LDA. The nonlocal Beck-Lee-Yang-Parr functional,
which we include as a representative generalized gradient approximation functional, outperforms both LDA
and SIC-LDA for all ground-state properties we considef&1.050-294{@7)08502-9

PACS numbdss): 31.15—p

INTRODUCTION excitation energies. Studies of periodic systems using SIC-
LDA have concentrated mainly on systems where the LDA
The local density approximatiofLDA) [1] has become gives qualitatively wrong resultésuch as transition-metal
one of the most popular tools for electronic structure calcuoxides [8]) and where the electronic structure undergoes
lations. The reason for this is that it gives good accuracy foqualitative changes in response to changing external condi-
structural properties and is computationally less costly thations[9,10]. Most of these calculations involving heavy at-
traditional quantum chemistry methods, such as Hartreeems were done with the linear muffin-tin orbitdlMTO)
Fock, configuration-interaction, and coupled-cluster methimethod. SIC-LDA yields larger band gaps than LDA, in sub-
ods. With the rapid increase in computer power and the destantially better agreement with experimgbt]. In the case
velopment of low complexity algorithms, the limits on the of atoms and molecules also, SIC-LDA yields improved ex-
system size are being pushed up steadily. However, in mangitation energied5,12—14. However, most calculation of
cases the LDA is not sufficiently accurate. A primary con-molecules were performed at the experimental geometry,
cern is therefore to improve upon the accuracy of the LDA athere being very few SIC-LDA studies of equilibrium geom-
the expense of a moderate increase in computational costtries[14,15. Hence, in this paper, we concentrate on the
The generalized gradient approximatidi®GA) such as the ground-state properties and find that whereas atomic proper-
Becke-Lee-Yang-PafBLYP) schemd?2,3] fall into this cat-  ties are more accurately predicted by SIC-LDA than LDA,
egory and are now widely used. Numerous other schemes grjuilibrium geometries of small molecules and reaction en-
improve upon the LDA can been found in the literat{é ergies are less accurate in SIC-LDA.
but very few of them have been systematically tested in
atomic and molecular calculations. A major deficiency of the
LDA and also to a lesser extent of the GGA is the fact that

there is an unphysical self-interaction in these functionals. |y all the following formulas we consider the orbitals
To cure this, several years ago, Perdew and Zunger proposggl to pe real and the subscripts of the orbitals run over all

a schem¢5] where self-interaction terms are subtracted oUthe occupied orbitals. The SIC-LDA functional is given by
in a straightforward way and that is usually called self-

interaction-corrected—LDA(SIC-LDA). Even though this 1

scheme is appealing because of its conceptual simplicity, i _ _ _ et ) _

has not been widely used possibly because it is numericall;t/zm'[xp'(r)] Z f \P'(r)( 5V Ve Ti(N)r

more complicated since the potential is orbital dependent. ,

Consequently, the minimization of this functional is no +}f fp(r)/’(r )drdr’+f e(p(r)p(r)dr

longer an eigenvalue problem in a self-consistent potential 2 [r—r’| pTIPp

and the total energy is not invariant under unitary transfor- ,

mations among the occupied orbitals. In this paper, we first _ EE f f pi(N)pi(r )drdr’

derive the gradient of the SIC-LDA functional, which is nec- 25 Ir—=r’|

essary for minimization algorithmg5,7], and then present

the results we obtained for atomic and molecular systems. _2 f e(pi(r)p;(r)dr, 1)
The SIC-LDA functional has been used mostly to study i

THE SIC-LDA FUNCTIONAL AND ITS GRADIENT
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where The gradient of the total functional is then obtained by ap-
plying the chain rule:

pi(N) =W, (NW(r), p(r)=2i pi(r),

JE OE gV (r'
J’ i(r'y o, @

and [ e(p)pdr is the local approximation of the exchange- avi(r) T ) awy(r) dWi(r) "
correlation functional.

We want to obtain its gradient under the constraint thatyhere each part of Eq4) can easily be calculated. Denoting
the orbitals be orthonormal. Following the ideas outlined bythe unconstrained gradient loly(r) we obtain
Arias et al.[16], we consider a more general functional that
is also defined with respect to nonorthogonal functiths

. . 1 JE

First we construct a set of orthonormal orbitdisby a sym- di(n=-—=
metric Lowdin orthogonalization of the nonorthogonal set 2 gw;(r)
v 1 ~ p(r')

_ = _§V2+Vext ‘I’j(l’)‘f’ f“__—r,ldrr

V=2 s, @

(r! —_
| | - L?dr')«lq(r)

whereS; ;=(¥;|W¥;)=[¥;(r)¥;(r)dr is the overlap matrix Ir—r’|
among the occupied orbitals. The functional we are inter- ~ =
ested in is just the SIC-LDA functional evaluated for the +Lalp(r) = oy (M)W (r) =HW;(r), (5)

orthonormal orbitals¥;. In our actual calculation, for rea- . o
sons of numerical stability, we use orthogonal orbitals.Where the orbital-dependent Hamiltonibd is
Hence, in our derivations it is necessary to consider

only infinitesimally nonorthogonal orbitals. Then . p(r’) | pi(r’) .,
S~Y2—[| +(S—1)]" 2~ - (1/2)(S~1) and Eq.(2) simpli- Fﬁ:(‘ivz+vﬂ9+JaﬁiTﬁdr'" [
fies to
+ u(p(r))— u(p;j(r)).
V. — 35 . _1g .
i 2 (26, =25)%;. @ The second part of Ed4) gives
a\AI}J(r’)_g ! 1 ! 1 ! (9 n n n
(1) —Eéiyja(r—r )—Eﬁ'jé(r—r )—EEI: W (r )mf Wi (r")w(r")dr
3 1 1
:§5i,j5(f_r')_Esi,jts(r_r')—EEl W (r")[6,;¥(r)+ 6, Pi(r)]
1 1
= 0,81 =r") = ZWi(r )W) = 58,2 Wi(r)¥y(r). (©®)

In the last transformation step, we have used the factthatwe 1 JE

calculate the derivative for a set of orthonormal orbitals and 5 m=di(f)—2 ( f di(r)W(r")dr’ ['Wy(r).
thereforeS=1. In order to take account of the orthogonality ! ) %)
constraint we are of course allowed to @1 only after

calculati_ng the derivative. Finally, we obtain the gradient;, umerical applications, it was apparent that the gradient
expression expression in Eq(8) does not lead to the correct minimum
[17] of the functional. However, nobody seems to have

1 JE 1 drawn the logical conclusion that E¢(B) is not the correct
> a\lf—i(r):d‘(r)_ 5; (f dj(f')‘l’i(f')df’)‘l’j(f) gradient of the LDA-SIC functional. Instead, a second mini-
mization step, based on a relation derived by Pedees@h
1 [15]
—Ez(fdﬂnwwwmﬂwwy (7)
! (WilHjw))=(H Wi | ¥)), 9

The above gradient expression is different from what iswas added. This relation follows immediately by considering
found in the literatur¢12,17,9: infinitesimal unitary transformations among the occupied or-
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bitals and putting the gradient of the SIC-LDA functional 35
with respect to these transformations equal to zero. We see
that Egs.(8) and(9) together are equivalent to E(). These
difficulties appear only in the SIC-LDA case; in the LDA
case, the potential is not orbital dependent, and therefore, the
two gradient expressions are identical.

The results of the following two sections were obtained
by direct minimization of the SIC-LDA functional, using the
correct gradient of Eq(7). The direct inversion in iterative
subspace method 9] was used as a convergence accelera-
tor. In the molecular case, the gradient was preconditioned
using the scheme by Tetet al. [7]; in the atomic case, the s |
operator IMi1/(H—2z)] was used as a preconditiongz0], —20 . . . .
wherez is a suitably chosen complex energy. All the calcu- 00 05 v (unit‘: of ao)“ 25 30
lations were done for spin unpolarized systems where the
spin-up orbitals are required to have the same spatial form as
the matching spin-down electron orbitals¥,;_4(r) FIG. 1. 1s, 2s, and J orbitals of argon. Solid line: the orbitals
=P, (r). r¥ that minimize the SIC-LDA functional; dashed line: the linear

To calculate the equilibrium geometries of small mol- combinations ® of Eq. (13).
ecules, we relaxed the atoms in the direction of the forces
until the forces vanished. The forces in the SIC-LDA schemeThis second term is, however, equal to the left-hand side of
are given by the Hellman-Feynman theorem. This might noEd. (10) and therefore vanishes. So we are just left with the
be quite obvious, since, in the usual derivation of thefirst term, which can be immediately transformed to the
Hellman-Feynman theorem, one takes advantage of the fagsual Hellman-Feynman form.
that the orbitals are eigenfunctions of the self-consistent
Hamiltonian, which is not the case in the SIC-LDA scheme. ATOMIC RESULTS
We therefore provide a derivation of the Hellman-Feynman L
theorem which does not require the orbitals to be eigenfunc- !N the original paper on the SIC-LDA method, Perdew
tions, but uses only the fact that the orbitals minimize the2nd Zunget5] performed several atomic calculations. They,
total energy for some fixed positions of the nuclei. however, did npt minimize the SIC-_LDA functional under

Let ¥,(r,R’) be the SIC-LDA orbitals for a molecule, the orthpgonahty constraint, but instead employed the
whose nuclear positions are given by thal-8imensional elg(_anorbnals of the orbltalldepender.]t potential. _Smcg the
vector R’. By construction, these orbitals are orthonormal©rPitals are the eigenfunctions for different Hamﬂtomqns,.
for any R’. Let us now consider the SIC-LDA total energy they are not orthogonal but the authors assumes that this did

E.{¥,(r,R"):R] for a set of atomic positionR. The de- not change their results appreciably. We therefore repeated
Of I 1 ’ .

pendence oR stems from the fact that the external potential S°M€ Of the atomic calculations to check this assumption and

Vex: depends on the atomic positioRs Obviously, the func- in fact f'nd. it to be true. . L :
tional will be minimized if¥;(r,R')=W,(r,R) and its gra- The orbitals that one obtains from a minimization solution

dient with respect tR’ vanishes at that point: dlf_fer in two important respects from the atomic orbitals c_Jb-
tained by solving a single-particle Schrodinger equation.

Compari'son of Minimizing' and Eigenorbital's of Ar

Minimizing Orbitals
— — — Eigenorbitals

0.5 7/ E
N 7

-05

(units of ag~1/2)

I
o

r¥, rd

IEl Vi(r,R");R] First their nodal structure is different as shown in Fig. 1. All
; =0. (10
IR .
The force acting on the nuclei is given by ' [Comparison of Minimizing and Eigenorbitals of Ar
JEod ¥i(r,R);R] :&Etot[\l’i(l’,,,R);R ]| 's 00 — gigéwgg‘igalgrblmls
JR JR R7_R B s
+(7Etot[‘1’(;g/,R );R]| A '\5/—-1.0
R’=R ,0:—1.5
The first term on the right side of E(L1) takes into account 5{'2'0
that the external potentidl,,; depends on the atomic posi- Caadll
tionsR but freezes the dependence of the orbitaldRofk is E-30
given by s \ \

00 05 10 15 20 25 30 35 40 45
r (units of ag)

§i) qui(r,R)%j“qri(r,R)dr. (12

FIG. 2. Same as Fig. 1 but on a logarithmic scale. Tise 3
The second term freezes the dependence on the external p@bitalsr ¥ andr® are nearly indistinguishable on this plot beyond
tential but takes into account the dependence of the orbitals=1.
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TABLE |. Total energies of closed-shell atoms in eV. Our results using direct minimization and the PZ
parametrization(SIC-LDA) are compared with the results obtained by Perdew and Zunger for the same
functional using an approximate solution method. The next two columns show the LDA results with the
Perdew-Zunge(PZ-LDA) and the Perdew-Wang 199PW92-LDA) parametrizations. The final three col-
umns are the Becke-Lee-Yang-Parr G@\L.YP), Hartree-FockHF), and the exact value. The exact values
are from Ref[18]. We have used a factor of 27.2112 eV/Hartree for converting most of the energies but, for
consistency with Refl5], a factor of 27.21 eV/Hartree for converting the SIC-LDA energies.

SIC-LDA Pz PZ-LDA PW92-LDA BLYP HF exact
He —79.4 —-79.4 —-77.1 —-77.1 —79.1 -77.9 —79.0
Be —399.9 —399.8 —393.1 —393.1 —398.9 —396.6 —399.1
Ne —3517.9 —3517.6 —3489.1 —3489.3 —3509.2 —3497.9 —3508.6
Ar —14378.8 —14378.3 —14307.9 —14311.6 —14352.4 —14335.4 —14354.6

orbitals (even the % core stateshave the same number of LDA functionals, PZ-LDA and PW92-LDA, the latter is the
nodes. Second all the orbitals decay with the same exponentore accurate parametrization of the correlation energy of a
(see Fig. 2 A set of orbitals, which have the characteristic homogeneous electron gas and yields slightly more accurate
behavior of eigenfunctions of a local potential, can be ob+otal energies. We include the former only to facilitate com-
tained from the minimizing orbital¥; , by forming the lin-  parison with Ref[5]. As observed in earlier papers, LDA
ear combinations yields total energies that are not sufficiently negative while
SIC-LDA gives too deep total energies. The absolute value
D=, u;w;, (13  of the error is significantly smaller in SIC-LDA than in LDA,
i but not as small as for BLYP.

In Table Il, we compare the highest occupied eigenvalues
whereU is the unitary matrix that diagonalizes the matrix of closed-shell atoms. Here the SIC-LDA functional outper-
(Wi|H;¥;), which is Hermitian by Eq(9). The Krieger-Li-  forms all the others. This comes from the fact that in SIC-
lafrate approximation[21] to the SIC-LDA functional | DA the orbitals experience the correct long-range Coulomb
would, for instance, give orbitals of similar form, but also the potential whereas the potentials in the other density func-

nonorthogonal set of orbitals used by Perdew and Zuffiler tional methods decay too fast, giving rise to too weakly
looks rather similar. As can be seen from Figs. 1 and 2 thesgound eigenstates.

eigenorbitals are rather different from the minimizing orbit- | Figs. 3, 4, and 5, we show the error in the self consis-

als ;. tent charge densities from the different methods. The SIC-

In Table I, we compare our total energies for several DA density is somewhat more accurate than the LDA den-
closed shell atoms with the ones from Perdew and Zunger. I8ity except in a region around &g for neon.

spite of the fact that the minimizing orbita¥; have a quite
different behavior from the orbitals employed by Perdew and
Zunger, the total energies are nevertheless very similar. In
fact the small differences in the total energy in the columns
labeled SIC-LDA and PZ are not due to their approximate A very attractive feature of the SIC-LDA scheme is that
solution method but are instead probably due to the use of athe minimizing orbitals can usually be easily interpreted in
insufficiently dense grid in Ref5] since we find the same physical terms. They represent either bonds or lone electron
differences in comparing the LDA results too. pairs. For instance, in the case of the CHholecule, one

In Table I, we also give the results obtained from theobtains 4 localized orbitaléeach containing a spin-up and
Perdew-ZungefPZ-LDA) [5] and the Perdew-Wang 1992 spin-down electropy which are centered on the 4 lines link-
(PW92-LDA) [22] parametrizations of the LDA, the Becke- ing the 4 hydrogens to the central carbon, and therefore rep-
Lee-Yang-Parr GGA2], and Hartree-FockHF). Of the two  resenting bonds. The 0 molecule also has 4 localized or-

MOLECULAR RESULTS

TABLE Il. Highest occupied eigenvalues of closed-shell atoms in eV. Our results using direct minimi-
zation and the PZ parametrizati@BIC-LDA) are compared with the results obtained by Perdew and Zunger
for the same functional using an approximate solution method. The next two columns show the LDA results
with the Perdew-Zunge{PZ-LDA) and the Perdew-Wang 199PW92-LDA) parametrizations. The final
three columns are the Becke-Lee-Yang-Parr GBRYP), Hartree-FockHF), and experiment. The experi-
mental values are from Ref23].

SIC-LDA Pz PZ-LDA PW92-LDA BLYP HF Expt.
He —25.8 —25.8 —155 —15.5 —15.8 —25.0 —24.6
Be -91 —5.6 —5.6 —54 —-8.4 —-93
Ne —22.8 —22.9 —135 —135 —13.2 —23.1 —216

Ar —15.9 —15.8 —10.4 —10.4 —10.0 —16.1 —158




55 CRITICAL ASSESSMENT OF THE SELF-INTERACTION ... 1769

ol
o
[

Neon Charge Density Differences

Helium Charge Density Differences

_1)
<o
S

°
e

nits of ap
o
3

|
o
2

2
%—o.oz L
$ T e —— LDA—Exact
£ -0.03 — —— HF-Exact
<« \ 4  --- GGA(BLYP)~Exact
——. SIC-Ex@et | /=M ‘< /== GGA(BLYP)—Exact
-0.04 | ——- SIC~Exact
-0.05 . . . . . . . . .
00 05 1.0 15 2.0 25 3.0 35 40 10 15 20 25 30 35 40
r (units of ag) r (units of ag)

FIG. 5. Comparison of the charge density of Ne obtained by
erent methods with the quasiexact charge density from a quan-
m Monte Carlo calculation.

FIG. 3. Comparison of the charge density of He obtained bydiff
different methods with the quasiexact charge density from a,
Hylleras-type calculation.

ing physical ions[25], the SIC-LDA pseudopotentials are
very similar to the LDA pseudopotentials, and substituting a
LDA pseudopotential in a SIC-LDA calculation has only a
very minor effect. Nevertheless, for consistency, in both the

bitals in nearly tetrahedral positions. However, in this case
only the two orbitals on the two lines linking the oxygen
with the two hydrogens represent bonds; the other two

which are in the_half-space not containing any hydrogen, arfDA and the SIC-LDA molecular calculations we used the
'OT“? elle.ctron pairs. In the case of double or trlple bonds,_ th%orresponding pseudopotential. The LDA pseudopotentials
minimizing functions are banana-shaped localized functlon%f Ref. [24] reproduce the trudall-electron LDA bond
surrounding the line linking the two atoms. Even for an In'Iengths of first row molecules to within a few millibohr. We

fm:itg ? g rﬁf‘" ;\;erflr&dftZaiithne m|:1n|m|rzn|ng orbitals arr1e lo'tﬁxpect the same accuracy for the SIC-LDA pseudopotentials.
calized bond-centered Tunctions. SOME cases such as e, rapia 111 we show the errors in the LDA, SIC-LDA,

CO molecule we find two very close minima, the lower one .
y . “and BLYP geometries of several small molecules. Unfortu-

bond. However, the two solutions have very similar char §1ately the SIC-LDA bond lengths are systematically too
densi.ties ' y 9hort [26] and the magnitude of the errors is significantly

. . . larger than the LDA errors. The SIC-LDA errors for single
Using pseudopotentials and a plane-wave basis set, \Ng

calculated the bond lengths of several small molecules an onds, with the exception of BH, are not as large as for
9 ouble or triple bonds. The BLYP bond lengths, on the other

the energy released in a chemical reaction. The SIC'LDAhand are somewhat more accurate than the LDA bond
pseudo-potentials were generated using the procedure d%’ngths

scribed in Ref.[24], but with the eigenvalues and charge
distributions of the reference configuration taken from an
atomic SIC-LDA calculation rather than an LDA calculation.
As expected, from the concept of pseudopotentials represe

Another interesting quantity to compare is the atomization
energy, which is the difference between the molecular total
gnergy and the sum of the total energies of its constituent

TABLE I1ll. Comparison of the LDA and SIC-LDA bond
lengths(a.u) for several small molecules. The experimental bond

003 " Beryllium Charge Density Differences lengths(Expt.) [27] and the differences between the theoretical and
0.02 1 experimental bond lengths are given.
~ 0.01
' o000 Expt. SIC-LDA error LDA error BLYP error
S-oor H, 1401  —0.03 0.05 0.01
H-002 CH, 2.052 —0.05 0.02 0.02
S oos ] C,H, (CH) 2.005 —0.05 0.03 —-0.01
,\,3‘_0,04 —— LDA—Exact C,H, (CO) 2.274 —0.09 —0.01 0.00
=~ —_—— -
L3 | 1 —— oA -Exact | NH 1.912  —0.05 0.02 0.02
oo — T SIC-Exact H,O 1.809 —0.05 0.02 0.03
' BH 2.329 —0.09 0.04 0.01
v 00 05 10 15 20 25 30 35 40 45 50 55 60 LiH 3.015 —0.06 0.01 0.00
r (units of ao) N, 2.074 —-0.09 —-0.01 0.01
CO 2.132 —-0.10 —0.00 0.02
FIG. 4. Comparison of the charge density of Be obtained byCO, 2.192 —0.09 0.00 0.02
different methods with the quasiexact charge density from a quanems deviation 0.072 0.024 0.016

tum Monte Carlo calculation.
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TABLE IV. The experimental value and theoretical predictions for the en@rgyreleased in the model
chemical reaction 3 Kl + N, — 2 NH;. The values are corrected for the zero-point energy given in Ref.

[30].

Expt. LDA (PSP LDA (G99 SIC-LDA SIC-LDA(LDA geom) BLYP

0.76 2.1 2.1 2.6 2.9 0.65
atoms. The energies of open-shell atoms are often calculated CONCLUSIONS

with a spheri(;ally symmetrizeq approximati(_Jn to the density The sIC-LDA scheme, as proposed by Perdew and
obtained by introducing fractional occupation numbers. Inzynger, does not give sufficiently accurate ground-state en-
the case of GGA the nonspherical atom gives better atomiergies and molecular geometries. Whereas the atomic results
zation energie§28]. However, one encounters, in LDA cal- are superior to the LDA results, the molecular results are
culations of nonspherical atoms, the problem that orbitalslearly worse. The BLYP functional, which we chose as rep-
that are occupied on one iteration of the self-consistencyesentative of the various commonly used GGA functionals,
cycle become unoccupied on the next. To check the accuradyjelds more accurate ground-state properties than both SIC-
of the SIC-LDA total-energy differences, and at the samé-DA and LDA for the atoms and molecules considered. It is

time avoid this problem, we study the energy released in th§urPrising how well the simple LDA works compared to
chemical reaction 3kH-N,—2NH. Al the total energies more sophisticated schemes that one would expect to be su-

lculated aft full relaxati f the atomi i Sperior. Charlesworth recently came to similar conclusions
are calculated after a full relaxation ot the alomiC posilionSyqar systematically examining several weighted density

within each scheme. In the case of SIC-LDA, we calculatenctionals[31]. All these schemes satisfy sum rulgg2]

also the energy difference using the more accurate LDA gethat are generally believed to be responsible for the accuracy
ometries of the molecules. As can be seen from Table IVof the LDA. Thus it might well be that we actually do not yet
SIC-LDA does worse than the other schemes examined. Bfully understand the true reasons for the success of the LDA.
far the best results are obtained with the BLY#®. The
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