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Critical assessment of the self-interaction-corrected–local-density-functional method
and its algorithmic implementation

S. Goedecker
Max-Planck Institute for Solid State Research, Stuttgart, Germany

C. J. Umrigar
Cornell Theory Center and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853
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We calculate the electronic structure of several atoms and small molecules by direct minimization of the
self-interaction-corrected–local-density-approximation~SIC-LDA! functional. To do this, we first derive an
expression for the gradient of this functional under the constraint that the orbitals be orthogonal and then show
that previously given expressions do not correctly incorporate this constraint. In our atomic calculations, the
SIC-LDA yields total energies, ionization energies, and charge densities that are superior to results obtained
with the local density approximation~LDA !. However, for molecules, SIC-LDA gives bond lengths and
reaction energies that are inferior to those obtained from LDA. The nonlocal Beck-Lee-Yang-Parr functional,
which we include as a representative generalized gradient approximation functional, outperforms both LDA
and SIC-LDA for all ground-state properties we considered.@S1050-2947~97!08502-8#

PACS number~s!: 31.15.2p
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INTRODUCTION

The local density approximation~LDA ! @1# has become
one of the most popular tools for electronic structure cal
lations. The reason for this is that it gives good accuracy
structural properties and is computationally less costly t
traditional quantum chemistry methods, such as Hartr
Fock, configuration-interaction, and coupled-cluster me
ods. With the rapid increase in computer power and the
velopment of low complexity algorithms, the limits on th
system size are being pushed up steadily. However, in m
cases the LDA is not sufficiently accurate. A primary co
cern is therefore to improve upon the accuracy of the LDA
the expense of a moderate increase in computational c
The generalized gradient approximations~GGA! such as the
Becke-Lee-Yang-Parr~BLYP! scheme@2,3# fall into this cat-
egory and are now widely used. Numerous other scheme
improve upon the LDA can been found in the literature@4#,
but very few of them have been systematically tested
atomic and molecular calculations. A major deficiency of t
LDA and also to a lesser extent of the GGA is the fact t
there is an unphysical self-interaction in these function
To cure this, several years ago, Perdew and Zunger prop
a scheme@5# where self-interaction terms are subtracted
in a straightforward way and that is usually called se
interaction-corrected–LDA~SIC-LDA!. Even though this
scheme is appealing because of its conceptual simplicit
has not been widely used possibly because it is numeric
more complicated since the potential is orbital depend
Consequently, the minimization of this functional is n
longer an eigenvalue problem in a self-consistent poten
and the total energy is not invariant under unitary transf
mations among the occupied orbitals. In this paper, we
derive the gradient of the SIC-LDA functional, which is ne
essary for minimization algorithms@6,7#, and then presen
the results we obtained for atomic and molecular system

The SIC-LDA functional has been used mostly to stu
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excitation energies. Studies of periodic systems using S
LDA have concentrated mainly on systems where the LD
gives qualitatively wrong results~such as transition-meta
oxides @8#! and where the electronic structure undergo
qualitative changes in response to changing external co
tions @9,10#. Most of these calculations involving heavy a
oms were done with the linear muffin-tin orbital~LMTO!
method. SIC-LDA yields larger band gaps than LDA, in su
stantially better agreement with experiment@11#. In the case
of atoms and molecules also, SIC-LDA yields improved e
citation energies@5,12–14#. However, most calculation o
molecules were performed at the experimental geome
there being very few SIC-LDA studies of equilibrium geom
etries @14,15#. Hence, in this paper, we concentrate on t
ground-state properties and find that whereas atomic pro
ties are more accurately predicted by SIC-LDA than LD
equilibrium geometries of small molecules and reaction
ergies are less accurate in SIC-LDA.

THE SIC-LDA FUNCTIONAL AND ITS GRADIENT

In all the following formulas we consider the orbita
C i to be real and the subscripts of the orbitals run over
the occupied orbitals. The SIC-LDA functional is given b

Etot@C i~r !#5(
i
E C i~r !S 2

1

2
¹21VextDC i~r !dr

1
1

2E E r~r !r~r 8!

ur2r 8u
drdr 81E e„r~r !…r~r !dr

2
1

2(i E E r i~r !r i~r 8!

ur2r 8u
drdr 8

2(
i
E e„r i~r !…r i~r !dr , ~1!
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where

r i~r !5C i~r !C i~r !, r~r !5(
i

r i~r !,

and *e(r)rdr is the local approximation of the exchang
correlation functional.

We want to obtain its gradient under the constraint t
the orbitals be orthonormal. Following the ideas outlined
Arias et al. @16#, we consider a more general functional th
is also defined with respect to nonorthogonal functionsC i .
First we construct a set of orthonormal orbitalsC̃i by a sym-
metric Löwdin orthogonalization of the nonorthogonal s
C i

C̃i5(
j
Si , j

21/2C j , ~2!

whereSi , j5^C i uC j&5*C i(r )C j (r )dr is the overlap matrix
among the occupied orbitals. The functional we are int
ested in is just the SIC-LDA functional evaluated for t
orthonormal orbitalsC̃i . In our actual calculation, for rea
sons of numerical stability, we use orthogonal orbita
Hence, in our derivations it is necessary to consi
only infinitesimally nonorthogonal orbitals. The
S21/25@ I1(S2I )#21/2'I2(1/2)(S2I ) and Eq.~2! simpli-
fies to

C̃i5(
j

~ 3
2d i , j2

1
2Si , j !C j . ~3!
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The gradient of the total functional is then obtained by a
plying the chain rule:

]E

]C i~r !
5(

j
E ]E

]C̃j~r 8!

]C̃j~r 8!

]C i~r !
dr 8, ~4!

where each part of Eq.~4! can easily be calculated. Denotin
the unconstrained gradient bydj (r ) we obtain

dj~r !5
1

2

]E

]C̃j~r !

5S 2
1

2
¹21VextD C̃j~r !1S E r~r 8!

ur2r 8u
dr 8

2E r j~r 8!

ur2r 8u
dr 8D C̃j~r !

1@m„r~r !…2m„r j~r !…#C̃j~r !5HjC̃j~r !, ~5!

where the orbital-dependent HamiltonianHj is

Hj5~2 1
2¹21Vext!1E r~r 8!

ur2r 8u
dr 82E r j~r 8!

ur2r 8u
dr 8

1m„r~r !…2m„r j~r !….

The second part of Eq.~4! gives
]C̃j~r 8!

]C i~r !
5
3

2
d i , jd~r2r 8!2

1

2
Si , jd~r2r 8!2

1

2(l C l~r 8!
]

]C i~r !
E C j~r 9!C l~r 9!dr 9

5
3

2
d i , jd~r2r 8!2

1

2
Si , jd~r2r 8!2

1

2(l C l~r 8!@d i , jC l~r !1d i ,lC j~r !#

5d i , jd~r2r 8!2
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2
C i~r 8!C j~r !2

1

2
d i , j(

l
C l~r 8!C l~r !. ~6!
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In the last transformation step, we have used the fact tha
calculate the derivative for a set of orthonormal orbitals a
thereforeS5I . In order to take account of the orthogonali
constraint we are of course allowed to putS5I only after
calculating the derivative. Finally, we obtain the gradie
expression

1

2

]E

]C i~r !
5di~r !2

1

2(j S E dj~r 8!C i~r 8!dr 8 DC j~r !

2
1

2(j S E di~r 8!C j~r 8!dr 8 DC j~r !. ~7!

The above gradient expression is different from what
found in the literature@12,17,9#:
e
d

t

s

1

2

]E

]C i~r !
5di~r !2(

j
S E di~r 8!C j~r 8!dr 8 DC j~r !.

~8!

In numerical applications, it was apparent that the gradi
expression in Eq.~8! does not lead to the correct minimum
@17# of the functional. However, nobody seems to ha
drawn the logical conclusion that Eq.~8! is not the correct
gradient of the LDA-SIC functional. Instead, a second mi
mization step, based on a relation derived by Pedersonet al.
@15#

^C i uHjC j&5^HiC i uC j&, ~9!

was added. This relation follows immediately by consideri
infinitesimal unitary transformations among the occupied
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55 1767CRITICAL ASSESSMENT OF THE SELF-INTERACTION . . .
bitals and putting the gradient of the SIC-LDA function
with respect to these transformations equal to zero. We
that Eqs.~8! and~9! together are equivalent to Eq.~7!. These
difficulties appear only in the SIC-LDA case; in the LD
case, the potential is not orbital dependent, and therefore
two gradient expressions are identical.

The results of the following two sections were obtain
by direct minimization of the SIC-LDA functional, using th
correct gradient of Eq.~7!. The direct inversion in iterative
subspace method@19# was used as a convergence accele
tor. In the molecular case, the gradient was preconditio
using the scheme by Teteret al. @7#; in the atomic case, the
operator Im@1/(H2z)# was used as a preconditioner@20#,
wherez is a suitably chosen complex energy. All the calc
lations were done for spin unpolarized systems where
spin-up orbitals are required to have the same spatial form
the matching spin-down electron orbitals,C2i21(r )
5C2i(r ).

To calculate the equilibrium geometries of small mo
ecules, we relaxed the atoms in the direction of the for
until the forces vanished. The forces in the SIC-LDA sche
are given by the Hellman-Feynman theorem. This might
be quite obvious, since, in the usual derivation of t
Hellman-Feynman theorem, one takes advantage of the
that the orbitals are eigenfunctions of the self-consist
Hamiltonian, which is not the case in the SIC-LDA schem
We therefore provide a derivation of the Hellman-Feynm
theorem which does not require the orbitals to be eigenfu
tions, but uses only the fact that the orbitals minimize
total energy for some fixed positions of the nuclei.

Let C i(r ,R8) be the SIC-LDA orbitals for a molecule
whose nuclear positions are given by the 3N-dimensional
vector R8. By construction, these orbitals are orthonorm
for anyR8. Let us now consider the SIC-LDA total energ
Etot@C i(r ,R8);R# for a set of atomic positionsR. The de-
pendence onR stems from the fact that the external potent
Vext depends on the atomic positionsR. Obviously, the func-
tional will be minimized ifC i(r ,R8)5C i(r ,R) and its gra-
dient with respect toR8 vanishes at that point:

]Etot@C i~r ,R8!;R#

]R8
U
R85R

50. ~10!

The force acting on the nuclei is given by

]Etot@C i~r ,R!;R#

]R
5

]Etot@C i~r ,R!;R9#

]R9
U
R95R

1
]Etot@C i~r ,R8!;R#

]R8
U
R85R

. ~11!

The first term on the right side of Eq.~11! takes into accoun
that the external potentialVext depends on the atomic pos
tionsR but freezes the dependence of the orbitals onR. It is
given by

(
i
E C i~r ,R!

]Vext

]R
C i~r ,R!dr . ~12!

The second term freezes the dependence on the externa
tential but takes into account the dependence of the orbi
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This second term is, however, equal to the left-hand side
Eq. ~10! and therefore vanishes. So we are just left with th
first term, which can be immediately transformed to th
usual Hellman-Feynman form.

ATOMIC RESULTS

In the original paper on the SIC-LDA method, Perdew
and Zunger@5# performed several atomic calculations. They
however, did not minimize the SIC-LDA functional under
the orthogonality constraint, but instead employed th
eigenorbitals of the orbital dependent potential. Since th
orbitals are the eigenfunctions for different Hamiltonians
they are not orthogonal but the authors assumes that this
not change their results appreciably. We therefore repea
some of the atomic calculations to check this assumption a
in fact find it to be true.

The orbitals that one obtains from a minimization solutio
differ in two important respects from the atomic orbitals ob
tained by solving a single-particle Schrodinger equatio
First their nodal structure is different as shown in Fig. 1. A

FIG. 2. Same as Fig. 1 but on a logarithmic scale. The 3s
orbitalsrC andrF are nearly indistinguishable on this plot beyond
r51.

FIG. 1. 1s, 2s, and 3s orbitals of argon. Solid line: the orbitals
rC that minimize the SIC-LDA functional; dashed line: the linea
combinationsrF of Eq. ~13!.
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TABLE I. Total energies of closed-shell atoms in eV. Our results using direct minimization and th
parametrization~SIC-LDA! are compared with the results obtained by Perdew and Zunger for the
functional using an approximate solution method. The next two columns show the LDA results wit
Perdew-Zunger~PZ-LDA! and the Perdew-Wang 1992~PW92-LDA! parametrizations. The final three co
umns are the Becke-Lee-Yang-Parr GGA~BLYP!, Hartree-Fock~HF!, and the exact value. The exact valu
are from Ref.@18#. We have used a factor of 27.2112 eV/Hartree for converting most of the energies b
consistency with Ref.@5#, a factor of 27.21 eV/Hartree for converting the SIC-LDA energies.

SIC-LDA PZ PZ-LDA PW92-LDA BLYP HF exact

He 279.4 279.4 277.1 277.1 279.1 277.9 279.0
Be 2399.9 2399.8 2393.1 2393.1 2398.9 2396.6 2399.1
Ne 23517.9 23517.6 23489.1 23489.3 23509.2 23497.9 23508.6
Ar 214378.8 214378.3 214307.9 214311.6 214352.4 214335.4 214354.6
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orbitals ~even the 1s core states! have the same number o
nodes. Second all the orbitals decay with the same expo
~see Fig. 2!. A set of orbitals, which have the characteris
behavior of eigenfunctions of a local potential, can be o
tained from the minimizing orbitalsC i , by forming the lin-
ear combinations

F i5(
j
U jiC j , ~13!

whereU is the unitary matrix that diagonalizes the matr
^C i uHjC j&, which is Hermitian by Eq.~9!. The Krieger-Li-
Iafrate approximation@21# to the SIC-LDA functional
would, for instance, give orbitals of similar form, but also t
nonorthogonal set of orbitals used by Perdew and Zunge@5#
looks rather similar. As can be seen from Figs. 1 and 2 th
eigenorbitals are rather different from the minimizing orb
alsC i .

In Table I, we compare our total energies for seve
closed shell atoms with the ones from Perdew and Zunge
spite of the fact that the minimizing orbitalsC i have a quite
different behavior from the orbitals employed by Perdew a
Zunger, the total energies are nevertheless very similar
fact the small differences in the total energy in the colum
labeled SIC-LDA and PZ are not due to their approxim
solution method but are instead probably due to the use o
insufficiently dense grid in Ref.@5# since we find the same
differences in comparing the LDA results too.

In Table I, we also give the results obtained from t
Perdew-Zunger~PZ-LDA! @5# and the Perdew-Wang 199
~PW92-LDA! @22# parametrizations of the LDA, the Becke
Lee-Yang-Parr GGA@2#, and Hartree-Fock~HF!. Of the two
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LDA functionals, PZ-LDA and PW92-LDA, the latter is th
more accurate parametrization of the correlation energy
homogeneous electron gas and yields slightly more accu
total energies. We include the former only to facilitate co
parison with Ref.@5#. As observed in earlier papers, LDA
yields total energies that are not sufficiently negative wh
SIC-LDA gives too deep total energies. The absolute va
of the error is significantly smaller in SIC-LDA than in LDA
but not as small as for BLYP.

In Table II, we compare the highest occupied eigenval
of closed-shell atoms. Here the SIC-LDA functional outpe
forms all the others. This comes from the fact that in SI
LDA the orbitals experience the correct long-range Coulo
potential whereas the potentials in the other density fu
tional methods decay too fast, giving rise to too weak
bound eigenstates.

In Figs. 3, 4, and 5, we show the error in the self cons
tent charge densities from the different methods. The S
LDA density is somewhat more accurate than the LDA de
sity except in a region around 0.3a0 for neon.

MOLECULAR RESULTS

A very attractive feature of the SIC-LDA scheme is th
the minimizing orbitals can usually be easily interpreted
physical terms. They represent either bonds or lone elec
pairs. For instance, in the case of the CH4 molecule, one
obtains 4 localized orbitals~each containing a spin-up an
spin-down electron!, which are centered on the 4 lines link
ing the 4 hydrogens to the central carbon, and therefore
resenting bonds. The H2O molecule also has 4 localized o
nimi-
ger
results
l
-

TABLE II. Highest occupied eigenvalues of closed-shell atoms in eV. Our results using direct mi
zation and the PZ parametrization~SIC-LDA! are compared with the results obtained by Perdew and Zun
for the same functional using an approximate solution method. The next two columns show the LDA
with the Perdew-Zunger~PZ-LDA! and the Perdew-Wang 1992~PW92-LDA! parametrizations. The fina
three columns are the Becke-Lee-Yang-Parr GGA~BLYP!, Hartree-Fock~HF!, and experiment. The experi
mental values are from Ref.@23#.

SIC-LDA PZ PZ-LDA PW92-LDA BLYP HF Expt.

He 225.8 225.8 215.5 215.5 215.8 225.0 224.6
Be 29.1 25.6 25.6 25.4 28.4 29.3
Ne 222.8 222.9 213.5 213.5 213.2 223.1 221.6
Ar 215.9 215.8 210.4 210.4 210.0 216.1 215.8
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55 1769CRITICAL ASSESSMENT OF THE SELF-INTERACTION . . .
bitals in nearly tetrahedral positions. However, in this ca
only the two orbitals on the two lines linking the oxyge
with the two hydrogens represent bonds; the other t
which are in the half-space not containing any hydrogen,
lone electron pairs. In the case of double or triple bonds,
minimizing functions are banana-shaped localized functi
surrounding the line linking the two atoms. Even for an
finite Si crystal, we find that the minimizing orbitals are l
calized bond-centered functions. In some cases such a
CO molecule we find two very close minima, the lower o
corresponding to a triple bond, the upper one to a sin
bond. However, the two solutions have very similar cha
densities.

Using pseudopotentials and a plane-wave basis set
calculated the bond lengths of several small molecules
the energy released in a chemical reaction. The SIC-L
pseudo-potentials were generated using the procedure
scribed in Ref.@24#, but with the eigenvalues and charg
distributions of the reference configuration taken from
atomic SIC-LDA calculation rather than an LDA calculatio
As expected, from the concept of pseudopotentials repres

FIG. 4. Comparison of the charge density of Be obtained
different methods with the quasiexact charge density from a qu
tum Monte Carlo calculation.

FIG. 3. Comparison of the charge density of He obtained
different methods with the quasiexact charge density from
Hylleras-type calculation.
,
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ing physical ions@25#, the SIC-LDA pseudopotentials ar
very similar to the LDA pseudopotentials, and substituting
LDA pseudopotential in a SIC-LDA calculation has only
very minor effect. Nevertheless, for consistency, in both
LDA and the SIC-LDA molecular calculations we used t
corresponding pseudopotential. The LDA pseudopotent
of Ref. @24# reproduce the true~all-electron! LDA bond
lengths of first row molecules to within a few millibohr. W
expect the same accuracy for the SIC-LDA pseudopotent

In Table III we show the errors in the LDA, SIC-LDA
and BLYP geometries of several small molecules. Unfor
nately the SIC-LDA bond lengths are systematically t
short @26# and the magnitude of the errors is significan
larger than the LDA errors. The SIC-LDA errors for sing
bonds, with the exception of BH, are not as large as
double or triple bonds. The BLYP bond lengths, on the ot
hand, are somewhat more accurate than the LDA b
lengths.

Another interesting quantity to compare is the atomizat
energy, which is the difference between the molecular to
energy and the sum of the total energies of its constitu

y
n-

FIG. 5. Comparison of the charge density of Ne obtained
different methods with the quasiexact charge density from a qu
tum Monte Carlo calculation.

TABLE III. Comparison of the LDA and SIC-LDA bond
lengths~a.u.! for several small molecules. The experimental bo
lengths~Expt.! @27# and the differences between the theoretical a
experimental bond lengths are given.

Expt. SIC-LDA error LDA error BLYP error

H2 1.401 20.03 0.05 0.01
CH4 2.052 20.05 0.02 0.02
C2H2 ~CH! 2.005 20.05 0.03 20.01
C2H2 ~CC! 2.274 20.09 20.01 0.00
NH3 1.912 20.05 0.02 0.02
H2O 1.809 20.05 0.02 0.03
BH 2.329 20.09 0.04 0.01
LiH 3.015 20.06 0.01 0.00
N2 2.074 20.09 20.01 0.01
CO 2.132 20.10 20.00 0.02
CO2 2.192 20.09 0.00 0.02
rms deviation 0.072 0.024 0.016

y
a
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TABLE IV. The experimental value and theoretical predictions for the energy~eV! released in the mode
chemical reaction 3 H2 1 N2 → 2 NH3. The values are corrected for the zero-point energy given in R
@30#.

Expt. LDA ~PSP! LDA ~G94! SIC-LDA SIC-LDA~LDA geom.! BLYP

0.76 2.1 2.1 2.6 2.9 0.65
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atoms. The energies of open-shell atoms are often calcul
with a spherically symmetrized approximation to the dens
obtained by introducing fractional occupation numbers.
the case of GGA the nonspherical atom gives better ato
zation energies@28#. However, one encounters, in LDA ca
culations of nonspherical atoms, the problem that orbi
that are occupied on one iteration of the self-consiste
cycle become unoccupied on the next. To check the accu
of the SIC-LDA total-energy differences, and at the sa
time avoid this problem, we study the energy released in
chemical reaction 3H21N2→2NH3. All the total energies
are calculated after a full relaxation of the atomic positio
within each scheme. In the case of SIC-LDA, we calcul
also the energy difference using the more accurate LDA
ometries of the molecules. As can be seen from Table
SIC-LDA does worse than the other schemes examined
far the best results are obtained with the BLYP@3#. The
SIC-LDA energies are calculated by the pseudopoten
plane-wave method while the BLYP energies are obtai
from the theGAUSSIAN 94 ~G94! program package@29# using
a 6-311G11~3df,3pd! basis set. As a check of the accura
of the pseudopotential plane wave and theGAUSSIAN 94 pro-
grams we calculated the LDA energies with both progra
obtaining very close agreement.
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CONCLUSIONS

The SIC-LDA scheme, as proposed by Perdew a
Zunger, does not give sufficiently accurate ground-state
ergies and molecular geometries. Whereas the atomic re
are superior to the LDA results, the molecular results
clearly worse. The BLYP functional, which we chose as re
resentative of the various commonly used GGA functiona
yields more accurate ground-state properties than both S
LDA and LDA for the atoms and molecules considered. It
surprising how well the simple LDA works compared
more sophisticated schemes that one would expect to be
perior. Charlesworth recently came to similar conclusio
after systematically examining several weighted dens
functionals @31#. All these schemes satisfy sum rules@32#
that are generally believed to be responsible for the accu
of the LDA. Thus it might well be that we actually do not ye
fully understand the true reasons for the success of the L
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