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Elimination of hyperspherical ghost states caused by a closed-shell core:
Test with the restricted Temkin-Poet model
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Ghost states arise in applications of the hyperspherical close-coupling method to atoms with two valence
electrons outside a closed-shell core. A rigorous formulation of ghost-state elimination is proposed on the basis
of a projection operator. Its practical implementation exploitsRhmatrix propagator. The procedure is tested
for the Temkin-Poes? model by removing a target orbital regarded as an occupied core state. The partial
success of the recently proposed scheme of Zhou anfiRtigs. Rev. A51, 1286(1995] is accounted for as
due to an extreme insensitivity of thematrix states on the projection paramef&1050-294{®7)01901-X]

PACS numbsgps): 31.15-p, 31.25.Jf, 34.80.Kw

I. INTRODUCTION shell frozen-core electrons. Greene used the standard
Hellman-Skillman-type potential that derives from the self-
Doubly excited states of ideal two-electron systems, sucleonsistent-field SCH electronic density. In the hyperspheri-
as helium, are often energetically difficult to reach at visiblecal method with such a model potential, there appear states
laser wavelengths. Doubly excited states of alkaline-earththat end up occupying the core orbitals, a phenomenon un-
metal atoms, on the other hand, provide easier targets fatesirable from the viewpoint of the Pauli exclusion principle.
spectroscopic studies. The initial-state dependence of phot@reene circumvented this phenomenon by eliminating from
absorption cross sectioh$], the difficulty of selectively ex- the calculation of the final-state wave function, the lowest
citing intrashell doubly excited states of Ca by two-photonadiabatic channel that converges on the occupied (&s)
absorption[2], etc., have their intrinsically appealing fea- core asymptotically. Watanalyg] used instead a pseudopo-
tures for theoretical studies. The study of two-electron coriential proposed in Ref.7] because it supports no core or-
relations in alkaline-earth-metal atoms, as well as their isobital, the pseudopotential itself being designed to eliminate
electronic multicharged ions, thus continues to be a subjeatore orbitals by introducing a repulsive component near the
of spectroscopic and theoretical interest. Different theoreticahucleus. This observation concerning the two calculations
methods geared to the reproduction of observed spectra haleads us to suspect that the ghost-state elimination must be
indeed achieved good agreement with the experimidht done with care. Use of some pseudopotential such ad Ref.
While the hyperspherical coordinate method proved to bés probably one of the easiest ways to achieve the elimina-
one of the most effective methods when applied to two-+ion. However, there is an undesirable feature in this ap-
electron atoms or ions, the incompatibility of the hyper-proach, namely, the fact that the number of nodes of a single-
spherical coordinates and the independent particle coordelectron wave function turns out equal to the correct number
nates has thus far prohibited successful implementation ahinus the number of the eliminated orbitals. This problem
the hyperspherical method for the study of two-electron corshould be resolved in a more rigorous formulation.
relations in the valence shell. In the backdrop of the above-mentioned attempts, Zhou
Historically, the attempt by Greerid] to evaluate photo- and Lin[8] recently carried out photoionization calculations
absorption and ionization cross sections of Be was one of thfor Be, employing the SCF-type model potential. However,
first to extend the hyperspherical method to systems with énstead of eliminating the lowest-lying channel throughout
closed-shell core. The general features of the calculated crosise calculations, such as done by Greene, they truncated it
sections did have reasonable resemblance to the observedly in the asymptotic region of the configuration space. The
ones, but the quantum defects deviated considerably. At thaésult agreed very well with experimental as well as other
stage, it was uncertain as to whether the discrepancy origtheoretical cross sections. Though the procedure does not
nated from some intrinsic fault in the method or from someseem flawless as it produces deviations at unexpected energy
assumptions on which the analysis was based. An attempanged9], it gives us hopes to represent the correlations of a
later by Watanabg5] to calculate the eigenphase shifts for valence electron pair using the standard SCF model poten-
the scattering processiKe— K™ ** —K* +eyielded a good tial. The primary motivation of this paper is to propose a firm
agreement with the values computed using the standantheoretical procedure for eliminating ghost states. We will
close-coupling methofb]. So it appears instructive to iden- then observe on what accounts the Zhou-Lin procedure pro-
tify the basic assumptions in the two applications of the hy-duces acceptable results.
perspherical method. In both works, a local model potential Actually, formulating the problem itself is not a difficult
was employed to represent the potential field of the closedtask. It requires merely to introduce an appropriate projection
operator. Adaptation of the projection operator to the hyper-
spherical method requires a few more steps. A purpose of
*Electronic address: shin@pc.uec.ac.jp this paper is to carry out the adaptation. However, the imple-
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mentation of the procedure for real systems does not seem
fruitful at this stage because rigorous convergence checks
can be made only with the aid of known analytical solutions.
Though such solutions are unavailable in principle, quasiana- 2
lytical scattering solutions exist for as? configuration

model known as the Temkin-Poet mod&D,11]. Eliminat-

ing a specific core orbital from the model is reasonably
straightforward. We will hence test our procedure against the

restricted Temkin-Poet model in this paper. Henceforth, we

keep this model in mind.

Cut-away

r

II. THE PROJECTION OPERATOR 1

Let us denote the core projection operdtbe] as FIG. 1. Domain of integration on the-r, plain. The shaded

Pcore=|1s><ls|- 1) .regi.on marked:cut-avv_ay” is ignored ir? the evaluat_ion of the prq-
jection operatoP,, . This causes no serious trouble if the domain is
Our aim is to lift by some amount the energy of a state large enough to contain the occupied core orbital.
which has a § component in such a way that in the limit of ) )
A — the state will diminish exponentially. One nontrivial A €ventually goes te- . In practice there are a few points
aspect in the application ¢, to the current two-electron We need tp pay attentlpn to. First, the domain of integration
problem is the representation of its effect on the other elecl? évaluating the matrix elements &%, must be over the
tron which may or may not contain aslcomponent. An entire con_flguratlor_1 space. Noneth_eless, we neec_i to conf_lne
answer to this question is simply that the electronic energyn® domain to a finite subspace in practice. This we will
be lifted if at least one of the electrons hassicbmponent.  Indeed do, but as will be seen the restriction does not cause
We adopt the following direct product as the two-electrondifficulties as long as the domain is large enough to contain

projection operator for its transparent physical meaning, the extent o_f the_i orbital. The complete system for repre-
senting the identity operator needs to be thus complete only

Poe(a,b)=P.da)®1(b), (2 over the finite domain as specified above. Now, let us realize
- that the coordinate space realizatiorPgf, is best done using

wherel is the identity operator and the labelsandb per-  the independent particle radial coordinafes,r,}, whereas
tain to electrora and electrorb for the sake of argument. NO we emp|oy the hyperspherica| coordinates for So|\/ing the
symmetrization of this operator is necessary if properly anschralinger equation. The relationship between the two sets
tisymmetrized basis functions are used for evaluating thef coordinates is given by
matrix elements. There may be alternative forms of the two-
electron projection operator that can accomplls_h our purpose. R= m (6)
A computationally practical and CPU economic form is de-
sirable, but we will not pursue it here.

Now, we need to adopt a specific representation of the
identity operator. Its coordinate representation is dtfeinc-
tion which is numerically awkward to handle. We adopt in-
stead the closure relation,

a=tan X(r/ry), (7

wherer, andr, are the electronic radial distances from the
nucleus. The remaining coordinates are defined as usual and
denoted simply a$). (N.B.: Sometimed) is defined as all
the variables other thaR.) Thus a second point of attention
1=E [k)(K], (3) is the short wavelength oscillations associated with higher
K components of the complete systeik)}. BecauseP,, is
defined with respect to a finite domain in the independent
particle coordinates, there is a gap between the hyperspheri-
cal domain and the square-shaped independent particle do-
1/2 main (see Fig. 1 We will ignore this gap, and evaluate the
(r|ky= F(K) sin kwK , (4)  matrix of P, by integrating over the hyperspherical domain
only. The solution is propagated properly, however, by re-
such that the indek takes on integral values 1,2,3, . .. and Starting theR-matrix propagator method from the outermost
r e[0,A] whereA represents the upper bound of the domain€dge of the first sector. This cut-away requires us to check
where the projection operator is effective. how the short wavelength components contribute to the ma-

We have now come to an important statement of this secllix €lements o, during an implementation of the present
tion. The Hamiltonian that we deal with is of the form prescription. We will come back to this point in Sec. V.

using some complete systefik)}. In this work we use as a
complete set, functions of the type

r

H=Hy+ APy, ©) ll. METHOD OF SOLUTION

whereH,, is the standard two-electron Hamiltonian includ-  We divide the process of solving the ScHimger equa-
ing the model potential with a frozen core. There is no question into four steps. The first step sets up the channel func-
tion, in principle, thatP,. will indeed serve the purpose as tions which we will use for recasting the equation into a
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close-coupling type system of ordinary differential equa- B. The R-matrix propagator method

tions. The second step solves the close-coupling equations qnce the adiabatic basis set is constructed, the next step is
using theR-matrix propagator method. The motivation for 1, sojve for the total wave functioW (R, «, ) that satisfies
employing this method is simply because the projection op-

erator, Eq(2), is a nonlocal operator. Instead of treating itas  Hw (R, @, Q)= (H,e+ APo) ¥(R,a,Q) = EV¥ (R, a,Q).

an inhomogeneous term in an integrodifferential equation, (11

we prefer to resort to the variational principle directly. The

projection operator thus reduces to a matrix. The third step i§hus, it is customary to expand the radial coefficients
to propagate the solution further by tRematrix propagation F,(R) in the adiabatic representation, namely,

after the ghost-state elimination is effected. The fourth step

of the method is to evaluate an equivalent of the scattering V(R,a,Q)=2, F,(R),(Ria,Q). (12)
matrix such as th& matrix. However, the gap between the ©

independent particle and hyperspherical coordinates persist ) )

in the asymptotic region so that an appropriate matching prol'ms representation, hqweyer, requires us to evaluate some-
cedure is required. The established procedure for matchinghat cumbersome derivative coupling terms. Instead, Ref.
between incompatible coordinates is known as the two 3] employed the diabatic-by-sector method which defines a

dimensional matching. In this section, we sketch these steg@cally diabatic set out of the adiabatic set by disallowing
one by one. local variations of R, that is to use the set
19 ,.(Riixed: @, ) } over a sector surroundiryeq. Thus the

modified form of the expansion is
A. The hyperspherical adiabatic basis set

The hyperspherical metho_d has been summarized el_se- V(R,a,Q)=2, F.(R) ¢, (Riyed; @, Q). (13
where[13]. Its successful applications to two-electron atomic ©

systems can be found, for example, in R¢1sl,15, etc. We " o ,

will therefore outline only the essential ingredients of theWithin each sectoF ,(R) satisfies the close-coupling-type

method. This subsection, in particular, deals with the adia€duation with no derivative couplings,

batic basis set. 1 52 _

Th? sEandard transform{;\tlon of,e using th.e Jacobian > - Eﬁ%uﬂd’#mad“\%ewv) F(R)
J=0d(r1,r,)/d(R,a,Q)=Rsirfacosa results in the re- v
duced two-electron HamiltonianH o= (1/yJ)H e(1/1/J) =EF,(R), (14)

which reads, in atomic units,
) where¢,, and¢, are all evaluated &= Ryyq. Once the set
0. = _1(9_+E 8 of solutions are obtained, they may be propagated to the
227 29RZ ' RZJ’ (8) adjacent sector by applying the frame transformation
TZVZ(d)M(Rlﬂxedva!Q)l(ﬁv(R%lxed!alﬂ))v that |S,

where . Al s Al
S Fl Rhaat 3 | T0F R 3 ). @9
1/ & 1 B R .
Had:ﬁ( B Z+ = + ola + RC(Q)) 9 where the superscriptsand]j pertain to the adjacent sectors

spanned by the locally diabatic ba&f@(R'ﬁxed;a,Q) and
. S o _ ®.(Rixeqs @,Q), respectively; and' andA! are the associ-
is the reduced adiabatic Hamiltonian aB(2), the effective  5te( sector lengths such thRlf o+ A'/2=Rl, .~ Al/2. Now

charge, represents the sum of the Coulomb potential termge focus on solving Eq(14) using theR-matrix propagator
multiplied by R. Likewise the reduced projection operator nathod.

readsP e = (1/vJ) P,e(1/1J). The adiabatic basis set consists ~ The R-matrix propagator method was originally con-

of solution vectorg ¢} of the eigenvalue problem ceived by Light and Walke17], and later some matrix ma-
nipulations were improved on by Neslé8]. A long write-
Hagdu(Ri@,Q)=U ,(R) $,(R;a, Q). (10) up of general computer codes is given in RE9]. It is

based on the variational principle so that the solution is
stable and rapidly convergent. It exploits the Bloch operator
The eigenvalued) ,(R) are commonly referred to as adia- defined by
batic potential energies as in molecular physics.

We exploit the discrete variable representati@VR)
[16] with Jacobi polynomials as the variational basis, an
obtain the eigenvectows ,(R; «,(2) of Eq. (10) by diagonal-
izing a symmetric matrix at eadR. The procedure assures We merely sketch the procedure and give key expressions
about six significant digits in the adiabatic basis set throughneeded for numerical implementatifit9]. Suppose we use a
out. The details about the way the DVR method is extendedadial basis seff,(R)} within a sectorRe[R®,R®?] for
to solve equations of typ€l0) with a high precision will be  expandingF ,(Rsyeq over. The specific radial basis we ex-
presented in a separate paper. ploit in this work consists of normalized Legendre polyno-

1 d
G (RY,RZ)=— sLa(R- RM)— §(R— R<2>)]ﬁ—R. (16)
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mials defined over the intervdR™),R(®)] by a proper res- This formula allows us to propagate tRematrix obtained at
caling of the argument. Now thig-matrix method defines a one end of the sector to another, and so forth.

set of eigenvector§|q)} for each sector through the eigen- It is also possible to construct wave functions using the
value problem propagator. Let us define

H+L)|a)=eglq), 1 <X|Q>(CI|1>
(H+L)]a)=eqla) 17) Rix:1)= 22 s (26
such that|q) is a superposition of functions of the form d a
f5(R) & ,(Riixed: @,€2). It then follows that the eigenvector 1 2
|u) of the Schrdinger equation R(X2)==> % (27)
q €q—
Hlu)=E|u) : , :
at an arbitrary hyperradiuse [R1,Rz)]. Consequently, it
satisfies follows from Eq.(18)
(H+Dlu=E+L)fu). (XU =R2) 2(2lu) - ROG1) (L) (29
Consequently,
Thus, by settingc=R?) we can express/dR(2|u) as
< layalLiu)
>_2 T e—E (18 J 1 9
! SRPIW=RG | (L) +Ruz=(1u) . (29
Thus at each end point, we have
Substituting this and using/JR(1|u)=R(1) ¥1|u), we
<1|Q><Q|1> get
(u )———E —£ rVW
(XJu)y={R(x;2) R R(1)+ Ry1]— R(x;1)}R(1) "X 1|u).
<1|0|><Q|2> 2 ). 19 (30)
€a—E IR
C. Removal of ghost states during propagation
(2|uy=— 2 (<2|q)(q| 1 9 —(1]u) Let us now recall that the evaluation of a matrix element
€&—E JR of the nonlocal operatdP,, involves an integration over the
(2|q)(q|2> P entire configuration space. However, the following simple
——————(2|u >) (20) argument delineates the action Bj, on the solution of the
&~-E IR Schralinger equation, Eq5), thus providing a guideline for

Here and below, we use the indexes 1 and 2 as a shorth

notation for the end point®R™) and R®). We define the
propagatork by

1o (LaXal1) (1|Q><Q|2>
Rll:i% Te—E Riz=35 2 Te-E
(21)
2 1 2 2
21——E< |0I><Q| >, Ror s E< |:1><qu )
(22)
The R-matrix R is defined at the end points by
(1ju)= R(-R <1|U> (23)
(2luy= R(2)-5 <2|U> (24)

Substituting Egs(21) through(24) into Egs.(19) and (20)
and eliminating the derivatives, we get

R(2)=Ry~Ro[R(1) + Ry1] Ry (29

restricting the domain of integration. In the region where the
Si/perradlusR is greater than the size of the occupied 1
orbital denoted aér), we have

=r_+_-—.
R=r. 2

(31
Thus, R roughly coincides withr- . As a consequencey
roughly coincides withr,s/R. The lowest locally diabatic
channel function thus coincides with the arbital except for

the normalization constant. Thus presuming the integration is
taken over some local interval at sufficiently large values of
R and also using thé function representation of the identity
operator for the outermost electron, we get

Poe> FL(R)®,(Rixed; @, Q) x(r -|18)F1(r-). (32)
M

It is clear that at the total energE<U;q(r-)+x, the
radial coefficient Fqi4(r-) decays as e “> with
k=+2|E—U4(r-)—\|, where U;4(r-)=—-0.5 a.u. For
sufficiently large values of, F4(r~) does not propagate to
large distances. Thus we are allowed to confine the integra-
tion for the matrix element oP,. to a finite domain, such
that (r) is sufficiently smaller than the linear size of the
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domain. We construct the first sector of tRematrix propa- whereK is the K matrix andA is the amplitude. Here the

gator method to be as large as necessary to satisfy this comatrix notation is used and the indices are all dropped for

dition. simplicity. Multiplying both sides by the adiabatic channel
If N is set very large, we may treat the coefficientfunction defined afR,, and integrating with respect ta

Fis(R) of the lowest channel as nil from the second sectoresults in a system of linear algebraic equations. This linear

onward. This truncation is effectively achieved by retaining,system is easy to solve fdt.

out of the entireR matrix R, the residual submatri®™*

defined through IV. THE RESTRICTED TEMKIN-POET MODEL
Riy Ry -+ Ry The s? configuration model for the electron-hydrogen
R scattering was first introduced by TemKitO] and later rig-
21

orously investigated by Pogt1]. It permits one to study the
R=1: RS : (33 general features of electron-impact excitation at impact en-
R ergies both below and above the ionization potential. It was
thus used earlier as a testing ground for general numerical
methods[15,20,21. Let f,(r) be a volume-normalized hy-
The eliminated component corresponds to the solution tha&rogenic bound-state functigm(r) multiplied by n'2 where
grows up ase“’>. A slightly more accurate transcription, n is the principal quantum number, arfd(r) an energy-

which we use in this work for truncation, makes use of a paif,ormajized continuum Coulomb wave function at a suitably

of local WKB-type radial solutions for each channel, and.osen continuum energyas in Eqs.(34)—(37). Let us re-
eliminates the solution whose lowest channel component iSlize that the two-electron wave functiofy (r )e* k">
<

exponentially growing. as well asf.(r.)e"™ "> defined at the on-shell energy

E=1k’+ ¢ satisfy the Schrdinger equation but not the
boundary condition at;=r,. At the boundary the wave
The asymptotic form of the open-channel wave functionfunction must have an antinodal line fé8 and a nodal line
is for 3S. The quantities required of the evaluation of the

S-matrix stem from the boundary condition, namely,

D. Two-dimensional matching and theK matrix

2 1/2- —
f(r<’r>):(ﬁ> sin(kr=)f,(r-) (34 £ R
A“/:f v (r,r)u s (r,r)dr, (41)
0
for the regular solution and
2\ ~ B =fw Re(r,r)v! (r)dr, 42
dir1==| ] eoske T (@ w0 Jo U (M0l “2

) ~ ) ) where €, pertains to the energy of the initial target state,
for the irregular one wheré,(r) is the volume-normalized ¢’ to that of a final state, and to an arbitrary state. The
bound-state wave function of hydrogen. For closed channelg,ction vlEO pertaining to the initial bound target state is

we have )
given by

1 1/2 .
= K(r>=Tm) J .
At r=| o) e e, @ V(T r)= e () @3
for the exponentially growing solution, which we eliminate

and ' for singlet spin states, whe@®dn=4d/dr - —dlor~ , and

12 Ulgo(r<ar>):eiikr>fn(r<) (44)

1 —k(T=—T ) f
e =TIt (ro) 37

G(r< ,r>):(ﬁ

for triplet states. The functiom? pertaining to the continuum

. . . . state is given b
for the exponentially decaying one, which we retain, and g y

I is set equal to the matching hyper-radiis. We seek to . E
recast the internaR-matrix solution given by velre,ra)=—- et (ro) (45)
V=R, ‘;_\g:l (38) for singlet states and
U?(r<ur>):eikr>fs(r<) (46)
as
for triplet states. MOYEOVEI'UIEZUS,* . For closed channels,
W=A(F-KG), (39  we have
ow aF G R J .
- = - —_K— = — kI~
R A( R aR)' (40) ve(r<.r>)=—-e =f(ro) (47)
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for singlet states and

UfR(r<’r>):e_Kr>fe(r<) (48) - //"'“

for triplet states. -+ — e ¥
The most noteworthy aspect of the model and of Poet’s A=0 N NN A G N

method of solution is that th& matrix can be obtained by :

solving a simple system of linear equations of the form

N 4
JZ]_ AEkEjCEJ' EO: BEk€OY (49) -
| 1
|
where \
Afkfj - EI Aqq i (50) r=0.5 S /

and «;; represents a set of coefficients defined by
aij= [ ai(€) aj(€)de, where

a‘(E): (E_EO)...(E_ Ei_l)(6_6i+1)...(6_ EN) 7070077 5.00 10.00 15.00 20.00 3500 3000
' (6i—€g)--(ei—€-1)(€i—€41) - (—€n)’ A v "R (..
(51

. . . ) FIG. 2. Channel components of a typi¢&imatrix solution. The
The relationship betweee, ., and theS matrix S, IS ypper panel represents absence of the projection operator, and the
simply lower one is for a relatively small value af=0.5. Using the labels
explained in the text, the dominant component represented by the
K; v2 n; dotted line corresponds to thes Zhannel, the asymptotically di-
Sij == Kk n. Cij - (52 verging component corresponds ts, 3he broken line, showing a
) J relatively small amplitude, is for g The solid line represents the
élé channel which has non-negligible amplitude at moderate hyper-
radial distances. The projection is effected witRr 30 a.u.

3/2

There is no rigorous theorem guaranteeing the convergen
of the solution of Eq(49) to the desireds matrix as a func-
tion of the number of basis functions. However, experience
shovys that the_ solution is as gooc_i as the unita_rity_of _the V. RESULT AND DISCUSSIONS
obtainedS matrix. We may exploit this fact as a guideline in
applying the Temkin-Poet model. One last side remark be- We examine to what extent the procedure outlined in the
fore discussing the restricted model concerns the evaluatioprevious sections results in the final-state wave functions and
of the continuum Coulomb wave functions. Poet himself em-the S matrix that are physically satisfying. We do so in two
ployed the hypergeometric representation so as to expresteps. First, we visualize the final-state wave functions and
various matrix elements in Eq$41) and (42) analytically.  observe the way theslcomponent damps out of the correct
Because the expressions involve hypergeometric functionsolution. Second, we evaluate tBenatrix and its associated
multiple precision algorithm(using numbers longer than 8 eigenphase shifts in the energy range from tkelf#eshold
bytes or eventually even longer than 16 bytescomes often to slightly below the 3 threshold. This evaluation will be
necessary. Numerically constructed continuum Coulomtaccompanied by the variation ®f The number and the qual-
wave functions provide the matrix elements more easilyity of the locally diabatic basis set is fixed in such a way as
Thus in this work, the matrices in Eq§1) and (42) are  to assure convergence of about three significant digits in the
constructed using numerical Coulomb wave functions. final result. We will examine the Zhou-Lin procedure in par-
Now suppose the d orbital is occupied. The removal of allel.
this orbital is obviously accomplished by restricting our-  In the upper panel of Fig. 2, we show the wave function
selves to basis functions that exclutig(r -)e*">. How-  evaluated aE=—0.12 a.u. forA=0 a.u. This energy lies
ever, a literal implementation of this idea yields a p&®r between theH(2s) and H(3s) thresholds. The size of the
matrix in the sense its unitarity is unsatisfactory. It becomesirst sector is taken to be 30 a.u. Each comporief(R) is
thus necessary to introduce pseudostates. For the precisidisplayed here with respect to the locally diabatic basis in
we aim at in a later section, we include a fiseudotarget each sector. It is to be noted that here we use the asymptotic
state that is orthogonal tosland has a node like2and labels X, 2s, ... for u. The component§ , are evaluated
decays ag ™ '<. It thus appears that the absence sfwhich  in the diabatic representation so that at any finie these
makes the target states incomplete, requires an auxiliargomponents are formally referenced to the asymptotic chan-
function to represent “relaxation.” From here on, let us call nels. The lower panel, on the other hand, is for a relatively
this model and the method of solution for the case of thesmall value ofA =0.5. Each of these wave functions is made
“occupied” 1s orbital the restricted Temkin-Poet model.  to correspond to aR-matrix state in which the derivative of
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JF,(R)/JR=1 at R=R,,, but JF ,(R)/dR=0 for all the radians

other channels. The=0 case corresponds to the Zhou-Lin

prescription. One obvious difference between the two panels 0.00 ———— —

is that forA=0 the u=1s component is freely oscillating 020 ——— |

while for A =0.5 this component rises first, thenRabeyond 0.40 —] 0 —

5 a.u. it decays exponentially. This difference is due to the 0,60 —] _|

working of the projection operator, as we so designed. How- 080 ]

ever, all the other components remain almost uninfluenced Loo )

by the projection operatomwhich is compatible with the sur- 120 ] 1,”.,5 1

prising finding of Zhou and Lif8]. An increase in the value 1'40_ i}

of A\ leads to a more rapid decay of tle=1s component. '

Note, however, that an unlimited increasenrleads to an 160 = )\' —_— 10 T

eventual instability because the radial basis functions used 180 - 1

for the R-matrix method become inappropriate to represent 2007 T

the exceedingly sharp exponential decay. 220 T
Let us interpret the cause of this weak action of the pro- 240 - Temkin-Poet —-

jection operator on the components other than therd this -2.60 —r

end, it is instructive to consider the system’s evolution along -2.80 S

R starting from the condensation region wh&#és small, to -3.00

the asymptotic region where the residual atomic target states 3.20

become apparent. The transition region which marks the 340 —

separation between the two regions varies from state to state, 360 _

but is generally represented Byclose toy2(r) where(r) is 0.00 2000 40.00 60.00x 10°

the size of the target state. First, in the condensation region
the system does not recognize the presence of thetdte
becauser _(=R) is much smaller than the size of thes 1
orbital. Hence, the complete adiabatic basis set is necessay ' . - ;

for constructing the wave function. It is thus inappropriate to'®" different O\K"E’es oth. A=0 _cor;eiponlgs :30 the ZZ°:"$: pre-
simply exclude the lowest adiabatic channel in this region.seccrt'f:)t:?g’ﬁ:;e dfﬁt;?ntaer;teﬁgr'cst;a” ﬁm e'?r'a dogtgrgoai .whi?: rf’ ro-
Second, the transition region is rather thin. And third, OnCéhowever is large enough to contain th):;pdrbital - ’
the system recognizes the &tate on entering the asymptotic ' '
region, the residual coupling between the dtate and the
rest dies away rapidly. In consequence, in the asymptotic

region, the 5 component is decoupled from the others sopgis functions to represent the sharp exponential déy
that the l_)oundary condition on this particular componentrpare appears to be an optimal valuexofor each set of
does not influence the component of the other channels. Wedial basis functions. In this paper, we do not explore the

may also argue for this unexpected success of the Zhou-Ligongition or the prescription that permits us to determine the
prescription from a different angle. Suppose we solve th%ptimal value of\ for each basis set.

restricted Temkin-Poet model without the pseudostates. We' |, sec. |1 we made note of a few points of attention. The

set up the direct product of thesbrbital and the standing- i effect of cutting the edge off a square block is that the
wave solutions, the latter of which are made to vanish bepgiection operator becomes incomplete in the sense that its
yond some radius, . The success of the Zhou-Lin prescrip- gjgenvalues are not strictly zero or unity. Instead, the eigen-
tion implies a very weak mixing between these standingya|yes distribute between the two ideal values without a
wave ba§|s functions and the rest. Consequently, the elastgharp edge. Indeed, the smaller the size of the box is, the
phase shift reflects very weak dependence gnHowever,  mqre eigenvalues deviate from unity. On the other hand, the
the weak coupling may not hold in the case of eliminatingyooq agreement demonstrated in this section suggests that

higher core orbitals such ass22p, etc. We will postpone {he pad roots play a rather minor role in representing the
examining such cases. In any event, the truncation of thggtion of the projection operator.

1s component beyond, say, 7 a.u. appears to provide a rea-
sonable approximation to the projection operat.or method. VI. CONCLUSIONS

Now we show how our method compares with thena-
trix evaluated by the Poet method. The accuracy we attained With the aid of the restricted Temkin-Poet model, we
in this work is about a few percent. We will therefore repre-have shown how to remove an occupied core orbital in the
sent the result only graphically. Figure 3 shows the eigeneontext of the hyperspherical method. Indeed as a function of
phase shifts calculated by the Poet procedure and ours. Otiee parametei the elastic eigenphase shift was shown to
general tendency is that the Zhou-Lin prescription correconverge toward the result of the restricted Temkin-Poet
sponding tox =0 gives a surprisingly good estimate 6f model. On the basis of the behavior of the wave function, it
With the increase ok the eigenphase shift approaches thatwas speculated that the remarkable success of the Zhou-Lin
of the restricted Temkin-Poet model. However, it is impor-prescription for truncating the radial component of the ghost
tant to recall our earlier statement that the unlimited increasehannel owes to the system’s rather abrupt recognition of the
in N is undesirable because of the insufficiency of the radiatore 1s orbital as well as to the quick decoupling of the

Energy (a.u.)

FIG. 3. Elastic eigenphase shiftshown as a function of energy
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ghost channel from the others in the asymptotic region, or in  We thank Dr. P. F. O’'Mahony and Dr. |. Moser for
short, to the weak coupling of theslthannel with the rest.  kindly providing us with their own version of thR-matrix

The next important step is to redesign the method so as tpropagator code. This work was supported in part by a
represent the exponential decay of the ghost channel mo@rant-in-Aid for Scientific Research on Priority Area Atomic
effectively. This would permit us to vary the value &f  Physics of Multiply-Charged lons from the Ministry of Edu-
unrestrictingly and to apply the present approach to real syszation, Science and Culture of Japan and in part by a finan-
tems. cial aid from the Matsuo Foundation.
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