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Elimination of hyperspherical ghost states caused by a closed-shell core:
Test with the restricted Temkin-Poet model

Shinichi Watanabe* and T. Ebara
Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1, Chofu-ga-oka, Chofu-shi, Tokyo 18

~Received 12 August 1996!

Ghost states arise in applications of the hyperspherical close-coupling method to atoms with two valence
electrons outside a closed-shell core. A rigorous formulation of ghost-state elimination is proposed on the basis
of a projection operator. Its practical implementation exploits theR-matrix propagator. The procedure is tested
for the Temkin-Poets2 model by removing a target orbital regarded as an occupied core state. The partial
success of the recently proposed scheme of Zhou and Lin@Phys. Rev. A51, 1286~1995!# is accounted for as
due to an extreme insensitivity of theR-matrix states on the projection parameter.@S1050-2947~97!01901-X#

PACS number~s!: 31.152p, 31.25.Jf, 34.80.Kw
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I. INTRODUCTION

Doubly excited states of ideal two-electron systems, s
as helium, are often energetically difficult to reach at visib
laser wavelengths. Doubly excited states of alkaline-ea
metal atoms, on the other hand, provide easier targets
spectroscopic studies. The initial-state dependence of ph
absorption cross sections@1#, the difficulty of selectively ex-
citing intrashell doubly excited states of Ca by two-phot
absorption@2#, etc., have their intrinsically appealing fea
tures for theoretical studies. The study of two-electron c
relations in alkaline-earth-metal atoms, as well as their i
electronic multicharged ions, thus continues to be a sub
of spectroscopic and theoretical interest. Different theoret
methods geared to the reproduction of observed spectra
indeed achieved good agreement with the experiment@3#.
While the hyperspherical coordinate method proved to
one of the most effective methods when applied to tw
electron atoms or ions, the incompatibility of the hype
spherical coordinates and the independent particle coo
nates has thus far prohibited successful implementation
the hyperspherical method for the study of two-electron c
relations in the valence shell.

Historically, the attempt by Greene@4# to evaluate photo-
absorption and ionization cross sections of Be was one of
first to extend the hyperspherical method to systems wit
closed-shell core. The general features of the calculated c
sections did have reasonable resemblance to the obse
ones, but the quantum defects deviated considerably. At
stage, it was uncertain as to whether the discrepancy o
nated from some intrinsic fault in the method or from som
assumptions on which the analysis was based. An atte
later by Watanabe@5# to calculate the eigenphase shifts f
the scattering process K1e→K2**→K*1e yielded a good
agreement with the values computed using the stand
close-coupling method@6#. So it appears instructive to iden
tify the basic assumptions in the two applications of the
perspherical method. In both works, a local model poten
was employed to represent the potential field of the clos
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shell frozen-core electrons. Greene used the stand
Hellman-Skillman-type potential that derives from the se
consistent-field~SCF! electronic density. In the hyperspher
cal method with such a model potential, there appear st
that end up occupying the core orbitals, a phenomenon
desirable from the viewpoint of the Pauli exclusion princip
Greene circumvented this phenomenon by eliminating fr
the calculation of the final-state wave function, the lowe
adiabatic channel that converges on the occupied Be1(1s)
core asymptotically. Watanabe@5# used instead a pseudopo
tential proposed in Ref.@7# because it supports no core o
bital, the pseudopotential itself being designed to elimin
core orbitals by introducing a repulsive component near
nucleus. This observation concerning the two calculatio
leads us to suspect that the ghost-state elimination mus
done with care. Use of some pseudopotential such as Ref@7#
is probably one of the easiest ways to achieve the elim
tion. However, there is an undesirable feature in this
proach, namely, the fact that the number of nodes of a sin
electron wave function turns out equal to the correct num
minus the number of the eliminated orbitals. This proble
should be resolved in a more rigorous formulation.

In the backdrop of the above-mentioned attempts, Zh
and Lin @8# recently carried out photoionization calculation
for Be, employing the SCF-type model potential. Howev
instead of eliminating the lowest-lying channel througho
the calculations, such as done by Greene, they truncate
only in the asymptotic region of the configuration space. T
result agreed very well with experimental as well as oth
theoretical cross sections. Though the procedure does
seem flawless as it produces deviations at unexpected en
ranges@9#, it gives us hopes to represent the correlations o
valence electron pair using the standard SCF model po
tial. The primary motivation of this paper is to propose a fir
theoretical procedure for eliminating ghost states. We w
then observe on what accounts the Zhou-Lin procedure
duces acceptable results.

Actually, formulating the problem itself is not a difficul
task. It requires merely to introduce an appropriate project
operator. Adaptation of the projection operator to the hyp
spherical method requires a few more steps. A purpose
this paper is to carry out the adaptation. However, the imp
175 © 1997 The American Physical Society
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176 55SHINICHI WATANABE AND T. EBARA
mentation of the procedure for real systems does not s
fruitful at this stage because rigorous convergence che
can be made only with the aid of known analytical solutio
Though such solutions are unavailable in principle, quasia
lytical scattering solutions exist for ans2 configuration
model known as the Temkin-Poet model@10,11#. Eliminat-
ing a specific core orbital from the model is reasona
straightforward. We will hence test our procedure against
restricted Temkin-Poet model in this paper. Henceforth,
keep this model in mind.

II. THE PROJECTION OPERATOR

Let us denote the core projection operator@12# as

Pcore5u1s&^1su. ~1!

Our aim is to lift by some amountl the energy of a state
which has a 1s component in such a way that in the limit o
l→` the state will diminish exponentially. One nontrivia
aspect in the application ofPcore to the current two-electron
problem is the representation of its effect on the other e
tron which may or may not contain a 1s component. An
answer to this question is simply that the electronic ene
be lifted if at least one of the electrons has a 1s component.
We adopt the following direct product as the two-electr
projection operator for its transparent physical meaning,

P2e~a,b!5Pcore~a! ^1~b!, ~2!

where1 is the identity operator and the labelsa andb per-
tain to electrona and electronb for the sake of argument. No
symmetrization of this operator is necessary if properly
tisymmetrized basis functions are used for evaluating
matrix elements. There may be alternative forms of the tw
electron projection operator that can accomplish our purp
A computationally practical and CPU economic form is d
sirable, but we will not pursue it here.

Now, we need to adopt a specific representation of
identity operator. Its coordinate representation is thed func-
tion which is numerically awkward to handle. We adopt i
stead the closure relation,

15(
k

uk&^ku, ~3!

using some complete system$uk&%. In this work we use as a
complete set, functions of the type

^r uk&5
1

r S 2D D 1/2sinS kp
r

D D , ~4!

such that the indexk takes on integral values 1,2,3, . . . an
rP@0,D# whereD represents the upper bound of the dom
where the projection operator is effective.

We have now come to an important statement of this s
tion. The Hamiltonian that we deal with is of the form

H5H2e1lP2e , ~5!

whereH2e is the standard two-electron Hamiltonian inclu
ing the model potential with a frozen core. There is no qu
tion, in principle, thatP2e will indeed serve the purpose a
m
ks
.
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l eventually goes to1`. In practice there are a few point
we need to pay attention to. First, the domain of integrat
in evaluating the matrix elements ofP2e must be over the
entire configuration space. Nonetheless, we need to con
the domain to a finite subspace in practice. This we w
indeed do, but as will be seen the restriction does not ca
difficulties as long as the domain is large enough to cont
the extent of the 1s orbital. The complete system for repre
senting the identity operator needs to be thus complete o
over the finite domain as specified above. Now, let us rea
that the coordinate space realization ofP2e is best done using
the independent particle radial coordinates$r 1 ,r 2%, whereas
we employ the hyperspherical coordinates for solving
Schrödinger equation. The relationship between the two s
of coordinates is given by

R5Ar 121r 2
2, ~6!

a5tan21~r 1 /r 2!, ~7!

wherer 1 and r 2 are the electronic radial distances from t
nucleus. The remaining coordinates are defined as usua
denoted simply asV. ~N.B.: SometimesV is defined as all
the variables other thanR.! Thus a second point of attentio
is the short wavelength oscillations associated with hig
components of the complete system$uk&%. BecauseP2e is
defined with respect to a finite domain in the independ
particle coordinates, there is a gap between the hypersp
cal domain and the square-shaped independent particle
main ~see Fig. 1!. We will ignore this gap, and evaluate th
matrix ofPcoreby integrating over the hyperspherical doma
only. The solution is propagated properly, however, by
starting theR-matrix propagator method from the outermo
edge of the first sector. This cut-away requires us to ch
how the short wavelength components contribute to the
trix elements ofP2e during an implementation of the prese
prescription. We will come back to this point in Sec. V.

III. METHOD OF SOLUTION

We divide the process of solving the Schro¨dinger equa-
tion into four steps. The first step sets up the channel fu
tions which we will use for recasting the equation into

FIG. 1. Domain of integration on ther 1-r 2 plain. The shaded
region marked ‘‘cut-away’’ is ignored in the evaluation of the pr
jection operatorP̃2e . This causes no serious trouble if the domain
large enough to contain the occupied core orbital.
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55 177ELIMINATION OF HYPERSPHERICAL GHOST STATES . . .
close-coupling type system of ordinary differential equ
tions. The second step solves the close-coupling equat
using theR-matrix propagator method. The motivation fo
employing this method is simply because the projection
erator, Eq.~2!, is a nonlocal operator. Instead of treating it
an inhomogeneous term in an integrodifferential equati
we prefer to resort to the variational principle directly. T
projection operator thus reduces to a matrix. The third ste
to propagate the solution further by theR-matrix propagation
after the ghost-state elimination is effected. The fourth s
of the method is to evaluate an equivalent of the scatte
matrix such as theK matrix. However, the gap between th
independent particle and hyperspherical coordinates pe
in the asymptotic region so that an appropriate matching p
cedure is required. The established procedure for matc
between incompatible coordinates is known as the tw
dimensional matching. In this section, we sketch these s
one by one.

A. The hyperspherical adiabatic basis set

The hyperspherical method has been summarized e
where@13#. Its successful applications to two-electron atom
systems can be found, for example, in Refs.@14,15#, etc. We
will therefore outline only the essential ingredients of t
method. This subsection, in particular, deals with the ad
batic basis set.

The standard transformation ofH2e using the Jacobian
J5](rW1 ,rW2)/](R,a,V)5R5sin2acos2a results in the re-
duced two-electron HamiltonianH̃2e5(1/AJ)H2e(1/AJ)
which reads, in atomic units,

H̃2e5S 2
1

2

]2

]R2 1
Had

R2 D , ~8!

where

Had5
1

2R2 S 2
]2

]a2 2
1

4
1

l1
2

sin2a
1

l2
2

cos2a
1RC~V! D ~9!

is the reduced adiabatic Hamiltonian andC(V), the effective
charge, represents the sum of the Coulomb potential te
multiplied by R. Likewise the reduced projection operat
readsP̃2e5(1/AJ)P2e(1/AJ). The adiabatic basis set consis
of solution vectors$fm% of the eigenvalue problem

Hadfm~R;a,V!5Um~R!fm~R;a,V!. ~10!

The eigenvaluesUm(R) are commonly referred to as adia
batic potential energies as in molecular physics.

We exploit the discrete variable representation~DVR!
@16# with Jacobi polynomials as the variational basis, a
obtain the eigenvectorsfm(R;a,V) of Eq. ~10! by diagonal-
izing a symmetric matrix at eachR. The procedure assure
about six significant digits in the adiabatic basis set throu
out. The details about the way the DVR method is exten
to solve equations of type~10! with a high precision will be
presented in a separate paper.
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B. The R-matrix propagator method

Once the adiabatic basis set is constructed, the next st
to solve for the total wave functionC(R,a,V) that satisfies

H̃C~R,a,V!5~H̃2e1l P̃2e!C~R,a,V!5EC~R,a,V!.
~11!

Thus, it is customary to expand the radial coefficien
Fm(R) in the adiabatic representation, namely,

C~R,a,V!5(
m

Fm~R!fm~R;a,V!. ~12!

This representation, however, requires us to evaluate so
what cumbersome derivative coupling terms. Instead, R
@13# employed the diabatic-by-sector method which define
locally diabatic set out of the adiabatic set by disallowin
local variations of R, that is to use the se
$fm(Rfixed;a,V)% over a sector surroundingRfixed. Thus the
modified form of the expansion is

C~R,a,V!5(
m

Fm~R!fm~Rfixed;a,V!. ~13!

Within each sectorFm(R) satisfies the close-coupling-typ
equation with no derivative couplings,

(
n

S 2
1

2

]2

]R2 dmn1^fmuHad1l P̃2eufn& DFn~R!

5EFm~R!, ~14!

wherefm andfn are all evaluated atR5Rfixed. Once the set
of solutions are obtained, they may be propagated to
adjacent sector by applying the frame transformat
Tmn
i j 5„fm(Rfixed

i ;a,V) zfn(Rfixed
j ;a,V)…, that is,

(
m

Fm
i SRfixed

i 1
D i

2 DTmn
i j 5Fn

j SRfixed
j 2

D j

2 D , ~15!

where the superscriptsi and j pertain to the adjacent secto
spanned by the locally diabatic basisfm(Rfixed

i ;a,V) and
fm(Rfixed

j ;a,V), respectively; andD i andD j are the associ-
ated sector lengths such thatRfixed

i 1D i /25Rfixed
j 2D j /2. Now

we focus on solving Eq.~14! using theR-matrix propagator
method.

The R-matrix propagator method was originally con
ceived by Light and Walker@17#, and later some matrix ma
nipulations were improved on by Nesbet@18#. A long write-
up of general computer codes is given in Ref.@19#. It is
based on the variational principle so that the solution
stable and rapidly convergent. It exploits the Bloch opera
defined by

L~R~1!,R~2!!52
1

2
@d~R2R~1!!2d~R2R~2!!#

]

]R
. ~16!

We merely sketch the procedure and give key express
needed for numerical implementation@19#. Suppose we use a
radial basis set$ f p(R)% within a sectorRP@R(1),R(2)# for
expandingFm(Rfixed) over. The specific radial basis we ex
ploit in this work consists of normalized Legendre polyn
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178 55SHINICHI WATANABE AND T. EBARA
mials defined over the interval@R(1),R(2)# by a proper res-
caling of the argument. Now theR-matrix method defines a
set of eigenvectors$uq&% for each sector through the eige
value problem

~H̃1L !uq&5equq&, ~17!

such thatuq& is a superposition of functions of the form
f p(R)fm(Rfixed;a,V). It then follows that the eigenvecto
uu& of the Schro¨dinger equation

H̃uu&5Euu&

satisfies

~H̃1L !uu&5~E1L !uu&.

Consequently,

uu&5(
q

uq&^quLuu&
eq2E

. ~18!

Thus at each end point, we have

^1uu&52
1

2(q S ^1uq&^qu1&
eq2E

]

]R
^1uu&

2
^1uq&^qu2&

eq2E

]

]R
^2uu& D , ~19!

^2uu&52
1

2(q S ^2uq&^qu1&
eq2E

]

]R
^1uu&

2
^2uq&^qu2&

eq2E

]

]R
^2uu& D . ~20!

Here and below, we use the indexes 1 and 2 as a short
notation for the end pointsR(1) and R(2). We define the
propagatorR by

R115
1

2(q
^1uq&^qu1&

eq2E
, R125

1

2(q
^1uq&^qu2&

eq2E
,

~21!

R215
1

2(q
^2uq&^qu1&

eq2E
, R225

1

2(q
^2uq&^qu2&

eq2E
.

~22!

TheR-matrix R is defined at the end points by

^1uu&5R~1!
]

]R
^1uu&, ~23!

^2uu&5R~2!
]

]R
^2uu&. ~24!

Substituting Eqs.~21! through ~24! into Eqs.~19! and ~20!
and eliminating the derivatives, we get

R~2!5R222R21@R~1!1R11#
21R12. ~25!
nd

This formula allows us to propagate theRmatrix obtained at
one end of the sector to another, and so forth.

It is also possible to construct wave functions using
propagator. Let us define

R~x;1!5
1

2(q
^xuq&^qu1&

eq2E
, ~26!

R~x;2!5
1

2(q
^xuq&^qu2&

eq2E
~27!

at an arbitrary hyperradiusxP@R(1) ,R(2)#. Consequently, it
follows from Eq.~18!

^xuu&5R~x;2!
]

]R
^2uu&2R~x;1!

]

]R
^1uu&. ~28!

Thus, by settingx5R(2) we can express]/]R^2uu& as

]

]R
^2uu&5R12

21S ^1uu&1R11

]

]R
^1uu& D . ~29!

Substituting this and using]/]R^1uu&5R(1)21^1uu&, we
get

^xuu&5$R~x;2!R12
21@R~1!1R11#2R~x;1!%R~1!21^1uu&.

~30!

C. Removal of ghost states during propagation

Let us now recall that the evaluation of a matrix eleme
of the nonlocal operatorP2e involves an integration over the
entire configuration space. However, the following simp
argument delineates the action ofP2e on the solution of the
Schrödinger equation, Eq.~5!, thus providing a guideline for
restricting the domain of integration. In the region where t
hyperradiusR is greater than the size of the occupieds
orbital denoted aŝr &, we have

R.r.1
^r &2

2r.
. ~31!

Thus,R roughly coincides withr. . As a consequence,a
roughly coincides withr 1s /R. The lowest locally diabatic
channel function thus coincides with the 1s orbital except for
the normalization constant. Thus presuming the integratio
taken over some local interval at sufficiently large values
R and also using thed function representation of the identit
operator for the outermost electron, we get

P2e(
m

Fm~R!fm~Rfixed;a,V!}^r,u1s&F1s~r.!. ~32!

It is clear that at the total energyE,U1s(r.)1l, the
radial coefficient F1s(r.) decays as e2kr. with
k5A2uE2U1s(r.)2lu, where U1s(r.).20.5 a.u. For
sufficiently large values ofl, F1s(r.) does not propagate to
large distances. Thus we are allowed to confine the inte
tion for the matrix element ofP2e to a finite domain, such
that ^r & is sufficiently smaller than the linear size of th
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55 179ELIMINATION OF HYPERSPHERICAL GHOST STATES . . .
domain. We construct the first sector of theR-matrix propa-
gator method to be as large as necessary to satisfy this
dition.

If l is set very large, we may treat the coefficie
F1s(R) of the lowest channel as nil from the second sec
onward. This truncation is effectively achieved by retainin
out of the entireR matrix R, the residual submatrixRres

defined through

R5S R11 R12 ••• R1n

R21

A Rres

Rn1

D . ~33!

The eliminated component corresponds to the solution
grows up asekr.. A slightly more accurate transcription
which we use in this work for truncation, makes use of a p
of local WKB-type radial solutions for each channel, a
eliminates the solution whose lowest channel componen
exponentially growing.

D. Two-dimensional matching and theK matrix

The asymptotic form of the open-channel wave funct
is

F~r, ,r.!5S 2

pkD
1/2

sin~kr.! f̃ n~r,! ~34!

for the regular solution and

G~r, ,r.!52S 2

pkD
1/2

cos~kr.! f̃ n~r,! ~35!

for the irregular one wheref̃ n(r ) is the volume-normalized
bound-state wave function of hydrogen. For closed chann
we have

F~r, ,r.!5S 1

pk D 1/2ek~r.2rm! f̃ n~r,!, ~36!

for the exponentially growing solution, which we eliminat
and

G~r, ,r.!5S 1

pk D 1/2e2k~r.2rm! f̃ n~r,! ~37!

for the exponentially decaying one, which we retain, a
rm is set equal to the matching hyper-radiusRm . We seek to
recast the internalR-matrix solution given by

C5R,
]C

]R
51 ~38!

as

C5A~F2KG!, ~39!

]C

]R
5AS ]F

]R
2K

]G
]RD , ~40!
n-

t
r
,

at

ir

is

ls,

d

whereK is theK matrix andA is the amplitude. Here the
matrix notation is used and the indices are all dropped
simplicity. Multiplying both sides by the adiabatic chann
function defined atRm , and integrating with respect toa
results in a system of linear algebraic equations. This lin
system is easy to solve forK.

IV. THE RESTRICTED TEMKIN-POET MODEL

The s2 configuration model for the electron-hydroge
scattering was first introduced by Temkin@10# and later rig-
orously investigated by Poet@11#. It permits one to study the
general features of electron-impact excitation at impact
ergies both below and above the ionization potential. It w
thus used earlier as a testing ground for general nume
methods@15,20,21#. Let f n(r ) be a volume-normalized hy
drogenic bound-state functionf̃ n(r ) multipliedby n

3/2 where
n is the principal quantum number, andf e(r ) an energy-
normalized continuum Coulomb wave function at a suita
chosen continuum energye as in Eqs.~34!–~37!. Let us re-
alize that the two-electron wave functionf n(r,)e

6 ikr.

as well as f e i
(r,)e

6 ikr. defined at the on-shell energ

E5 1
2k

21e satisfy the Schro¨dinger equation but not the
boundary condition atr 15r 2. At the boundary the wave
function must have an antinodal line for1S and a nodal line
for 3S. The quantities required of the evaluation of th
S-matrix stem from the boundary condition, namely,

Aee85E
0

`

ve
R* ~r ,r !ve8

R
~r ,r !dr, ~41!

Bee0
5E

0

`

ve
R* ~r ,r !ve0

I ~r !dr, ~42!

where e0 pertains to the energy of the initial target sta
e8 to that of a final state, ande to an arbitrary state. The
function ve0

I pertaining to the initial bound target state

given by

ve0
I ~r, ,r.!5

]

]n
e2 ikr. f n~r,! ~43!

for singlet spin states, where]/]n5]/]r,2]/]r. , and

ve0
I ~r, ,r.!5e2 ikr. f n~r,! ~44!

for triplet states. The functionve
R pertaining to the continuum

state is given by

ve
R~r, ,r.!5

]

]n
eikr. f e~r,! ~45!

for singlet states and

ve
R~r, ,r.!5 eikr. f e~r,! ~46!

for triplet states. Moreover,ve
I 5ve8

R* . For closed channels
we have

ve
R~r, ,r.!5

]

]n
e2kr. f e~r,! ~47!
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180 55SHINICHI WATANABE AND T. EBARA
for singlet states and

ve
R~r, ,r.!5e2kr. f e~r,! ~48!

for triplet states.
The most noteworthy aspect of the model and of Po

method of solution is that theS matrix can be obtained by
solving a simple system of linear equations of the form

(
j51

N

Āeke j
ce je0

5Beke0
, ~49!

where

Āeke j
5(

i
Aeke i

a i j ~50!

and a i j represents a set of coefficients defined
a i j5*a i(e)a j (e)de, where

a i~e!5
~e2e0!•••~e2e i21!~e2e i11!•••~e2eN!

~e i2e0!•••~e i2e i21!~e i2e i11!•••~e i2eN!
.

~51!

The relationship betweence je0
and theS matrix Se je0

is
simply

Si j52S kikj D
1/2S ninj D

3/2

ci j . ~52!

There is no rigorous theorem guaranteeing the converge
of the solution of Eq.~49! to the desiredSmatrix as a func-
tion of the number of basis functions. However, experien
shows that the solution is as good as the unitarity of
obtainedSmatrix. We may exploit this fact as a guideline
applying the Temkin-Poet model. One last side remark
fore discussing the restricted model concerns the evalua
of the continuum Coulomb wave functions. Poet himself e
ployed the hypergeometric representation so as to exp
various matrix elements in Eqs.~41! and ~42! analytically.
Because the expressions involve hypergeometric functi
multiple precision algorithm~using numbers longer than
bytes or eventually even longer than 16 bytes! becomes often
necessary. Numerically constructed continuum Coulo
wave functions provide the matrix elements more eas
Thus in this work, the matrices in Eqs.~41! and ~42! are
constructed using numerical Coulomb wave functions.

Now suppose the 1s orbital is occupied. The removal o
this orbital is obviously accomplished by restricting ou
selves to basis functions that excludef 1s(r,)e

6 ikr.. How-
ever, a literal implementation of this idea yields a poorS
matrix in the sense its unitarity is unsatisfactory. It becom
thus necessary to introduce pseudostates. For the prec
we aim at in a later section, we include a 1s pseudotarget
state that is orthogonal to 1s and has a node like 2s and
decays ase2r,. It thus appears that the absence of 1s, which
makes the target states incomplete, requires an auxi
function to represent ‘‘relaxation.’’ From here on, let us c
this model and the method of solution for the case of
‘‘occupied’’ 1s orbital the restricted Temkin-Poet model.
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V. RESULT AND DISCUSSIONS

We examine to what extent the procedure outlined in
previous sections results in the final-state wave functions
theSmatrix that are physically satisfying. We do so in tw
steps. First, we visualize the final-state wave functions
observe the way the 1s component damps out of the corre
solution. Second, we evaluate theSmatrix and its associated
eigenphase shifts in the energy range from the 2s threshold
to slightly below the 3s threshold. This evaluation will be
accompanied by the variation ofl. The number and the qual
ity of the locally diabatic basis set is fixed in such a way
to assure convergence of about three significant digits in
final result. We will examine the Zhou-Lin procedure in pa
allel.

In the upper panel of Fig. 2, we show the wave functi
evaluated atE520.12 a.u. forl50 a.u. This energy lies
between theH(2s) andH(3s) thresholds. The size of the
first sector is taken to be 30 a.u. Each componentFm(R) is
displayed here with respect to the locally diabatic basis
each sector. It is to be noted that here we use the asymp
labels 1s, 2s, . . . for m. The componentsFm are evaluated
in the diabatic representation so that at any finiteR these
components are formally referenced to the asymptotic ch
nels. The lower panel, on the other hand, is for a relativ
small value ofl50.5. Each of these wave functions is ma
to correspond to anR-matrix state in which the derivative o

FIG. 2. Channel components of a typicalR-matrix solution. The
upper panel represents absence of the projection operator, an
lower one is for a relatively small value ofl50.5. Using the labels
explained in the text, the dominant component represented by
dotted line corresponds to the 2s channel, the asymptotically di
verging component corresponds to 3s, the broken line, showing a
relatively small amplitude, is for 4s. The solid line represents th
1s channel which has non-negligible amplitude at moderate hyp
radial distances. The projection is effected withinR530 a.u.
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55 181ELIMINATION OF HYPERSPHERICAL GHOST STATES . . .
]F2(R)/]R51 at R5Rm , but ]Fm(R)/]R50 for all the
other channels. Thel50 case corresponds to the Zhou-L
prescription. One obvious difference between the two pan
is that for l50 them51s component is freely oscillating
while for l50.5 this component rises first, then atR beyond
5 a.u. it decays exponentially. This difference is due to
working of the projection operator, as we so designed. Ho
ever,all the other components remain almost uninfluenc
by the projection operator, which is compatible with the sur
prising finding of Zhou and Lin@8#. An increase in the value
of l leads to a more rapid decay of them51s component.
Note, however, that an unlimited increase inl leads to an
eventual instability because the radial basis functions u
for theR-matrix method become inappropriate to repres
the exceedingly sharp exponential decay.

Let us interpret the cause of this weak action of the p
jection operator on the components other than the 1s. To this
end, it is instructive to consider the system’s evolution alo
R starting from the condensation region whereR is small, to
the asymptotic region where the residual atomic target st
become apparent. The transition region which marks
separation between the two regions varies from state to s
but is generally represented byR close toA2^r & where^r & is
the size of the target state. First, in the condensation re
the system does not recognize the presence of the 1s state
becauser,(<R) is much smaller than the size of the 1s
orbital. Hence, the complete adiabatic basis set is neces
for constructing the wave function. It is thus inappropriate
simply exclude the lowest adiabatic channel in this regi
Second, the transition region is rather thin. And third, on
the system recognizes the 1s state on entering the asymptot
region, the residual coupling between the 1s state and the
rest dies away rapidly. In consequence, in the asympt
region, the 1s component is decoupled from the others
that the boundary condition on this particular compon
does not influence the component of the other channels.
may also argue for this unexpected success of the Zhou
prescription from a different angle. Suppose we solve
restricted Temkin-Poet model without the pseudostates.
set up the direct product of the 1s orbital and the standing
wave solutions, the latter of which are made to vanish
yond some radiusrm . The success of the Zhou-Lin prescri
tion implies a very weak mixing between these standi
wave basis functions and the rest. Consequently, the el
phase shift reflects very weak dependence onrm . However,
the weak coupling may not hold in the case of eliminati
higher core orbitals such as 2s, 2p, etc. We will postpone
examining such cases. In any event, the truncation of
1s component beyond, say, 7 a.u. appears to provide a
sonable approximation to the projection operator method

Now we show how our method compares with theSma-
trix evaluated by the Poet method. The accuracy we atta
in this work is about a few percent. We will therefore repr
sent the result only graphically. Figure 3 shows the eig
phase shifts calculated by the Poet procedure and ours.
general tendency is that the Zhou-Lin prescription cor
sponding tol50 gives a surprisingly good estimate ofd.
With the increase ofl the eigenphase shift approaches th
of the restricted Temkin-Poet model. However, it is impo
tant to recall our earlier statement that the unlimited incre
in l is undesirable because of the insufficiency of the rad
ls
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basis functions to represent the sharp exponential decay@12#.
There appears to be an optimal value ofl for each set of
radial basis functions. In this paper, we do not explore
condition or the prescription that permits us to determine
optimal value ofl for each basis set.

In Sec. II, we made note of a few points of attention. T
main effect of cutting the edge off a square block is that
projection operator becomes incomplete in the sense tha
eigenvalues are not strictly zero or unity. Instead, the eig
values distribute between the two ideal values withou
sharp edge. Indeed, the smaller the size of the box is,
more eigenvalues deviate from unity. On the other hand,
good agreement demonstrated in this section suggests
the bad roots play a rather minor role in representing
action of the projection operator.

VI. CONCLUSIONS

With the aid of the restricted Temkin-Poet model, w
have shown how to remove an occupied core orbital in
context of the hyperspherical method. Indeed as a functio
the parameterl the elastic eigenphase shift was shown
converge toward the result of the restricted Temkin-P
model. On the basis of the behavior of the wave function
was speculated that the remarkable success of the Zhou
prescription for truncating the radial component of the gh
channel owes to the system’s rather abrupt recognition of
core 1s orbital as well as to the quick decoupling of th

FIG. 3. Elastic eigenphase shiftd shown as a function of energ
for different values ofl. l50 corresponds to the Zhou-Lin pre
scription, andl5` to the restricted Temkin-Poet model. The pr
jection effected within a rather small hyperradiusR55 a.u. which,
however, is large enough to contain the 1s orbital.
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ghost channel from the others in the asymptotic region, o
short, to the weak coupling of the 1s channel with the rest.

The next important step is to redesign the method so a
represent the exponential decay of the ghost channel m
effectively. This would permit us to vary the value ofl
unrestrictingly and to apply the present approach to real
tems.
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